
Using Step-Wise Refinement to Build a Flexible

Lightweight Storage Manager

Thomas Leich, Sven Apel and Gunter Saake

Department of Computer Science,
Otto-von-Guericke-University Magdeburg

{leich, apel, saake}@iti.cs.uni-magdeburg.de

Abstract. In recent years the deployment of embedded systems has
increased dramatically, e.g. in the domains of sensor networks or ubiqui-
tous computing. At the same time the amount of data that have to be
managed by embedded systems is growing rapidly. For this reason an ad-
equate data management support is urgently needed. Current database
technologies are not able to cope with the requirements specific to embed-
ded environments. Especially the extreme resource constraints and the
diversity of hardware plattforms and operating systems are challenging.
To overcome this tension we argue that embedded database functionality
has to be tailored to the application scenario as well as to the target plat-
form. This reduces the resource consumption and customizes the data
management to the characteristices of the plattform and the application
scenarion. We show that component techniques and feature-oriented pro-
gramming help to face the mentioned limitations without focusing on
special-purpose software. We present the design and the implementation
of a database storage manager family. We discuss how feature-oriented
domain analysis and feature-oriented programming help to do this task.
Our evaluation criteria are the number of features and the flexibility to
combine these features in different valid variants.

1 Introduction and Motivation

The domain of embedded systems is growing rapidly [15]. Approximately 98 % of
all computer devices are deployed as embedded systems [34]. It is expected that
pervasive and ubiquitous computing will push this trend in future [36]. Due to
the low cost of embedded hardware, software-development on embedded systems
is a hard challenge. The limitations on hardware, e.g. CPU-power, memory ca-
pacities or battery constraints make high demands on software-development. The
result of these limitations is that applications developed as special-purpose soft-
ware are tailored to a specific application scenario. Modern software-engineering
methods, known from other domains are rarely used. We argue that component
techniques, Feature-Oriented Programming (FOP) [8], and Mixin Layers [31]
can help to reduce the devoplement cost and the time-to-market. Moreover,
this software-engineering methods help to face the ressource restrictions with-
out focusing on special-purpose software. Several promising studies [5, 1, 4, 12]



2

show that FOP and mixin layers are appropriate to implement such layered,
step-wise refined architectures. A further problem is the absence of standard
infrastructure, e.g., database services. This makes developing embedded system
applications more complicated. Due to the enormous number of variants of hard-
ware and operating systems, software developers are swamped with finding the
right vendor of infrastructure services. Since a few years the idea of product-lines
is discussed in this context. Product-lines are supposed to maximize the reuse
of existing components as well as to increase extensibility and customizability.
This paper focuses on product-line technology for embedded data management
infrastructure services.

In this contribution we present our first results towards a flexible, lightweight
storage manager for embedded systems. The key idea is to implement the storage
manager as a highly configurable program family [29]1. Different family mem-
bers (a.k.a configurations) satisfy the needs of different application scenarios:
e.g. several embedded sensors require different data management functionality
than data collectors or a mobile measurement unit in form of a PDA [37]. Fur-
thermore, the high degree of configurability as well as the well thought design
of the family allow to develop a highly portable storage manager. To implement
a highly configurable program family we utilize feature-oriented domain analy-
sis [22], feature-oriented programming [3] and mixin layers [31]. It is not obvious
how the combination of these methods, integrated into the domain engineering
process [16], leads to configurable, reusable and extensible data management
software.

The article is structured as follows: Section 2 introduces a sensor network
scenario and points to problems regarding embedded storage management func-
tionality. Section 3 reviews the relevant software engineering methods used here.
The subsequent sections present our storage manager architecture. In Section
5 we discuss our implementation results and review related work. Finally, we
conclude in Section 6.

2 An Application Scenario

This section sketches an application scenario for embedded data management.
Thereupon, we point out challenges of embedded data management.

2.1 A Sensor-Network Application Scenario

Due to the advances in wireless sensor-network technologies previous research
focused on in-network aggregation and query processing. Most existing sensor
applications rely on a centralized system for collecting data. Centralized data
collection and analysis should provide cheap sensor nodes and minimal resource
consumption. However, there are still a lot of problems: Sensor-networks are

1 Although there is a subtle difference between program and product families (see
[16]) we use these terms synonymously.



3

often intended for long-term deployment. Therefore, they underlay extreme re-
source constraints. One consequence of limited resources is that they are highly
communication constrained and therefore data buffering on the sensor node is
required. Another problem is that pre-aggregation and centralized systems lack
flexibility because data are extracted in a predefined way. However, an pre-
aggregation of raw data on nodes is possible only if the features of interest are
known a priori. This is not often the case in practice. Thereby an lightweight and
efficient buffering and access on raw data is essential for an ad hoc aggregation
on sensor nodes.

The following example scenario is borrowed in parts from [37, 19]. We focus
on sensor-networks used in scientific applications, e.g. micro-climate and habi-
tat monitoring. Low-end sensor nodes are detecting environmental parameters,
e.g. temperature or light intensity. These modern sensors do not only respond
to physical signals to produce data, they also embed computing capabilities for
independent activity. Data collectors are special nodes to gather data from affili-
ated sensors to provide data for in- and out-network analyses. The different node
types are ordered in a hierarchical way and have widely varying requirements
on storage management services. For our scenario we point out two different
categories of heterogeneous devices:

– The first category are simple sensor nodes that only need a data structure
to store data. Because of the hardware restrictions, all data are stored in the
main memory. The size of a data record is known. The data structure needs
only efficient insert, update, and lookup operations. Usually, sensor data are
measurements. Therefore simple integrity checks of data are needed.

– The second category are data collectors that collect and aggregate data of
different simple sensor nodes. To store data persistently the collector-node
uses a secondary storage device (an additional flash chip). To optimize the
processing of data a caching manager is required. Also complex integrity
checks are needed.

2.2 Problems Occurring

In the scenario introduced certain problems occur: Common database implemen-
tations cannot provide the full range of the required functions by attending the
strong resource limitations. The monolithic system structure prevents the reuse
of logical device-independent functionality. These general-purpose systems are
not scalable2 enough to satisfy the resource restrictions. The features of data-
base services are not tailorable in such a fine-grained sense. The main reason
is well known as crosscutting concerns. Special-purpose data management ser-
vices dealing with strong resource restrictions are not flexible enough to provide
services to all kinds of sensor-node types presented in the scenario. Application
developers have to choose the embedded database fitting best to their applica-
tion, hardware and software requirements. This is a difficult, time consuming

2 In the sense of scale their memory footprint.



4

and costly process, with lots of compromises. An adequate solution could be the
concept of program-family architecture that can be tailored and optimized to
the application scenario. Our goal are summarized as follows:

– systematic and detailed analysis of the domain of embedded data manage-
ment

– customizability, reusability and extensibility through fine-grained features
– lightweight and portable implementation
– seperating crosscutting concern

3 Software Engineering Background

This section introduces the software engineering methods that we have used
to analyze the domain of embedded storage management as well as to design
and implement a program family of storage management. Following this idea we
have used for the domain analysis feature-oriented domain analysis (FODA) [22].
Thereupon, we have designed a program family based on step-wise refinements
and feature-oriented programming (FOP) [31]. Mixin layers are used as imple-
mentation technique.

3.1 Feature-Oriented Domain Analysis

With the domain analysis feature modeling is an appropriate software engi-
neering method [22]. The goal of FODA is to analyze the considered target
application scenarios and to derive the required and optional features. Since the
focus of FODA is on a domain of applications the resulting features are cho-
sen with regard to a whole family of systems. The results of feature modeling
are feature models that describe the features, their relations, constraints, and
dependencies [16]. These models express variation points and commonalities of
the target-programs in an abstract and implementation independent way. Fea-
tures are organized in a hierarchical way (see Fig. 1). Features are mandatory

B

A

C
D

E F I KJG H

Fig. 1. Example feature tree

or optional stated by filled (e.g. feature B) and empty circles (e.g. feature C,D).
Moreover, they can be related in two ways: alternative (e.g. feature G,H), con-
nected by an empty arc and or (e.g. feature E,F), connected by a filled arc.
Feature models are one appropriate basis for designing and implementing pro-
gram families [16].



5

3.2 Program Families and Step-Wise Refinements

Parnas [29] introduced program families first. The idea is to build software incre-
mentally, using minimal building blocks and starting from a minimal base. This
procedure is also known as step-wise refinement [31]. Exchanging, adding and
removing such building blocks, also called layers, yields reusability, extensibil-
ity, and customizability. Batory et al. have mapped this concept to the object-
oriented world [5, 31]. They have observed that a new software feature often
extends or modifies numerous existing classes. Based on this observation, they
perceive features as collaborations of class/object fragments, also referred to as
roles. Figure 2 shows a stack of collaborations. Classes are arranged vertically

layers

classes

f1

f2

f3

c2 c31c

Fig. 2. Stack of collaborations

(c1 – c3). Collaborations are arranged horizontally and span several classes (f1

– f3). Several features of a software system result in a stack of collaborations.
In our context, examples of features are supported data types or caching strate-
gies. Collaborations with the same interfaces are easily exchangeable. They are
an instance of large-scale components [5]. In the sense of Feature-Oriented Pro-
gramming (FOP) [31], a collaboration of objects implements a feature and is
part of a layered stack.3

3.3 Mixin Layers

Mixin layers are one appropriate implementation technique to implement fea-
tures in form of collaborations [31]. A mixin layer is a static component encap-
sulating fragments of several different classes (mixins) so that all fragments are
composed consistently. Mixin layers are an approved implementation technique
for component-based layered designs. Advantages are the high degree of modu-
larity and the easy composition [31]. AHEAD (Algebraic Hierarchical Equations
for Application Design) is an architectural model for FOP and a basis for large-
scale compositional programming [7]. The AHEAD Tool Suite (ATS)4, including
the Jak language, implements AHEAD for Java.

3 We use the terms feature and layer as synonym for collaboration.
4 http://www.cs.utexas.edu/users/schwartz/Hello.html



6

3.4 Seperating Crosscuting Concerns

Pioneer work on software modularity was made by Dijkstra [17] and Parnas [29].
They have proposed the principle of separation of concerns. The idea is to sepa-
rate each concern of a software system in a separate modular unit. They argue
that this lead to maintainable, comprehensible software, which can be easily
reused, customized and extended. Since a few years Aspect-Oriented Program-
ming (AOP) and FOP are discussed as solutions of this problem. AOP was
introduced by Kiczales et al. [23]. The aim of AOP is to separate crosscutting
concerns. Common object-oriented methods fail in this context [23, 16]. The idea
behind AOP is to implement so called orthogonal features as Aspects. This pre-
vents the known phenomena of code tangling and scattering. The core features
are implemented as components, as with common design and implementation
methods. Using join point specifications (pointcuts), an aspect weaver brings
aspects and components together.

There are several discussions of pros and contras on separating crosscutting
concerns using on AOP and FOP [25, 24]. In this paper we are concentrating
on heterogeneous crosscutting concerns. Heterogeneous crosscuts are distributed
over several join points but apply varying code. That means different pieces of
code are added to lots of different places. Homogeneous crosscutting concerns
are distributed over several join points, but apply the same code fragments, e.g.
locking or logging. Therefore the same piece of code is added to lots of different
places. Current AOP languages focus on homogeneous concerns whereas FOP
languages deal with heterogeneous concerns.

4 Storage Manager Design and Implementation

This section presents the domain analysis, design and implementation of the
storage manager. Due to the limitations of space, we only focus on essential
characteristics that are related to the presented scenario (see Section 2).

4.1 FODA

Figure 3 shows a subset of the feature model as result of FODA that describes
the variability of our storage manager family.

The grey boxes symbolize features that have not displayed sub-features. This
is because of the space limitations. The storage manager is separated in four
mandatory features: (1) Data Type (DT) that represents the supported data
types, (2) a Buffer Manager (BM) for storage data in primary or secondary
memory, and managing the free space, (3) a Storage Organisation (SO) for struc-
turing and accessing data and (4) Records (Rec) which represents the data in
our database. Optional features are the Integrity Checks (IC) and supported File
Types (FT).

The overall feature-model of our small storage manager family has 93 fea-
tures. We have not investigated in special data types, transaction management,



7

Storage Manager

Integrity Check

Storage Organisation

Array List ... Sequential Hash ...

Main Memory

Files

Index ...Data

Records

Fix Variable

Caching Physical Access Method

File Direct

Page Based Non Page Based

Buffer Manager

Data Type

Access Path

Primary Secondary

...LookupUpdateInsert Delete

Exact Range

B*-Tree ...

Freespace Mgr. Primary
Storage Mgr.

Secondary
Storage Mgr.

File

Integer String ...

Fig. 3. Feature model of the storage manager family

recovery or specialized data structures for highly restricted application scenar-
ios like smartcards [10]. An more extended analysis would produce hundreds of
additional features for a storage management system.

Table 1 depicts variable parameters, e.g. number of supported data types
(first two colums). The third column depicts the values for our experimental
evalutation, e.g. for calculation of the permitted variants of the storage man-
ager we assumed four different data types. Calculating the theoretical number
of variants (cf. Table 1), we have determined 8.164.800 possible configurations
(using a GenVoca grammar [6]).

#SM = (2f
− 1)

︸ ︷︷ ︸

FT

∗ (15)
︸︷︷︸

BM

∗ (2n
− 1)

︸ ︷︷ ︸

DT

∗ ((m + s) ∗ (6 ∗ a ∗ (2o
− 1)))

︸ ︷︷ ︸

SO

∗ (2)
︸︷︷︸

IC

∗ (2)
︸︷︷︸

Rec

The high amount of amount of feature combinations reforces the diversity
of the database domain. The abstract description of variants and commonalities
can be exploited to build a highly configurable database program family. The
most combination differ only in a few details, e.g., the number of supported data
types. However, we argue that only this fine-grained design can lead to optimally
tailored database services.



8

parameter description # for caluculation

d data types 4

f file type 2

m main memory organisation 2

s data file structures 2

a access structure 2

o B∗ Tree 6

Table 1. Adjustable parameters.

4.2 Design and Implementation

In order to evaluate our approach, we have implemented the storage manager,
using the AHEAD Tool Suite which supports FOP for Java. It is also feasible to
use the C++ template mechanism, nested classes and parameter-based inheri-
tance [1, 31, 2]. Because of missing tool support and several problem regarding
C++, we decided to utilize Java and AHEAD to prove our concept.

Figure 4 depicts a subset only. Mainly, the layers concerning the B∗-Tree
access structure are depicted in bottom up order. Starting from the basic layers,
which implement records, page storages and caching, the layer stack is refined to
the B∗-Tree structure and several operations (Fig. 4 depicts the insert-operation
only). The layer stack crosscuts about 26 classes and a couple of help-classes.
In average, we have refined 3 classes per layer. To implement for instance the
Page Based Storage, we had to refine three classes (File, FreeSpaceMgr, SecStor-
ageMgr) and added one new class (Page).

5 Results and Experiences

This section discusses our results and experiences in implementing the prototype.
Therefore, we use the scenario introduced in Section 2.

5.1 Configuration

The configuration process is easy.To convey the ease of the configuration proce-
dure and the flexibility of the implementation, we have derived several storage
managers:

Sensor Node. We have configured two different storage manager versions for
our sensor nodes. Both configurations use main memory management. The
main memory allocation is static, because of the fixed record length. The first
sensor node type uses only basic data types (integer, number) and a simple
array to store data. The resulting storage manager is step-wise refined by 11
layers. For the second category, we have configured a hash-map instead of
an array. Thus the update and lookup functionalities are efficient supported.
Furthermore, we have added an integrity check on the records. This storage
manager is created by 16 layer refinement.



9

B−Tree Insert

File

File

File

FreeSpaceMgr SecStorageMgr

StorageManagerFile BufferManager PageFreeSpaceMgr SecStorageMgr

StorageManagerFile BufferManager PageFreeSpaceMgr SecStorageMgr

B−Tree Base

StorageManagerFile FreeSpaceMgrBufferManager Free List

FreeSpaceMgr

BufferManager Base

FreeSpace Management 

Refinement Base ClassStorageManager Base

StorageManager

StorageManager

StorageManagerFile

Secondary Storage Management Base

Page Based Storage

StorageManagerFile BufferManager PageFreeSpaceMgr

StorageManagerFile BufferManager SecStorageMgr Page

SecStorageMgr

Storage Organinsation

Sequential File Organisation

File Base

Data Type

Record Base

Caching

None Refinement

Variable Record

Record Factory

StorageManagerFile BufferManager Page

StorageManager

Record

Record

B−Tree

Caching

Free List

Caching

Free List

Free List

Free List

Caching B−TreeFree List

Free List

Caching

Record

Fig. 4. Subset of implementes mixin layer

Data Collector. Due the application scenario the functionality of the data col-
lector is more complex (cf. Sec. 2). Because of the availability of a secondary
storage device, we have configured a secondary storage manager using a file
oriented storing and an internal page based organisation. The file is sequen-
tially ordered and for the access path we have used a B∗-Tree. To improve
the performance we have chosen a cache management. The data record has
variable length. Due to the task of the data collector we integrated a special
integrity check on records. The total number of layers is 38 layers.

The correct syntactical composition of layers for a particular configuration is
determined by equation files. The semantic correctness is ensured by DRC. We
figured out that approximately 60 % of all possible configuration were excluded
using DRC. We omit a detailed discussion because that is out of scope of this
paper.



10

5.2 Discussions and Comparison to Related Approches

Incremental software development is an adequate process of building programs
from simple ones by successively adding programmatic details. We have used
these development methods to build tailored storage manager support for resource-
restricted devices. Our implementation has shown that decomposition of storage
manager into fine-grained components is possible. FODA, FOP and mixin lay-
ers are adequate software engineering methods to achieve highly scalable and
lightweight software.

Direct comparisons e.g. performance analysis, code metrics, to other database
solutions, e.g. COMET DBMS [26], Berkeley DB [28], are not meaningful at the
current state of the work for several reasons:

– The set of implemented features of our storage manager is different to other
approaches.

– We have not implemented any error-handling or logging functions, so that
an objective performance analysis would be adulterated. We are going to
implement this functions in future work.

– Our approach is implemented in Java. To the best of authors known, there
is no other approach focussing on such a fine-grained tailorability of compo-
nents by using Java implementing database functionalities.

For these several reasons we are comparing our approach to other solutions
only on the concept level. First we compare our approach to Berkeley DB as
known system in this area: Berkeley DB [28] is a common embedded database
system, which is implemented in C and Java. The Berkeley DB consists of the
following sub-systems: access methods, memory pool, transactions and locking.
Hence, Berkeley DB is configurable on the sub-system level. However the com-
ponents are coarser structured, as in our presented approach. An exchange of,
e.g., the access methods, is complex due to a high degree of dependency of the
sub-systems. This prevents an easy exchanging and extending of the database
system. This fact is also confirmed by Tesanovic et. al [33]. They investigated
on homogeneous crosscutting concerns in the Berkeley DB. With separating and
implementing failure detection and synchronisation through aspects a code re-
duction up to 57 % was showed. This fact proves that crosscutting concern in
Berkeley DB complicates tailorability and extensibility. Moreover Tesanovic et.
al showed that there is a trade-off between the tailorability and maintainability
of the system when aspects are used.

For the second comparison we choose COMET DBMS [26, 32]. COMET
DBMS is a component-oriented DBMS for embedded real-time systems. The
research focuses on applying aspect-oriented and component-based software de-
velopment to real-time system development. COMET is decomposed into seven
basic components. These are: user interface component, transaction scheduler
component, locking component, indexing component recovery and logging com-
ponent, memory handling component, and transaction manager component. Fur-
thermore the system is decomposed in tree types of aspect: run-time, composi-
tion, and application aspect. One of the application aspects is the concurrency



11

control aspect. This aspect crosscuts four basic components, namely the user
interface component, transaction scheduler component, locking component, and
transaction manager component. A clean separation of this aspect helps recon-
figuring COMET to support locking or non-locking transaction execution. The
COMET-project has shown that especially in real-time scenarios a lot of code
is distributed as homogeneous crosscutting concern over several implementation
units. Our approach has shown that in very fine-grained decomposed storage
management systems heterogeneous concerns are challenging problems. Remain-
ing on the discussion in [25, 24] both types of concerns are common in today’s
system. Consequently, our objective in future work is to enhance our prototype
with AOP features to deal with homogeneous crosscutting concern as well as
with heterogeneous crosscutting concerns.

Finally, we have a closer look to more generalized results of our work. Choos-
ing feature components in large scale database management software from a
program family the system complexity can be reduced. This helps to reduce
the maintenance overhead and new feature like automatic tuning can be easy
evaluated and included in less complex software [14].

5.3 Related Work

Extensibility, customizability and flexibility on database systems are a research
area that has been actively studied. An overview and classifications on exten-
sibility can be find in [18, 20]. Prototype systems like GENESIS [9], STAR-
BURST [30], KIDS [21], EXODUS [13], etc, are commonly known in this re-
search area. The XXL-library [11]is another prominent approaches to achieve
extensibility and customizability based on using object-oriented design patterns.
A more specific overview on embedded systems and real-time data management
can found in Tesanovic et. al [32]. Olson points out in how to find the right data-
base systems for embedded system environments [27]. Typical special-purpose
database management solutions for embedded systems are e.g. GnatDB [35] for
digital right management or PICO DBMS [10] for data management support on
smartcards.

6 Conclusion and Further Research

Feature-oriented software methods and step-wise refinements advance the de-
sign and implementation of database functionality for embedded systems. In
this article we have proposed a combination of FODA, FOP and mixin layers as
feasible software engineering methods to implement a storage manager as a pro-
gram family. A subset of basic features of a storage manager has been analysed
and implemented, to show a high degree of flexibility and tailorability of our ap-
proach. Therefore we have presented an application adopted scenario from sen-
sor networks, which shows different requirements on storage management in this
area. Through an easy configuration process we derived three different variants



12

form our storage manager product family tailored to the different application
scenario.

As future work, we want to investigate and integrate more features. Our to-
kens of interests are special purpose algorithms resource restrict devices, transac-
tion management, real-time feature and query processor. Furthermore, we want
to investigate the performance and the memory footprint and how to encourage
the configuration process for data management through deriving information
from application scenario automatically. Furthermore we want to investigate
our new language FeatureC++ an extension to C++ that supports FOP [2].
Moreover FeatureC++ improve the problem of crosscutting modularity by
combining traditional FOP concepts with concepts of AOP.

References

1. S. Apel and K. Böhm. Towards the Development of Ubiquitous Middleware Prod-
uct Lines. In Cecilia Mascolo and Thomas Gschwind, editors, Software Engineering
and Middleware Fourth International Workshop, SEM 2004, Linz, Austria, volume
3437 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2005. to ap-
pear.

2. S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: Feature-Oriented
and Aspect-Oriented Programming in C++. Technical Report Preprint Nr. 3, De-
partment of Computer Science, Otto-von-Guericke University, Magdeburg, Ger-
many, 2005.

3. D. Batory. Feature-Oriented Programming and the AHEAD Tool Suite. In Proceed-
ings of the 26th International Conference on Software Engineering, pages 702–703.
IEEE Computer Society, 2004.

4. D. Batory, Lou Coglianese, M.Goodwin, and S. Shaver. Creating Reference Ar-
chitectures: An Example from Avionics. In Symposium on Software Reusability
(SSR), Seattle Washington, 1995.

5. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components. ACM Transactions on Software Engi-
neering and Methodology, 1(4), 1992.

6. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Soft-
ware Systems with reusable Components. ACM Transactions on Software Engi-
neering and Methodology, 1(4):355–398, 1992.

7. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. In
Proc. of the 25th Int. Conf. on Software Engineering, 2003.

8. D. Batory, J. N. Sarvela, and Axel Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering, 30(6), 2004.

9. D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell,
and T. E. Wise. GENESIS: an Extensible Database Management System. In
Readings in object-oriented database systems, pages 500–518. Morgan Kaufmann
Publishers Inc., 1990.

10. C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez. PicoDMBS: Scaling
Down Database Techniques for the Smartcard. In VLDB 2000, Proceedings of
26th International 2000, Cairo, Egypt, pages 11–20, Los Altos, CA 94022, USA,
2000. Morgan Kaufmann Publishers.



13

11. M. Cammert, C. Heinz, J. Krämer, M. Schneider, and B. Seeger. ”a status report
on xxl - a software infrastructure for efficient query processing”. IEEE Data Eng.
Bull., 26(2):12–18, 2003.

12. R. Cardone et al. Using Mixins to Build Flexible Widgets. In Proceedings of the
1st International Conference on Aspect-Oriented Software Development, 2002.

13. M. J. Carey, D.J. DeWitt, D. Frank, G. Graefe, J. E. Richardson, E. J. Shekita, and
M. Muralikrishna. The architecture of the EXODUS extensible DBMS. In K. R.
Dittrich, U. Dayal, and A. P. Buchmann, editors, On Object-Oriented Database
Systems, Topics in Information Systems. Springer, 1991.

14. S. Chaudhuri and G. Weikum. Rethinking database system architecture: Towards
a self-tuning RISC-style database system. In The VLDB Journal, pages 1–10, 2000.

15. Business Communications Company. Future of Embedded Systems Technology,
2000. BCC Press release on market study RG-229.

16. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

17. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
18. K. Dittrich and A. Geppert. Component Database Systems: Introduction, Foun-

dations, and Overview. In K. R. Dittrich and A. Geppert, editors, Component
Database Systems, pages 1–28. dpunkt.verlag, San Francisco u.a., 2001.

19. D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann. An
Evaluation of Multi-resolution Storage for Sensor Networks. In Proceedings of the
ACM SenSys Conference, pages 89–102, Los Angeles, California, USA, November
2003. ACM.

20. A. Geppert. Methodical Construction of Database Management Systems. GI
Datenbank Rundbrief, 14:62, 1994.

21. A. Geppert, S. Scherrer, and K. Dittrich. KIDS: Construction of Database Man-
agement Systems based on Reuse. ifi-97.01, Department of Computer Science,
University of Zurich, January 9 1997.

22. K. Kang et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical report, cmu/sei-90-tr-21, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, November 1990.

23. G. Kiczales et al. Aspect-Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP’97), 1997.

24. R. E. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating support for features
in advanced modularization technologies. extended report. Technical Report CS-
TR-05-16, The University of Texas at Austin, Department of Computer Sciences,
1 2005. Thu, 19 May 105 18:18:04 GMT.

25. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented Pro-
gramming and Aspects. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2004.

26. D. Nyström, A. Tešanović, M. Nolin, C. Norström, and J. Hansson. COMET: A
Component-Based Real-Time Database for Automotive Systems. In Proceedings
of the Workshop on Software Engineering for Automotive Systems at 26th Interna-
tional Conference on Software engineering (ICSE’04), Edinburgh, Scotland, May
2004. IEEE Computer Society Press.

27. M. A. Olson. Selecting and Implementing an Embedded Database System. IEEE
Computer, 33(9):27–34, 2000.

28. M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In USENIX Annual
Technical Conference, FREENIX Track, pages 183–191. USENIX, 1999.

29. D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions On Software Engineering, SE-5(2), March 1979.



14

30. P. M. Schwarz, W. Chang, J. Freytag, G. M. Lohman, J. McPherson, C. Mohan,
and H. Pirahesh. Extensibility in the starburst database system. In Klaus R.
Dittrich and Umeshwar Dayal, editors, 1986 International Workshop on Object-
Oriented Database Systems, September 23-26, 1986, Asilomar Conference Center,
Pacific Grove, California, USA, Proceedings, pages 85–92. IEEE Computer Society,
1986.

31. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Transactions
on Software Engineering Methodology (TOSEM), 11(2), 2002.

32. A. Tesanovic, D. Nystrom, J. Hansson, and C. Norstrom. Embedded Databases for
Embedded Real-Time Systems: A Component-Based Approach. Technical report,
Linkoping University, Mlardalen University, 2002.

33. A. Tešanović, K. Sheng, and J. Hansson. Application-Tailored Database Systems:
a Case of Aspects in an Embedded Database. In Proceedings of the 8th Interna-
tional Database Engineering and Applications Symposium (IDEAS’04), Coimbra,
Portugal, July 2004. IEEE Computer Society Press.

34. J. Turley. The Two Percent Solution. Embedded Systems Programming, 2002.
http://www.embedded.com/story/OEG20021217S0039.

35. R. Vingralek. GnatDb: A Small-Footprint, Secure Database System. In VLDB,
pages 884–893, 2002.

36. M. Weiser. Hot Topics: Ubiquitous Computing. IEEE Computer, 26(10), 1993.
37. A. Woo, S. Madden, and R. Govindan. Networking support for Query Processing

in Sensor Networks. Commun. ACM, 47(6):47–52, 2004.


