
The
�����

Compiler Project

Christoph A. Herrmann and Christian Lengauer
Fakultät für Mathematik und Informatik

Universität Passau
D–94030 Passau, Germany

{herrmann,lengauer}@fmi.uni-passau.de

Abstract

We present a compiler for the functional language ���	� ,
which is syntactically a subset of the widely used language
Haskell. ���
� facilitates the clean integration of skeletons
with a predefined efficient parallel implementation into a
functional program. Skeletons are higher-order functions
which represent program schemata that can be specialized
by providing customizing functions as parameters. With
���	� , we focus on the divide-and-conquer paradigm, which
has a high potential for an efficient parallelization.

1. Introduction

This paper is a condensation of a recent technical report on
the ���	� compiler [22]. The aim of the ���	� project is
to explore transformational techniques for the static paral-
lelization of divide-and-conquer (�	�) programs. Our ap-
proach to the parallelization of recursive computations is
based on the concept of space-time mapping, which we have
borrowed from loop parallelization [28]. Since there is no
general understanding of the entire space of parallel imple-
mentations for �	� programs, as there is for loop programs,
we are taking a more heuristic approach and have devel-
oped a hierarchy of skeletons which express different forms
of �
� [21].

A skeleton [10] is a program template which can be in-
stantiated for the solution of a specific problem by supply-
ing customizing functions. To be able to reason about our
transformations, which turn a skeleton into an efficient im-
plementation, we stay within the functional programming
style, in which a skeleton is a higher-order function and the
customizing functions are (some of) its parameters. Our
language of choice is Haskell, but we consider only a sub-
set of it, which we call ���
� , and we depart from Haskell in
one aspect: we give ���	� a strict semantics, while Haskell
is lazy. Laziness stands in the way of a static parallelization.

Some of the technical points we make and examples we

provide will be understood better with a familiarity with
Haskell. We must refrain from introducing Haskell here in
detail [23], for lack of space. Our ���	� report [22] can be
understood without other prior reading.

How do we envision the use and environment of ���	� ?
Certain central higher-order functions in the language are
skeletons which come with a custom implementation for
a parallel environment. Among them are our divide-and-
conquer skeletons but also other basic functions which have
a high potential for parallelism, like map, red (reduction)
and filter. The programmer writes an ���
� program
with calls to these skeletons and supplies customizing func-
tions as their arguments. Our ���	� compiler, whose inter-
nals are described in this paper, compiles the ���	� program
into C+MPI code, using the custom implementations of the
skeletons. Note that, strictly speaking, we are not doing
parallelizing compilation: for each skeleton, the compiler is
simply choosing a parallel implementation, parametrized in
structure variables, from a library of choices. The parallel
behavior of the entire program, e.g., the granularity can be
controlled by assigning values to the structure variables.

How do we derive custom implementations of paralleliz-
able skeletons? We apply a sequence of equational trans-
formations in Haskell, which bring the body of the skele-
ton into a form whose structure resembles C+MPI code.
In this form, a higher-order function has turned into a set
of first-order functions (except for currying) and some list
recursions have turned into list comprehensions, roughly
Haskell’s equivalent to a loop. Some comprehensions rep-
resent parallel loops. Then we translate to C+MPI.

Why did we not choose the obvious route of extending
the Haskell syntax with annotations for skeleton calls and
making use of one of the existing, powerful Haskell com-
pilers? Then, the skeleton implementations (also, e.g., in
C+MPI) would take Haskell closures as arguments and pass
them to a new Haskell run-time environment. We decided
against this for the following reasons:
� List operations in ���	� are subject to parallelization,

especially those based on list comprehensions. To-

day’s Haskell compilers transform list comprehensions
and maps into recursive expressions based on the list
constructor (:), which introduces additional depen-
dences. Providing a new abstract data type, which rep-
resents parallel lists, would clutter up the syntax. Also,
our skeletons would have to be expressed in terms of
the new data type.

� As far as we know, there exists, at present, no interface
for passing Haskell closures between heaps on differ-
ent processors of a distributed-memory machine.

� Our target language, C+MPI, is implemented on a
wider range of systems than the special libraries which
the Haskell compilers require.

Together with the compiler, we also provide an inter-
preter which analyzes the intermediate code produced by
certain phases of the compilation and reports certain prop-
erties of the program to the user, like the free schedule (the
number of steps if each operation is performed as soon as
the data dependences permit), the average degree of par-
allelism (the number of parallel processors required by the
free schedule), etc. Compiler and interpreter are either con-
trolled interactively or by running a Haskell script which
must be compiled together with the rest of the system.

2. The language ����
The ���	� report [22] describes the language in detail. Here,
we provide only a brief list of its features:

� An ���	� program is a list of functions, one of which
is named parmain. It constitutes the main function.

� ���	� offers the primitive data types Unit (the unit
type), Bool (the truth values), Int (the restricted
integers) and Double (the floating point numbers).
The type combinators in ���	� are _->_ (the function
type), [_] (the list type), (_,...,_) (the tuple type)
and IO _ (the monadic input/output type). In addition,
the user can define algebraic data types.

� Expressions in ���	� are variables, constants, function
application (also binary infix operators with section-
ing), lambda abstractions, conditionals, tuples, lists,
patterns, let expressions, case expressions, arith-
metic sequences and list comprehensions – all akin
to Haskell. The usual list constructor in functional
programming, cons (:), stands in the way of paral-
lelism by inducing dependences between adjacent list
elements. Instead, we construct lists by special combi-
nators and list comprehension and use the list indexing
operator (!!), also offered by Haskell, for selection,
which treats the list more like an array. The parallel

implementation of list accessing operations is invisi-
ble.

3. The skeletons of ����
Skeletons have been used widely for parallel programming.
���	� lends special support to programming with skeletons.
Our central goal is to provide skeletons for the �	� strategy
and supply efficient parallel implementations for them.

We can divide the skeletons offered by ���	� into three
distinct categories: (1) commonly used functions, (2) skele-
tons for improved efficiency and (3) �	� skeletons. (There
are two more categories not mentioned here [22].)

The following subsections list the skeletons which are
implemented at present. For each skeleton we provide the
signature, an algorithmic definition in ���	� and an example
application. We do not present their efficient implementa-
tion here.

3.1. Skeletons for commonly used functions

These skeletons are commonly used functions which have
efficient parallel implementations.

3.1.1. map

Applies a function to all elements of a list.

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map (+1) [0,1,2] = [1,2,3]

3.1.2. red

Uses an associative function f to reduce a list of values to a
single value with a balanced tree computation.

red :: (a->a->a) -> a -> [a] -> a
red f n [] = n
red f n (x:xs) = f x (red f n xs)

red (+) 0 [1,2,3] = 6

3.1.3. scan

Applies red to all prefixes of the given list.

scan :: (a->a->a) -> a -> [a] -> [a]
scan f n xs =
map (\i -> red f n (take i xs))

[0..length xs]

scan (+) 0 [1,2,3] = [0,1,3,6]

3.1.4. filter

Filters all elements that satisfy some predicate.

filter :: (a->Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) =
let rest = filter p xs
in if p x then x : rest

else rest

filter (>2) [0,5,3,1,5] = [5,3,5]

3.2. Skeletons for improved efficiency

These functions are too uncomfortable to be used by ���	�
programmers. They are generated by program transforma-
tions in view of a subsequent parallelization.

3.2.1. while

Takes a predicate p, a function f and a value x and iterates
f, starting from x, as long as the predicate on the input
for f is True. The while skeleton is intended to be the
result of an elimination of tail recursion, in order to avoid
the recursion stack.

while :: (a->Bool) -> (a->a) -> a -> a
while p f x = if p x

then while p f (f x)
else x

while (\(i,s) -> i<3)
(\(i,s) -> (i+1,s+i*i)) (0,0)

= (3,5)

3.2.2. sinGen

Takes a function f and a value n and generates a list of
length n whose value at position i is computed by applying
f to i. The aim of sinGen is to have a short representation
for large, regular index sets, e.g., the odd numbers from 1
to 1000001. To make this work, sinGen has to be fused in
program optimization (see Sect. 4.12.2).

sinGen :: (Int->a) -> Int -> [a]
sinGen f n = map f [0..n-1]

sinGen (\i -> i*i) 4 = [0,1,4,9]

3.3. �	� skeletons

Though a single �	� skeleton would be sufficient for a defi-
nition of the paradigm itself, it would not adequately reflect
the variety in the structure of different �	� algorithms. In

order to exploit the specific structure of a �	� algorithm,
the �	� paradigm can be refined into different specialized
forms (different skeletons) with varying patterns of data de-
pendence and data distribution. A hierarchy of five such
skeletons, which we call dc0 to dc4, is described in [21].

At present, ���	� provides the general �	� schema, in the
form of skeleton dc0, and a modified form dc4io of the
most specialized skeleton dc4, which allows for massive
data parallelism.

3.3.1. dc0

�	� in its general form.

dc0 :: (a->Bool) -> (a->b)
-> (a->[a]) -> (a->[b]->b)
-> a -> b

dc0 p b d c x =
if p x

then b x
else c x (map (dc0 p b d c) (d x))

If the predicate function p determines that the problem x
can be solved trivially, the basic function b is applied. Oth-
erwise the problem is divided by d, producing a list of sub-
problems. The algorithm is mapped recursively onto the
subproblems. At last, the combine function c uses the input
data x and the solutions of the subproblems to compute the
solution of the original problem.

A functional version of the quicksort algorithm can be
expressed in terms of dc0:

quicksort :: Ord a => [a] -> [a]
quicksort xs =
let d (p:ps) =

[filter (<p) ps,
filter (>p) ps]

c (p:ps) [le,gr] =
le ++ p :

(filter (==p) ps ++ gr)
in dc0 ((<2).length) id d c xs

p is the name of the pivot. d generates two subproblems
of the elements that are less resp. greater than the pivot. le
resp. gr are the solutions of these subproblems. c combines
them and inserts the elements which equal the pivot in the
middle.

3.3.2. dc4io

A special kind of �	� whose call tree is balanced and which
requires elementwise divide and combine operations on
subblocks of data.

The definition of dc4io is more involved than the oth-
ers, and we can only sketch it here:

dc4io prob in out basic divide
combine levels xs = ...

The parameters of dc4io have the following meaning:
� prob::Int: the degree of problem division, i.e., the

number of subproblems which are generated for each
problem not trivially solved; this degree is fixed in
dc4io, in contrast to dc0.

� in::Int: the degree of division of input data; it tells
in how many blocks the input data is to be divided.

� out::Int: the degree of composition of output data;
it tells of how many blocks the output data is to be
composed.

� basic::(a->b): the function to be applied in the
trivial case.

� divide::([a]->[a]): the function divide
takes a list of length indegree as input and delivers
a list of length probdegree as output; it describes
how the elementwise operation computes the � -th ele-
ment of each particular subproblem, using the � -th el-
ement from each input block.

� combine::([b]->[b]): the function combine
takes a list of length probdegree as input and deliv-
ers a list of length outdegree as output; it describes
how the elementwise operation computes the � -th el-
ement of each particular output block, using the � -th
element from each subproblem solution.

� levels::Int: the number of recursive levels into
which the �	� tree unfolds. This replaces the predicate
of dc0. In the model, levels reflects the number
of levels upto the trivial cases. In practice, the user
can make additionally two other choices (which are not
mutually exclusive): control granularity of parallelism
or solve small problem instances (which are not the
basic case) by an algorithm tailored for small sizes.

� xs::[a]: the input data; it is a list on which the divi-
sion into blocks apply; likewise the output data is also
of type list.

dc4io works well for vector and matrix algorithms like
FFT, bitonic merge, polynomial multiplication and matrix
multiplication [19].
indegree and outdegree depend much on the data

representation, e.g., for vectors they have the value 2 (left
and right part), for matrices they have the value 4 (upper
left part, upper right part, lower left part and lower right
part), see Tab. 1.

The parenthesized values are for the optimized version of
the respective algorithm, e.g., for Karatsuba’s polynomial
multiplication and Strassen’s matrix multiplication [1].

problem prob in out

FFT, bitonic merge 2 2 2
polynomial multiplication 4 (3) 2 2
matrix multiplication 8 (7) 4 4

Table 1. example �	� division degrees

4. The compiler for ����
The ���	� compiler translates a subset of Haskell into an
imperative language – at present, C with MPI calls. The
main difference to Haskell is that ���	� is strict, in order to
facilitate a compile-time parallelization. Two implementa-
tional differences to a typical Haskell compiler are that (1)
higher-order functions without a skeleton implementation
are eliminated and (2) list comprehensions are simplified
to a combination of (parallel) skeletons. The reason is that
higher-order functions complicate but list comprehensions
simplify a static space-time mapping.

The compiler is based on the principle of compilation
by transformation, which has already been used success-
fully for the Glasgow Haskell compiler GHC, and which
consists of a number of phases described in the following
subsections.

4.1. Scanner and parser

The source text is translated into a set of syntax trees, one
for each function in the program. Each syntax tree is repre-
sented as an algebraic data type in Haskell.

The layout style of Haskell is supported, i.e., indentation
can be used instead of braces and semicolons to group to-
gether items at the same level of particular syntactic struc-
tures. The user can declare new operators and state their
precedence and associativity. This information is exploited
by the parser.

4.2. Desugaring

In this phase, complex syntactic structures are translated
to compositions of simpler structures. Nested patterns are
eliminated, in order to simplify the code structure for the
following phases. After the transformation, the pattern is
either a simple variable or a constructor, possibly, with ar-
guments. An equational transformation of � into � is de-
noted by ������ .
4.3. List comprehension simplification

GHC resolves comprehensions completely, up to the con-
struction by the empty list ([]) and cons (:), by traversing
the list of qualifiers from left to right. Our goal is to base list

lcEmpty [� |]
� � [�]

lcSinGuard [� | �]� �
��� �"!$#%�$&('*) � � if � then [�] else []

lcOptGuard� �,+-�.&(/0!$#%�$&('1�32 [� | 465 , 78797 , 4;: , < <- <$= , �>5 , 78797 , �,? , 79797 , �,@]
<BACED;F �;�>G,� F =IHJ�,?LK;) � � [� | 465 , 78797 , 4(: , �M? , < <- <$= , �>5 , 78797 , �,?ONQP , �,?>R-P , 79787 , �,@]

lcXGen [� | 4S5 , 79787 , 4;: , < <- <$=]
� � concat [map (\ < -> �) <$= | 4 5 , 78797 , 4 :]

lcGenGuard [� | 4 5 , 78797 , 4 : , < <- <$= , �]� �
��� �"!$#%�$&('*) � � concat [map (\ < -> �) (filter (\ < -> �) <.=) | 4T5 , 79787 , 4;:]
lcTwoGuards [� | 4S5 , 78797 , 4;: , �35 , �MP]� � 5 2(� P �.&(/0!$#%�$&('1�3)U�� [� | 4 5 , 79787 , 4 : , if � 5 then � P else False]

Figure 1. Simplification of list comprehensions

comprehensions on (parallel) skeletons. As presented here,
our rewrite rules in Fig. 1 specify the traversal of the list of
qualifiers in the opposite order: from right to left. This has
two advantages: (1) nested maps are not intertwined with
nested concats, which preserves structural information;
(2) an efficient filter skeleton is used instead of gener-
ating lots of empty lists in cases in which guards fail. The
disadvantage is that the rules will become far more compli-
cated if extended to the full capability of Haskell.

The rewrite rules shown in Fig. 1 cover all possible list
comprehension formats in our restricted language. They re-
place a list comprehension by applications of the skeletons
concat, map and filter which are supposed to have
efficient implementations. The rules are applied until no
further application is possible. If there is a choice between
several rules, the one highest up in Fig. 1 is most efficient.

Rule lcEmpty deals with the case that the sequence of
qualifiers has become empty by the other transformations.

Rule lcSinGuard simplifies a qualifier list consisting of
a single guard. Depending on the value of the guard, the
result is a list of either length 1 or length 0.

Rule lcOptGuard shifts a guard as far as possible to the
left, in order to avoid multiple evaluations.

Rule lcXGen deals with the case that the last qualifier
is a generator. The other qualifiers define a list of environ-
ments. In the comprehension before simplification, the last
qualifier refines each element of the environment list by a
set of new bindings for the last generator variable < . Af-
ter the transformation, this refinement is shifted to the ex-
pression on the left side of the comprehension, which has

been replaced by a list, one element for each instance of the
last generator in the current environment, as defined by the
other qualifiers. We reuse the name < of the generator vari-
able for the lambda expression to preserve the bindings in
the transformation. Note that the left side is in the scope of
the environment defined by the qualifiers on the right side.
Therefore, all free variables of <$= are bound to the same
values as before.

If a guard appears behind a generator, rule lcGenGuard
helps to fuse the two. It is similar to rule lcXGen, except
that the new bindings for the last generator variable, which
lead to a failure of the last guard, are eliminated from the list
via the filter skeleton before. The previous application
of rule lcOptGuard assures that the guard really refers to
the variable bound by the generator.

If two guards appear next to each other, they can be sim-
plified to a single guard according to rule lcTwoGuards.

4.4. Lambda lifting, let elimination

Lambda abstractions and let expressions are eliminated
by introducing auxiliary functions [24].

4.5. Type checking

The type checker is based on unification using the Martelli-
Montanari rules [30]. A simple type class system is imple-
mented by assigning a type variable a set of possible types.
The unification of two type variables then involves comput-
ing the intersection of both sets.

4.6. Monomorphization

In this phase, all type variables are eliminated and replaced
by the types actually needed. This requires the duplication
of each function for all concrete types which occur in the
context.

Monomorphization is needed because our aim is not to
translate to a high-level target language but to stay close to
the machine representation of data and instructions.

4.7. Elimination of functional arguments

This phase, also called higher-order elimination (HOE),
takes a program which must be well-typed according to the
Hindley-Milner rules. Also, the program must be closed,
i.e., all functions cited in the program must be available to
the HOE procedure for a global analysis and transformation.
The result of the HOE is an equivalent first-order functional
program, which is also well-typed.

4.7.1. Principles

The HOE algorithm we found [5] uses a set of seven rewrite
rules for the transformation. The idea is to replace the par-
tial applications of a function by a kind of closure. A clo-
sure contains a function identifier and the values of the free
variables in the partial application.

The replacement of functional arguments by closures
proceeds as follows:
� A variable of a function type is left unchanged because

it represents already a closure.
� A partial application of a function is replaced by an in-

stance of an algebraic data type in which the function
identifier is represented by a constructor. The argu-
ments of the constructor carry the values of the free
variables in the partial application. These values are
taken from the context of the call.

� All locations at which a functional variable is applied
are replaced by a call of an apply function constructed
for the respective function type. The first argument of
the apply function is the closure, the following argu-
ments are the arguments of the encoded function. The
apply function applies the original function, with the
respective partial application derived by the construc-
tor, to the argument expression in the context of the
call which can use values of the closure, also encoded
functions.

4.7.2. Rules

Some of the seven rules, which the original HOE algorithm
[5] is based on, deal with restricting polymorphism and be-
come obsolete in our monomorphic setting. We use four

rules, which are described in brief [17] and in full [22], with
a detailed example, elsewhere.

After the HOE, all function applications are saturated
with arguments, such that the result is not a function. Also,
no argument to a function is a function. In principle, one
could now replace all curried definitions and applications
by tuple representations. This is not done in the ���	� com-
piler for two reasons:

1. The tuples, which are objects of the ���	� language,
are, in turn, expressed in terms of pattern matching
case expressions, which require curried functions on
the right hand side again.

2. The interpreter can remain simpler if it only has to deal
with curried functions.

We adopt the following convention: after the HOE, any ap-
plication of an ���	� function has to supply all curried ar-
guments. This schema can be regarded as first-order and is
equivalent to a schema of tupled arguments.

4.8. Elimination of mutual recursion

The ���	� compiler uses two methods for the removal of
mutual recursion in programs: elimination by inlining and
elimination by emulation. Mutual recursion is identified by
calculating the strongly connected components (SCCs) in
the graph of functional dependences. Since there is no mu-
tual recursion between SCCs, the methods can be applied to
each SCC independently.

4.8.1. Elimination by inlining

This method can only be used for an SCC which contains a
node D whose removal from the SCC would make the resid-
ual graph = acyclic. The set of functions which = represents
is, therefore, free of mutual recursion. Thus, it is possible
to inline all calls of functions in = in the body of D , until the
only recursive calls left are directly recursive [26].

4.8.2. Elimination by emulation

If all mutual recursion in a program is to be removed, an
alternative approach has to be taken for SCCs in which mu-
tual recursion cannot be eliminated by inlining. It is always
possible to transform an SCC to a supernode. The function
associated with a supernode emulates the work of all func-
tions of the SCC by encoding the actual parameters and de-
coding the formal parameters. Let D + , VXWY�ZW�[, be the
functions of an SCC and \]H6�^K the number of arguments of
function D + . Function D*_ , which emulates the D + , is given in
Fig. 2.

D + :: `Ja +Jb PScBd `Ja +Jb e(cfd ... d `ga +Jb @ a +�cgcBd `Ja +Jb 5;cD +h� F �.a +Jb PSc � F �Oa +Jb eTc . . . � F �.a +Jb @ a +�cic = �;jMkOlm+
can be emulated by a new function

D*_
::Data d DataD*_ � F �
= case � F � ofn PZ� F �.a P;b PSc . . . � F �.a Pob @ a PScicpd nrqts a Pob 5(c �;jMkOlmP

...n :u� F �.a :vb P6c . . . � F �Oa :wb @ a :.cic%d nrqts a :vb 5(c �;jMkOlm:
Figure 2. Elimination of mutual recursion

To avoid type conflicts, it is necessary to create, for each
function D + of the SCC, a constructor

n + to encode the ar-
guments and a constructor

nrqxs a +yb 5(c for the result. The con-
structor name is used to select the body of function D + . Fi-
nally, calls to the functions D + have to be adapted to fit Dz_ .

Whenever possible, elimination by inlining should take
precedence over elimination by emulation. Inlining does
not spoil the structure of the program and the resulting in-
termediate code can usually be optimized more effectively.

Both methods are expensive if the program contains cy-
cles of mutual recursion with more than three to four func-
tions. Unfortunately, cycles may be introduced by the trans-
formations of earlier compilation phases. If programs are
getting too big, due to the removal of mutual recursion,
the elimination process can be turned off by setting a com-
piler switch. The default is to apply elimination by inlin-
ing, where possible, and then use the alternative method for
the remaining mutual recursions. The ���	� programmer
should prefer the use of skeletons to user-defined recursive
functions in order to keep the amount of recursion low.

4.9. case elimination

Pattern matching is not available in lower-level program-
ming languages, such as C or assembler, which are suitable
for the target code of ���	� . A run-time system with pat-
tern matching would incur too much overhead. Therefore,
we eliminate case expressions. We replace a case ex-
pression by nested if expressions. The branches of the if
expressions contain the former right-hand sides of the case
branches.

case expressions which have only one branch receive
a special treatment: no if expression is needed, assuming
that the branch will always match.

sqrplus :: [Int] d Int
sqrplus xs = (xs!!0)*(xs!!0)

+ (xs!!1)*(xs!!1)

xs 0 1
0 1 4

!! !!
2 5

3 6

+
7

**

0: xs :: [Int]
1: 0 :: Int
2: (!!) { 0 { 1 :: Int
3: (*) { 2 { 2 :: Int
4: 1 :: Int
5: (!!) { 0 { 4 :: Int
6: (*) { 5 { 5 :: Int
7: (+) { 3 { 6 :: Int

Figure 3. Example: program, DAG, and table

4.10. Generation of intermediate DAG code

The syntax tree of each function is transformed to a di-
rected acyclic graph (DAG) to enable sharing of common
subexpressions. A DAG corresponds to a set of expressions
with associated numbers, ordered by their dependences.
Subexpressions are referenced by the corresponding num-
bers. Fig. 3 shows an example program with its DAG and
the corresponding table representation. The direction of the
references is inverse to that of the data flow, which is de-
picted by the arrows in the figure.

The transformation of a syntax tree into a DAG is by
a standard technique called the value number method [2].
The nodes are enumerated such that the source of each data
dependence has a smaller number than the target. The trans-
formation proceeds by a depth-first traversal of the syntax
tree. The subject of the transformation of each node is an
expression, in which subexpressions have already been con-
verted to numbers by recursive application of the transfor-
mation. It returns a number for the node as follows: if there
is already an expression in the DAG that matches the input,
then the number of the existing expression is returned; oth-
erwise, a new node for the expression is created and its num-
ber is returned. Optimizing transformations (as described
below) are performed at this intermediate code level.

4.11. Tuple elimination

Tuples are replaced by algebraic data types, one for each oc-
curring tuple type. Each tuple is tagged with the appropriate
constructor for its particular type. This simplifies the run-
time system and, at the same time, provides fast access to
information about the types and sizes of the components of
the tuple by looking them up in a table. As a consequence,
the memory management functions need not be specialized
for each particular type.

4.12. Optimization cycle

Code optimization proceeds in a cycle. Each iteration per-
forms three steps in sequence: inlining of functions calls,
rule-based DAG optimizations, and size inference.

The process of replacing the call of a function by its
body, after substituting the actual for the formal parameters,
is called inlining. We use inlining to enable further opti-
mizations on DAGs, e.g., deletion of dead code and sharing
of common subexpressions. Inlining is performed on DAGs
in which common subexpressions already appear only once.
Due to the sharing of common subexpressions, there is no
risk of duplicating work.

Inlining triggers common subexpression elimination for
two reasons. First, it aggregates common subexpressions
which have been spread across the program – maybe due
to transformations made before, maybe due to the program
itself. Second, it specializes variables by replacing the for-
mal parameters of the function inlined by the actual parame-
ters. This permits partial evaluation and checking for value
equality rather than name equality when identifying com-
mon subexpressions. Value equality is a coarser equiva-
lence relation, i.e., it induces more commonality.

The information gathered in the size inference is useful
for the inlining heuristics of the following iteration of the
optimization cycle and for the space-time mapping. Size
inference has to be reapplied in each iteration because of
the changes in the program due to inlining.

During each iteration, every DAG needed is processed as
follows.

4.12.1. Inline expansion

The inline expansion transforms a source DAG into a corre-
sponding target DAG with possibly inlined calls. First, the
nodes of the source DAG are copied successively. If a node
representing a function call is reached, a heuristic decision,
based on the expected amount of code increase, is made as
to whether to inline this call or just copy the call node. In
the case of inlining, the copying process switches its source
temporarily from the caller to the callee. All nodes of the
DAG of the callee will be copied. There is no recursive in-
lining of calls. Copied calls may be inlined in the next pass.

Every time the inline expansion of a DAG for some function
is completed, the body in the function definition is changed
to the target DAG.

After inlining in the current pass is finished, the DAGs
are simplified. Unused function arguments, except from ap-
ply functions which are called from skeletons, are deleted
and dead code is removed. If it was possible to inline at
least one call in the current pass and a specified maximum
number of passes is not yet reached, inlining is repeated in
the next pass. We chose two major strategies for inlining:
current version inlining and original version inlining.

� Current version inlining
The most recent DAG for the called function is inlined.
This method requires fewer inlining operations, since
DAGs with already inlined calls are used for inlining
again. One drawback is that the functions are growing
very fast and, therefore, the inlining process may be
suppressed after only a few steps.

� Original version inlining
The original definition of the function is inlined. This
incurs a linear code growth when inlining recursive
functions. Original version inlining offers more pos-
sibilities for optimization and, therefore, may lead to
better results [25].

Kaser et al. [25] also compare static and profile-based ap-
proaches. At present, we do not accumulate or exploit pro-
filing information.

Common subexpressions are eliminated during the con-
version of the syntax tree into a DAG, which has already
been described in Sect. 4.10. However, new common subex-
pressions may appear during the inlining of a call. Since
new nodes introduced by the inlining process are always
created with the same function as used for DAG construc-
tion, no unshared common subexpressions will be created.

4.12.2. Rule-based DAG optimizations

In this step, various algebraic optimizations can be applied.
In the interest of brevity, let us focus here on optimizations
in the context of space-time mapping (Sect. 4.14).

In numerical algorithms, in a call map D <$= , the list <$= is
often of type [Int], which defines a set of indices. In the
simplest case, it is an arithmetic sequence ([� .. �]) or ob-
tained from index set transforming functions. Since explicit
enumerations of index sets are, in general, too inefficient,
we represent them by functions (this requires a certain reg-
ularity). We can generate an index set from its describing
function by a skeleton named sinGen, see Sect. 3.2.2. It
takes a function D , which describes an index set, and an in-
teger [and delivers a list of length [, in which the � -th
element is defined by applying D to � .

intr-sinGen
map

D <.= � <$=t|9| [Int] 2(<$= regular 2 fresh �S)
� � sinGen (\ � -> D (<.= !! �)) (length <.=)
elim-sinGen

(sinGen
D [) !! �

� � D �

Figure 4. Optimization rules for sinGen

Fig. 4 contains two optimization rules: one which intro-
duces and one which eliminates sinGen. Note that this
enables some potential for optimization, e.g.:

map
D <$= !! }�

intr-sinGen 2 fresh �S)Z��
sinGen (\ � -> D (<.= !! �)) (length <$=) !! }�

elim-sinGen) � �
(\ � -> D (<$= !! �)) }�

application) � �D
(<$= !!})

These optimizations have the problem that higher-order ar-
guments are reintroduced (e.g., for the lambda expressions
introduced above). Of course, one could apply such opti-
mizations before HOE but, at this point, they would miss
the applications that are enabled by the inlining specializa-
tions coming later.

4.12.3. Size inference

The size inference algorithm derives symbolic information
about the result returned by a function from structural vari-
ables which represent the symbolic information of its argu-
ments. The goal is to improve the decisions made during
each iteration of the optimization cycle and to determine
automatically a space-time mapping at compile time, if pos-
sible.

We are interested in the following symbolic information
about an ���	� function:

1. the size of the result – in the case of nested lists a com-
prehensive description of all levels [20],

2. the number of operations,

3. the length of the longest path in the DAG, if all calls
are expanded,

4. the number of steps for a given number of processors,
if the communication cost is disregarded – this can be
estimated from the number of operations and the path
length, using Brent’s theorem [32].

The size inference computes an abstract version of the ���	�
function, which takes the same number of arguments and
has the same structure as the original function, but the op-
erations it performs are abstract counterparts of the original
operations. E.g., an abstract size operation for the append
operator of plain lists is, simply put, "addition", because the
size of the result is the sum of the sizes of both operands.
The abstract version of a function application is the appli-
cation of an abstract function to an abstract size.

The sizes are represented in a symbolic form, as objects
of an algebraic data type Size, containing, e.g., the follow-
ing constructors:
� Con :: Int d Size� Var :: String d Size� Add :: Size d Size d Size

If, e.g., Con 2 is the size of the list [3,4] and Var "x"
is the size of a list x, then the size of the list [3,4] ++ x
is Add (Con 2) (Var "x").

Abstract functions take variables representing symbolic
expressions. E.g., the constructor Add above is an abstract
function. Abstract functions can be composed of other ab-
stract functions. E.g., the number of operations needed for
a list append depends on the length of both argument lists.
(That is the ���	� append; for the usual sequential append,
the length of the second list is immaterial.) From this point
of view, underlying memory optimization techniques like
sharing in DAGs, which are not visible at the level of inter-
mediate code, are not considered. The structures are treated
as if they were flattened and the abstract values obtained are
upper bounds and not exact.

The abstract functions are expressed in terms of the ab-
stract values of their arguments, in order to make size infer-
ence a local computation, independent of its context, and al-
low for a largely polymorphic implementation of the skele-
tons. If the amount of space in terms of memory cells or the
amount of time in terms of clock cycles is of interest, the
abstract function must be supplied with according context
information.

Because of the complexity of the symbolic expressions
involved, we believe that the size inference of recursive
functions is beyond the capability of present-day mathemat-
ical tools.

We expect all recursion to be captured in skeletons,
which are supplied with the four types of size information
stated above. The size information of other, non-recursive
functions can be obtained by composition of symbolic func-
tions, preferably, using simplification.

Size inference is applicable only if the structure analyzed
does not depend on run-time data, e.g., if the length of lists
does not depend on input values.

We see a use for a complete size inference mainly in
functional programs which represent a static system, e.g.,
a hardware description.

4.13. Abstract code generation

The defining expression of an intermediate function is
mapped to a DAG in order to facilitate the sharing of com-
mon subexpressions. As described in Sect. 4.10, each DAG
is represented by a table: each node of the DAG corresponds
to a table entry, and each directed edge of the DAG is rep-
resented at the entry of the target of the data dependence by
the table index of the source of the data dependence.

The phase of abstract code generation switches the inter-
pretation of a DAG: before, it is interpreted with a denota-
tional semantics, afterwards with an operational semantics.
A small fraction of the nodes of the DAG also change: one
type of node is eliminated and three other types are intro-
duced.

Let us reflect on the denotational interpretation. Here, a
DAG is interpreted by starting evaluation of a distinguished
node, the root. The result of the root node is considered
the result of the function represented by the DAG. If the
evaluation of a node requires the result of another node, this
node is visited and evaluated. There is a special kind of
node for accessing formal arguments. if nodes require a
special treatment: the value of the condition has to be tested,
and then only one of both branches is evaluated.

In the operational interpretation, the evaluation proceeds
by traversing the table entries in sequence. If the result of
another node is required, it has already been computed and
can be looked up in a previous table entry. The root node
is the last entry in the table and contains the result of the
function. The problem with the if nodes is that when they
are reached (if ever!) both branches already have been eval-
uated, also the wrong branch. Therefore, a mechanism is
implemented to skip nodes belonging to the wrong branch.
If a DAG does not contain if expressions, it is used as ab-
stract code without modification.

The ���	� report [22] contains the technical details of the
generation of abstract code generation, and an example.

4.14. Space-time mapping

A space-time mapping is a one-to-one mapping from a do-
main of computation points to the Cartesian product of dis-
crete space and time. The space part is known as allocation,
the time part as schedule. The technique of space-time map-
ping has a long tradition in loop parallelization [27]. Some
of the ideas can be adapted to while loops [11, 16] and
even to non-linear recursion [18]. However, the structure
of the dependences we are encountering makes integer lin-
ear optimization, which is the central search method for a
space-time mapping in loop parallelization and which has
the nice property of yielding the best solution in the consid-
ered search space, unsuitable for general ���	� programs.

Space-time mapping is most effective when applied in

the individual derivation of parallel skeleton implementa-
tions. This approach is described in detail elsewhere [18].
If the dependence structure of the skeleton is sufficiently
regular –as, e.g., for some kinds of �	� – the points of com-
putation can be laid out in time and space at compile time.
The size of the computation space will depend on the prob-
lem size and the number of processors, but its shape will not
[18].

The user is well advised to construct his/her program by
composition of appropriate skeletons, which have efficient
implementations.. Note that the generation of each skeleton
is done by a Haskell function which is to be delivered by
the skeleton implementer. It is up to this Haskell function,
to use the results of the size inference provided or even to
call external tools. The task of the ���	� compiler is, at a
minimum, to transmit symbolic space-time mapping infor-
mation via the call structure of the program to the points
where it is needed, by making use of the abstract functions
delivered by the skeleton implementer. The nodes of each
DAG are scheduled sequentially by the compiler, no paral-
lelization is done in this phase.

4.15. Target code generation

The code generation phase first produces C code, which
is then compiled with a standard C compiler and linked
together with the functions of the ���
� run-time library,
which are also written in C. The C code is generated in two
phases. First, the abstract code of the user program is trans-
lated; see Sect. 4.15.1. Second, an appropriate implemen-
tation is generated for each skeleton instance used in the
program; see Sect. 4.15.2.

4.15.1. DAG compilation

For each DAG of the abstract code, a C function is gener-
ated and appended to a file. Each node in the DAG is treated
seperately. Each constructor used is inserted into a table, in
order to provide the run-time environment with the neces-
sary information about types and sizes of the components
of the object it constructs. For each call of a skeleton, the
name of the skeleton is stored with the actual types of the
arguments.

4.15.2. Skeleton generation

After all DAGs have been processed, the instantiations of
the skeletons are generated and stored.
���	� offers a special, very flexible mechanism for the

integration of custom-implemented skeletons. For each
skeleton, the implementer delivers a Haskell function, say,~

, which is called by the code generator of the ���	� com-
piler and which produces the actual instance of the skeleton.

In the simplest case, the body of function
~

will be just a
Haskell string of C target code, but

~
can also prescribe de-

cisions based on type and size information provided by the
compiler.

Remember that the C code generated must be monomor-
phic; this applies also to the implementation of a skeleton.
Thus, the programmer of

~
has to consider at least the root

symbol of the type tree of each argument, i.e., the imple-
mentation must differ, e.g., between lists and integers, but
not necessarily between lists of Int and lists of lists of Int
since, in the latter case, the root of the type tree is in both
cases the list type constructor.

To illustrate what a parametrized skeleton implementa-
tion may look like, let us discuss a bit further an abstract
version of the implementation of the map skeleton in a par-
allel model, in which all data is passed along with the con-
trol. The details of the run-time system supporting this im-
plementation are presented in Sect. 5.4.

The map skeleton takes a function (really a closure, i.e,
the code of a function together with an environment) and a
list and applies the function to every list element.

For simplicity, we assume a space-time mapping which
allots roughly the same number of list elements to each pro-
cessor. This mapping is efficient if the amount of work is
nearly equal for each element of the list.

One might consider the use of collective MPI operations
[31] like broadcast (to distribute the function closure), scat-
ter (to distribute the list among the processors) and gather
(to collect the results from the processors). This would work
for lists of Int, Bool or Double but would require spe-
cial skeleton implementations for these types. In general,
gather and scatter cannot be used, since they assume that
lists are plain and do not contain references to a heap. E.g.,
if the elements are functions, the list contains just pointers
to a shared part of the heap. As a consequence, we have to
custom-implement collective operations for ���
� , using the
MPI primitives send and receive. Here, again, �	� proves to
be a useful technique.

4.15.3. Run-time library

The run-time library contains the implementation of all
functions which do not depend on the user program –
especially, predefined functions which cannot be coded
with a few C statements (those are inserted directly in the
code), which perform memory management, and which
marshal/unmarshal data structures, i.e., encode/decode a
heap-allocated DAG into/from a linear buffer.

5. The parallel run-time environment

5.1. The model of parallel execution in ���	�
Our aim has been to provide a platform which does not limit
the design choices concerning �	� parallelism. Still, we
are staying away from unstructured fork-join parallelism [3]
and, where possible, make use of the �	� paradigm. In the
interest of generality and scalability, our execution model is
SPMD.

The unfolding of recursion can be viewed as a call tree in
which the root represents the entire problem and the succes-
sor relation corresponds to the subproblem relation. Time
proceeds down the tree: each level corresponds to one par-
allel computation step.

At the start, all processors are assigned to the root of the
call tree. Every node partitions its processors among its suc-
cessors. We call the set of processors belonging to a node
a block, and the set of processors of each of its successors
a subblock. Each block has a distinguished processor we
call the master, which is responsible for the operations at
the node the block is assigned to. In problem division, the
master of a block activates the master of the subblocks and,
if the computations of the subproblems have been finished,
the masters of the subblocks become idle.

No control is passed and no argument or result values are
exchanged across a block’s border. We call this the princi-
ple of communication-closed blocks, in analogy to the prin-
ciple of communication-closed layers [14]. Its goal is to
avoid the introduction of deadlocks or races in the compo-
sition of skeletons. It does not rule out access to distributed
data, because we use the model of a virtual shared mem-
ory whose underlying implementation is transparent to the
skeleton implementer.

Another important issue is the data layout, i.e., the way
in which the data is distributed among the processors. We
distinguish three styles of data layout. The first applies to
atomic data and to tuples. Only lists and algebraic data
types, which can become large, are subject to the other dis-
tributions.

� Centralized data layout: All input data of a task is
passed along with the signal of initiation of the task
and all output data is passed back with the report on
the task’s completion. Obviously, this is a good choice
if the amount of data is small, although it might incur
some unnecessary communication. For large data, a
centralized data layout will lead to unacceptable over-
head, due to data transmission, or even to memory
overflow.

In the remaining two layout styles, instead of passing the
data with the control, only information about the location
of the data is passed.

� Hierarchical data layout: The input and output data
of each block is distributed among the processors as-
signed to the block, as prescribed by the space-time
mapping. The default space-time mapping is that the
data is distributed in balance across all available pro-
cessors. This layout is especially convenient for �	�
algorithms on large data which does not fit onto a sin-
gle processor, but only if the data size decreases with
the division of the problem, as in the dc4io skeleton.

� Globally distributed data layout: The input data is
distributed according to a space-time mapping. Each
intermediate and result value is located on the pro-
cessor that produces it. This is known as the owner-
computes rule [35].

The only difference to the centralized data layout is
the use of a call-by-reference mechanism: instead of
a large volume of data, only a reference to the data
is passed. Remote data retrieval is realized by direct
access to the remote memory. Remote access can only
be reading, not writing. Using reference counting, a
data object is preserved as long as there exists a direct
reference to it.

5.2. Organization

The available implementations of a skeleton determine the
set of possible space-time mappings which can be chosen
in a parallel execution. Thus, it is important to realize that
skeleton implementations are generated in dependence of
the context in which they are called, exploiting type and
possibly also symbolic size information (see Sect. 4.15).

The first argument of each skeleton implementation, like
the first argument of the other functions generated, contains
a pointer to system information, comprising a description of
the master and the current part of the topology the processor
belongs to.

The user has the option of providing all functions with
an additional explicit functional argument, which contains a
mapping strategy coded in ���	� . Skeleton implementations
can use this strategy in the space-time mapping.

5.3. Memory management

The memory for the local variables of functions is stored
on the stack. This results from a direct translation to C.
Lists and algebraic data types, which are not supported by
C, receive special support from our run-time system. They
are stored as linked structures in the heap. Common subex-
pressions are shared, which means that the linked structures
form a directed acyclic graph.

By default, each processor manages its own local heap
using reference counting for release [13].

Distributed data structures have to be maintained explic-
itly by skeleton implementations using functions of the run-
time system for remote memory access. Arguments passed
to another processor are marshalled in their entirety. It re-
mains the task of program optimization not to pass large
structures to a function if only a small part of it is actually
required.

5.4. Interaction with skeleton implementations

If the computation is divided into subcomputations accord-
ing to the �	� paradigm, the block of processors is divided
into subblocks. Each processor belongs to exactly one sub-
block. Each subproblem is solved on its own subblock. At
the beginning, the block has one master processor, the other
processors are slaves. The division of a block involves the
creation of new masters by the old master, one for each sub-
block.

Let us now revisit the implementation of the map skele-
ton from Sect. 4.15.2. If the list does not contain at least
two elements or the block has only one processor, map
must be computed sequentially. (map may be computed se-
quentially if parallelization does not pay off according to
a strategy chosen by the skeleton implementer.) Otherwise
the block is divided into two subblocks; let us call them
the left subblock and the right subblock. The left subblock
computes map on the left part, and the right subblock on
the right part of the list. The processor responsible for the
whole block before, say, � retains the responsibility for the
left subblock and sends the packed function closure and the
right part of the list to another distinguished processor, say,q

responsible for the right subblock. Computation proceeds
recursively until the left and right subblock are united again
and

q
gives back control for its part to � .

Now, let us have a closer look at the call mechanism.
Processor � is the one on which the map skeleton is called.
Thus, it receives all formal arguments via a function call.
Processor

q
is activated by � with an index of the actual

skeleton instance.
q

uses this index to call a slave skele-
ton. This skeleton does not receive the application data via
a function call, because this data is not yet available on

q
.

Instead, the following interaction takes place: � sends the
data to

q
, both � and

q
call the master skeleton with their

particular subproblem,
q

returns into the slave skeleton and
sends its result back to � . Note that

~
of Sect. 4.15.2 has to

generate two skeleton instances here: the one for the master
and the one for the slave!

6. Experimental Results

We conducted our experiments on the NEC Cenju-4 paral-
lel computer. All entries are times measured in seconds on

queens# procs.
10 11 12

1 4.87 25.05 139.44
2 9.86 47.78 247.94
3 6.83 32.18 162.91
4 3.10 17.25 92.17
5 1.75 9.12 53.13
8 0.81 3.84 25.31
10 0.52
11 2.40
12 12.14
16 2.41 12.18
32 4.86 23.08
64 5.61

Table 2. � queens

the I/O performing processor, without the time for I/O it-
self. Both example programs are based on the �	� skeleton
dc0. Note that the significant speedups are achieved where
the �	� skeleton meets the balance of the problem. Exces-
sively high execution times are due to imbalance and paral-
lelization in places where it does not pay, triggered by the
availability of processors. This suggests the use of a skele-
ton which is better tailored for the particular problem than
dc0, in combination with an analysis of the amount of work
needed for the evaluation of the customizing functions.

6.1. � queens

The � queens problem is to compute the number of all pos-
sible solutions for placing � queens on an ���
� board,
such that no two queens are on the same row, the same col-
umn, or the same diagonal, by using a decision tree. Al-
though there may be sophisticated combinatorial ways to
simplify this problem, we use it as a representative for ex-
haustive search problems here. Our only heuristic is to try
to recognize conflicts as early as possible.

The problem is most balanced if the number of proces-
sors is a multiple of the number of queens. It turned out that
the implementation of the free schedule across the �
� tree
is not ideal here. The reason is the imbalance of work for
different branches of the tree. Experiments we made with
a parallelization of a plain map-recursive version of the �
queens problem showed a smoother growth of the speedup.

6.2. Optimized polynomial multiplication

We use the same method Karatsuba used for the multiplica-
tion of large integers [1]. The principle is to exploit the fact
that two of the four naive subproblems in a left-right divi-
sion are not needed seperately, but only in their sum. This

size# procs.
2048 4096 8192

1 13.89 { {
2 34.27 { {
3 4.70 13.94 {
4 4.68 14.00 {
5 4.69 13.96 {
8 11.71 34.99 {
9 1.70 4.91 15.89

16 1.74
27 0.72 1.94 6.92
64 5.32 16.94

Table 3. Polynomial multiplication

leads to only three subproblems with a reduction in com-
plexity from �%HS[e K to �%H6[P;� �(� K , which reduces the execution
time significantly for large problem sizes.

In Tab. 3 an uparrow indicates a memory overflow.
Here, the balance of the problem is met best if the num-

ber of processors chosen is a power of 3, which is the num-
ber of subproblems.

6.3. Summary

The speedups we achieved (compared with the running time
of the parallel program on a single processor) are quite en-
couraging.

The execution times on one processor are obviously
far greater than a custom-coded C implementation. Com-
pared to the code produced by the Haskell compiler GHC
(V.4.04), we are slower by a factor of about 5 for the
� queens problem and 1.5 for polynomial multiplication.
There is still a high potential of optimization in our com-
piler, especially concerning memory management and the
representation of data structures.

7. Related Work

There have been many approaches to skeletal and functional
programming. We concentrate here on those which have
been most successful and/or have had significant influence
on our work.

Two functional languages have been designed explicitly
with parallelism in mind; both make use of parallel vec-
tor operations. The focus of the language Sisal [33] is on
numerical computations, using loops on arrays. For some
programs, its performance is superior to FORTRAN. Sisal
is compiled to a data flow graph language. In contrast to
Sisal, the focus of the language Nesl [6] is on recursive pro-
grams using nested sequences. Nesl is compiled to an in-
termediate language, which uses parallel vector operations.

Both Sisal and Nesl do not use skeletons and do not permit
higher-order functions.

The language GpH [34] is an extension of Haskell with
a new primitive par, to be used together with the Haskell
primitive seq to prescribe where values are supposed to be
computed in sequence or in parallel. However, in contrast
to ���	� , aside from a restriction of the evaluation order via
seq, no schedule and allocation can be defined in GpH. In-
stead, parallel processes are distributed dynamically. GpH
puts no restriction on the use of higher-order functions in
Haskell. The user can define new skeletons, using evalua-
tion strategies specified with seq and par.

There is another difference to ���	� : in order to preserve
laziness, the input data for a process is only sent partially
– if evaluation proceeds, further data must be requested.
However, due to its treatment of higher-order functions,
GpH is the language which is most similar to ���	� .

The idea to use a skeleton for �	� was introduced by Cole
[10]. The group of Darlington at Imperial College has pub-
lished a collection of functional skeletons for parallel pro-
gramming [12].

P3L [4] is an imperative language, which uses skele-
tons at the top level but does not support functions as run-
time parameters of the skeleton. David Busvine and Tore
Bratvold presented in their Ph.D. theses [7, 9] extensions of
ML with skeletons, but their use of higher-order functions
is very restricted.

The language Eden [8, 15] facilitates the definition of
skeletons on top of Concurrent Haskell. Eden imposes no
restriction on higher-order functions. Eden differs from
���	� in that skeletons have more restricted signatures and,
therefore, cannot be used as generally; skeleton instances
have to be wired together using channels.

8. Conclusions

���	� is not meant to be a general-purpose language but a
platform for experiments with parallel �	� . As such, it is
much leaner than its superset language Haskell. Still, the
development of a compiler has been a substantial undertak-
ing.

We have been following a different route than other
Haskell implementers: while their compilers are based in
the concept of graph reduction, ours generates loop code.
In the process, we eliminate higher-orderness and polymor-
phy. In the pursuit of parallelism, we deemphasize the list
constructor cons and emphasize list comprehension and in-
dexing.

The functional programming style has been a choice of
convenience for us. We hope that the lessons of the ���	�
project will be interesting not only for functional parallel
programmers but for the entire parallel computing commu-
nity.

We are optimistic that the use of skeletons enables a scal-
ing of the problem size with increasing number of proces-
sors and only a small increase in execution time.

9. Acknowledgements

We are especially indepted to Peter Faber for helping us
with the experiments on the Cenju-4 of the GMD. We also
thank the former ���	� team members: Robert Günz, Jan
Laitenberger, and Christian Schaller. Thanks to Sergei Gor-
latch and John O’Donnell for many fruitful discussions.
The idea of skeleton sinGen stems from the work by
Lisper [29].

This work has been supported by the DFG under project
RecuR2 and by the DAAD under an ARC exchange project
with Great Britain.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Series in Computer
Science and Information Processing. Addison-Wesley, 1974.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers – Princi-
ples, Techniques, and Tools. Addison-Wesley, 1986.

[3] G. S. Almasi and A. Gottlieb. Highly Parallel Comput-
ing. Series in Computer Science and Engineering. Ben-
jamin/Cummings, 1989.

[4] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and
M. Vanneschi. P � L: A structured high level programming
language and its structured support. Concurrency: Practice
and Experience, 7(3):225–255, 1995.

[5] J. M. Bell, F. Bellegarde, and J. Hook. Type-driven defunc-
tionalization. ACM SIGPLAN Notices, 32(8):25–37, 1997.
Proc. ACM SIGPLAN Int. Conf. on Functional Program-
ming (ICFP’97).

[6] G. Blelloch. NESL: A nested data-parallel language. Tech-
nical Report CMU-CS-93-129, Department of Computer
Science, Carnegie-Mellon University, 1992.

[7] T. A. Bratvold. Skeleton-Based Parallelisation of Functional
Programs. PhD thesis, Department of Computing and Elec-
trical Engineering, Heriot-Watt University, 1994.

[8] S. Breitinger, U. Klusik, and R. Loogen. An Implementation
of Eden on top of Concurrent Haskell. In W. Kluge, editor,
Implementation of Functional Languages (IFL’96), LNCS
1268, pages 142–161. Springer-Verlag, 1997.

[9] D. J. Busvine. Detecting Parallel Structures in Functional
Programs. PhD thesis, Department of Computing and Elec-
trical Engineering, Heriot-Watt University, 1993.

[10] M. I. Cole. Algorithmic Skeletons: Structured Management
of Parallel Computation. Research Monographs in Parallel
and Distributed Computing. Pitman, 1989.

[11] J.-F. Collard. Automatic parallelization of while-loops us-
ing speculative execution. Int. J. Parallel Programming,
23(2):191–219, 1995.

[12] J. Darlington, A. Field, P. Harrison, P. Kelly, D. Sharp,
Q. Wu, and R. L. While. Parallel programming using skele-
ton functions. In A. Bode, M. Reeve, and G. Wolf, editors,
Parallel Architectures and Languages Europe (PARLE ’93),
LNCS 694, pages 146–160. Springer-Verlag, 1993.

[13] L. P. Deutsch and D. G. Bobrow. An efficient, incremental,
automatic garbage collector. Comm. ACM, 19(9):522–526,
Sept. 1976.

[14] T. Elrad and N. Francez. Decomposition of distributed pro-
grams into communication-closed layers. Science of Com-
puter Programming, 2(2):155–173, 1982.

[15] L. A. Galán, C. Pareja, and R. Peña. Functional skeletons
generate process topologies in Eden. In H. Kuchen and S. D.
Swierstra, editors, Programming Languages: Implementa-
tions, Logics, and Programs (PLILP’96), LNCS 1140, pages
289–303. Springer-Verlag, 1996.

[16] M. Griebl and C. Lengauer. On the space-time mapping of
WHILE-loops. Parallel Processing Letters, 4(3):221–232,
Sept. 1994.

[17] C. A. Herrmann, J. Laitenberger, C. Lengauer, and
C. Schaller. Static parallelization of functional programs:
Elimination of higher-order functions & optimized inlining.
In P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé,
L. Giraud, and D. Ruiz, editors, Euro-Par’99: Parallel
Processing, LNCS 1685, pages 930–934. Springer-Verlag,
1999.

[18] C. A. Herrmann and C. Lengauer. On the space-time map-
ping of a class of divide-and-conquer recursions. Parallel
Processing Letters, 6(4):525–537, 1996.

[19] C. A. Herrmann and C. Lengauer. Parallelization of divide-
and-conquer by translation to nested loops. Technical Report
MIP-9705, Fakultät für Mathematik und Informatik, Univer-
sität Passau, Mar. 1997.

[20] C. A. Herrmann and C. Lengauer. Size inference of nested
lists in functional programs. In K. Hammond, T. Davie, and
C. Clack, editors, Proc. 10th Int. Workshop on the Imple-
mentation of Functional Languages (IFL’98), pages 346–
364. Department of Computer Science, University College
London, 1998.

[21] C. A. Herrmann and C. Lengauer. Parallelization of divide-
and-conquer by translation to nested loops. J. Functional
Programming, 9(3):279–310, May 1999.

[22] C. A. Herrmann, C. Lengauer, R. Günz, J. Laitenberger, and
C. Schaller. A compiler for �x��� . Technical Report MIP-
9907, Fakultät für Mathematik und Informatik, Universität
Passau, May 1999.

[23] P. Hudak and J. H. Fasel. A gentle introduction to Haskell.
ACM SIGPLAN Notices, 27(5):T1–T53, May 1992.

[24] T. Johnsson. Lambda lifting: Transforming programs to re-
cursive equations. In J.-P. Jouannaud, editor, Proc. Conf. on
Functional Programming Languages and Computer Archi-
tecture (FPCA’85), LNCS 201. Springer-Verlag, 1985.

[25] O. Kaser, C. R. Ramakrishnan, and S. Pawagi. A new ap-
proach to inlining. Technical Report 92/06, Computer Sci-
ence Department, SUNY at Stony Brook, 1992.

[26] O. Kaser, C. R. Ramakrishnan, and S. Pawagi. On the con-
version of indirect to direct recursion. ACM Letters on Pro-
gramming Languages and Systems, 2(1–4):151–164, 1993.

[27] C. Lengauer. Loop parallelization in the polytope model. In
E. Best, editor, CONCUR’93, LNCS 715, pages 398–416.
Springer-Verlag, 1993.

[28] C. Lengauer, S. Gorlatch, and C. A. Herrmann. The static
parallelization of loops and recursions. J. Supercomputing,
11(4):333–353, Dec. 1997.

[29] B. Lisper. Data parallelism and functional programming. In
G.-R. Perrin and A. Darte, editors, The Data Parallel Pro-
gramming Model, LNCS 1132, pages 220–251. Springer-
Verlag, 1996.

[30] A. Martelli and U. Montanari. An efficient unification al-
gorithm. ACM Trans. on Programming Languages and Sys-
tems, 4(2):258–282, Apr. 1982.

[31] P. S. Pacheco. Parallel Programming with MPI. Morgan
Kaufmann, 1997.

[32] M. J. Quinn. Parallel Computing. McGraw-Hill, 1994.
[33] S. K. Skedzielewski. Sisal. In B. K. Szymanski, editor, Par-

allel Functional Languages and Compilers, Frontier Series,
chapter 4. ACM Press, 1991.

[34] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton
Jones. Algorithm + strategy = parallelism. J. Functional
Programming, 8(1):23–60, Jan. 1998.

[35] M. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley, 1995.

