
LOOP PARALLELIZATION FOR A GRID MASTER-
WORKER FRAMEWORK∗

Eduardo Argollo, Michael Claßen, Philipp Claßen, Martin Griebl
Fakultät für Informatik und Mathematik
Universität Passau, D–94030 Passau, Germany
[eargollo,classenm,classen,griebl]@infosun.fmi.uni-passau.de

Abstract Despite the evolution in Grid middleware, the development and execution of Grid appli-
cations is still not simple. We propose an approach to parallelizing applications straight
to the Grid. Both the parallelization and application execution processes should be
as simple as possible. We present a software architecture that combines loop paral-
lelization with Higher-Order Components. We develop a Higher-Order Component for
an extended master-worker framework in which tasks may have dependences, and we
adapt the LooPo parallelization tool to generate the application-specific code for such
Higher-Order Components. Experiments, automatically parallelizing the matrix multi-
plication algorithm with different parameter settings, are presented in order to validate
our approach.

Keywords: Automatic Parallelization, Higher-Order Components, Master-Worker, Web-services

1. Introduction
In recent years, Grid computing has evolved to become an important platform

for high-performance computing in scientific applications. But despite the evolution
of Grid middleware, the development and execution of Grid applications is still not
simple. For an application to be executable on the Grid, the program must be available
in a distributable, i.e., parallel form, and, in order to run this parallel program, the
Grid middleware must be configured properly for execution.

Our ultimate goal is to simplify both steps, so that the user eventually just needs
to upload a sequential program using a Web service and press the execution button.
In other words: the usage of the Grid as a huge parallel computer must be as simple

∗This work was carried out for the CoreGRID IST project nr. 004265, funded by the European Commission.



2

as possible, and all Grid problems and challenges, e.g., heterogeneity, slow network
connections, dynamic load balance or even failures, must be transparent to the user.

In order to achieve this goal, we divide the problem into two main parts.
As a first task, we use automatic parallelization to convert a sequential program to

a parallel one for distributed memory. This technique is well developed for scientific
programs, i.e., for programs that spend most of their time in loops of array computa-
tions. Corresponding methods are based on a mathematical model and implemented
in a prototype compiler called LooPo [6, 8]. We have adapted LooPo so as to gen-
erate tasks for an extended master-worker framework that also allows tasks which
depend on other tasks. Our experiments demonstrate the influence of parallelization
parameters on the execution time in the distributed run-time environment.

As a second task, we map the distributed program to the Grid. For this purpose,
we suggest to use a "master-worker with dependences" Higher-Order Component
(HOC) [3], enabling the reuse of the master-worker standard code and the Grid
environment configuration files. We explain here how, using this framework, the
execution becomes transparent to the user.

We implemented the first task using an interface framework, that can be used for
initial testing in a controled environment and then adapted to the HOC structure (sec-
ond task). This framework takes tasks as they should be executed on the Grid and
executes them on a distributed set of computers in our department. With this interface,
we have run experiments that demonstrate that the automatic parallelization can be
used to generate tasks and any other data structures that are needed for execution in a
master-worker framework. The essential new part in this framework, when compared
to a standard master-worker framework in a distributed environment, is the existence
of a task dependence graph, which is automatically generated by LooPo. Thus, our
framework can also deal with dependent tasks. Beyond the actual execution, the
framework provides us with interesting insights about all performance parameters,
e.g., the number of workers that are used at each computation step, the amount of
communication, or the load of the processors. Furthermore, different buffering tech-
niques have been implemented in the framework and can be compared, e.g., a single
buffer framework in which task generation, execution and joining are sequential, or
a double buffer framework, in which a worker obtains a second task while it still
executes the first one.

Our first experiments with multiplying two square matrices yield the expected
results: the performance results scale up to 18 processors, where the relative speedup
for 18 workers is about 16 – an efficiency of 89%! Note that, for Grid applications,
both the problem size and the number of processors must be increased – which should
lead to similar speedups.

To summarize, our main contributions are: (i) we propose a novel approach that
combines automatic loop parallelization with a Grid execution environment to sim-
plify program installation and execution in the Grid; (ii) we extend the master-worker
framework so as to deal with dependent tasks; (iii) we provide an interface frame-



Running head goes here 3

work for validating the approach (which can furthermore be used directly for a parallel
execution of an originally sequential program on a network of workstations or a clus-
ter with distributed memory); (iv) we have experimental results that show that our
approach scales well and has good efficiency.

The rest of the paper is organized as follows: Section 2 introduces our proposed
system architecture and the master-worker HOC. Section 3 presents the necessary
ideas from loop parallelization. Section 4 is about the special aspects when generating
tasks. Section 5 discusses the application of our approach to the matrix multiplication
and shows some experimental results. Section 6 contains conclusions and ideas for
future work.

2. HOC and System Architecture
In order to achieve the goal of simplicity in the parallelization and execution

of applications on the Grid, we propose a software architecture that combines a
component based architecture and loop parallelization. For this purpose, we use the
concept of Higher-Order Components introduced in [3].

Higher-Order Components (HOCs) were designed to provide Grid users with high-
level programming constructs, prepackaged with (parallel) implementations and the
required middleware configuration files. Each HOC implements a generic pattern of
parallel behavior with a specific communication structure, e.g., a pipeline or a task
farm. A HOC can be customized for a particular application by providing it with
arguments which may be both data and application-specific code. HOCs are made
accessible to the Grid user via Web services.

Fig. 1 shows the HOC service architecture [5]. At the HOC repository, the appli-
cation programmer finds components that are written by Grid experts and represent
optimized generic code for parallelization paradigms like master-worker, pipeline or
divide-and-conquer, for example. The application programmer selects a HOC and
programs the specific codeparts for its application, for example the source code of the
steps of a pipeline. The application-specific source code is uploaded (only once) to
the code service (Fig. 1 (a)). When an execution is requested from the HOC service
(Fig. 1 (b)), the application-specific code is loaded from the code service (Fig. 1 (c))
and joined to the HOC code resulting in an application that is ready to run on top of
the Grid middleware (Fig. 1 (d)).

Our proposal is to add a loop parallelization HOC to this service architecture and
to develop another HOC that represents a master-worker with dependences. Our
proposed system architecture can be seen in Fig. 2. The sequential source code is
stored once in the code service (Fig. 2 (a)). The first time an execution is requested by
the LooPo loop parallelization HOC (Fig. 2 (b)) this code is loaded (Fig. 2 (c)). The
LooPo HOC then generates the necessary files that are joined with the master-worker
code from the HOC repository (Fig. 2 (d)), stores them for further use (Fig. 2 (e)) and



4

Figure 1. Higher-Order Components architecture.

Figure 2. System architecture of our proposed solution.

requests a HOC execution (Fig. 2 (f)), followed by the steps previously explained
(Fig. 2 (g) and (h)).

The master-worker programming model consists of two kinds of entities: one
master and multiple workers. The master is responsible for decomposing a problem
into tasks and distributing these tasks among a farm of workers, as well as for gathering
the partial results in order to produce the final computation result. The workers
execute in a cycle: they receive a message with the task (input), process the task, and
send the result back to the master (output).

The "master-worker with dependences" HOC implements this master-worker generic
behavior requiring as an input the application-specific codeparts. Doubly-buffered
workers, allowing simultaneous computation and communication through threads,
enhance the execution efficiency. In order to use this HOC, the application developer
must provide two parameters (classes): the application master and the application
task. The application master is responsible for the generation and joining of tasks.



Running head goes here 5

Figure 3. Example code showing the required methods for an application to use the master-worker
framework.

The application master might also have application-specific variables and activities
for initiating and finishing the execution.

The application task must have the task data as well as the method that represents
the task execution activity. An example of the required application master and ap-
plication task code suitable for our HOC can be seen in Fig. 3. The methods of both
the application master and the task are invoked by the master-worker HOC.

One of the basic characteristics of loop parallelization is the possibility of data de-
pendences between different parallelized steps. To be able to handle dependences, our
master-worker HOC, differently from the original, allows the existence of dependent
tasks. Tasks can be identified by indices and, at initiation time of the application-
master, it is possible to define a dependence graph of the tasks using these indices.
The execution will then proceed following these dependences. Currently the master-
worker framework provides one method for adding tasks and dependences (statically
or dynamically). It is important to point out that the data load of a task just happens
when all its predecessors were joined in the master.

When tasks and dependences are added, the master-worker framework builds a
tasks dependence graph that can be used to determine the parallelization level (max-
imum number of workers) of this application. For example, the automatic paral-
lelization of an M × M matrix in T × T tiles generates (M/T )2 parallel tasks.
Considering the double buffer strategy, it is possible to predict that the maximum
amount of workers that can be used efficiently is half, i.e.

WorkersLimit =
1
2
∗

(
M

T

)2

(1)

3. Traditional Loop Parallelization
In the context of high-performance computing, the automatic parallelization of

loop programs can be well performed using a mathematical model, the so-called
polytope model [9]. Its applicability is restricted to perfectly or imperfectly nested



6

loops which compute on array variables and whose bounds and data dependences are
affine expressions, i.e., linear in the indices of the surrounding loops and in symbolic
and numeric constants. The advantage is that the complete parallelization process
can be based on integer linear programming, i.e., on mathematical optimization
techniques.

In the extended polytope model, the polyhedron model, a four-phase approach is
applied to transform the input loop nest to a parallel target program that is adapted
to the system architecture [6].

In the first phase, the input program is analyzed and the dependences are com-
puted [2, 4]. The result is a set of polyhedra that represent all computations – the
so-called index sets, all array accesses of every computation point inside the index
set, and a set of dependence relations between the elements of the index sets. These
dependences determine the correct partial order of the computations and, also, the
necessary communications in a distributed memory environment (a dependence be-
tween two different processors causes a communication). Note that, in the typical
parallelization framework, the data are sent directly from the producer to the con-
sumer in order to save communication cost; this must be changed if we move to a
master-worker framework.

In the second phase, two piecewise affine functions are computed: the schedule
maps each computation to a logical execution step, and the placement maps each
computation to a virtual processors. The idea is that all available parallelism is
extracted, independently of any machine parameters, e.g., the number of processors.
This step – the space-time mapping – can be used in the master-worker framework
without change.

In the third phase, several time steps and/or virtual processors are aggregated to
so-called tiles, which are then distributed across the available physical processors for
atomic execution. This step is crucial for efficiency, since only coarse-grain paral-
lelism can lead to speedup in distributed systems in which the network is typically
orders of magnitude slower than the compute nodes.

Our method allows to adapt the granularity to the number of available proces-
sors and, independently, to the target architecture’s cost ratio of computation vs.
communication [7]:

Tiling space loops means aggregating a set of virtual processors to be executed
on the same physical processor, i.e., it allows adaptation to the number of
processors.

Tiling time loops means aggregating logical time steps, and allowing com-
munication only at the border of the aggregated time steps. This reduces the
number of communication startups, but at the cost of an increased computa-
tion duration, since the receivers of messages are delayed when the sends are
postponed until a tile border is reached. A cost model can be used to adjust the
tile size with the ratio of communication startup cost and computation cost.



Running head goes here 7

Technically, once the tile’s shape and size have been determined, tiling means
enumerating all computations hierarchically, i.e., in two steps: first a set of loops
enumerates the tiles, the tile loops and, nested inside, another set of loops enumerates
the points within each tile, the body loops.

In the master-worker framework, these tiles essentially define the tasks. The main
differences are as follows:

For load balancing reasons, one must generate more but smaller tiles, which can
then be distributed to the processors according to their load. A cost model can
be used to select a tile size that is a good compromise between load balancing
and the amount of communication startups.

The ID of the physical processor to which a tile is mapped becomes useless;
note that, nevertheless, computing a placement in Phase 2 still remains a good
idea as this groups computations working on the same data close together – so
that they tend to be within the same task after tiling, thus reducing communi-
cations and dependences between tiles.

The remaining inter-tile dependences cause the tasks to be dependent. This de-
pendence information is necessary for the master-worker framework to sched-
ule the tasks, i.e., we need an export interface for this traditionally internal
information. Note that this exported task dependence graph (TDG) works
with the IDs of the tasks instead of the tasks themselves.

In contrast to tiles, tasks do not exchange messages directly. Instead, all nec-
essary input data must be sent with the task definition, and all output data, i.e.,
the result of the task, must be merged with the output data of the other tasks,
i.e., the results of the tasks must be joint.

In the fourth and last phase, code for the computations and communications is
generated [1]. This part of the parallelizer must be completely rewritten for the
master-worker framework and, thus, discussed in more detail in the next section.

4. Generating Tasks
In this section, we describe briefly how the Java code for the Master and Task

classes is generated.

4.1 Code generation for class Master
4.1.1 Important attributes. The Master class to be generated contains all
parameters and data arrays of the application program. They are declared as static
and are accessible by the master process. This allows an easy loading of the input
data to new tasks, since they are created on the processor of the master before the
framework sends each task to a worker.



8

Furthermore, the Master class contains a task scheduler including the task depen-
dence graph (TDG) and, for keeping track of the progress of computation, the number
of active (unfinished) tasks.

4.1.2 Important methods. The master takes care of starting up new tasks and
merging their results after they have finished computation. For this purpose, two
methods for the Master class are generated as follows.

startUp The startUp method is called only once. It creates the “structure” of the
tasks. For this purpose, we generate code for enumerating all tasks and all
dependences between the tasks. For each of these two steps, a set of loop nests
is generated:

The tile loops from traditional loop parallelization are used to enumerate
all task IDs. These IDs, each coded as an int array, are added to the
scheduler’s list of tasks.

In order to create the task dependence graph, the dependence relations
of the application program are transformed by applying the space-time
mapping and the tiling. For each resulting dependence relation, the tile
loops of its sources and destinations are enumerated and a call is gen-
erated to add an edge from the source to the destination tile in the task
dependence graph.

joinTaskResult After a task has finished its computation, the task’s computed data
has to be merged with data from other tasks by the master. This is achieved by
generating code, that uses the already computed array accesses to determine
which data has been written by the task that is being joined. In specific, loops
are generated that enumerate all array indices for which the task writes data
and, in the body, code is inserted that reads from the local buffer into the global
static array at the position specified by the current loop iteration vector.

4.2 Code generation for class Task
4.2.1 Important attributes. The Task class uses a buffer to store elements that
are exchanged with the Master. Besides other locally used variables, declarations are
generated for parameters and arrays that are used during the actual computations.

4.2.2 Important methods. Beside the code for initializing the task’s ID, we
also have to generate code for populating the task with data and insert some method
for the actual execution of the computation.

constructor The constructor takes the ID of the task to be generated and stores it
locally. Then, the initial data must be uploaded to the task. The corresponding
code is generated based on the array accesses already computed. Specifically,



Running head goes here 9

loops are generated that enumerate all array indices for which the task reads
data from the global arrays – which, in our context, are stored at the master.
The body of such a loop nest then consists of a statement that reads from the
array position specified by the loop indices and stores the data element in the
local buffer.

execute In the execute function, we first generate code for two sets of loop nests.
The first set is responsible for initializing the local arrays with the data that
was stored in the buffer. For this purpose, we can reuse the loop nests that have
been generated for the constructor, but we have to adjust the body statements
in order to write to the local arrays instead of reading from the Master arrays.

The second set of loop nests is responsible for enumerating the iterations for
the actual computation statements. For this purpose, we use the body loops
that are generated during tiling. Note that we do not use the tile loops here
but, instead, we treat those dimensions as parameters, whose actual values are
given by the task ID.

5. Experiments
We designed experiments to prove that the automatic parallelization approach is

suited to generate the required master-worker data and that it is possible to achieve
scalability with this approach. We adapted the LooPo parallelization tool to generate
the required source code. This code is passed to the developed master-worker with
dependences framework and executed. For this first validation approach, both the
Grid middleware Web service structure and the HOC architecture have not been used.

In order to analyze the speedup and efficiency, we performed the experiments on
a homogeneous cluster with 20 nodes (up to 19 workers) using six different tilling
options: 100-100, 200-200, 300-300, 400-400, 500-500, and 600-600. The first
tiling parameter determines the width of the tiles in the time dimension. For matrix
multiplication, this determines, for a fixed array cell of the result matrix, the number
of summations to that array cell that are coalesced in one task. A larger number leads
to fewer tasks and, thus, to reduced communication, but also to less parallelism. The
second tiling parameter determines the number of rows of the result matrix that are
coalesced in one tile. The tiling of the third dimension, i.e., the loop enumerating
the columns of the result matrix is not mentioned explicitly as it is executed fully
sequentially inside a task.

The speedups in the experiments are depicted in Fig. 4. The graphic shows the
relation between tiling and speedup. For small tile sizes the system is quickly cupped
by the tasks’ communications between master and workers. As the tile grows, the
speedup also increases, reaching 16 on 18 workers using a tile width of 600 – an
efficiency of 89%.

It is interesting to observe that the automatic parallelization tiling must be big
enough to have a good computation-communication ratio but small enough to enable



10

Figure 4. Speedup for different tiling options and different amount of workers.

Figure 5. Speedup for the 600 tile with different matrix sizes.

a good number of simultaneous workers. As stated in Section 2, the maximal number
of workers that can be used simultaneously for matrix multiplication is given by
Equation (1). This means that, for a tile width of 600, the scalability for square
matrices of widths 1200, 1800, 2400, and 3000 is limited to approximately 2, 4.5,
8, and 12.5 workers, respectively. Figure 5 shows the speedup for tiles of width 600
with different matrices, demonstrating its limited scalability.

These experiments show that scalability of the automatically generated code using
our approach is attainable but depends on the problem size and the tile size. Once



REFERENCES 11

targeting the Grid, both, the problem and the tiling will have to grow substantially,
scaling the problem together with the system.

6. Conclusions and Future Work
Although, in the recent years, the Grid has emerged as an important high-performance

computing platform, it is not a simple matter to develop Grid applications. It is imper-
ative to have tools that can automatically parallelize applications and transparently
execute them in the Grid, providing to Grid users the maximum of simplicity.

We have propose here a novel approach to providing the simple and transparent
parallelization and execution of sequential applications in the Grid. This approach
is based on combining loop parallelization and Grid Higher-Order Components. In
this paper, the architecture of our proposal was detailed, showing the interconnection
between the components and the Grid middleware.

In order to validate our approach we have developed a master-worker with depen-
dences HOC and adapted the LooPo parallelization tool to generate the application
specific code for this HOC. We tested the system parallelizing the matrix multi-
plication algorithm with some tiling options. The testbed was a cluster with 20
homogeneous computers.

The experiments showed the viability of our approach, presenting better perfor-
mance and scalability with larger tiling. The experiments also denoted the rela-
tionship between the tiling and the tasks’ parallelism: bigger tiles improved the
computation-communication ratio but decrease the amount of parallel tasks.

The most important piece of future work is to adapt the HOC structure to the defined
interface, as proposed in the system architecture, so that the parallel execution can
be carried out directly in the Grid. We also have as future work to test the system
with different loop applications and tilings, and to develop a model for supporting
the tiling decision.

Acknowledgments
Financial support was gratefully received from the German Research Foundation

(DFG) under project CompSpread and from the EU by the CoreGRID network of
excellence. Thanks to Jan Dünnweber, Amin Größlinger, Genaro Costa and Maxim-
ilano Gaitan for discussions, help and technical support.

References
[1] Cédric Bastoul. Generating loops for scanning polyhedra. Technical Report 2002/23, PRiSM,

Versailles University, 2002.

[2] Jean-François Collard and Martin Griebl. A precise fixpoint reaching definition analysis for arrays.
In Larry Carter and Jeanne Ferrante, editors, Languages and Compilers for Parallel Computing,
12th International Workshop, LCPC’99, LNCS 1863, pages 286–302. Springer-Verlag, 1999.



12

[3] Jan Dünnweber and Sergei Gorlatch. HOC-SA: a grid service architecture for higher-order com-
ponents. In Services Computing, 2004. (SCC 2004). Proceedings. 2004 IEEE International Con-
ference on, pages 288–294, 2004.

[4] Paul Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel Programming,
20(1):23–53, February 1991.

[5] Sergei Gorlatch and Jan Dünnweber. From grid middleware to grid applications: Bridging the gap
with hocs. In Future Generation Grids. Springer Verlag, 2005.

[6] Martin Griebl. Automatic parallelization of loop programs for distributed memory architectures,
2004. Habilitation thesis. Also available as http://www.fmi.uni-passau.de/∼griebl/habil.ps.gz.

[7] Martin Griebl, Peter Faber, and Christian Lengauer. Space-time mapping and tiling – a helpful
combination. Concurrency and Computation: Practice and Experience, 16(3):221–246, March
2004.

[8] Lehrstuhl für Programmierung, Universität Passau. The polyhedral loop parallelizer: LooPo.
http://www.fmi.uni-passau.de/loopo/.

[9] Christian Lengauer. Loop parallelization in the polytope model. In Eike Best, editor, CONCUR’93,
LNCS 715, pages 398–416. Springer-Verlag, 1993.


