
Replicated Placements in the Polyhedron Model

Peter Faber, Martin Griebl, and Christian Lengauer

Fakultät für Mathematik und Informatik
Universität Passau, D–94030 Passau, Germany
{faber,griebl,lengauer}@fmi.uni-passau.de

Abstract. Loop-carried code placement (LCCP) is able to remove re-
dundant computations that cannot be recognized by traditional code mo-
tion techniques. However, this comes possibly at the price of increased
communication time. We aim at minimizing the communication time by
using replicated storage.

1 Introduction

The basic idea of the polyhedron model is to create a mathematical model of
the computation to be done. This representation can be transformed in order
to carry out code optimizations or automatic parallelization. In earlier work, we
developed an optimization technique called loop-carried code placement (LCCP),
which is able to remove redundant computations that are executed in different
iterations of a loop. However, this improvement may come at the price of in-
creased communication time. This is because intermediate results have to be
stored in arrays which may introduce communications – actually a problem that
also occurs in other programs (where intermediate results are stored).

Communication time may depend on various factors. An effective placement
method should take into account as many specific traits of the underlying system
as possible. Such specific traits may include certain communication patterns for
which efficient communication code can be generated and should have the ability
to use replicated data storage in order to decrease communication time.

Our present aim is to model as many of these traits as flexibly as possible
with regard to some underlying cost model. The idea is then to “plug in” a cost
function that evaluates the current placements and choose the placements that
incur the least cost. Section 2 gives a short example of the use and limits of
LCCP. In Section 3, we discuss the basic model used in our method. Section 4
describes the method of computing a placement in detail.

2 Motivation

Primarily, we are concerned with improving the results of an LCCP transforma-
tion, although the use of replicated placements is not limited to this scenario. In
Example 1, a code fragment is given that is very well suited for applying LCCP.
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Example 1. Let us consider the following code fragments:
!HPF$ INDEPENDENT

DO j=2,N-2
!HPF$ INDEPENDENT

DO k=1,N
L(k,j)= (y(j) *2)*k&

-(y(j+2)*2)/k&
+(y(j+1)*2)+k&
+(y(j-1)*2)

END DO
END DO

!HPF$ INDEPENDENT
DO j=1,N
tmp(j)=y(j)*2

END DO
!HPF$ INDEPENDENT

DO j=2,N-2
!HPF$ INDEPENDENT

DO k=1,N
L(k,j)= tmp(j) *k &

-tmp(j+2)/k &
+tmp(j+1)+k &
+tmp(j-1)

END DO
END DO

The (synthetic) code fragment on the left contains four computations of
y(j)*2. The same value is computed repeatedly for different iterations of both
the k-loop and the j-loop. LCCP can transform this code fragment into the one
on the right (the actual transformation depends on the scheduler used). In the
transformed code, y(j)*2 is calculated once and then assigned to a temporary.

Let us suppose that L is (BLOCK,BLOCK)-distributed. Depending on the dis-
tribution of y, different distributions of tmp may be beneficial: most probably,
an alignment with y is a good approach; if y is replicated, it is probably more
useful to align with L.

3 The Model

In this section, we discuss our model in closer detail. We give a representation
for replicated storage in our model, and finally show how to adapt dependence
information to this representation.

3.1 Base Language

Our method depends on the presence of an initial data placement. If we restrict
ourselves to HPF programs, the user has already defined some data placement.
The result of our method is a set of further placements that can be used in
an HPF (or HPF-style) program for intermediate computations whose results are
stored in arrays. Therefore, our method can be viewed as a compilation phase
within an HPF compiler, or possibly as a preprocessor.

3.2 Occurrence Instances

We consider occurrence instances with dependence relations between them as
described in our earlier work [FGL01b] (and in a technically expanded version
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Fig. 1. Mappings representing a distribution: ΦV maps array elements to a virtual
processor, ΦP maps physical processors to a virtual processor.

[FGL01a]), which is based on the polyhedron model [Lam74]. Thus, every com-
putation executed can be viewed as a function application f(e1, . . . , eq, . . . , er),
where expressions e1, . . . , el are only read, while eq+1, . . . , er are only written,
and each function application is assigned a unique number – its occurrence. This
means that our method works on the expression level (and not – as usual – on
the coarser level of statements). In the polyhedron model, placement functions
defining where to execute a given occurrence are affine functions in the indices of
loops surrounding the occurrence. We view these n-dimensional affine functions
as linear functions in an (n+1)-dimensional space using homogenous coordinates.

We employ a dependence analysis as the one of Feautrier [Fea91] to produce a
dependence graph on occurrence instances which we call an occurrence instance
(dependence) graph (OIG).

Actually, the usual input for our method will not be an OIG, but its re-
duced form, a condensed occurrence instance graph (COIG) as defined in our
earlier work [FGL01b]. In a COIG, equivalent occurrence instances are reduced
to a single representative (a single occurrence instance). However, for the work
presented here, this distinction is unimportant.

3.3 How to Model Replication

Our aim is to use replication (of data and computations) to reduce communica-
tion costs. The replicated mapping of a point α ∈ Z

n+1 to a subset of Z
m can

be described as follows: we introduce a template T (corresponding to Z
m) and

a pair of affine functions Φ = (ΦV , ΦP ). α is then mapped to T via ΦV , while
all the points of Z

m to which α should ultimately be mapped are themselves
mapped to that same template element by ΦP (see Figure 1).

The set of processors on which an occurrence instance α is to be stored is:

Φ(α) = Φ−1
P ◦ ΦV (α)

A consistency condition is that the image of ΦV be a subset of the image of ΦP .
For the placements given as input, we can safely assume this; the placements we
compute in Section 4 satisfy this property by construction.

This approach corresponds to the description of replicated data in HPF, as
sketched in Figure 1. An array, represented by the square with dimensions i and
j on the left, is to be placed on a three-dimensional processor grid on the right.



306 P. Faber, M. Griebl, and C. Lengauer

3.4 Dependences in the Presence of Replication

In order to estimate the costs for communication induced by the target program,
we view the dependences with respect to space coordinates – i.e., after applica-
tion of the placement relation Φ = (ΦV , ΦP ). Since neither of the two functions
defining the placement relation is necessarily invertible, it is not immediately
clear how to represent dependences in the target program.

p2

p1

p1

p2

h

Φo1,PΦo1,V

Φo2,PΦo2,V

o1

o2

Fig. 2. Dependence from instances
of occurrence o1 to instances of oc-
currence o2.

Figure 2 shows an example of a depen-
dence given by an h-transformation h as in-
troduced by Feautrier [Fea91]. In the upper
part of the figure, four instances of an oc-
currence o1 are mapped to a virtual pro-
cessor grid by Φo1,V ; physical processors are
mapped to the same grid by Φo1,P . The h-
transformation maps a target occurrence in-
stance α to its source occurrence instance
h(α). The instances of occurrence o1 are
stored in a replicated fashion (all processors
with the same p1 coordinate own a copy of
an occurrence instance).1 Just as the map-
pings (Φo1,V , Φo1,P ) define a placement re-
lation for the instances of o1, the mappings

(Φo2,V , Φo2,P ) define a placement for the instances of o2, as depicted in the lower
part of Figure 2. The instances of o2 are only allocated on the first column of
the processor space by their placement.

This means that all instances of occurrence o2, each of which depends on a
different instance of o1, may “choose” the source processor from which to load
the data needed for computation.

With the names taken from Figure 2, the new dependence relation is
h′ = Φ−1

o1,P ◦Φo1,V ◦h◦Φ−1
o2,V ◦Φo2,P . We observe that there are two sets involved

in the computation of h′:

– Φ−1
o1,P ◦ Φo1,V (α): the possible sources of α (copies of the same value).

– Φ−1
o2,V ◦ Φo2,P (β): the set of occurrence instances to be executed on the pro-

cessor with space coordinates β.

If Φ−1
o1,P ◦ Φo1,V (α) is a set, we may choose any point within that set for the

representation of our dependence. Therefore, we can account for Φ−1
o1,P by using

a generalized inverse that yields a single point.
However, Φ−1

o2,V ◦ Φo2,P has to be represented as a set, e.g., by using two
mappings to represent the relation h′, just as with placement relations.

4 The Placement Method

With this description of replicated placements and resulting dependence rela-
tions, we can compute further placements. In order to allow almost any cost
1 Note that occurrence instances may represent either, computations or data.
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model to be “plugged in”, we choose a näıve approach that basically considers
all possible placements and selects the cheapest solution (names as in Figure 2):

1. For all sets of occurrence instances: propagate a placement candidate from
source o1 to target o2 (Φo1 ◦ h) and from target to source (Φo2 ◦ h−1).

2. For each combination of candidate placements for the occurrence instances:
a) Compute the dependence information according to the current place-

ments. Candidate placements Φ1, Φ2 can be combined into a new place-
ment Φ3 placing all occurrence instances to both sets by asserting
Φ−1

3,P ◦ Φ3,V (α) ⊇ Φ1(α) ∪ Φ2(α) for all α.
b) Compute a cost for the given dependence information, select the combi-

nation of placements that incurs the lowest cost.

As noted elsewhere [FGL01b], it is not necessary to compute a placement for
all occurrence instances of a program. Which sets do need placements can be
deduced from the dependence information.

Placements are ultimately propagated from data. Therefore, we have to con-
sider the transitive closure of the dependence relation in Step 1. Then we com-
pute placement relations that can be expressed by two affine mappings. If an
occurrence o2 depends on an occurrence o1 with h-transformation h, the place-
ments Φo1 , Φo2 should satisfy

Φ−1
o2,P ◦ Φo2,V (α) ⊆ Φ−1

o1,P ◦ Φo1,V (h(α)) (1)

If placement relations are propagated from source to target, this can be guaran-
teed by computing the Φo2 as: Φo2,P := Φo1,P , Φo2,V := Φo1,V ◦ h.

If the placement is propagated from target to source, the computation is
a bit more complex since we have to consider dependences to several different
tragets. However, we can compute a placement relation that ensures condition
(1) by using replication: the smallest subspace for which replication has to occur
to satisfy condition (1) can be computed as the solution of a linear equality
system.

5 Preliminary Results

Let us reconsider Example 1. We use a block distribution for both dimensions of
L, and a replicated distribution for y along the first dimension of L (with y(j)
aligned to L(*,j)). We compiled the code using the ADAPTOR compiler and
measured the runtime on 16 nodes of an SCI-connected PC-cluster. We applied a
cost model that only distinguishes between communication patterns (local data
[cost 1], shifts [cost 10], array-triplets [cost 100], general accesses [cost 1000]).
According to that cost model, we had to choose replicated storage for tmp in our
LCCP-optimized code. This resulted in about 10% improvement wrt. the case
had we chosen a distribution that can be expressed by a function such as an
alignment with L (which already performed better than the original code).
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6 Related Work

The dHPF compiler uses a similar approach to take advantage of replication for
computation partitioning [MCAB+02]. It can generate code for a union ON HOME
specifications, which can therefore be propagated from a dependence target to its
sources. This statement-driven approach leaves the control structure constant.

In contrast, our method is based on a fine-grained polyhedron model, i.e.,
we represent calculations of expressions inside loops as integer polyhedra and
dependences as relations between these polyhedra. The control structure is later
regenerated from the geometric description by loop scanning [QR00].

During the last decade, several placement algorithms based on the polyhe-
dron model have been proposed, such as the placement algorithm by Feautrier
[Fea94]. However, these methods do not consider replication.

7 Future Work

We are currently implementing our method as part of our code restructurer
LooPo. We will conduct experiments on a substantial set of benchmarks when a
stable implementation is available. In addition, we are working on an accurate
cost model for our main HPF compiler, ADAPTOR. Finally, an important opti-
mization is the partitioning of the iteration space into a form for which efficient
code can be generated; loop transformations in the polyhedron model typically
ignore the cost of enumerating loops, which is not always precise enough.

Acknowledgements. This work is supported by the DAAD through project
PROCOPE and by the DFG through project LooPo/HPF.
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[QR00] F. Quilleré and S. Rajopadhye. Code generation for automatic paraleliza-
tion in the polyhedral model. Int. J. Parallel Programming, 28(5):469–
498, 2000.


	Introduction
	Motivation
	The Model
	Base Language
	Occurrence Instances
	How to Model Replication
	Dependences in the Presence of Replication

	The Placement Method
	Preliminary Results
	Related Work
	Future Work

