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Abstract. I consider the problem of the domain-specific optimization
of programs. I review different approaches, discuss their potential, and
sketch instances of them from the practice of high-performance paral-
lelism. Readers need not be familiar with high-performance computing.

1 Introduction

A program that incorporates parallelism in order to increase performance (mainly,
to reduce execution time) is particularly difficult to write. Apart from the fact
that its performance has to satisfy higher demands than that of a sequential
program (why else spend the additional money and effort on parallelism?), its
correctness is also harder to establish. Parallelism makes verification more dif-
ficult (one must prove the correctness not only of the individual processes but
also of any overt or covert interactions between them) and testing less effective
(parallel behaviour can, in general, not be reproduced).

Note that introducing parallelism for high-performance is a form of program
optimization since, in high-performance computing, parallelism is never part of
the problem specification. If one can get along without it – so much the better!

The present state of programming for high-performance parallel computers
can be compared with the state of programming for sequential computers in the
1960s: to a large extent, one is concerned with driving a machine, not with solving
a computational problem. One specifies, in the source program, the composition
and synchronization of the parallel processes, and the communication between
them. This can be viewed as assembly-level programming.

Thus, researchers in programming high-performance parallelism have been
searching for commonly useful abstractions – much like researchers in sequential
programming languages and their methodologies have been back in the 1960s and
1970s. Just as back then, their efforts are being resisted by the programmers in
practice who feel that they need low-level control in order to tune program per-
formance – after all, the performance is the sole justification for their existence!
Just as back then, the price they pay is a lack of program structure, robustness
and portability. However, one additional challenge in high-performance paral-
lelism is the lack of a commonly accepted parallel machine model (for sequential
programs we have the von Neumann model). One consequence is that, even if



the parallel program may be portable, its performance may not be but may differ
wildly on different platforms.1

If we consider high-performance parallelism an application domain, it makes
sense to view the programming of high-performance parallelism as a domain-
specific activity. Thus, it is worth-while to assess whether techniques used in
domain-specific program generation have been or can be applied, and what spe-
cific requirements this domain may have. To that end, I proceed as follows:

1. I start with a classification of approaches to domain-specific programming
(Sects. 2–3).

2. I review some of the specific challenges in programming for the domain of
high-performance parallelism (Sect. 4).

3. I review a variety of approaches to programming high-performance paral-
lelism, place them in the classification of approaches to domain-specific pro-
gramming and discuss their principles and limitations (Sects. 5–8). Here, I
mention also all approaches to high-performance parallelism which are pre-
sented in this volume.

4. I conclude with a review of the main issues of raising the level of abstraction
in programming parallelism for high performance (Sect. 9).

2 Domain-Specific Programming

What makes a language domain-specific is not clear cut and probably not worth
worrying about too much. A debate of this issue would start with the already
difficult question of what constitutes a domain. Is it a collection of users or a
collection of software techniques or a collection of programs...?

For the purpose of my explorations we only need to agree that there are
languages that have a large user community and those that have a much smaller
user base, by comparison. Here I mean “large” in the sense of influence, man-
power, money. I call a language with a large user community general-purpose.
Probably undisputed examples are C and C++, Java and Fortran but, with
this definition, I could also call the query language SQL general-purpose, which
demonstrates that the term is meant in a relative sense.

A large user community can invest a lot of effort and resources in developing
high-quality implementations of and programming environments for their lan-
guage. A small user community has much less opportunity to do so, but may
have a need for special programming features that are not provided by any
programming language which other communities support. I call such features
domain-specific. One real-world example of a language with a small user com-
munity, taken from Charles Consel’s list of domain-specific languages on the
Web, is the language Devil for the specification of device driver interfaces [1].

1 On present-day computers with their memory hierarchies, instruction-level paral-
lelism and speculation, a lack of performance portability can also be observed in
sequential programs.



What if the small user community prefers some widely used, general-purpose
language as a base, but needs to enhance it with domain-specific constructs to
support its own applications? High-performance computing is such a community:
it needs an efficient sequential language, enhanced with a few constructs for
parallelism, synchronization and, possibly, communication. It has two options:

– It can view the combination of the two as a new, domain-specific language
and provide a dedicated, special-purpose implementation and programming
environment for it. However, this will put it at a disadvantage with respect
to the large user community of the base language, if it is not able to muster
a competitive amount of resources for the language development.

– It can attach a domain-specific extension to the base language [2]. In this
case, the small community need not invest in the development of the general-
purpose part of its language. Indeed, if the enhancement is crafted carefully,
it may be possible to plug in a new release of the base language implemen-
tation, which has been developed independently, without too much trouble.

Let us look more closely at the latter approach for our particular purpose: pro-
gram optimization.

3 Domain-Specific Program Optimization

Two commonly recognized benefits of domain-specific program generation are
increased programming convenience and program robustness. But there is also
the opportunity for increased program performance – via optimizations which
cannot be applied by a general-purpose implementation. In many special-purpose
domains, performance does not seem to be a major problem, but there are some
in which it is. High-performance computing is an obvious one. Another is the
domain of embedded systems, which strives for a minimization of chip complex-
ity and power consumption, but which I will not discuss further here (see the
contribution of Hammond and Michaelson [3] to this volume).

There are several levels at which one can generate domain-specifically opti-
mized program parts. Here is a hierarchy of four levels; the principle and the
limitations of each level are discussed further in individual separate sections:

Sect. 5: Precompiled Libraries. One can prefabricate domain-specific pro-
gram pieces independently, collect them in a library, and make them available
for call from a general-purpose programming language.

Sect. 6: Preprocessors. One can use a domain-specific preprocessor to trans-
late domain-specific program pieces into a general-purpose language and let
this preprocessor perform some optimizations.

Sect. 7: Active Libraries. One can equip a library module for a domain-
specific compilation by a program generator, which can derive different im-
plementations of the module, each optimized for its specific call context.

Sect. 8: Two Compilers. One can use a domain-specific compiler to translate
domain-specific program pieces to optimized code, which is in the same target



language to which the general-purpose compiler also translates the rest of the
program. The separate pieces of target code generated by the two compilers
are then linked together.

The domain specificity of the optimization introduces context dependence into
the program analysis. Thus, one important feature that comes for free is that
the optimization of a domain-specific program part can be customized for the
context of its use. This feature is present in all four approaches, but it becomes
increasingly flexible as we progress from top to bottom in the list.

4 The Challenges of Parallelism for High Performance

Often the judicious use of massive parallelism is necessary to achieve high per-
formance. Unfortunately, this is not as simple as it may seem at first glance:

– The program must decompose into a sufficient number of independent parts,
which can be executed in parallel. At best, one should be able to save the
amount in time which one invests in additional processors. This criterion,
which can not always be achieved, is called cost optimality ; the number of
sequential execution steps should equal the product of the number of parallel
execution steps and the number of required processors [4]. It is easy to spend
a large number of processors and still obtain only a small speedup.

– Different processors will have to exchange information (data and, maybe,
also program code). This often leads to a serious loss of performance. In con-
temporary parallel computers, communication is orders of magnitude slower
than computation. The major part of the time is spent in initiating the
communication, i.e., small exchanges incur a particularly high penalty. As
the number of processors increases, the relative size of the data portions
exchanged decreases. Striking a profitable balance is not easy.

– In massive parallelism, it is not practical to specify the code for every pro-
cessor individually. In parallelism whose degree depends on the problem size,
it is not even possible to do so. Instead, one specifies one common program
for all processors and selects portions for individual processors by a case
analysis based on the processor number.2 The processor number is queried
in decisions of what to do and, more fundamentally, when to do something
and how much to do. This can lead to an explosion in the number of run-
time tests (e.g., of loop bounds), which can cause a severe deterioration in
performance.

The user community of high-performance parallelism is quite large, but not large
enough to be able to develop and maintain competitive language implementa-
tions in isolation [5]. Let us investigate how it is faring with the four approaches
to domain-specific program optimization.

2 This program structure is called single-program multiple-data (SPMD).



5 Domain-Specific Libraries

5.1 Principle and Limitations

The easiest, and a common way of embedding domain-specific capabilities in a
general-purpose programming language is via a library of domain-specific pro-
gram modules (Fig. 1). Two common forms are libraries of subprograms and, in
object-oriented languages, class libraries. Typically, these libraries are written
in the general-purpose language from which its modules are also called.

general−purpose source code

general−purpose target code

compiler
general−purpose

target
compiler

domain−specific
library

Fig. 1. Domain-specific library

In this approach, there is no domain-specific translation which could perform
domain-specific optimizations. One way of customizing the implementation of a
module for the context of its call is by asking the application programmer to
pass explicitly additional, so-called structure parameters which convey context-
sensitive information and which are queried in the body of the module.

The limitations of this approach are:

– Error messages generated in the library modules are often cryptic because
they have been issued by a compiler or run-time system which is ignorant of
the special domain.

– The caller of the module is responsible for setting the structure parameters
consistently. This limits the robustness of the approach.

– The implementer of the module has to predict all contexts in which the
module may be called and build a case analysis which selects the given
context. This limits the flexibility of the approach.



5.2 Examples from High-Performance Parallelism

MPI. One example from high-performance parallelism is the communication
library Message-Passing Interface (MPI ) [6]. It can be implemented largely in
C, but with calls to system routines for communication and synchronization.
There exist MPI interfaces for Fortran and C – the popular general-purpose
languages in high-performance computing.3 The Fortran or C code is put on
each processor in an SPMD fashion.

The routines provided by the library manage processor-to-processor commu-
nication, including the packing, buffering and unpacking of the data, and one can
build a hierarchical structure of groups of processors (so-called communicators)
which communicate with each other. There are over 100 routines in the first
version of MPI and over 200 in the second. With such high numbers of routines
it becomes difficult for programmers to orient themselves in the library and even
more difficult for developers to maintain a standard.

Programming with MPI (or similar libraries like the slightly older PVM [7])
has been by far the most popular way of producing high-performance parallel
programs for about a decade. As stated before, this could be likened to the
sequential programming with unstructured languages or assemblers in the 1960s.
Programmers have relatively close control over the machine architecture and feel
they need it in order to obtain the performance they are expecting.

The library BSP [8] works at a slightly higher level of abstraction: the SPMD
program is divided into a sequence of “supersteps”. Communication requests is-
sued individually within one superstep are granted only at the superstep’s end.
This alleviates the danger of deadlocks caused by circular communication re-
quests and gives the BSP run-time system the opportunity to optimize commu-
nications.

One limitation of BSP is that there is no hierarchical structure of commu-
nicating processes (something which MPI provides with the communicator). All
processors are potential partners in every communication phase.

The developers of BSP are very proud of the fact that their library consists of
only 20 functions, compared with the hundreds of MPI. Still, programming with
BSP is not very much simpler than programming with MPI. However, BSP has
a very simple cost model – another thing its developers are proud of. The model
is based on a small number of constants, whose values have to be determined by
running benchmarks. They can differ significantly between different installations
– and even for different applications on one installation! This introduces a certain
inaccuracy in the model.

Collective Operations. For sequential programs, there are by now more ab-
stract programming models – first came structured programming, then func-
tional and object-oriented programming. For parallel programs, abstractions are

3 There is also an MPI interface for Java, but a more natural notion of parallelism for
Java is thread parallelism, as supported by JavaParty (see further on).



still being worked out. One small but rewarding step is to go from point-to-
point communication, which causes unstructured communication code like the
goto does control code in sequential programs [9], to patterns of communications
and distributed computations. One frequently occurring case is the reduction,
in which an associative binary operator is applied in a distributed fashion to
a collection of values to obtain a result value (e.g., the sum or product of a
sequence of numbers).4 A number of these operations are already provided by
MPI – programmers just need some encouragement to use them! The benefit
of an exclusive use of collective operations is that the more regular structure of
the program enables a better cost prediction. (BSP has a similar benefit.) With
architecture-specific implementations of collective operations, one can calibrate
program performance for a specific parallel computer [10].

One problem with libraries of high-performance modules is their lack of per-
formance compositionality: the sequential composition of two calls of highly
tuned implementations does, in general, not deliver the best performance. Better
performance can be obtained when one provides a specific implementation for
the composition of the two calls.

In general, it is hopeless to predict what compositions of calls users might
require. But, at a comparatively low level of abstraction, e.g., at the level of
collective operations, it is quite feasible to build a table of frequently occur-
ring compositions and their costs incurred on a variety of parallel architectures.
Gorlatch [11] and Kuchen [12] deal with this issue in their contributions to this
volume.

Skeleton Libraries. As one raises the level of abstraction in libraries, it be-
comes common-place that a library module represents a pattern of computation
and requires pieces of code to be passed as parameters, thus instantiating the
pattern to an algorithm. Such a pattern of computation is also called a template

or skeleton. One of the simplest examples is the reduction, which is one of the
collective operations of MPI and which is also offered in HPF (see Sect. 6.2).

One major challenge is to find skeletons which are general enough for frequent
use, the other is to optimize them for the context of their use.

Contributions to this volume by Bischof et al. [13] and by Kuchen [12] propose
skeleton libraries for high-performance computing.

More Abstract Libraries. The library approach can be carried to arbitrarily
high levels of abstraction.

For example, there are several very successful packages for parallel compu-
tations in linear algebra. Two libraries based on MPI are ScaLAPACK [14] and

4 With a sequential loop, the execution time of a reduction is linear in the number of
operand values. With a naive parallel tree computation, the time complexity is log-
arithmic, for a linear number of processors. This is not cost-optimal. However, with
a commonly used trick, called Brent’s Theorem, the granularity of the parallelism
can be coarsened, i.e., the number of processors needed can be reduced to maintain
cost optimality in a shared-memory cost model [4].



PLAPACK [15]. The latter uses almost exclusively collective operations. Both
libraries offer some context sensitivity via accompanying structure parameters
which provide information, e.g., about the dimensionality or shape (like trian-
gularity or symmetry) of a matrix which is being passed via another parameter.

Another, increasingly frequent theme in high-performance parallelism is the
paradigm of divide-and-conquer. Several skeleton libraries contain a module for
parallel divide-and-conquer, and there exists a detailed taxonomy of parallel
implementations of this computational pattern [16,17].

Class Libraries. One popular need for a class library in high-performance
computing is created by the language Java, which does not provide a dedicated
data type for the multi-dimensional array – the predominant data structure used
in high-performance computing. Java provides only one-dimensional arrays and
allocates them on the heap. Array elements can be arrays themselves, which
yields a multi-dimensional array, but these are not allocated contiguously and
need not be of equal length. Thus, the resulting structure is not necessarily
rectangular.

One reason why the multi-dimensional array is used so heavily in scientific
computing is that it can be mapped contiguously to memory and that array
elements can be referenced very efficiently by precomputing the constant part
of the index expression at compile time [18]. There are several ways to make
contiguous, rectangular, multi-dimensional arrays available in Java [19]. The
easiest and most portable is via a class library, in which a multi-dimensional
array is laid out one-dimensionally in row- or column-major order.

6 Preprocessors

6.1 Principle and Limitations

A preprocessor translates domain-specific language features into the general-
purpose host language and, in the process, can perform a context-sensitive anal-
ysis, follow up with context-sensitive optimizations and generate more appropri-
ate error messages (Fig. 2).5 For example, the structure parameters mentioned
in the previous section could be generated more reliably by a preprocessor then
by the programmer.

While this approach allows for a more flexible optimization (since there is no
hard-wired case analysis), one remaining limitation is that no domain-specific
optimizations can be performed below the level of the general-purpose host lan-
guage. Only the general-purpose compiler can optimize at that level.

6.2 Examples from High-Performance Parallelism

Minimal Language Extensions. To put as little burden on the application
programmer as possible, one can try to add a minimal extension to the sequential
5 Compile-time error messages can still be cryptic if they are triggered by the general-

purpose code which the preprocessor generates.
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Fig. 2. Preprocessor

language. There are at least three commonly used languages which have been
equipped this way. The internals of the compiler of the sequential language is
not touched, but a parallel run-time system must be added. These language
extensions are very easy to use. In particular, it is easy to parallelize existing
programs which have been written without parallelism in mind.6

Cilk [20] is an extension of C for thread parallelism. It offers a good half
dozen directives for spawning and synchronizing parallel threads and data access
control. Cilk is based on a very smart run-time system for thread control and
Cilk programs have won competitions and been awarded prizes (see the project’s
Web page).

Glasgow parallel Haskell (GpH) [21] is an extension of the functional language
Haskell with just one function for spawning threads. Again, a special run-time
system manages the threads.

JavaParty [22] is a preprocessor for Java to support the efficient computa-
tion with remote objects on clusters of processors. It adds one class attribute
to Java: remote, which indicates that instances of the class can be moved to
another processor. While Cilk and GpH are doing no preprocessing, JavaParty
does. The preprocessor generates efficient code for object migration, finding a
suitable location (processor), efficient serialization (coding the object for a fast
transfer) and efficient garbage collection (exploiting the assumption of an un-
failing network). An object may be migrated or cloned automatically, in order
to increase the locality of accesses to it.

6 These days, we might call them “dusty disk programs”.



HPF. The most popular language extension in high-performance parallelism,
supported by a preprocessor, is High-Performance Fortran (HPF) [23]. HPF is
a modern version of sequential Fortran, enhanced with compiler directives, This
cannot be considered a minimal extension, and one needs to have some expertise
in parallelism to program HPF effectively. There are four types of directives: one
for defining virtual processor topologies, one for distributing array data across
such topologies, one for aligning arrays with each other, and one for asserting
the independence of iterations of a loop.

HPF is at a much higher level of abstraction than Fortran with MPI. A
program that takes a few lines in HPF often takes pages in Fortran with MPI:7

the communication and memory management which is taken care of by the HPF
compiler must be programmed explicitly in MPI.

Most HPF compilers are preprocessors for a compiler for Fortran 90, which
add calls to a library of domain-specific routines which, in turn, call MPI routines
to maintain portability. One example is the HPF compiler ADAPTOR with its
communications library DALIB [25].

There was justified hope for very efficient HPF programs. The general-purpose
source language, Fortran, is at a level of abstraction which is pleasingly familiar
to the community, yet comparatively close to the machine. Sequential Fortran is
supported by sophisticated compilers, which produce highly efficient code. And,
with the domain-specific run-time system for parallelism in form of the added
library routines, one could cater to the special needs in the domain – also with
regard to performance.

However, things did not quite work out as had been hoped. One requirement
of an HPF compiler is that it should be able to accept every legal Fortran pro-
gram. Since the HPF directives can appear anywhere and refer to any part of the
program, the compiler cannot be expected to react reasonably to all directives.
In principle, it can disregard any directive. The directives for data distributions
are quite inflexible and the compiler’s ability to deal with them depends on its
capabilities of analyzing the dependences in the program and transforming the
program to expose the optimal degree of parallelism and generate efficient code
for it. Both the dependence analysis and the code generation are still areas of
much research.

Existing HPF compilers deal well with fairly simple directives for scenarios
which occur quite commonly, like disjoint parallelism or blockwise and cyclic
data distributions. However, they are quite sensitive to less common or less
regular dependence patterns: even when they can handle them, they often do
not succeed in generating efficient code. Work on this continues in the area of
loop parallelization (see further on).

With some adjustments of the paradigm, e.g., a more explicit and realistic
commitment to what a compiler is expected to do and a larger emphasis on loop
parallelization, a data-parallel Fortran might still have a future.

7 E.g., take the example of a finite difference computation by Foster [24].



OpenMP. Most of HPF is data-parallel : a statement, which looks sequential, is
being executed in unison by different processors on different sets of data. There
are applications which are task-parallel, i.e., which require that different tasks
be assigned to different processors. The preprocessor OpenMP [26] offers this
feature (more conveniently than HPF) and is seeing quite some use – also, and
to a major part, for SPMD parallelism. It is simpler to implement than an HPF
preprocessor, mainly because it is based on the shared-memory model (while
HPF is for distributed memory) and lets the programmer specify parallelism di-
rectly rather than via data distributions. On the downside, if the shared memory
has partitions (as it usually does), the run-time system has the responsibility of
placing the data and keeping them consistent.

Loop Parallelization. One way to make an HPF compiler stronger would be
to give it more capabilities of program analysis. Much work in this regard has
been devoted to the automatic parallelization of loop nests.

A powerful geometric model for loop parallelization is the polytope model

[27,28], which lays out the steps of a loop nest, iterating over an array structure,
in a multi-dimensional, polyhedral coordinate space, with one dimension per
loop. The points in this space are connected by directed edges representing the
dependences between the loop iterations. With techniques of linear algebra and
linear programming, one can conduct an automatic, optimizing search for the
best mapping of the loop steps to time and space (processors) with respect to
some objective function like the number of parallel execution steps (the most
popular choice), the number of communications, a balanced processor load or
combinations of these or others.

The polytope model comes with restrictions: the array indices and the loop
bounds must be affine, and the space-time mapping must be affine.8 Recent
extensions allow mild violations of this affinity requirement – essentially, the
permit a constant number of breaks in the affinity.9 This admits a larger set of
loop nests and yields better solutions.

Methods based on the polytope model are elegant and work well. The gran-
ularity of parallelism can also be chosen conveniently via a partitioning of the
iteration space, called tiling [29,30]. The biggest challenge is to convert the solu-
tions found in the model into efficient code. Significant headway has been made
recently on how to avoid frequent run-time tests which guide control through
the various parts of the iteration space [31,32].

Methods based on the polytope model have been implemented in various
prototypical preprocessors. One for C with MPI is LooPo [33]. These systems
use a number of well known schedulers (which compute temporal distributions)

8 An affine function f is of the form f( � ) = A
� + b, where A is a constant matrix

and b a constant vector. Affinity ensures the “straightness” of dependence paths
across the iteration space of the loop nest, which allows the use of linear algebra and
linear programming in their analysis.

9 Dependence paths must still be straight but can change direction a fixed number of
times.



[34,35] and allocators (which compute spatial distributions) [36,37] for the op-
timized search of a space-time mapping. Polytope methods still have to make
their way into production compilers.

Preprocessing Library Calls. There have been efforts to preprocess calls to
domain-specific libraries in order to optimize the use of the library modules. One
straight-forward approach is to collect information about the library modules in
a separate data file and use a preprocessor to analyze the call context in the
program and exploit the information given by rewriting the calls to ones which
give higher performance. Such a preprocessor, the Broadway compiler [38] was
used to accelerate PLAPACK calls by up to 30% by calling more specialized
library modules when the context allowed.

In this approach, the library itself is neither analyzed nor recompiled. The
correctness of the information provided is not being checked by the preprocessor.
On the positive side, the approach can also be used when one does not have access
to the source code of the library – provided the information one has about it
can be trusted.

7 Active Libraries

7.1 Principle and Limitations

The modules of an active library [39] are coded in two layers: the domain-specific
layer, whose language offers abstractions for the special implementation needs
of the domain, and the domain-independent layer in the host language. Thus,
pieces of host code can be combined with domain-specific combinators.10

An active module can have several translations, each of which is optimized for
a particular call context, e.g., a specific set of call parameters. The preprocessor
is responsible for the analysis of the call context and for the corresponding
translation of the domain-specific module code. The general-purpose compiler
translates the pieces of host code which require no domain-specific treatment.

Arranging the program code in different layers, which are translated at dif-
ferent times or by different agents, is the principle of multi-stage programming

(see the contribution of Taha [42] to this volume).
There is the danger of code explosion if a module is called in many different

contexts.

7.2 Examples from High-Performance Parallelism

Active Skeletons. Herrmann has been experimenting with an active library
approach for high-performance parallelism [41]. His domain-specific layer speci-
fies the parallelism, synchronization and communication in the implementation
10 With combinators I simply mean operators that combine program parts. Examples

in our domain are parallelism (||) and interleaving (|||) from CSP [40], and disjoint
parallelism (DPar) and communicating parallelism (ParComm) from our own recent
work [41].



of a skeleton. The domain-specific language is specially crafted to express struc-
tured parallelism. It is defined as an abstract data type in Haskell, and the
preprocessor is written in Haskell. We have started with Haskell as the host
language but have switched to C for performance reasons. C is also the target
language.

MetaScript. The system Metascript, being proposed by Kennedy et al. [43],
implements the idea of telescoping languages, which is similar to the idea of
multi-staged, active libraries. Additional goals here are to achieve performance
portability between different types of machines, to reduce compilation times and
to facilitate fast, dynamic retuning at run time.

The modules of a library are annotated with properties and optimization
rules. These are then analyzed and converted by a script generator to highly
efficient code. The script is run to obtain the target code of the module for each
type of machine and context. The target code still contains code for retuning
the module at load time.

The TaskGraph Library. In their contribution to this volume, Beckmann et
al. [44] describe an active library approach in which the generation of pieces of
parallel code from an abstract specification (a syntax tree), and the adaptation
of the target code to the context in which it appears, go on at run time. The
advantage is, of course, the wealth of information available at run time. With
an image filtering example, the authors demonstrate that the overhead incurred
by the run-time analysis and code generation can be recovered in just one pass
of an algorithm that iterates typically over many passes.

8 Two Compilers

8.1 Principle and Limitations

In order to allow context-sensitive, domain-specific optimizations below the level
of the host language, one needs two separate compilers which both translate to
the same target language; the two pieces of target code are then linked together
and translated further by the target language compiler (Fig. 3). Note that, what
is composed in sequence in Fig. 2, is composed unordered here.

There needs to be some form of information exchange between the general-
purpose and the domain-specific side. This very important and most challenging
aspect is not depicted in the figure because it could take many forms. One
option is a (domain-specific) preprocessor which divides the source program into
domain-specific and general-purpose code and provides the linkage between both
sides.

The main challenge in this approach is to maintain a clean separation of the
responsibilities of the two compilers:
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Fig. 3. Two compilers

– The duplication of analysis or code generation effort by the two compilers
should be minimized. One would not want to reimplement significant parts
of the general-purpose compiler in the domain-specific compiler.

– No special demands should be made on the general-purpose compiler; only
the target code it generates should be taken. As a consequence, it should be
possible to upgrade the general-purpose compiler to a newer version without
any changes of the domain-specific compiler.

8.2 Examples from High-Performance Parallelism

At present, I know of no case in which this approach is being pursued in high-
performance parallelism. The problem is that high-performance programmers
still (have to) cling to the host languages C and Fortran. These are suitable
target languages in Fig. 3 but, in all approaches pursued so far, they are also
the general-purpose host language. Thus, there is no general-purpose compiler
and the domain-specific compiler becomes a preprocessor to the target compiler,
and the picture degenerates to Fig. 4.11 We have tried to use Haskell as general-
purpose source language [41] but found that, with the C code generated by a
common Haskell compiler, speedups are hard to obtain.

This situation will only improve if production compilers of more abstract
languages generate target code whose performance is acceptable to the high-
performance computing community. However, in some cases, a more abstract
host language may aid prototyping, even if it does not deliver end performance.
11 Note the difference between Fig. 4 and Fig. 2: the level of abstraction to which the

domain-specific side translates.
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Fig. 4. Two compilers, degenerated

The domains of linear algebra and of digital signal processing have been
very successful in generating domain-specific optimizers, but with a focus on
sequential programs. One notable project in linear algebra is ATLAS [45]; in
digital signal processing, there are FFTW [46] and SPIRAL [47]. FFTW comes
close to the two-compiler idea and, since there is a parallel version of it (although
this seems to have been added as an afterthought), I include it here.

FFTW. The FFTW project concentrates on the adaptive optimization of the
fast Fourier transform. It follows a two-compiler approach, but with some de-
partures from our interpretation of the scenario, as depicted in Fig. 3.

The idea of FFTW is to generate a discrete Fourier transform from a col-
lection of automatically generated and highly optimized fragments (so-called
codelets). The codelet generator corresponds to the general-purpose compiler in
our picture. It is of a quite specialized form, so not really general-purpose. And
it has been developed within the FFTW project, so it is not an external prod-
uct. The source input it takes is simply an integer: the size of the transform
to be calculated [48]. The codelet generator is written in Caml and produces
platform-independent code in C. Actually, many users will just need to keep a
bag of precompiled codelets and won’t even have to install the codelet generator.

On the domain-specific side, codelet instances are selected and composed
to a sequence by the so-called plan generator. The input to the plan generator
consists of properties of the transform, like its size, direction and dimensionality.
The search for the best sequence proceeds by dynamic programming, based
on previously collected profiling information on the performance of the various



plans. The sequence is then executed by the FFTW run-time system, the so-
called executor.

In the case of FFTW, the only information passed explicitly between the two
sides in our figure is the size parameter for the codelet generator, which is passed
from the left to the right.

A parallel version of the executor has been implemented in Cilk.

9 Conclusions

So far, the main aims of domain-specific program generation seem to have been
programming convenience and reliability. The perception of a need for domain-
specific program optimization is just emerging.

Even in high-performance parallelism, an area with much work on domain-
specific program optimization, most programmers favour programming at a low
level. The easiest approach for today’s programmer is to provide annotations of
the simplest kind, as in Cilk, GpH and JavaParty, or of a more elaborate kind
with HPF and OpenMP. Imposing more burden, but also offering more control
over distributed parallelism and communication is MPI.

The contributions on high-performance parallelism in this volume are doc-
umenting an increasing interest in abstraction. A first step of abstracting from
point-to-point communications in explicitly distributed programs is the use of
collective operations (as provided by MPI). The next abstraction is to go to
skeleton libraries as proposed by Bischof et al. [13] or Kuchen [12]. One step
further would be to develop an active library.

The main issues that have to be addressed to gain acceptance of a higher
level of abstraction in high-performance parallelism are:

– How to obtain or maintain full automation of the generative process? Here,
the regularity of the code to be parallelized is counter-balanced by the deduc-
tive capabilities of the preprocessor. In loop parallelization one has to push
the frontiers of the polytope model, in generative programming with active
libraries one has to find subdomains which lend themselves to automation –
or proceed interactively as, e.g., in the FAN skeleton framework [49].

– How to deal with the lack of performance compositionality? Unfortunately,
it seems like this problem cannot be wished away. If they have the neces-
sary knowledge, preprocessors can retune compositions of library calls (à la
Gorlatch [11] and Kuchen [12]).

– How to identify skeletons of general applicability? The higher the level of
abstraction, the more difficult this task can become if people have differ-
ent ideas about how to abstract. Communication skeletons at the level of
MPI and of collective operations are relatively easy. Also, for matrix com-
putations, there is large agreement on what operations one would like. This
changes for less commonly agreed-on structures like task farms, pipelines
[50] and divide-and-conquer [16].
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