The Role of Features and Aspects
In Software Development

Dissertation
zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultat fur Informatik

der Otto-von-Guericke-Universitat Magdeburg

von: Diplom-Informatiker Sven Apel
geboren am 21.04.1977 in Osterburg

Gutachter:
Prof. Dr. Gunter Saake
Prof. Don Batory, Ph.D.
Prof. Christian Lengauer, Ph.D.

Promotionskolloquium: Magdeburg, Germany, 21.03.2007

Apel, Sven:

The Role of Features and Aspects in Software Development
Dissertation, Otto-von-Guericke-Universitat

Magdeburg, Germany, 2006.

Abstract

In the 60s and 70s thesoftware engineeringo ensive emerged from long-standing prob-
lems in software development, which are captured by the tersoftware crisis Though
there has been signi cant progress since then, the currentusation is far from satisfac-
tory. According to the recent report of the Standish Group, tll only 34% of all software
projects succeed.

Since the early days, two fundamental principles drive sefire engineering research to
cope with the software crisis:separation of concernsand modularity. Building software
according to these principles is supposed to improve its uastandability, maintainabil-
ity, reusability, and customizability. But it turned out th at providing adequate concepts,
methods, formalisms, and tools is di cult.

This dissertation aspires to contribute to this eld. Speccally, we target the two novel
programming paradigmsfeature-oriented programming (FOP)and aspect-oriented pro-
gramming (AOP) that have been discussed intensively in the literature. Batparadigms
focus on a speci c class of design and implementation probis, which are calledcross-
cutting concerns A crosscutting concern is a single design decision or issuose imple-
mentation typically is scattered throughout the modules ofa software system. Hence,
crosscutting concerns contradict and violate the princigis of separation of concerns and
modularity.

Though FOP and AOP provide method-level, language-levelnd tool-supported means
to deal with crosscutting concerns, they do so in di erent wgs. In this dissertation we
demonstrate that FOP and AOP are not competing approaches buhat their combi-
nation can overcome their individual limitations. We undepin this insight by a clas-
si cation of crosscutting concerns and an evaluation of FORnd AOP with respect to
di erent classes of crosscutting concerns. The result is &tsof programming guidelines
in form of a catalog that contrasts the strengths and weaknsss of FOP and AOP.

In order to prot from their individual strengths, we propose the symbiosis of FOP
and AOP. To this end, we presentaspectual feature modules (AFMs}hat realize the
symbiosis by the integration of concepts, design rationaglanguages constructs, and
tools for FOP and AOP. An evaluation and comparison with tradional FOP and AOP
corroborates that AFMs largely pro t from either's strengths.

Furthermore, we emphasize that current AOP languages are nsuited to be combined
with the stepwise development style of FOP. Consequently,enintroduce the notion of
aspect re nement (AR) that uni es AOP and stepwise software development and that
is underpinned by a set of accompanying language construesd tools.

A non-trivial case study demonstrates the practical applability of AFMs and AR to a
medium-sized software project. This study reveals a furthdundamental issue: Given
the programming guidelines, how are mechanisms related t@&® and FOP used in con-
temporary programs? The background is that a speci ¢ clasd arosscutting concerns,
called collaborations is connected naturally with FOP. Due to the missing supporin
main stream programming languages today, AOP has frequeytbeen used to implement
collaborations.

However, with the advent of languages that support collabations and the classi cation

and evaluation contributed by this dissertation, we ask: Whigfraction of aspect-oriented

code implements collaborations? What fraction implementsrasscutting concerns be-
yond collaborations? A quantitative analysis of 8 AspectJ nograms of di erent size

reveals that on average 98% of the code base is associatedhwillaborations and only
2% exploits the advanced capabilities of AOP. Furthermoreaye observed that the impact
of AOP decreases as the program size increases.

Finally, the dissertation discusses why this (dis)propoibvn of code related to AOP and
FOP is not surprising and whether and how the impact of AOP caibe increased.

Zusammenfassung

Der Begri Softwaretechnikund die damit verbundene O ensive erwuchs in den 60ern
und 70ern aus den anhaltenden Problemen bei der Entwicklungn Software, welche
unter dem Begri Softwarekrisezusammengefasst werden. Obwohl sich seitdem einiges
bewegt hat, ist die derzeitige Situation in der Softwareenticklung alles andere als
zufrieden stellend. Laut dem aktuellen Bericht der Standis Group werden nur 34%
aller Softwareprojekte erfolgreich zum Abschluss gebrdch

Seit dem werden zwei Prinzipien eng mit der Uberwindung deoSwarekrise in Verbin-
dung gebracht: Trennung von Belangen (separation of concerng)nd Modularitat (mo-
dularity). Finden diese Prinzipien in der Entwicklung von Software Bechtung, lasst
sich die Verstandlichkeit, Wartbarkeit, Wiederverwendbakeit und Mayschneiderbarkeit
von Software signi kant verbessern. Allerdings stellte sh schnell heraus, dass es weit
komplizierter ist, adaquate Konzepte, Methoden, Formalisen und Werkzeuge zu ent-
wickeln, als zunachst angenommen.

Diese Dissertation hat zum Ziel, zu diesem Bereich der Fomsmg beizutragen. Im
Speziellen beschaftigt sich die Arbeit mit zwei derzeitigiskutierten Programmierparadig-
men, derFeature-orientierten Programmierung (FOP)und der Aspekt-orientierten Pro-
grammierung (AOP). Beide Paradigmen konzentrieren sich auf eine bestimmte ddse
von Entwurfs- und Implementierungsproblemen, die so genaten querschneidenden
Belange (crosscutting concerns) Ein querschneidender Belang entspricht einer einzel-
nen Entwurfs- oder Implementierungsentscheidung bzw. @nFragestellung oder eines
Ansinnens, dessen Implementierung typischerweise UberitweTeile eines Softwaresys-
tems verstreut ist. Aus diesem Grund widersprechen quersatidene Belange den Prin-
zipien der Trennung von Belangen und der Modularitat.

FOP und AOP stellen beide methodische und programmierspraache Mittel und Werk-
zeuge bereit, gehen das Problem der querschneidenden Bgéamber auf sehr unter-
schiedliche Weise an. In dieser Dissertation wird jedochstgestellt, dass FOP und AOP
keine konkurrierenden Ansatze sind, sondern dass ihre Komation die individuellen
Schwéchen Gberwinden kann. Diese Einsicht wird untermaueturch eine Klassi kation
von querschneidenden Belangen und eine Evaluierung von FQRd AOP hinsichtlich
der verschiedenen Klassen querschneidender Belange. Bnje ist ein Satz von Pro-

grammierrichtlinien in Form eines Katalogs, der die Starke und Schwachen von FOP
und AOP gegentiberstellt.

Um von den individuellen Starken beider Paradigmen zu proiéren, wird in dieser Dis-
sertation die Symbiose von FOP und AOP vorgeschlagen. Ingmndere prasentieren
wir den Ansatz derAspekt-basierten Featuremodule (aspectual feature modules AFMS)
welche die Symbiose umsetzen, indem sie die Entwurfsphdpkien, Sprachmechanismen
und Werkzeuge von FOP und AOP kombinieren. Eine Evaluierungnd eine Gegentber-
stellung mit traditioneller FOP und AOP demonstrieren die Uberlegenheit von AFMs.

Des Weiteren wird in der Dissertation herausgestellt, dasderzeitige AOP-Sprachen
nicht uneingeschrankt geeignet sind, in die schrittweiservurfsphilosophie von FOP
integriert zu werden. Konsequenterweise wird der Ansatz déspektverfeinerung (aspect
re nement AR) vorgestellt, welcher AOP und schrittweise Softwareentwklung a la
FOP vereinheitlicht. Weiterhin werden entsprechende Spchkonstrukte und Werkzeuge
zur Verfigung gestellt.

Mittels einer nicht-trivialen Fallstudie wird die praktische Anwendbarkeit von AFMs
und AR auf ein mittelgroyes Softwareprojekt demonstriert.Die Studie wirft weiterhin
eine fundamentale Frage auf: Wie werden Mechanismen von FORAUAOP heutzutage
verwendet. Hintergrund ist, dass eine spezielle Klasse vgaerschneidenden Belangen
eng mit FOP verknupft ist, die so genannterKollaborationen (collaborations) Durch
die fehlende Unterstiitzung von Kollaborationen in aktuein Programmiersprachen wird
dafir heute oft AOP benutzt.

Durch das Aufkommen von Programmiersprachen, die Kollabationen explizit unter-
stitzen, sowie durch die in dieser Dissertation prasentier Klassi kation und Evaluie-
rung, stellen sich jedoch folgende Fragen: Welcher Anteibm Aspektcode implementiert
Kollaborationen? Welcher Anteil implementiert querschnidene Belange, die dartber
hinaus AOP bendtigen? Eine quantitative Analyse von 8 AspétProgrammen unter-
schiedlicher Groye ergibt, dass durchschnittlich 98% deradebasis der analysierten Pro-
gramme mit Kollaborationen verknupft sind und nur 2% die erwiterten Mittel von AOP
jenseits von Kollaborationen ausnutzen. Weiterhin wird babachtet, dass mit steigender
Programmgroye der Ein uss von AOP sinkt.

In der Dissertation wird die Frage beantwortet, warum diese (Miss)Verhaltnis zwi-
schen AOP und FOP-Code besteht, und warum dies nicht Uberretst. Weiterhin wird
diskutiert, ob und wie der positive Ein uss von AOP gesteige werden kann.

Acknowledgements

Pursuing a Ph.D. is an endeavor that is not only steeped in sddn inspiration and pure
scienti ¢ beauty, but is often a path with many obstacles, dculties, and throwbacks.
However, | was able to make my way because many people acconed and supported
me. First, | want to thank Susi my partner and wife-to-be for ker encouragement,
love, and mental support in good and bad times. | am also gtaful to my parents
who supported me, my dreams, ideas, and plans from the verydwening of my life.
Furthermore, | want to acknowledge my brother, my grandpamgs, my grandaunt, my
mother-in-law-to-be, and Ayla (a.k.a. The Queen of Sabayho all helped and believed
in me, in one or the other way.

In my life | had many teachers, mentors, and professors too amy to mention here.
Certainly, my advisers played an important role in my disseation. It is worth noting
that | had not just one adviser, but two advisers who suppori@ me in di erent ways.

First, Don Batory helped me understand the big picture of ng work, and helped me
re ne my style in scienti c thinking, working, and writing. In my time at the University
of Texas at Austin we had many long and emotional discussiorabout fundamental
issues of my research and philosophical issues of sciendewas an honor and a true
pleasure working with him. His support, patience, encouragnent, and advice has gone
further than | would have imagined and expected.

Second, | want to thank my adviser Gunter Saake who called ma his group at the
University of Magdeburg and gave me the opportunity for doig my Ph.D. in the rst
place. In the face of numerous organizational, operationadnd nancial problems, he
always came up with an unconventional and practical solutiothat ensured my freedom
of research and scienti c work. He always believed in my alies and supported me
without asking. | learned many invaluable truths from him almut the amenities and
dangers of the world of research, science, and academics.

As a further mentor | want to thank Christian Lengauer. | rst met him at the University
of Texas at Austin. We quickly realized that despite our largly di erent views of the
world of software engineering and programming, we were abie work in harmony.
| proted always from our controversial discussions that emrged from our di erent

perspectives and backgrounds. This raised my awareness loé importance of formal
foundations and precise de nitions.

During the years of my Ph.D. studies | worked and discussedtWwimany other researchers
that contributed to the evolution of my thinking and understanding of many problems in
computer science. The most in uential persons were Erik Bamann, Klemens B6hm,
Thomas Leich, Roberto Lopez-Herrejon, Olaf Spinczyk, Delleg Hutchins, Klaus Os-
termann, Sahil Thaker, Walter Cazzola, and Jia Liu.

A special thank-you goes to the members of the Metop reseaidistitute that supported
me nancially and organizationally over long times. Partialarly, | want to mention
Thomas Leich and Marco Plack that granted support in many suations.

Furthermore, | want to thank several students and colleaggethat were involved in
many activities related to this dissertation: Christian K&tner, Marko Rosenmiiller,
Martin Kuhlemann, Helge Sichting, Holger Steinhaus, LaurdMarnitz, and Karl-Heinz
Deutinger.

Finally, | want to thank all members of the Database Group at he University of Magde-
burg and the Product-Line Architecture Research Group at théJniversity of Texas at
Austin, as well as all my relatives and friends.

Vi

Contents

List of Figures | Xi
List of Tables XV
Abbreviations | XVii
1 Introduction 1
11 OVEIVIEW . o o v v e e e e e e e 1
1.2 CONDULION . . o v o v e e e e e 4
1.3 Outline e 5
2 Separation of Concerns and Modularity 7
2.1 Separation of Concernso 7
2.2 Stepwise Software Development 9
2.2.1 Stepwise Re NEMENE . . . o v oo e 9
2.2.2 Program Family Developmeht a
2.2.3 Stepwise Re nement Versus Program Families 11
2.2.4 Software Product LINES v v v 3
2.3 MOQUIES . . . o oo 14
2.4 Feature-Oriented Programmin\g 15
2.4.1 Features, Concerns, and Collaborations 15
2.4.2 Jaki FOP fOr Java oo oo 17
243 GEMVOCA .« « « o o oo e e e 19
2A4AHEAD 20
25 Aspect-Oriented Programmin\g 21
2.5.1 Crosscutting Concerns i 12
25.2 Aspects: An Alternative Modularization Mechanism 23
2.5.3 ASPECtd: AOP fOr JAVA . . « « v o o e e e e 25
2.6 Terminology Used in this Dissertation 26

Vii

Contents

3 A Classi cation Framework for Crosscutting Concerns

\3.1 Homogeneous and Heterogeneous Crosscutting Concerns..
3.2 Static and Dynamic Crosscutting CONCEMS . .« o v oo et
3.3 Summary: Classi cation MatriX . o o oo e e

4 A Conceptual Evaluation of AOP and FOP |

\4.1 Evaluation Criteria e
\4.1.1 Abstraction
4.1.2 Crosscutting Modularitﬂf
4.1.3 Feature COhESION o o v o oo e e
4.1.4 Feature INtegration o
4.1.5 Feature COMPOSItON . . .+« o o o v e e e e e e e

4.2 Evaluation of AOP and FOP v v i i

4.2.1 Abstraction e e

4.2.2 Crosscutting Modularitﬂl
4.2.3 Feature CONESION . . . o o v v o o e
4.2.4 Feature Integratioth
4.2.5 Feature Composition e

\4.3 Summary, Perspective,and Goals

5 The Symbiosis of Feature Modules and Aspects

5.1 Design Spaée
5.2 The Integration of Feature Modules and Aspedts e
5.3 Aspectual Feature MOUIES o
5.4 A Conceptual Evaluation of Aspectual Feature Modules C
5.4.1 ADSIaction o oo
5.4.2 Crosscutting Modularity
5.4.3 Feature CONESION o o v oo
5.4.4 Feature INtegration v oo
5.4.5 Feature Composition
5.5 Tool SUpport . . . e e
5.5.1 FEAtUrECH+ . . o o o o e e e
5.5.2 AHEAD T00l Suite & ASPECEd v o oo e
5.5.3 FeaturelDE o o o
5.6 Related WOTK o oo
5.7 SUMMAIY . . o o oo e e e e e

6 Aligning Aspects and Stepwise Development

6.1 Aspects and Stepwise Software Developm\ent
6.1.1 An Example of Aspect Renement
6.1.2 Limited Language-Level Support for Aspect Re nement

viii

29

29
31
33

35

35
35
36
36

38
38
39

39
45

47
47

Contents

6.2 Mixin-Based Aspect Inheritance

....................... 71
6.2.1 Adding Members and Extending Methods. 72
6.2.2 POINtCUt RE NEMENE . .+« o o o o e e e e e e 73
6.2.3 AdVICE RENEMENE .« .+« o o v o et e e 75
6.2.4 DISCUSSION .« .+« « o o e e e e e 78
6.3 Tool Suppori 80
6.3.1 ARJ 80
6.3.2 FRAUIECH, . . . o o oo 81
6.4 Related WOTK . . . o o oo 81
6.5 SUMMANY e e e e e e e e 83
\7 Case Study: A Product Line for P2P Overlays 85
71 OVerview Of P2P-PLo 85
711 Aspectual Feature Modules in P2P-PL 87
7.1.2 Aspect Re nement in P2P-PL . . o 90
7.2 SEAtSHCS .« © v v o e e 93
7.2.1 Statistics on Used AOP and FOP Mechanisms 93
7.2.2 Statistics on AFMs with ASPectS oo 95
7.2.3 Statistics on Aspect Re NEMENt . o v o e e e e 95
7.3 Lessons Leamed 96
7.3.1 Re nements and Aspects Whento Use What? 96
7.3.2 Borderling Caseso 97
7.3.3 Bene ts of Aspect Renement L 98
7.4 Open Issues e 98
75 Related WOTK . . . o o oo 100
7.6 SUMMAIY . . . o oo e e 101
3 Aspects Versus Collaborations | 103
8.1 Problem Statement: Aspects vs. Collaborations 103
8.2 MetriCs e 104
8.2.1 Analyzing Aspectd Programs a6
8.2.2 AJStats: A Statistics Collector for AspectJ Programs 106
8.3 Case SWAIES . . o v o v e 107
8.3.1 Overview of the Analyzed AspectJ Programs 107
8.4 SHAUSHCS .« « o o v e e 110
8.5 DISCUSSION . .« « o o e oo e e e e 114
8.6 Related WOTK o o oo 117
8.7 Summary and Perspective 18

Contents

\9 Concluding Remarks and Further Work \ 121
9.1 Summary of the DiSSertation v v 121
9.2 Contributions and Perspectiveo 123
9.3 Suggestions for Further Work, . 124

\Bibliography 127

\Curriculum Vitae 147

List of Figures

2.1 Implementing two design decisions by applying two re maents [Bax92] . 11
2.2 A program family of operating systems |HFC7%]. 12
2.3 Collaboration-based design. 16
2.4 Collaboration-based design of a graph implementatibn 16
25 A simple graph implementation BasicGraph).\ 17
2.6 Adding support for weighted graphs\Weight). 18
2.7 Directory structure of a graph implementatioﬁ. 19
2.8 Combining the containment hierarchies of two features.. 21
2.9 Dimensions of separation of CONCEMS. v v v v v .. 22
2.10 OOP implementation of the featureColor. 23
2.11 Aspectweaving. e e L
2.12 Implementing theColor feature as aspect. 25
2.13 Implementing theColor feature using AspectJ (excerpt). 26
2.14 A more compact syntax for inter-type declarations in AsectJ. 26
3.1 Homogeneous and heterogeneous crosscuts. 30
32 A homogeneous crosscut implemented using one piece oiﬁmi 30
3.3 A homogeneous crosscut implemented using three pieckadvice.. . . . 30
3.4 Implementing static crosscuts in Jak (left) and AspectJright). 31
3.5 Implementing dynamic crosscuts in Jak (left) and Aspect{right). ... 31
3.6 Static and dynamic CIOSSCULS. .« « v v v o e e e 32
4.1 Integrating features by superimposition. 37
4.2 Crosscutting integration of features. 38
4.3 _Implementing theColor feature as a feature module. 40
4.4 Implementing theColor feature asanaspect. 41
45 Implementing a collaboration as an aspebt 41
4.6 An Aspect] aspect that implements a collaboration. 42
4.7 Implementing a large-scale feature using a feature mdelu 42
4.8 Implementing a large-scale feature using an aspect. 43
4.9 Implementing a static crosscut via re nement (left) andvia aspect (right). 43

Xi

List of Figures

4.10 A recursive graph data structure. 44
4.11 Advising the printing mechanism using advanced advice 45
4.12 Implementing the extended printing mechanism via re ement. 45
5.1 Feature-driven decomposition of an object-oriented gign. 51
5.2 Feature-driven decomposition of an aspect-orientedsign. 51
5.3 Aspectual feature modules. 52
5.4 Implementing the featureColor as an aspectual feature module. 53
55 Superimposing containment hierarchies including asge. 54
5.6 Jampack-composed graph implementation. 54
5.7 Mixin-composed graph implementatioh. 55
5.8 A FeatureC++ code examplé 8
5.9 FeatureC++ compilation process. oo 59
5.10 Feature modeling in FeaturelDE. 61
5.11 A stack of feature modules in FeaturelDE. 61
5.12 Implementing functional aspects via pointcut restrdaring. 65
6.1 Four steps in the evolution of a program using AFMs. 69
6.2 Adding members and extending methods via AR. 72
6.3 AR composition and weaving SEMANiCS. . . o o 73
6.4 Altering the set of locked methods via pointcut re nemen. 74
6.5 Pointcut-advice-binding. 74
6.6 The most re ned pointcut triggers connected advice. 74
6.7 An aspect with named AVICE. . . o o o 75
6.8 A pair of unnamed advice and advice method. 76
6.9 Re ning named advice. e 76
6.10 Re ning named advice with argumenté 77
6.11 Semantics of advice re Nement.o 77
6.12 Counting the updates oBuffer objects. 79
6.13 Notify a listener whenBuffer objects are updated. 79
6.14 Introducing the interfaceSerializable to Buffer and Stack. 79
6.15 Decomposeerialization aspect. 80
6.16 Decomposing aspects by decomposing AFMS. . . 80
7.1 The organizational structure of P2P-PL. 86
7.2 Feedback generator AFM. B
7.3 Feedback generator aspect (excerpt). 89
7.4 Feedback management re nement of the clageer| 89
7.5 Connection pooling AFM. oo 0
7.6 Connection pooling aspect (excerpt)., 90
7.7 Serialization aspect (excerpt). 91
7.8 Decomposed serialization aspect (excerpt). 92

Xii

List of Figures

7.9 Encapsulating design decisions using AR., 92
7.10 Number of classes, mixins, and aspects in P2P-PL. 93
7.11 LOC of classes, mixins, and aspects in P2P-PL. 94
7.12 LOC of static and dynamic crosscutting in P2P-PL. 94
7.13 Number of crosscuts implemented by aspects. 95
7.14 Peer invokes methods ofLog and MessageSender 99
8.1 AJStats Screen Snapshot. e O}
8.2 NOO and LOC of classes, interfaces, and aspects. 112
8.3 NOO and LOC of heterogeneous and homogeneous crosscuts. 113
8.4 NOO and LOC of basic and advanced advice. 113
8.5 Fractions of advanced aspects and collaborations. 114
8.6 Code reduction achieved by using AOP. v it 116

Xiii

List of Tables

3.1 Classi cation matrix with Aspectd examples. 33
41 A comparison of FOP and AOP. 48
5.1 What implementation technique for which kind of crosscting concern? 66
7.1 Aspectual Mixin Layers used in P2P-PL. . o o oo 87
7.2 Aspectsdecomposed by AR. 96
8.1 Collected data of the analyzed case studies. . ..o 111

XV

AFM
AHEAD
AOP
AOR
AR
BAC
CIA
CORBA
FODA
FOP
FOR
HHC
HTML
IDE

ITD
LOC
MDSoC
NOO
OoOoP
P2P-PL
SEI
SPL
SWD
SWR
XML

Abbreviations

Aspectual Feature Module

Algebraic Hierarchical Equations for Application Design
Aspect-Oriented Programming
Aspect-Oriented Refactoring

Aspect Re nement

Basic and Advanced Dynamic Crosscuts
Classes, Interfaces, and Aspects

Common Object Request Broker Architecture
Feature-Oriented Domain Analysis
Feature-Oriented Programming
Feature-Oriented Refactoring

Heterogeneous and Homogeneous Crosscuts
Hypertext Markup Language

Integrated Development Environment
Inter-Type Declaration

Lines of Code

Multi-Dimensional Separation of Concerns
Number of Occurrences

Object-Oriented Programming

Peer-to-Peer Product Line

Software Engineering Institute

Software Product Line

Stepwise Development

Stepwise Re nement

Extensible Markup Language

XVii

CHAPTER 1

Introduction

1.1 Overview

The term ‘software engineeringwas introduced in the NATO Working Conference on software
Software Engineering in 1968 [NR69]. Though there are alteative de nitions we use the engineering
following: software engineering is the analysis, design, implementation, docunegign, 2nd software
customization, deployment, and maintenance of software by combining and appmtech- crists
nologies and practices from several elds, e.g., computer science, prbjetanagement,
engineering The software engineering o ensive was started to cope withwhole class of
phenomena observed in software development that were sunmmad by the term soft-

ware crisis. The software crisis became manifest in projects runningrer-time, projects

running over-budget, low-quality software, software thatdid not meet its requirements,

projects that were unmanageable, and code that was di cult ® maintain.

Edsger Dijkstra, a pioneer of software engineering, exph@d the major cause for the causes for the
software crisis as follows [Dij72]: software crisis

...machines have become several orders of magnitude more powerful! To put
it quite bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming became a
mild problem, and now we have gigantic computers, programming has become
an equally gigantic problem.

Since the 60s, tremendous progress has been made in dealiitf e software crisis. progress and
It became possible to construct increasingly complex sofine systems. However, the disillusion
progress in developing concepts, methods, and tools forta@ire engineering did not

keep track with the enormous boost of the complexity and thehger size of contem-

porary software systems. That is, the aspiration to estaldh software development as

the Standish
Group reports

separation of
concerns and
modularity

Chapter 1 Introduction

an engineering discipline is, to a signi cant extent, stillan aspiration [FGG' 06]. The
current software science and technology base is inadequétemeet current and future
needs in software construction [Jac06, Boe06].

According to the Standish Group in 1995, only about 16% of duofare projects were suc-
cessful, 53% were fraught with problems (cost or budget ovans, content de ciencies),
and 31% were cancelled; the average software project ran 22ate, 189% over budget
and delivered only 61% of the specied functions [Gro95]. Aording to the Standish
Group's most recent report, only 34% of all software projestwere deemed to be suc-
cessful [Gro03]. Evidence suggests that despite the impeowent from 1995 to 2003 the
current situation in software development is far from adecte [FGG* 06, Jac06, Boe06,
Gla05, Gla06].

Fundamental principles that drive the research on softwarengineering since the early
days areseparation of concernsand modularity, which are highly related to each other.
Building software according to these principles makes it me manageable and under-
standable and consequently software reuse, evolution, anthintenance is improved.

Separation of concerns means to break down a software into pieces [Dij82, Dij76,
Par76, Par79]. These pieces are theoncerns of a software system, in which a
concern is a semantically coherent issue of a problem domdimat is of interest.
A concern may be a requirement such as ‘realtime operatioa,program feature
such as "RSA encryption', a data structure such as a B-tree, even a tiny issue
like implementing a length counter as long integer or as shonteger. Concerns
are the primary criteria for decomposing software into smigr, more manageable,
and comprehensible parts, which is embodied by the princglof separation of
concerns.

However, the de nition of separation of concerns does not@vide guidance on how
to identify and arrange concernsCohesionproved to be an appropriate criterion.
Cohesion is the grade of functional relatedness of the piscef code that imple-
ment a concern [YC79]. High cohesion is preferable becauses iassociated with
several desirable properties of software, e.g., robustsegeliability, reusability, and
understandability. Structuring software on the basis of tis criterion enables the
software developer to concentrate on the issues regardingeaconcern in isolation,
thus minimizing the distraction by implementation detailsof other concerns. Par-
nas describes this approach atesign for changdPar79]: a programmer structures
software such that the concern implementations encapsuttode that is likely to
change. Following this approach, separation of concernsadaes the change of a
concern's implementation without a ecting or depending orother concerns.

Modularity is the principle to structure software into modules or, exg@ssed more quan-
titatively, it measures the extent to which modules are usedh a software system.

1.1 Overview

The idea of modules emerged from several tracks of reseaintparticular, modular

programming [Con68], program speci cation [Par72a, Par72b] structured program-

ming [DDH72, Dij76], and structured design[SMC74, YC79]. Though there are
various de nitions, it has been agreed that a module must be part of a larger

system and inter-operate with other modules. Modules arelseontained, cohe-
sive building blocks of software. A module is a device to imgrnent a concern and
modularity is a consequence of separation of concerns.

A module provides and communicates via amnterface to hide specic details
of the concern it implements {hformation hiding) [Par72b]. Interfaces decouple
concern implementations from each other and minimize correanterdependencies.
Modules with interfaces provide an enabling mechanism foegaration of concerns
and design for change.

The history of software engineering and programming langga research is to a signif- challenges
icant extent the history of supporting and improving separion of concerns and mod-

ularity. The challenge for the research community and the olustry is to provide the

right languages, abstractions, models, methods, and todsassist software developers in

building well-structured and modular software. This wouldbe a major step to overcome

the software crisis. Unfortunately, it turned out that this is a di cult task.

This dissertation aspires to make a contribution to this edl, i.e., to provide concep- aim of the
tual, methodological, practical, and tool-related meansa improve the separation of dissertation
concerns and modularity in software. Speci cally, this disertation focuses on two

novel programming and software development paradigmigature-oriented programming

(FOP) [Pre97, BSR04] andaspect-oriented programming (AOP)KLM * 97, EFBO1].

Both, FOP and AOP target a specic class of design and implenméation problems, crosscutting
which are calledcrosscutting concerns|[KLM *97]. A crosscutting concern is a singleconcerns
design or implementation decision or issue whose implematibn typically must be

scattered throughout the modules of a software system, thaesults in inter-mingled

code, and that leads to code replication. Crosscutting coems are special as they
challenge traditional programming and development paragims such asobject-oriented
programming (OOP). It has been observed that crosscutting concerns lead to ietently
suboptimally structured code that decreases understandidity and manageability of

software [KLM* 97, EFB01, TOHSMS99].

The problem of crosscutting is not a matter of a good or bad pgramming style or tyranny of the
software design. It emerges directly from the missing suppoof traditional program- dominant
ming paradigms (e.g., OOP) to decompose software in mult®lways (along multiple decomposition
dimensions), which is called thayranny of the dominant decompositiofTOHSMS99].

That is, a program can be modularized in only one way at a timea(ong one dimension),

and the many kinds of concerns that do not align with that modlarization end up in

Chapter 1 Introduction

scattered tangled and replicated code FOP and AOP address this issue explicitly and
provide mechanisms for decomposing software along more nhane dimension.

Although both FOP and AOP aim at modularizing crosscutting oncerns, they approach
this problem from di erent sides. While FOP deals with the aubmated synthesis of
software out of features, AOP provides meta—le\l%language constructs that enable to
reason about and manipulate base programs. In both FOP and ADa programmer
de nes the points in a program to be extended (a.k.goin points) and a set of actions,
extensions, or transformations to be performed at these ms.

AOP and Though it seems that FOP and AOP are competing approaches, itis dissertation
FOP can we observe that FOP and AOP are complementary techniques. &k decompose and
Eéiﬁmer structure software in di erent ways, along di erent dimensons, which leads to di erent

program designs. We demonstrate how the combination of FOmd AOP can overcome
their individual limitations. The di erent strengths and w eaknesses revealed and sys-
tematized in this dissertation call for a symbiosis of both gramming paradigms in
order to prot from their advantages and to minimize their shortcomings.

programming Given the numerous, individual strengths and weaknesses BOP and AOP, we need

guidelines guidelines to assist programmers in choosing the right teaigue for the right problem.
The entire dissertation is steeped in these guidelines anaicbe understood as a historical
overview of the author's investigations in this problem edl: the programming guidelines
have been derived from the evaluation of FOP and AOP and drivihe proposal of the
symbiosis of both; they have been evaluated in a non-trivialase study, and help to
identify the current practice of using mechanisms of FOP andOP.

In a nutshell, the guidelines for using FOP and AOP based on #ir strengths and weak-
nesses are the essence for comparing, combining, and undgyFOP and AOP. They
guide the way to a better understanding of crosscutting coeens and of the correspond-
ing implementation mechanisms, which, taken by itself, is aontribution to the debate
about modularity and separation of concerns.

1.2 Contribution

1. We evaluate FOP and AOP with respect to their performancenifacilitating sep-
aration and modularization of crosscutting concerns, as Weas related evaluation
criteria. This evaluation is preceded by a systematic classation of crosscutting
concerns on the basis of their structural properties, whichnables to systematize

Steimann shows that AOP languages are essentially secondeer languages. The processing of an
aspect requires reasoning about and involves manipulatiorof a program, i.e., AOP is de facto a
meta-programming technique [Ste05].

1.3 Outline

the evaluation process. The result is a set of programming igelines that empha-
sizes the individual strengths and weaknesses of FOP and AOP

. We propose the symbiosis of FOP and AOP. We discuss its dgsispace, present
a concrete realization at the implementation level, and caribute several tools to
assist programmers in combing FOP and AOP mechanisms.

. Given the combination of FOP and AOP, we present a uni catn of AOP and the
stepwise development methodology of FOP. This uni cationrebles the uniform
treatment of all implementation artifacts of a program featire (i.e., classes and
aspects). This follows directly from theprinciple of uniformity that states that
program features consist of various types of software agifts andall artifacts can
be subject of subsequent re nement [BSR04].

. We demonstrate the practical applicability of our propoal by applying the core
language constructs and tools to a medium-sized case studihis provides rst
insights into how FOP and AOP techniques would be combined ia non-trivial
setting.

. Finally, we present our investigations in how AOP and FOP mchanisms are used
in third-party software projects. Background is that our pogramming guidelines
devise in which situations AOP mechanisms outperform FOP robanisms, and
vice versa. By de ning a set of code metrics, appropriate tbsupport, and an
analysis of a set of third-party programs, we shed light on thquestions: What is
the current practice of using AOP and FOP? And to what extent elated design
and implementation problems occur?

1.3 Outline

Chapter 2 lays the foundations for understanding the central ideas dfis dissertation.

It limits its focus on essential concepts related to sepaian of concerns, mod-
ularity, FOP, AOP, and their connection to software engineeng. Consciously,
we avoid getting into much detail; we do not give a compreheng or historical

overview of related programming and software developmenpproaches.

Chapter 8 introduces a classi cation framework for crosscutting carerns. This classi-

cation forms a systematic basis for the evaluation and congrison of FOP and
AOP; it is essential to infer programming guidelines for chusing the right imple-
mentation technique for the right class of crosscutting caerns.

Chapter 4 presents the evaluation of FOP and AOP. For this purpose, weedhe a set

of evaluation criteria that is applied in a comparison of FORand AOP. The result

Chapter 1 Introduction

is a catalog that contrasts the strengths and weaknesses ddIF and AOP, which
can be understood as a set of programming guidelines.

Chapter 5 elaborates on the symbiosis of FOP and AOP. After a brief disssion of
the design space, the chapter introduces the notion of aspectual feature module
(AFM) that realizes the symbiosis. AFMs are evaluated using our itzria and
compared to traditional FOP and AOP. Finally, we give an oveview of several
tools that have been developed in this dissertation and disss related approaches.

Chapter 6 introduces the notion ofaspect re nement (AR), which uni es aspects and
the stepwise development methodology of FOP. After a discsisn we point to a
tool developed in this dissertation and discuss related war

Chapter 7 reviews the results of the application of AFMs and AR to a prodct line
for overlay networks. We examine the collected data and disss open issues and
related studies.

Chapter 8 re ects on the experiences gained in the case study and extta a problem
statement. We de ne a set of code metrics and provide tool spprt for program
analysis. We discuss the results of applying our metrics tonall-sized to large-
sized AspectJ programs.

Chapter 9 summarizes the dissertation, puts the results into perspiee, and lists sug-
gestions for further work.

CHAPTER 2

Design and Implementation Techniques for
Separation of Concerns and Modularity

This chapter lays the foundations for understanding the céral ideas of this dissertation.
It is not intended as a historical overview or as a comprehers survey on design and
implementation techniques for separation of concerns andoaiularity.

2.1 Separation of Concerns

Separation of concerns (SoC)s a fundamental principle of software engineering. It is
credited to Dijkstra [Dij76] and Parnas [Par76, Par79] whoplied the principle ofdivide-
and-conquerto software development:it is easier to manage a problem by breaking it
down into smaller pieces than to solve the problem as &uch pieces are the concerns of
a software system, where a concern is a semantically coheresue of a problem domain
that is of interest. Cohesionis the grade of functional relatedness of the pieces of code
that implement a concern [YC79]. High cohesion is preferabecause it is associated
with several desirable properties of software, e.g., roldusss, reliability, reusability, and
understandability.

In software development, separation of concerns is relatéalthe decomposition mecha- software
nisms of design and implementation. Concerns are the primacriteria for decomposing decomposition
software into smaller, more manageable and comprehensiplrts. The resulting pieces

are not the concerns themselves but their representations design and implementation

levels. For example, a concern may be a requirement such asaltime operation’, a

program feature such as "RSA encryption’, a data structure sh as a B-tree, or even

a tiny issue like implementing a length counter as long integ or as short integer. For

simplicity, we equate concerns and their representations the remaining dissertation.

bene ts of
separation of
concerns

Chapter 2 Separation of Concerns and Modularity

The goal of separation of concerns is to localize, untangkeparate, and encapsulate the
representations of concerns in a software system. The foliog bene ts are attributed
to software with well separated concerns:

Comprehension: A well structured system is easier to understand [Par79, Oif]. A
localized and separated concern representation enables ffrogrammer to concen-
trate on that concern in isolation without getting distracted by details of other
concerns. Dijkstra formulates this as follows:

Our heads are so small that we cannot deal with multiple aspects simul-
taneously without getting confused.

Comprehensibility is a critical requirement for tasks likesoftware reuse, customiza-
tion, and maintenance. Thus, achieving comprehensibilitis the primary goal of
separation of concerns.

Reuse: Software reuse is the process of creating software systenasf existing software
rather than building software systems from scratch [Kru92] Separated concerns
can be more easily reused in di erent contexts than intermigled ones. The more
independent a concern is, the easier it can be detached from aitached to a
software system. The spectrum of reuse reaches from reusmgoncern, i.e., its
implementation, in di erent variants of one software prodwt (e.g., a component)
to reusing a concern in di erent, unrelated software system(e.g., a library func-
tion) [Big98].

Maintenance: Updating, debugging, and evolving a software system are dpgent tasks
in software maintenance. They usually boil down to adding,emoving or changing
concern implementations. Parnas was the rst to proclaim tht change should be
considered when designing software; this concept is callibign for changgPar79].
The idealized goal is to change software as much as possibl@ainon-invasive way,
l.e., by applying new pieces that implement the change and m®ving unneeded
ones instead of modifying existing pieces [OH92, VN96a].

Structuring software along concerns enables (1) the additi of new concerns in
form of distinct pieces of software and (2) the modi cation pexchange of existing
concerns in isolation.

Customization: Typically, di erent stakeholders have di erent requirements on a soft-
ware system. Thus, there is a need to customize software to ehé¢he speci c needs
of stakeholders. Ideally, a software design and implemetitan is variable, i.e., it
supports the easy derivation of system variants. Customrzy a software system
means adjusting the given system structure in the boundaseof the supported
variability [vGBSO01]. Separation of concerns is bene ciah that the implementa-
tion of a concern can come in di erent variants and concernsan be combined in

2.2 Stepwise Software Development

di erent ways. Customizing software means then to choose ¢hconcerns desired
and to select those implementations that t a requirement spci cation best.

Concerns are separated by decomposing software along comgepresentations. That software

is, in all phases of the software life cycle, concerns of ata@fre system are separate decomposition
pieces, distinguishable from other concerns. However, Buseparation is non-trivial and
to achieve, especially in large-scale and evolved softwar@esign and implementation composition
techniques have to support separation of concerns expligitoy providing appropriate
(de)composition mechanismsDecompositionmeans to break down a software design into
pieces;compositionties these pieces together to get a complete software protiubesign

and implementation technigues have to provide di erent kids of (de)composition mech-

anisms at di erent levels of abstraction in order to accountor the diversity of possible

concerns. Prominent examples are the conceptsfahctions in structured programming

and classesn OOP. While functions decompose a software system along itstructions,

classes decompose a software system along the data to be pswuiated.

The exploration and analysis of (de)composition mechanigms a major subject of re-

search in software engineering and programming languagé&sarly work addressed issues
like structured programming and information hiding. Recentwork aims at software

structures at a larger scale and occurring in all phases ofdtsoftware life cycle. The
following sections introduce the design and implementatmotechniques relevant for this

dissertation.

2.2 Stepwise Software Development

Stepwise re nement[Wir71] and program families [Par76] are two design methodologies
that are fundamental to software engineering. Both addressxplicitly the issue of sep-
aration of concerns. They support the incremental developent of software over time
by implementing a series of design decisions being appliedseveral development steps,
which is calledstepwise development (SWD)This way, the resulting software forms a
layered design such that each layer implements a concern theorresponds to a design
decision and a development step; subsequently applied leyeébuild up on previously
applied layers.

2.2.1 Stepwise Re nement

Wirth was the rst to articulate the role of stepwise re nemert in program design [Wir71].
According to his view a program (or its speci cation) is gradally developed in a sequence
of re nement steps In each step, the structural elements of the given prograninstruc-
tions and data) are decomposed into more detailed elementBhat is, re nement is the

re nement
tree

Chapter 2 Separation of Concerns and Modularity

revealing of design and implementation details that have nget been exposed and each
re nement step implies adesign decision The successive decompaosition or re nement
of program speci cations terminates when all structural ppgram elements are expressed
in terms of an underlying programming language. Hence, theqress of stepwise re ne-
ment is a mapping between two representations of a programhere the representation
that is re ned is more abstract than the representation thatresults.

A program speci cation could be written informally as natual language text, e.g.,

given an arrayA of sizeN, permute the elements oA in such a way thatA
is sorted in increasing order [Wir76].

Alternatively a speci cation could be expressed in a formgprogramming or mathemat-
ical) language that is usually tailored to a specic problemdomain, e.g., information
system development [JSHS96], interactive systems [BSO1pjext modeling [Jac02], or
network services [Bow96], to name a few.

Since for each re nement step alternative design decisioaee possible, the overall re ne-
ment process results in @ nement tree. The leaves of a re nement tree de ne di erent
implementations of the considered program. The path from #root of the tree to a leaf
expresses the program's design and implementation it is @&sges of re nements that
explains how a program implements its speci cation.

Figure 2.1 depicts an example re nement tree, adopted fronBfx92]. The root of the
tree is a program speci cation in form of an abstract syntaxree, which represents an
arithmetic expression 8 (y + z) +4). By applying the two transformation rules dist
and com that implement familiar distributivity and commutativity laws the original
speci cation is re ned into two new speci cations: 3 y+3 z+4'and 4+3 (z+Yy)"
These two alternative re nement steps result in two new leas of the re nement tree,
which are two alternative abstract syntax trees.

With stepwise re nement the programmer makes decisions how tlerive a more concrete
representation of the program starting from a more generahe. The resulting re nement
tree contains all alternative design decisions (in our exapte, applying the distributivity
and the commutativity law) made during the re nement proces.

2.2.2 Program Family Development

Parnas proposed a related methodology for SWD: @rogram family is a set of similar
programs [Par76]. The idea is to concentrate on the commoiias of a set of programs
instead of their di erences with the goal of sharing functioality between program family
members. To achieve the needed degree of reusability witranprogram family, Parnas
and others [Dij68, Dij76] proposed implementing softwardasting from a minimal base

10

2.2 Stepwise Software Development

root of refinement tree

‘/\ com

dist
2a* (?b + 2¢) -> ?a+?b ->
2a*2b +?2a* 2¢ g % 2b + ?a
leaf of refinement tree leaf of refinement tree
: | (z) (v)

Figure 2.1: Implementing two design decisions by applyingvb re nements [Bax92]

of functionality and evolving the functionality by adding minimal extensionsin a series of
development stepawhich leads to conceptually layered designs. Parnas fughproposed
the concept of modules that implement layers, which we exptasoon (Sec. 2.3).

Figure[2.2 depicts the design of a family of operating systemHFC76]. In contrast to operating
Wirth's re nements, the layers of a program family are displged in bottom-up order. system family
Starting from the layer hardware, which is the base of the operating system family, d€velopment
the subsequent layers extend previous layers, e.g., laysynchronizationi extends layer

‘process managemeht Note that one layer can be extended by multiple other layes;

e.g., layer Ssynchronization is extended by Special device'sand ‘address space creatidn

Di erent family members consist of di erent sets of layers.In our example, three family

members can be derived, i.e., three operating systems: adiasystem, a process control

system, and a time sharing system. Adding a layer means exting a whole family of

programs because each family member may potentially use gshiew layer.

2.2.3 Stepwise Re nement Versus Program Families

While Parnas' and Wirth's approaches are not equivalent therare certain fundamental
similarities.

11

Wirth's
re nement

Parnas'
program
families

uni cation of
Wirth's and
Parnas' worlds

Chapter 2 Separation of Concerns and Modularity

a batch
system

a time sharing
system

user interface

‘ job control system ‘

file system ‘

disc 1/0 |

a process control
system

special devices

‘ synchronization ‘
[I |
\process management\
I |
‘ address spaces ‘
[I |
‘ hardware ‘

address space creation ‘

Figure 2.2: A program family of operating systems [HFC76].

Wirth's stepwise re nement has been associated historicglivith the progressive rewrit-
ing of a formal speci cation of a program into executable cad With each step the
program becomes more concrete and eliminates nondeterrami of program behavior.
Thus, a re nement does not extend the program behavior but mes it more concrete,
e.g., by re ning the speci cation to strengthen the conditon X > 0' to "x = 10". With
each step the set of possible programs that satisfy a spedton decreases.

Following Parnas' approach, a family of programs is develeg incrementally. The dif-
ference to Wirth's approach is that this process starts with aninimal base and proceeds
by extending the functionality in order to encapsulate degn decisions step by step. The
evolution of a program family does not start with a complete [gci cation but with a
possibly empty base program. With each step, the set of post&lprograms that can be
derived from the program family increases, which is in corast to Wirth's approach in
which the number of potential programs decreases with eactep.

However, an alternative interpretation of Parnas's work ishat a programmer starts with
a domain modelthat is implemented by a program family. A domain model capttes
and relates all the knowledge that is of interest to a group oftakeholders [CEOO].
By adding successively new extensions to a base the scope adsible programs that
share these extensions narrows, i.e., the program family doenes more concrete. We
and others [Big98, BSR04] favor this view since it uni es theagly work of Wirth and
Parnas on stepwise software development.

12

2.2 Stepwise Software Development

Adopting this interpretation we de ne a re nement as a set of changes applied to a
program. That is, a re nement extends a program by adding newonstructs and it
modi es the existing structures of a program. This excludethe mere removal of existing
structural elements. A re nement is associated with adevelopment stepand can be
understood as concern being implemented.

2.2.4 Software Product Lines

Research orsoftware product line (SPL)development is related to SWD (especially to
program families) with a special focus on economics. The @agie Mellon Software
Engineering Institute (SEI) describes a SPL as follows

A software product line (SPL) is a set of software-intensive systems that
share a common, managed set of features satisfying the speci ¢ needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way.

Furthermore, the SEI makes the following statement as to wh§PLs are important:

Software product lines are rapidly emerging as a viable and important soft-
ware development paradigm allowing companies to realize order-of-magnitude
improvements in time to market, cost, productivity, quality, and otherusi-
ness drivers. Software product line engineering can also enable rapid marke
entry and exible response, and provide a capability for mass customization.

To achieve the advantages stated above, Czarnecki arguestttihe ideal way of SPL structural
development is to implement a SPL as a program family [CEOOJThat is, each layer features
(or a set of layers) of a program family implements a featuref the corresponding SPL,

where a feature corresponds to a (set of) core asset(s). Fagtmore, it is assumed that

the considered features arstructural features [LBNO5]. A structural feature is a feature

that has an explicit representation at design and implemeation level. That is, the

assets of a feature are physically or visually representee.g., by les, program text,

design documents.

This de nition excludes those features if they are even fdares in the sense of do- emergent
main modeling that implement program behaviors that emerg indirectly from the features
combination of other featuresat runtime, which is in science widely known asmergent

behavior [Mog06, Lod04]. For example, security characteristics obfware emerge from

the concrete composition of features when the program is mimg [Lip05]; there is not

one or a set of assets that represent the security feature.

L http://www.sei.cmu.edu/productlines/

13

SPLs and
program
families

What is a
module?

information
hiding and
encapsulation

modules vs.
classes

Chapter 2 Separation of Concerns and Modularity

The approach of implementing SPLs as program families leattsa small time to market
and a high degree of reusability and customizability sinceew, tailored products can be
derived more easily by composing the layers that correspotite desired features [CNO2,
GS04, CEQQ]. This also implies that SPLs are implemented insdepwise manner, true
to the motto of SWD.

2.3 Modules

A moduleis a structural mechanism that facilitates separation of amerns. The idea of
modules emerged from several tracks of research, namalgdular programming[Con68],
program speci cation [Par72a, Par72b],structured programming [DDH72, Dij76], and
structured design[SMC74, YC79]. Today it has been agreed that modules are self
contained, cohesive pieces of a software system, wheobesiverefers to the ability of

a module to localize program and data structures physicalle.g., in program text or
in the le system. A module has a well-de ned interface for ammunicating with other
modules and it can be compiled separatelyModularity is the principle to structure
software into modules. A more quantitative de nition is tha modularity measures the
extent to which modules are used in a software system.

Modules embody the principle ofnformation hiding [Par72b]. This principle states pro-
grammers should hide those design decisions in a softwareteyn that are most likely to
change @lesign for changg thus protecting other parts of the program from modi cation
if the design decision is changed. Often, information hidgnis used synonymously with
encapsulation where a module encapsulates data and program structuresifdrmation
hiding and modules facilitate separation of concerns sin@ concern implementation
(module) becomes decoupled from other concern implementats. Due to the encap-
sulation property, modules can be modi ed or even exchangeudthout a ecting other
modules.

The concept of modules has evolved to object-oriented larage constructs such as
classes. Their primary focus is not on separate developmdmnit on structuring software
to improve comprehensibility, reusability, maintainabilty, customizability, and evolvabil-
ity [Boo93, GHJV95]. Like a module a class encapsulates datacaprogram structures
and provides an interface (information hiding). Classes nabe aggregated hierarchically
to form compound classes. In contrast to the early idea of malkgs, classes can be
instantiated and support inheritance and subtype polymorpism. Hence, with respect
to its static properties, a class (or a set of classes) can bederstood as a traditional
module.

14

2.4 Feature-Oriented Programming

2.4 Feature-Oriented Programming

2.4.1 Features, Concerns, and Collaborations

Research orfeature-oriented programming (FOP)studies the modularity offeaturesin What is a
software product lines, where a feature is an increment in@gram functionality [BSR04]. feature?
The concept of features is closely related to that of concexn some researchers even

equate them [MLWRO1]. We prefer a dierent view: while feature re ect directly

the requirements of the stakeholders and are used to spec#gd distinguish di erent

software products [KCH 90, CEQQ], concerns are at a lower level, more ne-grained)ch

not in any case of interest to stakeholders. Features are @amns, but not all concerns

are features.

Feature modulesare modules that realize features at design and implemeniai levels. feature
They support information hiding by exploiting underlying OOP mechanisms. They are modules
be composed statically and can be compiled independentlyygically, features modules

re ne the content of other features modules in an incremenkdashion. This follows

directly the early principles of SWD. The goal of FOP is to syritesize software (indi-

vidual programs) by composing a series of desired feature dutes. As feature modules

re ect the requirements on a software, FOP bridges the gap beeen analysis, design,

and implementation. We use the terms feature and feature maké in the remaining
dissertation interchangeable.

An important observation is that features are implementededdomly by single classes but collaborations
instead by a whole set of collaborating classes, where@llaboration is a set of classes

that communicate with one another to implement a feature [RAB92, VN96¢, MO04,

LLOO03, BSR04, SB02, OZ05, Ern01, Ern03]. Feature modules &agt and explicitly

represent such collaborations. Hence, FOP stands in the Iprine of prior work on
object-oriented design and role modeling, as surveyed irt¢80].

Classes play di erentroles in di erent collaborations [VN96c]. A role encapsulates te roles
behavior or functionality that a class provides when a corsponding collaboration with
other classes is established or in context of FOP, when a cesponding feature module

is present. That is, a role is that part of a class that implem&s the communication
protocol with other classes participating in a particular ollaboration. Figure/2.3 shows

four classes participating in three collaborations. For emple, classA participates in
collaboration | and Il, i.e., two distinct roles implement the communication prabcol
necessary for these collaborations.

From the FOP perspective, each role is implemented by a re meent (declared by the
keyword refines). That is, a role adds new elements to a class and extends ¢xig
elements, such as methods. Usually features extend a pragrédy adding several new

15

Chapter 2 Separation of Concerns and Modularity

class A class B class C class D
| | [|
|

collaboration | | E ‘ ‘ ‘ ‘ !
|
|
-4 |
| | [|
|
collaboration Il | E E E !
|
|
-4 |

.
|

|
) |
collaboration Il | ‘ ‘ ‘ ‘ ‘ ‘ ‘
|

|
5 |

Figure 2.3: Collaboration-based design.

classesand by applying several new roles to existing classes simultansly. Hence, the
implementation of a feature cuts across several places iretlhase program.

Figure 2.4 depicts the collaboration-based design of a silegrogram that deals with
graph data structures. The diagram uses th&/ML notation [BRJO5] with some exten-
sions: white boxes represent classes roles; gray boxes denote collaborations; solid
arrows denote re nement, i.e., to add a new role to a class.

class Node
void print();
Basic ﬁ
Graph class Graph class Edge
Edge add(Node, Node); K> Node a, b;
void print(); void print();
A A
T T
) refines class Graph refines class Edge class Weight
Welght Edge add(Node, Node, Weight); Weight weight; void print();
void print();

Figure 2.4: Collaboration-based design of a graph implentation.

The feature BasicGraph consists of the classe&raph Node and Edge that together
provide functionality to construct and display graph strutures?. The feature Weight
adds roles toGraph and to Edgeas well as a clas$Veight to implement a weighted
graph, i.e., a graph that assigns to each edge a speci c weighlue.

2 |n this dissertation we write feature names initalic fonts and names of internal elements of features

(e.g., classes, methods, elds) intypewriter fonts.

16

2.4 Feature-Oriented Programming

2.4.2 Jak: FOP for Java

Jak? is an extension of Java for FOP. It supports a special languagenstruct to express Jak constants
re nements of classes, e.g., for implementing roles. Classin Jak are implemented as

standard Java classes. Figure 2.5 depicts our featuBasicGraph implemented in Jak.

It consists of the classe&raph(Lines 1-15),Node(Lines 16-20), andEdge(Lines 21-28).

A programmer can add nodes (Lines 3-7) and print out the grapstructure (Lines 8-14).

1| class Graph {

2 Vector nodes = new Vector(); Vector edges =
3 Edge add(Node n, Node m) {

4 Edge e =new Edge(n, m);

5 nodes.add(n); nodes.add(m);

6 edges.add(e); return e;

7

8 void print() {

9 for (int i = 0; i < edges.size(); i++) {
10 ((Edge)edges.get(i)).print();

11 if (i < edges.size() - 1)

12 System.out.print(", ");

13 }

14 }

15|}

16| class Node {

17 int id = 0;

18 Node(int _id) { id = _id; }

19 void print() { System.out.print(id); }
20|}
21| class Edge {
22 Node a, b;

23 Edge(Node _a, Node _b) { a = _a; b = _b; }
24 void print() {
25 System.out.print(" ("); a.print(); System.out.print(", ");

26 b.print();
27}
28|}

System.out.print(") ");

new Vector();

Figure 2.5: A simple graph implementation BasicGraph).

A re nement in Jak encapsulates the changes a feature appliesa class. It is declared Jak

by the keywordrefines . A sequence of re nements applied to a class is calleinement re nements

chain, i.e., a class composed with a series of re nements forms awnelass.

A re nement in Jak is implemented by amixin [BC90, SB02]. A mixin is anabstract mixin
composition

subclasghat can be applied to various classes to form a new classesan@posing a mixin

and a class is calleanixin composition; the relationship between mixin and superclass

3 http://www.cs.utexas.edu/users/schwartz/ATS.html
4

of code; in truth each class or re nement is located in a distnct le.

17

For simplicity, we merge in code listings all classes and alte nements of a feature into one piece

Jak feature
modules

Chapter 2 Separation of Concerns and Modularity

is calledmixin-based inheritance a form of inheritance that delays the coupling between
subclass and superclass until composition time (a.k.mixin instantiation). Alternative
implementation mechanisms for re nements areirtual classesfMMP89, EOC06, OZ05],
traits [DNS'* 06], or nested inheritance[NCM04, NQMO6].

Figure (2.6 depicts the featureWeight implemented in Jak: it introduces a class that
represents the weight of an edge (Lines 15-19); it re nes tl@assGraph (Lines 1-6) by
introducing a new methodadd that assigns a weight value to an edge (Lines 2-5); it
re nes the classEdge(Lines 7-14) by adding a eld (Line 8) and a method for assigng
the weight value (Line 9) and by extending theprint method to display the weight
(Lines 10-13).

A method extensionis implemented by overriding the method to be extended, adutj
code, and calling the overridden method via the keyworSupe@ (Lines 3,11).

refines class Graph {

Edge add(Node n, Node m, Weight w) {
Edge res = Super .add(n, m);
res.setWeight(w); return res;

}

refines class Edge {

Weight w = new Weight(0);

9 void setWeight(Weight _w) { w = _w; }
10 void print() {

1
2
3
4
5 1}
6
7
8

11 Super .print();

12 System.out.print(" ["); w.print(); System.out.print("] ");
13| }

14|}

15| class Weight {

16 int w = 0;

17 Weight(int _w) { w = _w; }

18 void print() { System.out.print(w); }
19|}

Figure 2.6: Adding support for weighted graphs\Weight).

Jak's feature modules are represented by le system directes. Thus, they have no
textual representation at the code level. The artifacts, €., classes and re nements
found inside a directory are members (assets) of the enclugifeature. Figure 2.7 shows
the directory hierarchy of our graph example, including théeaturesBasicGraph Weight,
and Color.

In its current version, Jak supports separate compilation dfeature modules but does
not support explicit interfaces, i.e., the interface of a fgure module is the sum of the

5 We capitalize Super to emphasize the di erence to the Java keywordsuper, which refers to the par-

ent type of a class (traditional inheritance). For brevity w e write Super instead of Super(< argument
types>), which is used actually in Jak.

18

2.4 Feature-Oriented Programming

A Edge.jak.

Ay Graph.jak.

A Mode.jak
=-H2 Color

A Colorjak,
#y Edge.jak
A Mode,jak
--H2 Weight
#y Edge.jak
A Graph.jak
Ay weight.jak
Graph.equation
‘@. build. ajproperties
rnakefile

Figure 2.7: Directory structure of a graph implementation.

interfaces of the participants of the encapsulated collabation. However, other FOP
languages support collaboration interfaces [MOO02].

2.4.3 GenVoca

GenVocd is an algebraic model for FOP [BO92]. Features are modeled @serations of
an algebra. Each SPL is modeled by one associated algebrajolvhis called aGenVoca
model For example, Graph = {BasicGraph, Weight, Color}' denotes a modelGraph
that has the featuresBasicGraph Weight, and Color.

Features are modeled asunctions. A constant function (a.k.a. constant) represents
a base program. All other functions receive programs as inpand return modi ed
programs as output. That is, functions represent program neements that implement
program features. For example Weight X'and ‘Color X' add features to program
X, where "' denotes function composition. The design of a software mtact is a named
feature expressione.g., WeightedGraph = Weight BasicGraph and "ColoredWeighted-
Graph = Color Weight BasicGraph. Note that not all possible feature expressions
must be valid, i.e., there may be expressions represent sgatically or semantically in-

6 The name GenVoca is derived from the systemsGenesis [BBG* 88, Bat88] and Avoca [PHOA89]
that demonstrated rst the duality between re nement and mo dules in di erent domains (i.e.,
data management and network protocols); GenVoca refers totte underlying domain-independent
methodology to develop software by stepwise re nement.

19

constants and
functions

principle of
uniformity

containment
hierarchy

Chapter 2 Separation of Concerns and Modularity

correct programs [BG97, Bat05]. The set of all valid featurexpressions corresponds to
the SPL, i.e., all derivable products of a given GenVoca molde

2.4.4 AHEAD

AHEAD (Algebraic Hierarchical Equations for Application Design)is an architectural
model for large-scale program composition and the succeseb GenVoca [BSRO04]. It
scales the ideas of GenVoca to all kinds of software artifact That is, features do not
only consist of source code but of all artifacts that contribte to that feature, e.g., docu-
mentation, test cases, design documents, make les, penfmance pro les, mathematical
models. Furthermore, theprinciple of uniformity states that every kind of software
artifact that is part of a feature can be subject of subsequémne nement [BSR04].

With AHEAD, each feature is represented by acontainment hierarchy which is a
directory that maintains a subdirectory structure to organze the feature's artifacts.
Composing features means composing containment hieraehiand, to this end, com-
posing corresponding artifacts byhierarchy combination [OH92] (a.k.a. mixin compo-
sition [BC90, SB02, OZ05]hierarchy inheritance [Ern03], or superimposition [Bos99,
BF88, CM86, Kat93]). Hence, for each artifact type a di erehimplementation of the
composition operatorhas to be provided.

Figure[2.8 shows the feature8asicGraph and Weight; each consists of several source
code les as well as an HTML documentationBasicGraph contains additionally an XML
build script. The feature expressionWeightedGraph = Weight BasicGraph combines
both features, which is implemented as a recursive combimat of their containment
hierarchies. For example, the resulting leEdge.jak is composed of its counterparts
in BasicGraph and in Weight The composition is speci c to the type of the software
artifact, e.g., composing HTML is di erent from composing ML or Java.

The AHEAD Tool Suite (ATS)E implements the ideas of AHEAD. It contains several
tools for developing, debugging, and composing source cated non-source code ar-
tifacts. The Jak language is integrated into the ATS and therare tools to compose
Java-based source code artifacts.

7 http://www.cs.utexas.edu/users/schwartz/ATS.html

20

2.5 Aspect-Oriented Programming

WeightedGraph

BasicGraph

Graph.jak Node.jak Edge.jak Weight.jak Graph.html Graph.jak Edge.jak Weight.jak Graph.html Graph.jak Node.jak Edge.jak Graph.html

Edge.jak = Edge.jak ‘Edge.jak

Figure 2.8: Combining the containment hierarchies of two &tures.

2.5 Aspect-Oriented Programming

2.5.1 Crosscutting Concerns

Aspect-oriented programming (AOP)is a programming paradigm that aims at modular-
izing crosscutting concerngKLM * 97, EFB01]. Crosscutting is a structural relationship
between the representations of two concerns. In other worda representation of a
concern crosscuts the representation of another concernro€scutting is an alternative
structural relationship to hierarchical and block structue. It is not de ned between con-
cerns but between their representations, i.e., the moduldéisat implement the concerns.

In our remarks on FOP, we have already considered a kind of sszutting concern: collaborations
collaborations extend a program at di erent places, thus dting across the module are crosscuts
boundaries introduced by classes. Feature modules modutar collaborations, which

implement features. AOP considers crosscutting concerns general, without special

focus on feature modularity or collaborations.

Traditional languages and modularization mechanisms surefrom a limitation that is tyranny of the
referred to as thetyranny of the dominant decompositionwhich seems to be the causedominant
of crosscutting [TOHSMS99]: a program can be modularized only one way (along 9€composition
one dimension) at a time, and the many kinds of concerns thatodnot align with that
modularization end up inscattered tangled and replicated code Figure(2.9 illustrates

di erent dimensions of separation of concerns, e.g., alorige feature dimension or the

object dimensiofs.

8 http://www.research.ibm.com/hyperspace/HyperJ/HyperJ. htm

21

code
scattering,
tangling

code
scattering and
tangling
degrade com-
prehensibility

code
replication

Chapter 2 Separation of Concerns and Modularity

artifacts

-7 variants
.- _ = functions

" __->> aspects
objects

features

Figure 2.9: Dimensions of separation of concerns.

Code scatteringrefers to a concern implementation that is scattered acrossany other
concerns implementationscode tanglingrefers to the intermingled implementation of
several concerns within a module. Both decrease modularignd violate the principle
of information hiding [KLM * 97, EFBO01, Kic06].

Figure 2.10 shows how the implemention the featur€olor crosscuts our basic graph
implementation (the code associated with the featur€olor is underlined). The classes
Nodeand Edgeget a eld color (Lines 3,14) and two methodsetColor (Lines 4,15) and
getColor (Lines 5,16). Further on, theprint methods ofNodeand Edgeare modi ed to
display the colors appropriately (Lines 9,20). The implemeation of the feature Color
Is scattered across three classe€dlor, Node Edge and within these classes it changes
two methods. Moreover, it is tangled with the featureDisplay for displaying the graph
structure, which is itself scattered oveiGraph Node and Edge

Code scattering and tangling degrade a program's compretséility. The programmer

becomes distracted when dealing with tangled code, i.e.,dmthat addresses multiple
concerns. Scattered code forces the programmer to reasoro@ba concern in mul-

tiple places of a program. Overall, scattered and tangled de decreases reusability,
maintainability, and customizability since the concerns bcome coupled short their

implementation violates the principle of separation of carerns [KLM* 97, EFB01].

A further negative e ect of crosscutting is code replicatin, which occurs typically when
a concern interacts with multiple concerns and all intera@bns are implemented identi-
cally. For example, the implementation of our featureColor results in code for man-
aging and changing colors that is replicated in the class&slgeand Node It has been
observed that code replication is a serious problem: besithe handicap of reimplement-
ing the same functionality again and again, code replicatioreduces software maintain-
ability [FR99] and is a potential substrate for errors causetly copy and paste of code
fragments [LLMOG6].

22

2.5 Aspect-Oriented Programming

1| class Graph { / e}

2| class Node {

3 Color color;

4 void setColor(Color c) { color = c; }
5 Color getColor() { return color; }
6

7

8

9

int id = 0;
Node(int _id) { id = _id; }
void print() {
Color.changeDisplayColor(getColor());
10 System.out.print(id);
11 }
12|}

13| class Edge {

14 Color color;

15 void setColor(Color c) { color = c; }

16 Color getColor() { return color; }

17 Node a, b;

18 Edge(Node _a, Node _b) { a = _a; b = _b; }
19 void print() {

20 Color.changeDisplayColor(getColor());

21 System.out.print(" ("); a.print(); System.out.print(", ");
22 b.print(); System.out.print(") ");

23

24|}

25| class Color {
26 static void changeDisplayColor(Color ¢) { /* ... */}
27|}

Figure 2.10: Implementing the featureéColor leads to code scattering, tangling, and repli-
cation (code associated to the featur€olor is underlined).

2.5.2 Aspects: An Alternative Modularization Mechanism

AOP addresses the problems caused by crosscutting conceassfollows: concerns that
can be modularized well using the given decomposition mechsms of a programming
language (a.k.ahost programming languageare implemented using these mechanisms.
All other concerns that crosscut the implementation of otheconcerns are implemented
as so-calledaspects

An aspect is a kind of module that encapsulates the implemeatton of a crosscutting
concern. It enables code that is associated with one crosdimg concern to be encap-
sulated into one module, thereby eliminating code scattery and tangling. Moreover,
aspects can a ect multiple other concerns via one piece ofdsy thereby avoiding code
replication.

An aspect weavemerges the separate aspects of a program and the remaininggnam aspect
elements at prede nedjoin points. This process is calledspect weavingJoin points can Wweaving
be syntactical elements of a program, e.g., a class declaoat or events in the dynamic
execution of the program, e.g., a call to a method in the cordl ow of another method.

23

aspects
violate
information
hiding

aspects vs.

classes

Chapter 2 Separation of Concerns and Modularity

Figure[2.11 illustrates the weaving of two aspects into a bagprogram consisting of three

components.
component A component B .
|

base program code aspect code

aspect
weaver

component A component B

[|

finally woven program

Figure 2.11: Aspect weaving.

Although often referred to as modularization mechanism, #traditional aspect violates
the principle of information hiding [LLOO03, Ald05, SGS 05, DWO06]: while the aspect
itself has an interface, it a ects other modules directly, whout the indirection of an
interface. This precludes developing and modifying modidendependently. However, it
has been argued that traditional modularization mechanismthemselves do not perform
well with respect to crosscutting concerns [LLOO03, KicO6Hence, aspects seem to be a
pragmatic alternative. There are several e orts that aim atrestoring information hiding

in AOP [AldO5, OAT * 06, DW06, SGS05].

In most AOP languages the concept of an aspect extends the cept of a class. Besides
structural elements known from OOP, e.g., methods and eldsspects may contain also
pointcuts, advice and inter-type declarations

Pointcuts: A pointcut is a declarative speci cation of the join points that an aspet will
be woven into, i.e., it is an expression (quanti cation) tha determines whether a
given join point matches.

24

2.5 Aspect-Oriented Programming

Advice: An adviceis a method-like element of an aspect that encapsulates thestruc-
tions that are supposed to be executed at a set of join point®ieces of advice are
bound to pointcuts that de ne the set of join points beingadvised

Inter-type declarations: An inter-type declaration adds methods, elds, or interfaes
to existing classes from inside an aspect.

2.5.3 Aspectd: AOP for Java

Aspectﬂ is an AOP language extension of Java. Figure 2.12 illustraté®w an aspect in

concert with a class and an interface implements o@olor feature. The dashed arrows
denote the structural elements of the graph implementation ected by the aspect (only

a subset is depicted). The Aspect] weaver merges the aspeuplementation and the

basic graph implementation.

class Node
void print();
l P
N
AN
\
class Graph class Edge \| class Weight
Welghted Edge add(Node, Node); K>— Node a, b; void print();
Graph Edge add(Node, Node, Weight); Weight weight; “
void print(); void print(); Ko
1
\1
1
interface Colored class Color aspect AddColor
before() : execution(void print());

Figure 2.12: Implementing theColor feature as aspect.

Figure 2.13 depicts one possible implementation of théolor feature in AspectJ. The
aspectAddColor de nes an interfaceColored for all classes that maintain a color (Line 2)
and declares via inter-type declaration thatNodeand Edge implement that interface
(Line 4). Furthermore, it introduces via inter-type declaations a eld color and two
accessor methods tiNodeand Edge Finally, it advises the execution of the method
print of all colored entities, i.e.,Edgeand Node to change the display color.

Note that, in AspectJ, one cannot declare one eld or method fanultiple types simul- inter-type
taneously. This leads to a replication of code in ouColor feature: the code for introduc- declarations
ing the eld color and the two accessor methods is replicated (Fig. 2.13, Lin@s3 and for multiple
10-12). To overcome this limitation of AspectJ, we prefer théollowing syntax in the types
remaining dissertation: Color (Node jj Edge).color introduces a eld color to the

9 http://www.eclipse.org/aspectj/

25

Chapter 2 Separation of Concerns and Modularity

1| aspect AddColor {

2 interface Colored { Color getColor(); }

3

4 declare parents : (Node || Edge) implements Colored;
5

6 Color Node.color;

7 void Node.setColor(Color ¢) { color = c; }

8 public Color Node.getColor() { return color; }

9

10 Color Edge.color;

11 void Edge.setColor(Color c) { color = c; }

12 public Color Edge.getColor() { return color; }

13

14 before (Colored c¢) : execution (void *.print()) && this (c) {
15 Color.changeDisplayColor(c.getColor());

16 }

17|}

Figure 2.13: Implementing theColor feature using AspectJ (excerpt).

types Nodeand Edge Using this syntax we can eliminate the redundant code causby
inter-type declarations in our aspectAddColor, as shown in Figure 2.14.

1| aspect AddColor {

2 interface Colored { Color getColor(); }

3

4 declare parents : (Node || Edge) implements Colored;

5

6 Color (Node || Edge).color;

7 void (Node || Edge).setColor(Color c) { color = c; }

8 public Color (Node || Edge).getColor() { return color; }
9

10 before (Colored c) : execution (void *.print()) && this (c) {
11 Color.changeDisplayColor(c.getColor());

12 }

13|}

Figure 2.14: A more compact syntax for inter-type declarabins in AspectJ.

2.6 Terminology Used in this Dissertation

In the remaining dissertation we use the following terminolgy and conventions. We
assume that a SPL is implemented as a program family in a SWD maer. A series
of features re nes a given base program in several developmhateps. A re nement
encapsulates a set of changes made to a program, i.e., it addsv structures and modi es
existing ones.

We consider AOP and FOP techniques for SWD of SPLs with the priary goal of sepa-
ration of concerns and feature modularity. Consequentigllaspects and feature modules

26

2.6 Terminology Used in this Dissertation

implement structural features of a SPL. An aspect is a clag&e implementation mecha-

nism that contains additionally pointcuts, advice, and iner-type declarations, as exem-
pli ed by the Aspect] programming language. A feature modd is an implementation

mechanism that supports the encapsulation of a collaborat of several software arti-
facts, as exempli ed by the Jak programming language. Furthiemore, feature modules
are composed by mixin compaosition.

27

CHAPTER 3

A Classi cation Framework for Crosscutting
Concerns

This chapter shares material with the ICSE'06 paper "Aspectual Mixin Lay-
ers: Aspects and Features in Concert' [ALS06], and the AOPLE'06 paper
"On the Structure of Crosscutting Concerns: Using Aspects or Collabora-
tions?' [ABRO6].

In order to compare FOP and AOP, we present a classi cation fimework for crosscutting
concerns. Subsequently, we demonstrate that AOP and FOP germ dierently in
modularizing the di erent classes of crosscutting concesn

Within our framework, we classify crosscutting concernsfosscutsfor short) along two
dimensions: (1) the structure of a crosscut can be homogensmr heterogeneous and
(2) concerns can crosscut the static structure or the dynamistructure of a program.

3.1 Homogeneous and Heterogeneous Crosscutting Concerns

A homogeneous crosscugxtends a program at multiple join points by adding onex- homogeneous
tension, which is a modular piece of code [CRB04]. For example, oQolor feature is crosscuts

a homogeneous crosscut. It extends the two clasddsdeand Edgein the same way

(cf. Fig. 2.12 and Fig. 2.13): the aspecAddColor contains an advice that advises two

method executions print in Nodeand Edge and four inter-type declarations that in-

troduce members and an interface to both classddpdeand Edge

29

Chapter 3 A Classi cation Framework for Crosscutting Concens

C I I] CJC L

extension 1?- * ﬂ?‘

e Nn e]
heterogeneous homogeneous
crosscut crosscut

Figure 3.1: Homogeneous and heterogeneous crosscuts.

heterogeneous A heterogeneous crosscugxtends multiple join points by adding multiple extensions

crosscuts where each individual extension is implemented by a distibhpiece of code, which a ects
exactly one join point [CRB04]. For example, ouM/eight feature is a heterogeneous
crosscut (cf. Fig. 2.4 and Fig. 2.6). It extends the class&raph and Edgebut each in
a di erent way: the re nement of Graphintroduces the methodadd; the re nement of
Edgeintroduces the methodsetWeight and the eld weight, and it extends the method
print .

comparison Figure[3.1 illustrates the di erence between homogeneousdheterogeneous crosscuts.

White boxes denote the individual extensions made to a progrg e.g., encapsulated in
classes, methods, or advice. Gray boxes denote the programa éhe crosscut that a ects
the program. Figure| 3.1 indicates that a homogeneous crogscan be implemented
using a set of distinct extensions, like a heterogeneous ssout; but this results in code
replication. For example, Figure 3.2 depicts an aspect witbne piece of advice that
advises three methods; Figure 3.3 depicts an equivalent asp but with three distinct

pieces of advice that advise only one method each all with adentical advice body.

1| aspect FooAspect {

2 after () : execution (void A.foo()) {
1| aspect FooAspect { 3 / do something /
2| after () : execution (void A.foo()) || 4 1}
3 execution (void B.foo()) || 5 after () : execution (void B.foo()) {
4 execution (void C.foo()) { 6 /' do something /
5 / do something / 7}
6 } 8 after () : execution (void C.foo()) {
71} 9 /| do something /

10 }

11|}

Figure 3.2: A homogeneous crosscut im-

plemented using one piece of Figyre 3.3: A homogeneous crosscut
advice. implemented using three
pieces of advice.

30

3.2 Static and Dynamic Crosscutting Concerns

3.2 Static and Dynamic Crosscutting Concerns

A static crosscut extends the structure of a program statically [MOO04], i.e.jt adds static
new classes and interfaces and injects new elds, methodsteirfaces, etc. Note that crosscuts
method extensions are not static crosscuts, as we will explasoon. AspectJ's inter-

type declarations and Jak's re nements that introduce new nmabers are examples of
implementations of static crosscuts (Fig. 3.4).

refines class Edge { 1
Weight w = new Weight(0); 2 Weight Edge.w = new Weight(0);
void setWeight(Weight _w) { 3 void Edge.setWeight(Weight _w) {
w = _w; 4 w = _w,;
} 5
6

}
}

aspect AddWeight {

OO WNBRE

}

Figure 3.4: Implementing static crosscuts in Jak (left) and BpectJ (right).

A dynamic crosscuta ects the runtime control ow of a program [MOO04]. The seman dynamic
tics of a dynamic crosscut can be understood and de ned in s of an event-based crosscuts
model [WKDO04, Lam99]: a dynamic crosscuts runs additional de when prede ned

events occur during the program execution. Such events ars@ calleddynamic join

points [MKO3b, WKDO04, OMBO05]. Examples of programming constructshat imple-

ment dynamic crosscuts are method extensions in Jak (via oveling) and advice in

Aspectd (Fig. 3.5). While the former is limited to method-rehted join points [MOO04],

the latter may advise a more sophisticated set of events.

1| refines class Edge { 1| aspect AddWeight {

2 void print() { 2 after (Edge e) :

3 Super .print(); 3 execution (void Edge.print()) && this (e) {
4 System.out.print(" ["); 4 System.out.print(" [");

5 w.print(); 5 e.w.print();

6 System.out.print("] "); 6 System.out.print("] ");

7 } 7 }

8 N 8 /A

9|} 9|}

Figure 3.5: Implementing dynamic crosscuts in Jak (left) andspectJ (right).

Figure [3.6 illustrates the di erence between static and dyamic crosscuts. The left comparison
shows a static crosscut. It crosscuts the static structuref @ program, here represented

as a class graph. White boxes denote classes or their extensjeempty arrows denote
inheritance and lled arrows denote the application of extesions; an extension to a

dashed box means the introduction of a new class.

31

Chapter 3 A Classi cation Framework for Crosscutting Concens

static structure dynamic structure
(class graph) (control flow graph)

inject classes,
methods, fields,
superclasses,

and interfaces T

execute code
when an event
fires and

conditions hold

T [o

static crosscut dynamic crosscut

Figure 3.6: Static and dynamic crosscuts.

The right shows a dynamic crosscut. It a ects the dynamic sticture of the program,
here represented as a control ow graph. The extensions arpgied to join points that

are events in the dynamic control ow. In our example, the elments of the control ow

graph are method executions and the arrows between them aials. An extension may
by applied to a method call or a method execution.

Note that dynamic crosscutting should not be confused witlilynamic weaving which
refers to the weaving of code at loadtime or runtime [PGA02,5T03, BHMOO04].

Basic and Advanced Dynamic Crosscuts

Dynamic crosscuts are especially interesting when they nainly a ect method calls
or executions. Work on AOP suggests that expressing a prognaextension in terms
of sophisticated events increases the abstraction leveldaeaptures the programmer's
intension more directly. Capturing and advising these evés using traditional OOP
mechanisms results in complicated workarounds. There areany proposals for new
language constructs for de ning and catching new kinds of emats during the program
execution [OMBO05, HG06, MK03a]. In order to distinguish thee new kinds of events
and the novel language mechanisms that support them from soher events known from
OOP, we distinguish betweerbasic dynamic crosscuteand advanced dynamic crosscuts
which we de ne as follows:

1. A basic dynamic crosscut addresses only events that aréated to method calls and
executions; advanced dynamic crosscuts address all kindsweents, e.g., throwing
an exception or assigning a value to a eld.

2. A basic dynamic crosscut accesses only runtime variabkbsit are related to the
method call or execution that is advised, i.e., argumentsesult value, and enclosing
object instance of the advised method; advanced dynamic esxuts can expose
more information related to a join point, e.g., the runtime ype of the caller of a
method.

32

3.3 Summary: Classi cation Matrix

3. Basic dynamic crosscuts a ect a program control ow uncatitionally; advanced
dynamic crosscuts may specify a condition that is evaluateat runtime, e.g., a
method execution is only a ected if it occurs in the control ow of another method
execution.

4. Basic dynamic crosscuts address only simple events; adsad dynamic crosscuts
can specify composite events and event patterns, e.ggce matchesare executed
when events re in a specic pattern, thus, involving the hisory of computa-
tion [AAC * 05].

Principally, basic dynamic crosscuts can be implemented asethod extensions using basic dynamic
traditional OOP. They extend a method execution/call uncowlitionally and access only crosscuts are
information that is available in method extensions, i.e.,lte arguments, the result, and method

. . . extensions
the enclosing runtime object.

3.3 Summary: Classi cation Matrix

Table [3.1 contrasts several examples of the di erent class®f crosscutting concerns
written in AspectJ. It can be seen that our classi cation franework lays out the set
of possible crosscutting concerns in a two-dimensional gga Homogeneous as well as
heterogeneous crosscuts can be either static or dynamic. riaynic crosscuts can be basic
dynamic and advanced dynamic.

] | homogeneous | heterogeneous \
static /* Introducing a method to two classes */ /* Introducing a method to one class */
void (Point jj Shape).setX(int x) void Point.setX(int x)
{rF %} {rF %}
basic /* Advising a set of method executions */ /* Advising one method execution */
dynamic before() : execution(* set*(..)) before() : execution(void Point.setX(int))
{rF 0¥} {rF 0¥}
advanced /* Advising a set of method executions de- /* Advising one method execution dependently on the
dynamic pendently on the program control ow */ program control ow */
before() : execution(* set*(..)) && before() : execution(void Point.setX(int)) &&
Icflow(execution(* rotate(..))) Icflow(execution(void Line.rotate(double)))
{rF 0%} {F 0%}

Table 3.1: Classi cation matrix with AspectJ examples.

Given these di erent classes of crosscutting concerns itsgraightforward to ask whether issues to
and how FOP and AOP support their modularization. Also it is hteresting to contem- address
plate how often these di erent kinds of concerns occur whemplementing program fea-
tures and which mechanisms are bene cial for implementatio This kind of knowledge

33

Chapter 3 A Classi cation Framework for Crosscutting Concens

helps (1) build better tools that re ect the programmer's neds; (2) provide program-
ming guidelines for exploiting programming mechanisms ket; (3) discover misuse of
programming mechanisms.

34

CHAPTER 4

A Conceptual Evaluation of Aspect-Oriented
and Feature-Oriented Programming

This chapter shares material with the ICSE'06 paper "Aspectual Mixin Lay-
ers: Aspects and Features in Concert' [ALS06].

This chapter presents a conceptual evaluation and compaois of AOP and FOP with
respect to implementing program features. First, we propesa set of evaluation criteria
that build upon our classi cation framework for crosscuttng concerns. Then, we apply
our criteria to evaluate and compare AOP and FOP. Finally, weput our results in
perspective and formulate a goal statement for this dissation.

In our evaluation we focus exclusively on the implementatio mechanisms associatedfocus on

to FOP and AOP. We do not take software development methodadpes, tool support, Programming
type systems, or mathematical foundations discussed in ¢ert of AOP and FOP into SUPPOt
account. For FOP this means that a feature module encapsukd a collaboration of

software artifacts that are composed by mixin compositionFor AOP this means that

an aspect is a class-like entity that contains additionallypointcuts, advice, and inter-type
declarations.

4.1 Evaluation Criteria

4.1.1 Abstraction

Abstraction in computer science helps to manage the complexity of softiea/Sha84].
Abstraction is the process of emphasizing and hiding the dels of software at di erent

35

Chapter 4 A Conceptual Evaluation of AOP and FOP

levels and to dierent degrees. Abstraction refers also to eonstruct or concept that
has been subjected to the process of abstraction [Kru92]. paeation of concerns and
modules are the enabling technologies for abstraction. Butbstraction is more than
breaking down a system into modules. Abstracting from detsi means to introduce new
concepts or constructs and to introduce new descriptions farmalizations that condense
relevant information and that reduce complexity. A princigal goal of abstraction is to
express a design or implementation issue in terms of abstians that are close to what
the programmer has in mind when thinking about this issue.

An abstraction of a software artifact consists of a high-lel, intuitive, and useful spec-
| cation that maps to a realization at a lower level; the speccation describes what
the abstraction does, whereas the realization of the abstiion describes how it is
done [Kru92].

In our evaluation we examine the abstraction capabilitiesfd~OP and AOP for imple-

menting program features. Since both AOP and FOP rely on OORye focus only on
those abstraction mechanisms that exceed the level of tréidnal OOP (e.g., classes,
methods) and on how they di er.

4.1.2 Crosscutting Modularity

Modularity is the property of software systems that measuiethe extent to which they
have been composed of modules. We focus exclusively on auisgsig modularity since
FOP and AOP are equal with respect to modularization mechasims known from OOP.
Speci cally, we use the results of the previous chapter to amine how aspects and feature
modules perform in modularizing the di erent classes of csscutting concerns that occur
when implementing features, which are classi ed by our fraework. That is, we evaluate
how AOP and FOP perform in modularizing homogeneous and hetgeneous as well as
static and dynamic crosscutting concerns.

4.1.3 Feature Cohesion

Cohesion is the ability of a feature to encapsulate all impheentation details that de-
ne the feature in one unit [BKO6, LHBCO05]. While modularity addresses the internal
structure of a feature, i.e., the modular implementation ofhe artifacts that implement a
feature, cohesion addresses the feature as a whole, i.ee émcapsulation of all artifacts
that contribute to the feature. The highest degree of cohesi is achieved by a one-to-one
mapping of requirements to corresponding units at impleméation level [CEQQ].

For example, it is easier and more intuitive to plug a cohestvdata management com-
ponent to a cohesive network driver in one step than to connethe data management
and the network software in many places by hand.

36

4.1 Evaluation Criteria

base program feature composed program

Figure 4.1: Integrating features by superimpaosition.

4.1.4 Feature Integration

Once a set of desired features has been selected, they aregrated to form a tailored
software product. Principally, we distinguish between twdypes of feature integration:

Superimposition: One way to apply a feature to a program is tsuperimposethe pro-
gram structure with the structure of the feature [OH92, Ern@, SB02, BSRO04,
0Zz05, Bos99]. The concept of superimposition was rst proged for combin-
ing control structures of distributed processes [BF88, CM8 Kat93]. In terms of
object-orientation, superimposition means that the claskierarchy of the program
is merged with the class hierarchy of the feature [OH92], wieethe latter hierarchy
is a sparse version of the former. The merging is applied resively and structural
elements are merged by name and type; merging classes is snmnted by set
union and merging methods is implemented by overriding.

Figure/4.1 illustrates the process of superimposition by ample: on the left side is
the class hierarchy of the base program; classes of the basegpam are depicted
as white boxes. The program's class hierarchy is superimpds(denoted by ")
by a sparse class hierarchy of a feature; gray boxes are thasskes of the feature
and dashed white boxes mark the not-a ected classes of thedgaprogram. On the
right side the result of superimposing the structures of thbase program and the
feature is depicted; white boxes are the unmodi ed classe$ the base program;
gray boxes are the classes introduced by the applied featuteoxes that are half
white and half gray denote the merged classes of base progrand feature.

Crosscutting integration: Superimposition as feature integration technique is not al
ways su cient [MO02, MOO03, LLOO03]. Sometimes the structureof a feature does
not t the structure of the base program. This happens (1) whe a feature is
reused in di erent base programs that have di erent structwes and (2) when a
programmer wants to express a new feature in terms of absttemns that di er
from those in the base program [Nov00]. For example, suppas@etwork software
is re ned by an application protocol. The protocol at appli@ation level can be ex-
pressed more easily in terms of producer (server), consungelient), and product

37

Chapter 4 A Conceptual Evaluation of AOP and FOP

SRR N

base program feature composed program

Figure 4.2: Crosscutting integration of features.

(delivered data) than by using the basic network abstractios such as sockets and
streams. Since there are no structural counterparts betweé¢he two components
it is complicated to achieve a clean mapping, i.e., it is notgssible to superimpose
their structures. Thus, such integration results in code sttering and tangling.

Figure (4.2 illustrates the process of a crosscutting integion of features: the left
side shows the base program, the middle a feature, and thehigide the composed
program. Within the composed program the original base progm and the applied
feature are integrated via a set ofinks (denoted by dashed arrows) that connect
the structural elements of both sides, e.g., object refere@s, method invocations,
advice, wrappers. In contrast to superimposing featureshé integration pattern
is cluttered. The links between base program and feature @scut the program's
as well as the feature's structure. Moreover, additional cle for establishing the
links is necessary.

4.1.5 Feature Composition

Features can be composed to form a new features. Technicalgatures are composed by
superimposition or crosscutting integration. Using featte composition a programmer
reuses code, which is bene cial because thinking in terms existing features is often

easier than building features from scratch. For example, ostructing a data manage-

ment feature out of simpler features such a storage managaemejuery evaluation, and

caching, is more e cient than constructing a tailored data management component for
each use case from scratch.

4.2 Evaluation of AOP and FOP

We apply our catalog of criteria to evaluate and compare AOPral FOP.

38

4.2 Evaluation of AOP and FOP

4.2.1 Abstraction

FOP and AOP provide di erent abstraction mechanisms beyondhose used in OOP.

FOP's feature modules encapsulate all software artifactbat implement a feature, which FOP abstracts
may be of di erent types. The de nition of a feature module isseparated from the com- from
position speci cation, which enumerates the desired feates by name. This hides the gggﬁ;’smon
details of composing the internal artifacts from the prognmmer. The keywordrefines

denotes the composition of artifacts by set union (e.g., daes) and sequence combi-

nation (e.g., method extensions). It abstracts from a conete implementation (e.g.,

mixin-based inheritance[BC90, SB02, BSR04]jampack composition[BSR04], virtual
classegMMP89, EOC06, OZ05],nested inheritancefNCM04, NQMO6], traits [DNS' 06],

or classboxe§BDNO5]).

AOP increases the level of abstraction by introducing the cwept of join points. A AOP
join point refers either to a lexical point in the static progam structure or to an event abstracts
in the dynamic ow of a program. This way programmers specifprogram extensions G
with respect to the dynamic program semantics [WKDO04]. The mgrammer can think in control ow
terms of events and actions without being aware of the detaithat enable event handling

and action triggering. For example, the pointcutcflow refers to the dynamic control ow

of a program; it can be used to limit a set of join points to thos that occur in the control

ow of another join point. Of course, cflow can be implemented using standard OOP
techniques [LHBLO6] but this obscures the programmers iention and leads to code
scattering and tangling. AOP's pattern-matching and wildard mechanisms abstract

from workarounds necessary for re ning each join point by aeparate extension.

The bottomline is that both, FOP and AOP, provide sophisticded but di erent mecha- dierent
nisms that exceed the capabilities of OOP. While feature motks abstract from details abstraction
about composition and re nement, aspects provide abstraicins for the control ow and Mechanisms
for selecting and re ning multiple join points.

4.2.2 Crosscutting Modularity

Homogeneous and Heterogeneous Crosscuts

A signi cant body of work has exposed that collaborations oflasses are predominantly
of a heterogeneous structure [VN96c, MO04, LLO03, Ern01, OZ%, Ost02, TVJ 01,
EOCO06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99]. Thattie roles and classes
added to a program di er in their functionality, as in our graph example. A collaboration
is a heterogeneous crosscut and a heterogeneous crossautbeaunderstood as collabo-

39

using
collaborations
instead of
aspects

using aspects
instead of
collaborations

Chapter 4 A Conceptual Evaluation of AOP and FOP

ration applied to a program. Hence, a feature module is welugli ed to implement a
heterogeneous crosscut.

In contrast to feature modules, aspects perform well in exteing a set of join points
using one coherent advice or one localized inter-type de#on, thus, modularizing a
homogeneous crosscut. This way programmers avoid code regtion. The more join
points are captured by a homogeneous crosscut, the higheetpay-o of AOP.

Although both approaches support the implementation of therosscuts the other ap-
proach focuses on, they cannot do so elegantly [MOO04].

1| refines class Node {

2 Color color;

3 Color getColor() { return color; }
4 void setColor(Color c) { color = c; }
5 void print() {

6 Color.changeDisplayColor(getColor());
7}

8

9| refines class Edge {
10 Color color;
11 Color getColor() { return color; }

12 void setColor(Color c) { color = c; }
13 void print() {

14 Color.changeDisplayColor(getColor());
15| '}

16|}

17| class Color { / .1}

Figure 4.3: Implementing theColor feature as a feature module.

Implementing our Color feature (a homogeneous crosscut) using FOP we would intro-
duce two re nements to the classedlodeand Edge which introduce exactly the same
code (Fig. 4.3). Our AOP-based solution proposed previoysivoids this code replication
(Fig. 4.4).

Conversely, an aspect may implement a collaboration (a hetgeneous crosscut) by
bundling a set of inter-type declarations and advice, as sia in Figure|4.5. The aspect
AddWeightintroduces the methodadd and the eld weight via inter-type declarations
(Fig 4.6, Lines 2-5; Line 6) and extends theprint method via advice (Lines 7-11).
Hence, it implements a heterogeneous crosscut, which is dlaworation of Weight and
two roles, a role ofEdgeand a role ofGraph We have noticed and so have others [Ste05,
MOO04, Bos99] that not expressing a collaboration in terms ajbject-oriented design
(i.e., roles implemented as re nements) decreases prograsamprehensibility. This is
because programmers cannot recognize the original structwof the base program within
a subsequent re nement in our example the structuring inGraph Node and Edge

40

4.2 Evaluation of AOP and FOP

aspect AddColor {

interface Colored { Color getColor(); }

declare parents : (Node || Edge)

Color (Node || Edge).color;

void

public Color (Node || Edge).getColor() {

before (Colored c¢) : execution (void
Color.changeDisplayColor(c.getColor());

}

class Color {

I}

implements
(Node || Edge).setColor(Color c) { color

* print()) &&

Colored;

c; }
return color; }

this (c) {

Figure 4.4: Implementing theColor feature as an aspect.

Basic

class Node

void print();

1

Graph class Graph

class Edge

Edge add(Node, Node);
void print();

<> Node a, b;

void print();

A

uy
I
I <<inter-type decl.>>
|

|

<<inter-type decl.>>

\

! aspect AddWeight ;o

class Weight

N4 Edge Graph.add(Node, Node, Weight); ;o
Weight Edge.weight;
after(Edge) : execution(void Edge.print()) ...;

void print();

- / .
r ~ <<advice>>

Figure 4.5: Implementing a collaboration as an aspect.

One may argue that, for this simple example, it does not reglimatter whether one uses large-scale
feature modules or aspects. But the di erence between FOP dmAOP becomes more features
obvious when considering features at a larger scale. Thenbiécome clear that aspects

lack scalability. Suppose a base program consists of mangsdes and a feature extends

most of them. In a FOP solution the programmer de nes, per cks to be extended, a

new role with the same name (Fig. 4.7). This way the programmés able to retrieve the

program structure within the new feature. There is a one-t@ne mapping between the
structural elements of the base program and the elements dfet feature; base program

and feature are merged recursively by name and type.

In an AOP solution one would merge all participating roles ito one (or more) aspect(s)
(Fig. 4.8). While this is possible, it attens the inherent olject-oriented structure of the
feature and makes it hard to trace the mapping between baseqgram and feature [Ste05,
MOO4]. Note that the di erence between AOP and FOP, as showmithe Figures|4.7
and|4.8, is not only a matter of visualization. The point is tlat the inner structure of the
aspect does not re ect the structure of the base program; the is no natural mapping
between structural elements of the base program and the fea¢. So it is no coincidence

41

roles and
aspects

Chapter 4 A Conceptual Evaluation of AOP and FOP

aspect AddWeight {

Edge Graph.add(Node n, Node m, Weight w) {
Edge res = add(n, m);
res.weight = w; return res;

}

Weight Edge.weight;

after (Edge e) : this (e) && execution (void Edge.print()) {
System.out.print(" [");
e.weight.print();
System.out.print("] ");

}

O©CoOoO~NOOUAWNEPE

e
~ o

[y
N

}

Figure 4.6: An AspectJ aspect that implements a collaboraih.

L = = L =]
A A A A A A
base
program

[= = =T
e LT

L L

——

Figure 4.7: Implementing a large-scale feature using a fea¢ module.

that the mapping is complicated and hard to trace for the progammer. The one-to-one
mapping of the FOP solution is easier to understand espediafor large-scale features.

Implementing each role as a distinct aspect, as suggested Hgnenberg et al. [HU02],
Kendall [Ken99], and Sihman et al. [SK03], would obscure trabject-oriented structure
as well. In our example we would implement the re nements oGraph and Edge as
two distinct aspects. This approach would enable to estaBh a one-to-one mapping
between the structural elements of the base program and théements of the feature
(provided reasonable naming conventions). However, thisaw inheritance and re ne-
ment is replaced simply by aspect weaving without any furthebene t. We and oth-
ers [Ste05, MOO04] argue that such a replacement of objeciemted techniques without
any benet is questionable, especially with respect to thedalitional complexity intro-
duced by aspect weaving [Ste06, Ale03].

42

4.2 Evaluation of AOP and FOP

base
program

aspect

Figure 4.8: Implementing a large-scale feature using an asp.

The reason why aspects fail in expressing collaborationspappriately is that roles are
closely connected to their classes; role-based design teirently object-oriented [Ste00].

Static and Dynamic Crosscuts

Features and aspects may extend the structure of a base pragr statically, i.e., by in- static
jecting new members and introducing new superclasses antkifaces to existing classes. crosscuts
Figure [4.9 depicts a re nement and an aspect, which both inpg¢ a method and a eld

as well as introduce a new interface to the clagsdge

1
2
3
4
5
6

refines class
implements
boolean
/

}

Edge
Comparable {

compare(Edge e) {

/

1
2
3
4
5
6

aspect ComparableEdge {

declare parents

boolean
/
}
}

Edge.compare(Edge e) {
/

. Edge implements

Comparable;

Figure 4.9: Implementing a static crosscut via re nement @ft) and via aspect (right).

Additionally, features are able to encapsulate and introdte new classes. Traditional
aspects, as exempli ed by AspectJ, are not able to introducedependent classes at
least not as part of an encapsulated feature. While it is corce that one can just add

43

dynamic
crosscuts

extending
recursive data
structures
demands
aspects

Chapter 4 A Conceptual Evaluation of AOP and FOP

node

% <<— composite node (subgraph)

Figure 4.10: A recursive graph data structure.

another class to an environment, e.g., using AspectJ, this & the tool level and not at
a model level. The programmer has to build his own mechanisrf@utside of the tool) to
implement feature modularity [LHBCO5], e.g., INFACET, an AspectJ implementation
of a CORBA event channel, the programmers implemented a nonitial mechanism for
feature management [HCO2].

As opposed to AOP, FOP provides no extra language support famplementing dy-

namic crosscuts. That is, dynamic crosscuts can be implented but there are no

tailored abstraction mechanisms to express them in a moretuitive way, e.g., by an

event-condition-action pattern. Without depending on a wodkaround, FOP supports

just basic dynamic crosscuts, i.e., method extensions [M@0 While this works for

many implementation problems, there are certain situatio® in which a programmer
may want to express a new program feature in terms of the dynaensemantics of the
base program, i.e., to implement an advanced dynamic croasd¢cf. Sec./ 3.2). Aspects
are intended exactly for this kind of crosscut. They provida sophisticated set of mech-
anisms to re ne a base program based upon its execution, ¢.mechanisms for tracing
the dynamic control ow and for accessing the runtime contexof join points.

When extending the printing mechanism of our graph implemeation, we can take
advantage of these sophisticated mechanisms of AOP. Bacgnd is that the print
methods of the participants of the graph implementation céleach other, especially,
when nodes of a graph may be (sub)graphs themselves (Fig.().1

Generally, recursive data structures are an appropriate ascase for AOP. The AOP
language constructs for advanced dynamic crosscuts (e.gflow , cflowbelow) enable
to advise only selected join points within the control ow ofa program. For example,
to make sure that we do not advise all calls t@rint , but only the top-level calls, i.e.,
calls that do not occur in the dynamic control ow of other exeutions of print , we can
use thecflowbelow pointcut as condition evaluated at runtime (Fig. 4.11). Theadvice
shown is an example of an advanced dynamic crosscut.

44

4.2 Evaluation of AOP and FOP

aspect PrintHeader {
before () : execution (void *.print()) && ! cflowbelow (execution (void *.print())) {
printHeader();
}
void printHeader() {
System.out.print("header: ");

}

O~NO U WNE

}

Figure 4.11: Advising the printing mechanism using advandeadvice.

Though language abstractions such aflow and cflowbelow can be implemented (em- using FOP for
ulated) by FOP, this usually results in code replication, tagling, and scattering. For advanced
example, Figure 4.12 depicts the above extension to the pliimg mechanism implemented dynamic
using FOP. Omitting AOP constructs results in a complicatedvorkaround (underlined) crosscuts

for tracing the control ow (Lines 2,6,8) and executing the atual extension conditionally

(Lines 4-5). Compared to the FOP solution, the AOP solution aptures the intension of

the programmer more precisely and explicitly (cf. Fig. 4.91

1| refines class Node {
2 static int count = O;

3 void print() {

4 if(count == 0)

5 printHeader();

6 count++;
7
8
9
0
1

Super .print();
count -;

}
void printHeader() { / .1}

}

Figure 4.12: Implementing the extended printing mechanismia re nement.

The bottomline is that FOP and AOP are complementary with repect to crosscutting
modularity. FOP is strong in modularizing collaborations,which are heterogeneous
and basic dynamic crosscuts. AOP performs well in modulanmy homogeneous and
advanced dynamic crosscuts.

4.2.3 Feature Cohesion

Features implemented via feature modules have an explicgépresentation at the design
and implementation level. All structural elements that cotribute to the feature are
encapsulated inside the feature module. Hence, a high degref feature cohesion is
achieved.

45

Chapter 4 A Conceptual Evaluation of AOP and FOP

Using AOP, a programmer expresses new features by aspects,ih many cases features
cannot be expressed using one single aspect, especiallyymopbmplex programs [LHBCO5,
MOO04]. Often the programmer introduces several aspects amdlditional classes, e.g.,
the Weight feature consists of the aspecAddWeightand the classWeight. One may
argue that we could express every feature using only one aspéut this violates the
principle of separation of concerns it destroys the innertsicture of a feature's im-
plementation, as explained in Section 4.2.2. Classes angasts are too small units of
modularity and therefore not suitable for implementing fetures [VN96c, MO04, LLOO03,
Ern01, OZ05, Ost02, TVJ 01, EOC06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99].

Nevertheless, aspects can be encapsulated in packages oy awetain nested classes but
there are no mechanisms for re ning and composing these ctusts. However, hybrid
approaches likeCaesar[MO02, MO03, MOO04] exploit the mechanisms of collaboratien
based designs such as mixin composition and virtual classes

In summary, feature modules provide appropriate means fané cohesive implementation
of program features. The reason for that is they encapsulat®llaborations of artifacts
and they can be composed. An aspect should not implement antiem feature because
in traditional AOP it is a class-like entity that cannot express a collaboration. What
follows is that aspects can be a part of a feature implementan, as we will show in
Chapter 5.

4.2.4 Feature Integration

When applying a feature to a program, an FOP compiler superingses the structure of
the feature module with the structure of the base program. Saerimposition is imple-

mented by merging recursively the hierarchical structureesf feature modules by name
and type (mixin composition) [BSR04, OZ05, AGMOO06, Ern03].

If a feature module is of a dierent structure than the base psgram, the code for
integrating the feature and the base program has to be impleanted by hand. Usually,
this results in code scattering and tangling [MOQ4, LLOO03].The bottomline is that
FOP does not support crosscutting integration very well.

It has been shown that aspects, in collaboration with other ethanisms such as wrap-
pers, can help in integrating structurally independent comonents, i.e., features that

di er in their inner structure [MOO02, MOO03, LLOO03]. Pointcuts and advice are hereby
used to modularize the crosscutting integration code, whicwould otherwise lead to

code tangling, scattering, and replication. Hence, aspecfacilitate a well modularized

crosscutting integration of features.

But AOP does not support superimposition. Indeed, aspects ag implement roles or
even entire collaborations but they always have to specifyxglicitly where the base

46

4.3 Summary, Perspective, and Goals

program is to be modi ed. There is no matching by name, type, ral/or structure, as
advocated in [SB02, BSR04, TOHSMS99, OZ05, AGMOQ6, Ern03].

The bottomline is that FOP is appropriate for superimpositon and AOP for crosscutting
integration of features.

4.2.5 Feature Composition

Feature modules can be composed to form new features modul€ghis enables the
programmer to generate compound features out of basic onésfeature module is im-
plemented as a containment hierarchy, which can be nestecharchically. The algebraic
theory behind FOP models a feature as a function; applying @é#ture to a program is
modeled as function application and composing features asttion composition.

It has been observed that composing aspects is non-trivial even impossible [LHBCO5,
LHBLO6]. While aspects can be applied to a program individubj, two aspects cannot
be composed to form a new aspect. The composition is furtheoroplicated by the
hard-to-understand precedence rules for ordering the ajation of aspects.

4.3 Summary, Perspective, and Goals

Table|4.1 summarizes the results of our conceptual evaluai. It reveals that both pro-
gramming paradigms complement one another. That is, both kia strengths where the
respective other is weak. For example, while FOP is su ciento encapsulate collab-
orations, which are heterogeneous crosscuts, AOP su ces gxpressing homogeneous
crosscuts, thus avoiding code replication. Furthermore, @P is strong in abstracting
the dynamic control ow and FOP in abstracting the compositon of features. The
bene ts of using both AOP and FOP together o er rewards that reither of them could
accomplish in isolation.

A clever symbiosis of both paradigms might replace the weagsses of one paradigmsymbiosis of
with the strengths of the other. However, an unfavorable sybmosis might lead to even FOP & AOP
worse results. The following chapters address this issuegreater depth.

A further crucial issue that arises from the symbiosis promed is to what extent the
individual mechanisms of AOP and FOP are really needed. In th dissertation we
discuss rst results of analyzing a series of case studiesaddress this issue.

a7

Chapter 4 A Conceptual Evaluation of AOP and FOP

| evaluation criteria

H FOP

\ AOP ‘

abstraction

good support : FOP provides
abstraction mechanisms and tool
support for feature composition
and program re nement

good support : AOP has an
event-based model and abstracts
from details of re ning multiple
join points

crosscutting
modularity

heterogeneoug| good support : feature modules| limited support : aspects bun-
crosscuts encapsulate and compose collab; dle sets of inter-type declarations
orations of classes and re ne-| and advice, but lack of abstract-
ments ing and expressing collaborations
homogeneous|| no support : feature modules| good support : aspects provide
crosscuts provides no explicit language| wildcards and pattern matching
constructs for re ning multiple | mechanisms to re ne multiple
join points simultaneously join points simultaneously
static good support : feature modules| limited support aspects can
crosscuts can inject new elds, methods, | inject new elds and methods
and classes as well as declare newbut no classes as well as declarg
superclasses/interfaces new superclasses/interfaces
dynamic weak support : feature mod- | good support : aspects provide
crosscuts ules can implement only basic| sophisticated mechanisms for ad-

dynamic crosscuts via overriding
(method extensions); there is no
support for advanced dynamic
crosscuts

vising a program based on its dy-
namic semantics (basic and ad-
vanced dynamic crosscuts)

feature cohesion

high degree : feature mod-
ules encapsulate all artifacts that
contribute to a feature

low degree : aspects cannot en-
capsulate collaborations of mul-
tiple artifacts that contribute to

a feature

feature
integration

super-
imposition

good support : FOP provides
explicit support for superimposi-
tion merging hierarchical struc-

tures recursively by name and

type

no support : AOP does not pro-
vide any mechanisms for super-
imposing hierarchical structures
of software artifacts

crosscutting
integration

no support : no mechanisms
for expressing and modularizing
crosscutting integration code

good support : aspects can
connect feature implementations
and modularize the integration
code

feature composition

good support : feature modules
can be composed to form new
features; this is modeled by func-
tion composition

no support : aspects cannot be
composed; dicult composition
rules

48

Table 4.1: A comparison of FOP and AOP.

CHAPTER 5

The Symbiosis of Feature Modules and Aspects

This chapter shares material with the ICSE'06 paper "Aspectual Mixin Lay-
ers: Aspects and Features in Concert' [ALS06] and the GPCE'05 paper "Fea-
tureC++: On the Symbiosis of Feature-Oriented and Aspect-Oriented Pro-

gramming' [ALRSO5].

In this chapter we address the following issues: (1) how to mbine FOP and AOP and
(2) does their combination outperform FOP and AOP in isolatbn?

First, we explore the space for achieving the symbiosis of FOand AOP. Then, we
present our approach for integrating feature modules and p&cts, which we calbspectual
feature modules (AFMs) Finally, we present our attempts to provide adequate tool
support and discuss related approaches.

5.1 Design Space

FOP and AOP can be combined principally in two ways: (1) desiga programming
language that combines the mechanisms of AOP and FOP, whictewall anin-language
approach and (2) integrate aspects as software artifacts into the gelopment style of
FOP and SWD, which we call anarchitectural approach

The in-language approach enables to explore the languag®perties of FOP and AOP in-language
as well as their possible integration. As our evaluation Witeveal, some language mech-approach
anisms of AOP and FOP are redundant. It is an interesting resech question what a

novel language should look like that integrates AOP and FORjyut in an aggregated and
stripped-down form. To put it in other words, with the in-language approach we can

explore the minimal core language for implementing featusetrue to the motto: what

49

architectural
approach

feature
modules
decompose
object-
oriented
designs

feature
modules lack
crosscutting
modularity

Chapter 5 The Symbiosis of Feature Modules and Aspects

is not essential will be omitted. Moreover, it would be podsie to address advanced
language level issues such as type systems and soundness.

The architectural approach is a software engineering appoh. It takes into account
that FOP is also a design method to develop SPLs in a SWD mannehHEAD as archi-

tectural model comprises all kinds of software artifacts ahlays an algebraic foundation
for features and SWD. In this sense, aspects are just a new g@te artifact that should

be integrated into the architectural model as well, howevewith special characteristics
and individual support at the language level. Choosing thispproach would combine
the implementation mechanisms of AOP and FOP. We could exple the relationship

of feature modules and aspects with respect to the implemeaion of the large-scale
building blocks of SPLs and their impact on software design.

While both approaches promise interesting insights, we cama@ose only one in order
not to exceed the scope of this dissertation. Since we aim aPIS and SWD it is
reasonable to explore the architectural approach rst. Thogh we address one or the
other language level issue (e.g., in Chapter 6), an in-deptnalysis of what a minimal
and e cient FOP/AOP language would look like is relegated tofuture work.

5.2 The Integration of Feature Modules and Aspects

Since AHEAD provides an architectural model for FOP, we desgbe our integration of
FOP and AOP on top of the AHEAD model.

When designing and implementing SPLs in a feature-orienteday; a programmer starts
usually by modeling and abstracting real-world entities irterms of classes and objects
and their collaborations. The result is an object-orientediesign (left side of Fig! 5.1).
FOP further structures this design along collaborations tat classes undergo. Only
the subsets of classes (roles) that participate in a collatadion to implement a certain
feature are encapsulated inside the corresponding featuredule, i.e., features crosscut
the object-oriented design (right side of Fig. 5/1). Subseagnt features re ne existing
features by superimposing their structure (collaboratios) [OH92, BSR04, SB02, B0os99,
0Z05, Ern03]. Hence, a feature module is a mechanism that degoses an object-
oriented design along a further dimension, i.e., the feates of a program.

Our evaluation pointed us to the fact that in some situationsthe implementation of
a feature cannot be modularized appropriately by using a tdational feature module
implemented for instance in Jak, i.e., attempts to do so reduin code replication, and
code scattering and tangling. Typically, these situationsare related to crosscutting
phenomena. We argue that the shortcomings of FOP revealed loyr evaluation are
directly responsible for this issue.

50

5.2 The Integration of Feature Modules and Aspects

| I

— |:>!\!HT\

A A
* *
decomposition I_—‘_| I——‘—|

’ []feature module [|class <t+—inheritance -«—refinement <— association ‘

Figure 5.1: Feature-driven decomposition of an object-@mted design.

To address this issue, we propose to employ AOP since it prdes powerful mechanisms integrating
to modularize crosscutting concerns. Nevertheless, as cwaluation revealed, simply aspects to
using aspects instead of feature modules for implementingogram features is not ap- 'MPove
. CI’OSSCUttIng

propriate either, e.g., because of the lack of feature cof@sand the missing abstraction modularity
mechanisms for collaborations. Instead, we propose to usgpacts to implement only

concerns that crosscut a given object-oriented design anbat cannot be modularized

well using feature modules, thus creating an aspect-ori&@at design, i.e., a hierarchy of

classes and aspects (left side of Fig. 5.2).

In order not to forgo the bene ts of feature modules, we suggefurther to decompose decomposing
such aspect-oriented design using the mechanisms of FORhile the aspect-oriented aspect-
design serves as a substructure, feature modules decompose this désitjrer, along the g”e.med
features of the program. Hence, a feature is implemented by a collaboration of class esigns

and aspects (right side of FigJT@) Bene t of this integration is that we have well
encapsulated large-scale feature modules that re ne oneather incrementally and that

dispose of powerful mechanisms for dealing with crosscuilj phenomena.

Soubis PR —=E
O [T O O G .
decomposition I——‘_] I——‘—]

[Jclass <+—inheritance <— association

[]feature module) _
[aspect «—refinement <- - weaving

Figure 5.2: Feature-driven decomposition of an aspect-ented design.

1 Note that the original aspect has been split into two pieces (abase and a subsequent re nement).

In Chapter 6] we address this issue in more depth.

51

aspects and
feature
modules do
not compete

two ways of
re nement

Chapter 5 The Symbiosis of Feature Modules and Aspects

In summary, aspects and feature modules are not competingpfementation techniques
but decompose a program in di erent ways. That is, from our pspective a program
design is decomposed along three dimensions: classes,cspand features. An object-
oriented design is the basis; aspects modularize certaiméis of concerns that crosscut
the underlying object-oriented design; feature modules dempose the design to impose
a structure that is of interest to stakeholders, i.e., the fures of the program. In
this symbiosis, FOP and AOP prot from each other and overcom their individual
limitations, as we will illustrate in this dissertation.

5.3 Aspectual Feature Modules

Aspectual feature modules (AFMs)s a concrete approach to implement the integration
of AOP and FOP. AFMs extend the notion of a traditional feature module known from

Jak by encapsulating, beside classes and re nements of cEssalso aspects. That is,
an AFM encapsulates the roles of collaborating classaad aspects that contribute to

a feature. Hence, a feature is implemented by a collection aftifacts, among them

classes, re nements, and aspects. We argue that this is ot the ideal of what a

feature should be. Thus, a feature is implemented by di erdrkinds of artifacts, each

artifact appropriate for a speci ¢ design or implementatio problem.

Figure 5.3 shows a base program (light gray box above) re neby an AFM (light

gray box below). The AFM re nes the base program in two ways: 1) it contains a
class re nement and (2) an aspect (dark gray box) to implemerthe changes to be
made to the base program. Our implementation of AFMs reliesnomixin layers [SB02]
and AHEAD re nements [BSR04]. Other mechanisms such agrtual classes|[MMP89,

EOCO06, 0Z05],nested inheritance[NCM04, NQMO06], andtraits [DNS'06] would be
possible (see Sec. 5.6).

/
/ 6 <- - weaving []class, mixin

<— association [l aspect

A v 7
i e < inheritance
<— mixin-based inheritance

Figure 5.3: Aspectual feature modules.

1
1

An AFM can re ne a base program in two ways: (1) by using mixinecomposition or (2) by
using aspect-oriented mechanisms, i.e., advice and intgpe declarations. Probably the
most important contribution of AFMs is that programmers may choose the appropriate
technique re nements or aspects that ts a given problem best. Moreover, they can

52

5.3 Aspectual Feature Modules

apply a combination of both and decide to what extent eitherdchnique is used. The
qguestions that arise consequentially are (1) when to use AO&hd FOP mechanisms
and (2) how often their application really occurs in real-wadd software projects. We
elaborate on this in more depth in Chapter [7 and Chapter 8.

Figure|5.4 depicts the feature-oriented design of our grapmplementation, consisting of
the featuresBasicGraph Weight, and Color. Color is implemented by using an aspect
and a class; it is encapsulated by an AFM. As we discussed hrefoadvising executions
of the methodsprint in Nodeand Edgeis a homogeneous crosscut the same is true
for injecting the eld color and the methodssetColor and getColor to Nodeand Edge
(cf. Fig.[4.4). In this situation, it is bene cial to use an apect because it is able to
avoid replicated code. Encapsulating the aspeétddColor and the classColor improves
feature cohesion, compared to a pure AOP variant.

class Node
void print(); < -
Basic ﬂ\ T~
Graph class Graph__Basic class Edge _ Basic TS
Edge add(Node, Node); Node a, b; ~
void print(); void print(); AN
A
o i
I I .
class Graph class Edge class Weight \
. \
W6|ght Edge add(Node, Node, Weight); Weight weight; void print(); \
void print(); <-—-—--——-—-——-__C __ \\
ST
class Color aspect AddColor
Color before() : execution(void print());

Figure 5.4: Implementing the featureColor as an aspectual feature module.

As with standard feature modules, an AFM is represented as @mtainment hierarchy. superimposing
Besides Java or C++ artifacts an AFM contains also aspect les Figure (5.5 depicts containment
the simpli ed containment hierarchies of our graph featurs BasicGraph Weight, and Merarchies
Color. The containment hierarchy synthesized nally is generat&by superimposing the

three feature hierarchies. The composition order is speed via a feature expression.

During the composition the programmer needs not to be awaré which kinds of software

artifacts actually are inside the features to be composed.his helps to concentrate on the

composition process at the feature level and facilitates mpositional reasoning because
implementation details are hidden. That is, the programmeneeds not to know which

les and types of artifacts contribute to a feature implemetation.

53

mixin and
jampack
compaosition

two-staged
composition
of AFMs

AFMs are
language
independent

Chapter 5 The Symbiosis of Feature Modules and Aspects

—
BasicGraph

CoIoredWelghtedGraph K We|ght []

AddColor.aj Color.jak Graph.jak Node.jak Edge.jak Weightjak AddColor.aj Colorjak Graph.jak Edge.jak Weight.jak Graph.jak Node.jak Edge.jak

Figure 5.5: Superimposing containment hierarchies includy aspects.

The result of superimposing containment hierarchies is a @gram, i.e., a set of collab-
orating software artifacts. Batory et al. propose two pringpal ways of implementing
the actual composition [BSR04]. Figure 5.6 depicts a possbhierarchy of classes and
aspects synthesized by the above feature selection. Class@d their re nements are
merged into composite classes, which is call@gmpack composition Figure|5.7 depicts
the same program synthesized by mixin composition, which @nslates re nement to
subclassing, i.e., a base class and a series of re nementgrasislated to a base class
and a series of subclasses. Note that, beside these two soh&, also alternative mech-
anisms such as virtual classes, nested inheritance, anditsacould implement (emulate)
re nements of classes.

class Node

<L void print(); < - _
i I
\

Colored class Graph class Edge N aspect AddColor
Weighted | | edge add(Node, Node); K> Node a, b;
Graph Edge add(Node, Node, Weight); Weight weight;
void print(); void print();

U

class Weight

before() : execution(void print());

class Color

void print();

Figure 5.6: Jampack-composed graph implementation.

Either way, after the composition process we have in case oFKs a traditional aspect-
oriented program (and in case of traditional feature modutean object-oriented pro-
gram). Now it becomes clear that it is necessary to weave themects and the object-
oriented base program in a subsequent step after the basestes and re nements have
been composed. These two steps can be accomplished by dintreompiler passes or by
di erent tools.

AFMs integrate feature modules and aspects. The AHEAD ardactural model is the

basis for the integration. Thus, AFMs are independent of a §gi ¢ host language. They
can be implemented in any pair of object-oriented and aspeotiented language which

54

5.4 A Conceptual Evaluation of Aspectual Feature Modules

class Node

void print(); N o
1 K
\
class Graph__Basic class Edge__Basic \
Edge add(Node, Node); <> Node a, b; \\
Colored void print(); void print(); \
Weighted Z% Z% \
\
Graph class Graph class Edge ! aspect AddColor
Edge add(Node, Node, Weight); Weight weight; before() : execution(void print());
void print();
class Weight class Color

void print();

Figure 5.7: Mixin-composed graph implementation.

can be woven, e.g., Java and AspectJ, C++ an(AspectC++E, or C# and AspectC#E,
etc. This circumstance makes the concept of AFMs invariantot the specics of the
host languages. When the host languages improve, especidig AOP languages, then
AFMs improve as well. Thus, AFMs can prot from research in A® and FOP. With
an in-language approach that would not be possible or only thia major e ort.

5.4 A Conceptual Evaluation of Aspectual Feature Modules

To evaluate AFMs and to compare them to traditional FOP and AQ® we apply our
evaluation criteria.

5.4.1 Abstraction

AFMs support the combined abstraction mechanisms of featermodules and aspects.
On the one hand, AFMs are treated as regular feature modules; programmer com-
poses AFMs by enumerating the feature names without needirig know the internal
implementation details. The keywordrefines abstracts from the composition seman-
tics, i.e., mixin composition, jampack composition, and dieré. On the other hand,
AFMs contain aspects and thus build upon the advanced capdities of AOP to imple-
ment a program re nement in dependence of the runtime contfoow. Features can be

http://www.aspectc.org/
3 http://www.dsg.cs.tcd.ie/dynamic/?category_id=169
4 Chapter |6 explains how this maps to aspects in order to comp@sand re ne them as well.

55

Chapter 5 The Symbiosis of Feature Modules and Aspects

implemented on top of the event model of AOP. The wildcard angbattern matching
mechanisms of AOP avoid code replication in case of homogeus crosscuts.

The integration of feature modules and aspects leads to a lader arsenal of abstrac-
tion mechanisms available when implementing and composiigatures it uni es the
strengths of FOP and AOP.

5.4.2 Crosscutting Modularity

Homogeneous and Heterogeneous Crosscuts

The integration of aspects and the traditional constituers of feature modules enables the
programmer to choose the right technique for solving the rig problem: the programmer
uses aspects to implement homogeneous crosscuts and a selasses and re nements
to implement heterogeneous crosscuts, which are in fact ledlorations. As mentioned,
this is independent of whether a crosscut is static or dynami Aspects, classes, and
re nements can be combined at will.

Static and Dynamic Crosscuts

The integration of FOP and AOP allows us to express static cescuts in two ways, using
re nements of classes and using inter-type declarations iaspects. This introduces
a semantic redundancy. As mentioned in the previous paragra, we propose to use
aspects to implement static crosscuts that are homogeneausd to use traditional feature

modules to implement static crosscuts that are heterogengn

By using aspects, a programmer can implement features deplérg on the runtime con-
trol ow. As with static crosscuts, method extensions can bémplemented by aspects
(using advice) and by re nements (using method overriding) We handle this analo-
gously to static crosscuts: use aspects for dynamic crosscthat are homogeneous and
use feature modules and method extensions for basic dynamsrosscuts that are het-
erogeneous. Advanced dynamic crosscuts are always implated using advice because
FOP does not supports adequate language mechanisms.

An observance of these guidelines improves the crosscugtimodularity of AFMs com-
pared to traditional feature modules without destroying tle object-oriented structure
per se.

56

5.4 A Conceptual Evaluation of Aspectual Feature Modules

5.4.3 Feature Cohesion

Since we encapsulate aspects in feature modules, we achiev@gh degree of feature
cohesion. Aspects as well as collaborating classes (e.gpextAddColor and classColor)
are located in one feature module along with other softwaretdacts that contribute to
the implementation of the feature (e.g., documentation, e les, test cases). Despite
their encapsulation in feature modules, aspects still cresut module boundaries, but
this is intended to be able to modularize certain kinds of cescuts. We are aware that
this property is controversial [Ste06, Ale03], but our apgrach does not rely on a speci c
AOP mechanism and will prot by improvements to AOP, e.g.,open modulesAld05,
OAT * 06],information hiding interfaces [SGS 05], strati ed aspects[BFS06], orharmless
advice [DWO06]. What is novel is that the programmer is able to recogne explicitly
which artifacts belong to a feature, not only at the le systen or tool level but also at
the model level.

5.4.4 Feature Integration

The structures of feature modules are superimposed duringraposition. While this is

appropriate for many integration problems [BSR04, SB02, EA8, Bos99, OH92, OZ05],
superimposition is not always su cient [MO02, MO03, TOHSM®9]. Using tradi-

tional feature modules in the form of collaborations the irggration of non-related,
structural di ering features results in workarounds, codescattering, and code tan-
gling [MOO03, LLOO03, Her02]. This is because of their manifbldependencies and in-
teractions [Nov0O]. But it has been shown that aspects in coart with wrappers can

modularize such integration code [MOO03]. AFMs support supenposition and can em-
ploy aspects for crosscutting integration, thus outperfoning FOP and AOP used in

isolation.

5.4.5 Feature Composition

AFMs can be aggregated to form new AFMs. At implementation kel this is accom-
plished by nesting containment hierarchies. At model levet is described by function
composition. Thus, aspects as software artifacts becomested in feature hierarchies.
With traditional AOP such mechanisms have to be implementedybhand, which is non-
trivial, e.g., as done in the FACET project [HC02]. Howeverthe problem of composing
aspects to form new aspects is not solved.

57

FeatureC++
feature
modules

Chapter 5 The Symbiosis of Feature Modules and Aspects

5.5 Tool Support

We provide tool support for AFMs on top of two host programmig languages, C++
and Java.

55.1 FeatureC++

FeatureC++5 was developed by the author within the scope of this dissettan. It is

a language extension of C++ that supports FOP. It consists of tool for composing
feature modules and an FOP compiler for C++ artifacts. Speaally, it introduces
class re nement to the C++ language in the form of the syntax pesented here, i.e.,
the keywordsrefines and Super with some minor adaptations to the C++ standard.
FeatureC++ supports AFMs by integrating AspectC++ [SLUO5] aspects into feature
modules. Furthermore, it supports the AHEAD algebraic expmssions and design rule
checks for compositional reasoning [BSR04].

Figure 5.8 depicts a template claskist (Lines 1-6) and a re nement (Lines 7-13). The
classList receives the type of the items being stored. The re nement dd a new
variable size (Line 11) and extends the methocput (Line 12) to increment the size.
Note that the re nement extends also the type argument list.Given this re nement, the
programmer speci es the type of the items and the type of theze counter. This kind of
re nement is called generic re nement and it is embedded in ageneric feature module
Generic feature modules can be parameterized staticallying the powerful template
mechanism of C++. A deeper explanation of generic feature ndales is out of scope of
this dissertation and described elsewhere [AKLO6].

1| template <typename _ltemT>

2| class List {

3 typedef _ltemT IltemT;

4 ItemT *head;

5 void put(ltemT *i) { i->next = head; head = i; }
6|}

7| template <typename _ltemT, typename _SizeT>
8| refines class List {

9 typedef _ItemT ItemT;

10 typedef _SizeT SizeT,;

11 SizeT size;

12 void put(ltemT *i) { super ::put(i); size++; }
13| };

Figure 5.8: A FeatureC++ code example.

5 http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/

58

5.5 Tool Support

Figure [5.9 depicts the process of compiling AFMs using FeaeC++. The compiler compilation
receives FeatureC++ code as input and transforms it to natig C++ code and to As- process
pectC++ code. The transformation is done on top of abstract yntax trees. The Fea-

tureC++ parser uses thePUMAS framework. In a second step PUMA is used to weave

the AspectC++ aspects and the native C++ code. Finally, the woven C++ code is

compiled to produce binaries. A deeper description of the &rireC++ compiler is out

of scope of this dissertation and is published elsewhere [R&05, AKLOG].

FeatureC++
sources

FeatureC++
compiler

As\ eCtCit X N transformed
= B AspeCtC++ / o
compiler e
). sources

binaries

Figure 5.9: FeatureC++ compilation process.

5.5.2 AHEAD Tool Suite & AspectJ

A further way to implement AFMs is to combine the AHEAD Tool Sute (ATS) and
AspectJ. While Jak is used to compose traditional feature modes, AspectJ weaves
the aspects of the individual feature modules to the syntheed class hierarchies. The
examples given in this dissertation are written in this way.This necessitates some minor
tool support and modi cations to the aspect code. For exampl a build script needs to
keep track of the aspects included in the selected feature thdes and to weave them
in a subsequent step. Also the programmer has to be aware oktfact that the target
classes of an aspect are renamed during the compilation pess, e.g., classist of
feature BasicList is renamed to classist _BasicList . In FeatureC++ this is handled
automatically. While a further explanation of the technicalproblems is out of scope of
this dissertation, we refer to the successful applicatiorf this approach to a non-trivial
software project (see Chapter 7).

The process of compiling AFMs using the ATS and AspectJ is silar to the one of
FeatureC++ (cf. Fig. 5.9). It is worth to note that we were able to integrate two tools

6 http://ivs.cs.uni-magdeburg.de/ puma/

59

Chapter 5 The Symbiosis of Feature Modules and Aspects

(ATS and AspectJ) to achieve an appropriate support for AFMs. This demonstrates
that AFMs indeed are a language-independent approach thas realizable with current
tools. Of course, in contrast to the integrated solution of €atureC++, some workaround
is necessary (build scripts, minor code adjustments).

5.5.3 FeaturelDE

Supporting feature-oriented software development acrofise entire software life cycle is
the aim of a parallel dissertation project. It provides a tobFeaturelDE that is an inte-

grated development environment fofeature-oriented domain analysis (FODAJKCH* 90],
FOP, as well as the subsequent con gurationFeaturelDE was developed (and is still
under development) in cooperation with the author of this disertation [LAMSO05]. It

supports AFMs based on FeatureC++ as well as AHEAD & AspectJ. lgure 5.10 de-
picts a FeaturelDE screen snapshot that shows the FODA feateis model of our graph
example. It contains the featureBasicGraph Weight, Color, and PrintHeader, all visu-

alized as boxes. The feature model is created in a drag-ancd way like in a drawing
program.

Figure 5.11 depicts a stack of feature modules generated amtatically from the fea-
ture diagram. It consists of the feature module8asicGraph Weight, and PrintHeader.
The generation process creates the underlying le systemrstture for the containment
hierarchies of the feature modules. Feature modules are wadized as gray boxes and
artifacts within a module as white boxes. In our exampleRrintHeader is an AFM and
contains an aspect.

5.6 Related Work

Implementation of Re nements

Our approach of implementing class re nement is based on nis and mixin-based

inheritance [BC90, VN96b]. We chose mixins because of thesuccess in several do-
mains [CBML02, BZM01, BIJMvH02, BCGS95, VN96¢c, AB04, LASO05].However, we

are aware of several alternative mechanisms that might aewe similar results (we dis-

cuss only a representative selection).

Traits aim at structuring object-oriented programs [DNS06]. Traits are stateless units
of code reuse that group multiple methods, but not state-hding members. Multiple

traits can be combined usinggluesin order to synthesize a nal class. Traits o er cus-
tomizability at a more ne-grained level than mixins. Traits could be used to implement

60

5.6 Related Work

Figure 5.10: Feature modeling in FeaturelDE.

Figure 5.11: A stack of feature modules in FeaturelDE.

re nements of classes that contain methods only. Howeven our experience re nements
of classes often requires to add state variables, i.e., ald

Virtual classesare a sophisticated mechanism to combine mixin compositiavith poly-
morphism [MMP89, EOCO06]. Since virtual classes depend onetldynamic type of an
enclosing object (class-valued attributes of the object}heir semantics varies depending
on the dynamic object identity. Virtual classes have been skwn useful for the implemen-
tation of collaboration-based designs [AGMOO06], but theyequire runtime instances of
collaborations as a whole. It is not obvious how to align thatvith the AHEAD principle
of uniformity where features contain beside code artifac&lso non-code artifacts.

61

Chapter 5 The Symbiosis of Feature Modules and Aspects

Nested inheritance[NCMO04] and classboxe$BDNO5] are related to virtual classes. The
di erence is that the types of the inner classes (the partipants of a collaboration) do
not depend on the runtime type of the enclosing object but onhe static type of the
enclosing class. Therefore, these both approaches are @lds the static composition
semantics of AHEAD and AFMs than virtual classes are. Thougimested inheritance
and classboxes are in-language approaches they might be @dd to implement AFMs.

Delegationis a mechanism for implementingbject-based inheritancgLie86]. This en-
ables the runtime recon guration of inheritance hierarcles and could be used to im-
plement re nements of classes. As with virtual classes, #hiis only meaningful for
collaborations that are instantiated and composed at runthe, e.g., as withdelegation
layers [Ost02]. This is di cult to align with the AHEAD architectur al model and de-
mands further investigation.

Implementation of Feature Modules

Several languages and tools support collaboration-baseésign. Potentially all of them
could be used to implement feature modules and AFMs, howey&ach with some limi-
tations.

Several languages support the abstraction and static comgitton of mixin layers, e.g.,
C++ mixin layers [SB02], P++ [Sin96], andJava layers[CLO1]. Other approaches
exploit related ideas of composing and nesting class hiechies [Co089, Ern03], e.g.,
Scala [0Z05], Jx [NCMO04], J& [NQMO06], Classbox/J [BDNO05], CaesarJ [AGMOO06],
ContextJ [CHdMO6], to name a few; all these are in-language approashe

A main advantage of AFMs is that they have AHEAD as an architetural model the
approaches mentioned above do not refer to any model. HenédsMs build upon the
strengths of AHEAD: beside classes and aspects also othemds of software artifacts
may be included in a feature; feature modules are composecideatively by means of
a separate language (feature expressions) and checked msfadomain-speci ¢ design
rules [Bat05]. This opens the door to automatic algebra-bad optimization and com-
positional reasoning [BSRO04]. It is not obvious how to carryhis over to in-language
approaches because the de nition of features is done in thanse language as their com-
position. That is, without a separated composition mechasm/language it is not trivial
to implement mechanisms for optimizing and reasoning aboabmposition speci cations.

Jiazzi is a component system that supports the composition of binarcollaborations
via external rules [MFHO1]. Since collaborations are abstcted outside of the language
Jiazzi ts the AHEAD architectural model. However, while asgects could possibly be
integrated, it is not obvious how to compile them independély.

62

5.6 Related Work

Aspects and Collaborations

Several studies suggest to exploit the synergetic potentiaf mechanisms for aspects
and collaborations, e.g.Aspectual Component§LLM99], Adaptive Plug-and-Play Com-
ponents [ML98], Pluggable Composite AdapterfMSL00], Caesar [AGMOO06], Aspectual
Collaborations [LLOO03], and Object Teams[Her02]. Since these approaches are highly
in uenced by one another, we compare our approach to their geral concepts.

All the approaches mentioned abstract collaborations expltly at the languages level
and integrate di erent kinds of mechanisms associated to AR e.g., pointcuts and ad-
vice, aspectual methoddraversals adapters and bindings These AOP mechanisms are
intended mainly for the modularization of crosscutting cocerns that arise from integrat-
ing two collaborations, which we call crosscutting integtteon in AFMs (cf. Sec. 4.1.4).

According to the design space of integrating AOP and FOP, thapproaches above fall
into the rst category: they integrate AOP and FOP mechanisns at language level. This
is advantageous when exploring issues like typing and polgnphism. Consequently,
these approaches address issues sucloasiemand remodularization(a.k.a. a-posteriori
integration) of collaborations,aspectual polymorphismndynamic aspect deployment, and
distributed aspect components, which all are not supporteby AFMs.

Aspects and Roles

Pulvermuller et al. [PSR00] and Sihmam et al. [SKO3] propose implement collabora-
tions as single aspects that inject the participating rolesito the base program by using
introductions and advice. In our experience, explicitly ngresenting collaborations by
traditional object-oriented techniques and re nements failitates program comprehen-
sibility, which is in line with prior work [VN96¢c, MOO04, LLOO03, Ern01, OZ05, Ost02,
TVJ* 01, EOC06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99]. Faepthe ap-
proach of Pulvermiiller et al. and and Sihmam et al. would leath the end to a base
program with empty classes that are extended by a series opasts that inject structure
and behavior. This would destroy the object-oriented desigof the program and prevent
the programmer from understanding the structure and behawr of the overall program
as well as its individual features.

Hanenberg et al. [HUO0Z2], Kendall [Ken99], and Sihmam et alSK03] suggest to use as-
pects for implementing individual roles. In our context th would mean to replace
each re nement of a class within a feature by one or more aspgc We and oth-
ers [Ste05, MOO04] argue that replacing traditional objeatriented techniques that su ce
(e.g., inheritance) is questionable. Instead, we favor tese aspects only when traditional
techniques falil.

63

Chapter 5 The Symbiosis of Feature Modules and Aspects

Multi-Dimensional Separation of Concerns

Multi-dimensional separation of concerns (MDSoC)s a concept and method that aims
at the clean separation of multiple, potentially overlappig and interacting concerns
simultaneously, with support for on-demand remodularizadn to encapsulate new con-
cerns at any time [TOHSMS99].Hyper/J supports MDSoC for Java [OTO0O]; it intro-
duces the concept ohyperslices which maps roughly to an encapsulated collaboration
of classes. It has been observed that features in AHEAD and ggrslices have many
commonalities, especially regarding their composition m&antics based on superimposi-
tion and their mechanisms for composing hyperslices/feates [BLS03]. What di ers in
FOP is that integrating two features that are of a di erent structure demands a man-
ual integration of the artifacts inside the features, e.g.by using wrappers or multiple
inheritance [MOO02, Her02]. Hyper/J supports declarative amposition rules to estab-
lish a (possibly complex) mapping between di erent hypergles. AHEAD supports only
recursive merging of containment hierarchies by type and nee.

AFMs, as extension to traditional feature modules, use aspts to establish the mapping
between two unrelated features, as suggested rst by Meziei al. [MOO03]. This is related
to the Hyper/J composition rules, but at a lower level (langage level). In this respect,
AFMs follow more the approach of Caesar than of Hyper/J. It rerains an open issue
which variant of on-demand remodularization and crosscutig integration is preferable.

Aspect Quanti cation and Composition

Traditionally, aspects are quanti ed globally. Conceptudly, they may a ect potentially
all elements of a program. Unfortunately, this approach igores the principle of SWD
that re nements are permitted to a ect only re nements that have been applied in
previous development steps [Wir71, Dij76, Par76, Par79]. &mal studies show that
this circumstance is directly responsible for several prtdms and penalties, e.g., unpre-
dictable program behavior [MA05, DFS04, DFS02, LHBLO6], veé& modularity [GSF* 05,
GSC 03] and decreased evolvability [Lie0O4, LHBLO6, GBO03].

In order to address this issue, Lopez-Herrejon et al. propwsan approach to aspect
composition [LHBLO6]. They model aspects aBinctions that operate on programs.
Applying several aspects to a program maps to function comgition. For example,
A>(A1(P)) denotes a progranP re ned by aspectA;, and the result re ned by A,. In
this way the scope of aspects is restricted to a particularegh in a program's development,
e.g.,A; can adviseP but not A,. This is called bounded quanti cation of aspects as
opposed tounbounded quanti cationused in traditional AOP.

The idea of bounding aspect quanti cation can be integratedeamlessly into AFMs:
Since a compiler, e.g., FeatureC++, knows to which developent step (feature module)
each aspect and each re nement belongs, it can determine sfhiprogram parts the

64

5.6 Related Work

aspects are permitted to a ect. In [ALS05, KAS06, ALO6] we dicuss an approach for
implementing functional aspects(aspects with bounded quanti cation) by restructuring
their pointcut expressions. In a nutshell, pointcuts are mai ed such that the connected
advice a ects only join points associated with previous delopment steps, i.e., feature
modules that have been applied before (Fig 5.12). A more dd&d explanation is out
of scope of this dissertation and can be found elsewhere [AI55 KAS06, ALO6].

| restructured
pointcuts don't

match subsequent

features

Figure 5.12: Implementing functional aspects via pointcutestructuring.

What is important is that the notion of AFMs enables, for the rst time, to implement
and experiment withbounded aspect quanti cation. Even if there is no agreemerdn
the bene ts of bounded aspect quanti cation [LHBLO6], our @proach may help to prove
corresponding arguments and deliver empirical evidence.

Aspects and Information Hiding

One issue of AFMs is that current AOP languages do not respetite principle of in-
formation hiding [Ste06, SGS05, Ald05, OAT" 06]. However, there are several e orts
to solve this problem, e.g.open modulegAld05, OAT " 06] andinformation hiding in-
terfaces[SGS 05, GSS 06] propose module interfaces that specify explicitly whicjoin
points may be advised the others are hidden.Harmless adviceis a restricted form
of advice that is designed to obey a weak non-interferenceoperty [DWO06]. It may
change the termination behavior of computations and use I/Cbut it does not otherwise
in uence the nal result of the mainline code. Strati ed aspects adjust the quanti cation
mechanism of aspects to avoid in nite recursion caused by ade that unintentionally
advise itself [BFS06].

The point here is that AFMs can prot from these developments Since AFMs do not
depend on a specic host language, new languages can easgyifitegrated. This is a
major advantage of AFMs compared to in-language approaches

65

Chapter 5 The Symbiosis of Feature Modules and Aspects

] | heterogeneous | homogeneous \
static a set of re nements that | one piece of inter-type
add declaration

elements
basic a set of re nements that | one piece of basic advice
dynamic override methods
advanced a set of advanced advice | one piece of advanced
dynamic advice

Table 5.1: What implementation technique for which kind of ansscutting concern?

5.7 Summary

The notion of AFMs de nes a feature as a collection of artifas, among them classes,
re nements, and aspects that collaborate. We argue that tkiis close to the ideal of
what a feature should be. They are implemented by di erent kids of artifacts, each
artifact appropriate for a speci ¢ design or implementatio problem.

The conceptual evaluation has shown that regarding almostw criterion AFMs perform
better than aspects or Jak-like feature modules in isolationHowever, mixin composi-
tion and aspect weaving overlap with regard to the implemeation of re nements: (1)
inter-type declarations and re nements of classes injectev members (static crosscuts);
(2) advice and method overriding re ne methods calls/exedions (dynamic crosscuts).
Hence, a crucial question arises: when to use what mechanisrithout interspersing
both? As explained, our evaluation gives the answer: on the@® hand, the programmer
uses collaborations of classes and re nements in the situ@s in which they su ce,
i.e., in implementing heterogeneous and basic dynamic csests. On the other hand,
the programmer uses aspects to implement certain kinds ofosiscutting concerns, i.e.,
homogeneous and advanced dynamic crosscuts, where tramhtl feature modules fail.
Table 5.1 summarizes what implementation technique shoulze used for which kind of
crosscut.

We conclude that AFMs perform better than FOP and AOP by themslves because they
combine the strengths of both presuming programmers applthe right technique for
implementing the right problem. While the guidelines in Tabé 5.1 are reasonable, they
provide no certainty that the resulting implementation is $ructured appropriately nor
that the combination of AOP and FOP mechanisms does not leadthidden con icts
or inconsistencies. In Chapter 7, we present our experiescef applying AFMs to a
non-trivial case study, thus evaluating our programming gdelines.

In the next chapter we address several interesting issuesatharise from the integration
of aspects into the incremental development model of FOP.

66

CHAPTER 6

Aligning Aspects and Stepwise Development

This chapter shares material with the APSEC'05 paper "Aspect Re nement
and Bounded Quanti cation in Incremental Designs' [ALS05].

AFMs integrate aspects into the incremental development we of FOP and AHEAD.
Consequently, the following issues arise, which we addrésshis chapter: (1) does AOP
t with the principles of SWD and, if not, (2) how can AOP be aligned with SWD?

6.1 Aspects and Stepwise Software Development

AHEAD, the architectural model of AFMs, de nes that a feature is implemented by aspects are
a collection of collaborating software artifacts of varyig types. In this sense aspectsjust another

are just another kind of software artifact. The AHEAD principle of uniformity has an ';g}ﬂlgre
interesting consequence: since aspects are artifacts ay athers, it is natural to rene e

them in a SWD manner as well. That is, AFMs may not only extend ath modify classes
via subsequent re nement but also aspects, which we cakpect re nement (AR). Hence,
AR is the consequential application of SWD principles to the arld of AOP.

With AR, aspects evolve over time, as do all other software afticts. In each develop- three use
ment step aspects may be re ned, i.e., extended and modi edn this dissertation we cases for AR
focus on three use cases for re ning aspects, which may oegrin parts:

1. Adapting aspects to the changes made to a base program,.gjgin points have
changed or new join points occur.

2. Tailoring aspects to changing user requirements, e.ghe user needs an aspect to
implement a new design decision.

67

uni cation of
classes and
aspects

Chapter 6 Aligning Aspects and Stepwise Development

3. Decomposing aspects to decouple them from a speci c coargtion of the base
program, e.d., a base program in di erent con gurations demnds aspects in dif-
ferent variants.

Applying AR to deal with the above situations means a decomgdion and subsequent
composition of an aspect out of a base aspect and a series afiements. Re nements
should be freely combinable of course, in the limits of de®id program behavior. This
exibility facilitates reuse of aspect code. The user-drien composition of AFMs and
thus of aspects and their re nements customizes aspect-gpe functionality. AR en-
ables a similar improvement in reusability and customizabiy of aspect code as the
analogous object-oriented mechanisms do for classes,,emgxins [BC90, SB02], re ne-
ments [BSR04], and virtual classes [MMP89, EOCO06, OZ05].

AR bears the potential to unify classes and aspects with resgt to subsequent re ne-
ment. An advantage of this view is that several ideas of class nement can be mapped
directly to aspects, as we will show. But more interesting ithe fact that it becomes
possible to re ne also aspect-speci ¢ structural elementsn particular pointcuts and

advice, which opens new possibilities of aspect reuse andtounization.

6.1.1 An Example of Aspect Re nement

Figure 6.1 illustrates the evolution of a program developedsing AFMs. The program
contains classes for bu ers and sockets as well as aspectssignchronizing concurrent
access to the data structures. The evolution spans four steghown in four sub gures
(I-1V). Each development step is explained in terms of its Ja/Jak/Aspectd code and in
diagram form; re nements of aspects are implemented as sudpeects for the time being;
aspect weaving is denoted by dashed arrows.

I. Buffer objects store sets of data items; clafBuffer provides the methodsput
and get for accessing the stored items.

Il. The aspect BufferSync synchronizes the access to the methogsit and get of
Buffer by invoking the methodslock and unlock.

I1l. The class Stack is introduced; in order to synchronize the access atack objects,
the aspectStackSync re nes the aspectBufferSync . Speci cally, StackSync ex-
tends the set of intercepted method executions lpyush and pop; for that it over-
rides and reuses the pointcusyncPCof aspectBufferSync .

IV. The class Socket is introduced; a Socket object uses severaBuffer and Stack
objects. The aspectSocketSync limits the set of synchronized methods to those
that are inside the control ow of Socket, i.e., method executions are synchronized
only when they are initiated directly or indirectly by a Socket object. This is
achieved by overriding the pointcutsyncPCand restricting the set of captured join
points via cflow .

68

6.1 Aspects and Stepwise Software Development

1| class Buffer {

2 Vector<item> buf = new Vector<Item>();
3 void put(ltem e) { buf.add(e); }

4 Item get(int i) { return buf.get(i); }
5/}

1| abstract aspect BufferSync {

2 pointcut syncPC() :

3 execution (ltem Buffer.get(int)) ||
4 execution (void Buffer.put(ltem));

5 Object around () : syncPC() {

6 lock();

7 Object res = proceed ();

8 unlock();

9 return res;

10 }

11|}

class Stack {

void push(ltem i) { list.addFirst(i); }
Item pop() { return list.getFirst(); }

abstract aspect StackSync extends BufferSync {
pointcut syncPC() :

BufferSync.syncPC() ||

execution (Item Stack.pop()) ||

PO OWWO~NOOUTES WNE
—~

LinkedList<Item> list = new LinkedList<ltem>();

1 execution (void Stack.push(ltem));
11}

1| class Socket {

2 void receive() {

3 Buffer buf = new Buffer();

4 Stack stack = new Stack(); [/ ... [/
5}

6|}

7| aspect SocketSync extends StackSync {
8 pointcut syncPC() :

9 StackSync.syncPC() &&

10 cflow (execution (* Socket.*(..)));
11}

[uffer |->{ iter ||

| [Bufer} [tem ||

Buffer | _ -7
Sync

rem ||

Buffer | _ - 2
Sync

Stack
Sync |~_ -

tem ||

Buffer | _ - 2
Sync

—

Stack Stack |
55

Socket
Sync

Figure 6.1: Four steps in the evolution of a program using AFK

(1

(1)

(1)

(V)

69

AR is the
application of
SWD to AOP

Chapter 6 Aligning Aspects and Stepwise Development

This example illustrates the usefulness of re ning aspecia a step-wise manner over
several development steps. Aspect re nement is a logicalrsequence of applying SWD
principles to AOP. The incremental development process mek the evolution of the

program explicit. Design decisions are encapsulated andnche modi ed in separation

as well as combined and reused in di erent variants. A reasahle desire is to derive
di erent customized program variants that share common fdares and reuse invariant
code. For example, one variant contains only a synchronizéxd er:

BasicBuer = BuerSync Buer
another contains a bu er that is synchronized only with respct to calls from Socket:
SocketBu er = SocketSync Bu erSync Buer
and a third contains a bu er that combines the entire functimality:

SocketStackBu er= SocketSync StackSync BuerSync Buer

6.1.2 Limited Language-Level Support for Aspect Re nement

Beside the advantages of AR, our example also demonstrates tehortcomings of As-
pectJ in supporting SWD:

Aspect inheritance: Inheritance is known as a concept for reusing and non-invasly
re ning software artifacts [Tai96]. Therefore, most AOP laguages support aspect
inheritance. Although this enables to re ne aspects to somgegree, it lacks exi-
bility to interchange and reuse re nements. Using aspect lreritance, a re nement
(subaspect) is xed to a specic base aspect. Hence, re nemts cannot be com-
bined exibly in dierent orderings for customization and adaptation purposes.
For example, we are not able to derive di erent variants of oubu er example
without changing code invasively.

Constrained aspect extension: Using traditional aspect inheritance in AspectJ, an as-
pect has to be declared agbstractto be able to be re ned. This means that adding
a subaspect requires the programmer to modify the parent asgt. This and simi-
lar requirements cause a fundamental problem regarding SWD: implementing an
aspect in a particular development step forces the progranento decide whether
the aspect will be re ned in a later step. Unfortunately, ths cannot always be
anticipated by the programmer. Hence, the programmer has a&rgous dilemma.
Declaring the aspect as abstract makes it necessary to addelaat least one con-
crete subaspect. But this may not happen and then the aspecbds not work.
If the programmer decides to declare an aspect as concretatfwut modi er) he
prevents the later re nement of this aspect.

1 For example, re ning a pointcut in AspectC++ requires to decl are the parent pointcut as virtual .

70

6.2 Mixin-Based Aspect Inheritance

Advice is not rst-class: Advice is one of the main mechanisms of AOP [MK03b]. A
piece of advice is invoked implicitly, i.e., it executes cedwhen an associated point-
cut matches. This prevents other advice or methods from inkong it explicitly.
Since advice has no name it cannot be overridden and extendegg another piece
of advice, inside a re nement. This prevents reusing and clienizing advice code.

Aspects are not functions: A re nement in SWD is modeled as a function [HFC76,
Wir71, Par79, Bax92, BSR04, LHBLOG6, ALO6]. It expects a progma as input and
returns a modi ed program as output. Applying a series of agrts to a program

which is in fact a series of re nements [LHBL06, LHBCO5, AL®&] diers from

this scheme. Potentially, each aspect may a ect every artitt of a program no
matter whether it is applied before or subsequently in the etion of a program
(unbounded quanti cation). This behavior does not follow a functional approach
and bears some potential errors and misbehavior, as explathin Section 5.6. In
this dissertation we do not address this issue since it haseddy been explored
and solved in parts by introducingbounded quanti cation of aspects (cf. Sec. 5.6).
Nevertheless, in Section 6.4 we discuss an interesting cemsence of AR with
regard to modeling aspects as functions.

The problems sketched above show that current AOP languagas exempli ed by As-
pect] do not support SWD appropriately at the language levelConsequently, we pro-
pose an alternative approach implementing AR and a set of ammpanying language
mechanisms.

6.2 Mixin-Based Aspect Inheritance

In order to support AR at the language level, we introduce theotion of mixin-based mixin
inheritance [BC90] to AOP: mixin-based aspect inheritancexplicitly supports SWD at composition
the language level by introducing mixin capabilities to asgcts. Though most aspect lan- ©f 8SPects
guages, such as AspectJ, support a limited form of aspect imtiance, they do not exibly

enough to express re nements of aspects and their structdralements. Mixin-based as-

pect inheritance overcomes this limitation by decouplingernements from base aspects

and providing a set of accompanying language mechanisms ferning independently

all the kinds of structural elements of aspects. Speci cgll we provide mechanisms for

re ning pointcuts (pointcut re nement) and advice (l\amed advice advice re nement),

which are tailored to AspectJ-like languages.

We use Jak as archetype for expressing AR at the language levéhis emphasizes the
uniformity of classes and aspects with respect to re nementAs with class re nement,

aspect re nement could also be implemented using altern&g@ mechanisms, such as vir-
tual classes or traits. With respect to this issue, we refer tihe discussion in Section 5.6.

71

AR weaving
semantics

Chapter 6 Aligning Aspects and Stepwise Development

Figure 6.2 shows a synchronization aspect (Lines 1-4) and enmement (Lines 5-21)
extending the aspect. Re nements may introduce new structaf elements as well as ex-
tend existing ones, as we will explain soon. They can be apglito abstract and concrete
aspects as well as to other re nements. This eliminates theldmma of anticipating sub-
sequently applied re nements by declaring base aspects dsstract. Moreover, it allows
a series of re nements to be applied to an aspect in di erentgrmutations.

1| aspect Sync {

2 void lock() { / locking access [}

3 void unlock() { / unlocking access [}
4/}

5| refines aspect Sync {

6 int threads;

7 void lock() {

8 threads++; Super .lock();

9 }

10 void unlock() {

11 threads--; Super .unlock();

12 }

13 pointcut syncPC() : execution (Iltem Buffer.get(int)) ||
14 execution (void Buffer.put(ltem));
15 Object around () : syncPC() {

16 lock();

17 Object res = proceed ();

18 unlock();

19 return res;

20 }

21|}

Figure 6.2: Adding members and extending methods via AR.

Notably, re ning aspects is conceptually di erent from apgying aspects. Applying two

aspects modi es the base program in two independent steps dur example this would

lead to two di erent instances of the synchronization aspécInstead, AR results in two

aspect fragments that are merged via mixin composition. Thas, an aspect together
with all of its re nements constitutes the nal aspect that is wovenonce to the base

program. Figure 6.3 illustrates this semantics of AR: on theeft side there is an aspect
and a set of compatible re nements. Subsequently, the basspeect is composed with
a series of user-selected re nements, which results in a haspect. This one is then
woven to the base program (right side).

6.2.1 Adding Members and Extending Methods.

A re nement may extend an aspect by adding new members. As skio in Figure 6.2, the
re nement adds a eld (Line 6), a pointcut (Lines 13-14), andan advice (Lines 15-20).
Re nements may also extend methods to reuse existing functiality (Lines 7-9 and 10-
12). A method extension usually overrides and calls the partemethod (Lines 8,11).

72

6.2 Mixin-Based Aspect Inheritance

base aspect composed aspect base program

aspect

aspect class

composition weaving

refinement l:> |:>
class class

refinement

refinement []

set of refinements

Figure 6.3: AR composition and weaving semantics.

6.2.2 Pointcut Re nement

A re nement may extend the pointcuts of an aspect. Recall ourx@ample aspect that
synchronizes the access to the methods 8uffer (cf. Fig. 6.1). For this aspect we
de ned two re nements, an aspect that extends the set of adsed join points by all
executions ofStack methods (Ill), and an aspect that constrains this set to exetions

that occur in the control ow of Socket methods (V). Both aspects were derived using
traditional aspect inheritance. They override the pointcti syncPC reuse its expression,

and add new pointcut expressions that extend or constrain &set of matched join points.

In AspectJ, pointcuts have to be accessed by their full-quadid name, in our example,
BufferSync.syncPC. Thus, the programmer is forced to hard-wire the aspect to bee-
ned and the subaspect. This tight coupling decreases reusiity. Figure 6.4 depicts
the synchronization aspect foBuffer and our re nements regardingStack and Socket,

but now implemented using mixin-based aspect inheritancéJsing Super the program-
mer refers to the parent's pointcut pase pointcuj without being aware of what actual
sequence of re nements is applied to the base aspect. For ewde, with traditional

inheritance each re nement would change the nal type of theaspect and thus x the
pointcut re nement to a speci ¢ base aspect. With mixin-basd inheritance the order is
variable.

The semantics of pointcut re nement is as follows: the mosterned (specialized) point-

cut in a series of pointcut re nements speci es when connemi advice is executed.

Which pieces of advice are executed can be speci ed all alorgetre nement chain, i.e.,
in every re nement of an aspect advice may be connected to aiptzut, although the
base pointcut was declared before and re nements to that pacut subsequently. Fig-
ure 6.5 shows a pointcut that matches a set of join points (dtad arrow), that triggers

73

decoupling
re nements
from base
pointcuts

semantics of
pointcut
re nement

Chapter 6 Aligning Aspects and Stepwise Development

1| aspect Sync { /I synchronize Buffer

2 pointcut syncPC() : execution (ltem Buffer.get(int)) ||

3 execution (void Buffer.put(ltem));

4 Object around () : syncPC() { / synchronization /}

5/}

6| refines aspect Sync { // synchronize Stack

7 pointcut syncPC() : Super .syncPC() || execution (* Stack.*(..));
8|}

9| refines aspect Sync { // only within cflow of Socket

10 pointcut syncPC() : Super .syncPC() && cflow (execution (* Socket.*(..)));
11}

Figure 6.4: Altering the set of locked methods via pointcute nement.

a connected advice (dashed arrow), and an advice that advsthe selected join points
(dot-dashed arrow). Figure 6.6 demonstrates that re ning his pointcut (solid arrow)
alters the triggering mechanism: the most re ned pointcut etends the set of matched
join points (dotted arrows) and triggers the advice (dashedrrow), albeit the advice was
de ned and connected in the base aspect. After the re nemenhe advice advised the
extended set of join points (dot-dashed arrows).

aspect | matches class
aspect Sync { join points | class Buffer {
triggers __ _ - {- pointcut syncPC() : execution(* Buffer.*(..)); 1~ - >\ void put(iteme) { ... }
advice > Objectaround() : syncPC() { ... }~-~._ _ -7 ltem get(int i) { ... }
! advises
join points
Figure 6.5: Pointcut-advice-binding.
aspect | matches class
aspect Sync { join points class Buffer {
pointcut syncPC() : execution(* Buffer.*(..)); |~~~ -\ void put(iteme) { ... }
L7 Object around() : syncPC() { ... }v:.‘_‘_\ _/,/"7 Item get(inti) { ... }
,/ I o i advises i
refines J triggers \,\join points
pointcut \ . advice refinement | class
s| refines aspect Sync { \“»\\ class Stack {
pointcut syncPC() : Super.syncPC() || >N\ void push(iteme) { ... }
execution(* Stack*(.)); {-. . itempop() { .. }
} matches }
join points

Figure 6.6: The most re ned pointcut triggers connected adee.

74

6.2 Mixin-Based Aspect Inheritance

6.2.3 Advice Re nement

Before explaining advice re nement it is necessary to intduce the notion of named
advice

Named Advice

Named advice is a named element of an aspect. It can be ovedeth and referred to
from advice inside subsequent re nements.

Figure 6.7 depicts an aspect for synchronization that conitas a named advice (Lines 3- named advice
8). Named advice is de ned by a result type @bject), an advice type @round), a = unnamed
name GyncMethod, an argument list (empty), an exception list (empty), a birding to 2dvice *
.advice
a pointcut (syncPQ, and an advice body. One can think of named advice as a paif,qihod
of unnamed advice and a separate method, which we calllvice method The advice
method contains the whole advice functionality; unnamed adce simply invokes this
method and passes all arguments (Fig. 6.8). The di erence that named advice has
full access to the dynamic contextgroceed and join point API). Though named advice
can be implemented di erently, this view is helpful for undestanding the semantics of

advice re nement.

1| aspect Sync {

2 pointcut syncPC() : execution (* Buffer.*(..));
3 Object around syncMethod() : syncPC() {

4 lock();

5 Object res = proceed ();

6 unlock();

7 return res;

8 1}

9|}

Figure 6.7: An aspect with named advice.

Re ning Named Advice

As opposed to traditional advice, named advice can be re ned subsequent development advice
steps. The key idea is to treat named advice in subsequent reements similarly to a renement =
method. This is possible since named advice has at least a r@na result type, and Method

. . . . re nement
an argument list. As mentioned, named advice can be undersi roughly as a pair of
unnamed advice and corresponding advice method. Hence, aviae re nement simply
re nes the advice method by method overriding, i.e., by de mg a method with the
same name and signature as the piece of hamed advice to be sxin

75

named advice
with
arguments

Chapter 6 Aligning Aspects and Stepwise Development

1| aspect Sync {

2 pointcut syncPC() : execution (* Buffer.*(..));
3 Object around () : syncPC() {

4 return syncMethod();

5}

6 Object syncMethod() {

7 lock();

8 Object res = proceed ();

9 unlock();

10 return res;

11| }

12 Object proceed () { / invoking the advised method /}
13|}

Figure 6.8: Implementing named advice as pair of unnamed ddeg and advice method.

Figure 6.9 depicts an aspect that re nes our synchronizatioaspect by extending its
named advice. The re nement contains an advice methasyncMethod(Lines 3-8) that
overrides the parent named advice by counting the number ofiteads. Since we exploit
method overriding, the re ning method must have the same namand the same signature
as the parent advice. The keyworduper is used to refer to the parent advice (Line 4).

1| refines aspect Sync {

2 int count = 0;

3 Object syncMethod() {

4 count++;

5 Object res = Super .syncMethod();
6 count--;

7 return res;

8 }

9}

Figure 6.9: Re ning named advice.

Figure 6.10 depicts a more complex example of advice re nemgin which the named
advice has multiple arguments: a logging aspect advisesedlecutions ofltem.toString
(Lines 2-3). A reference to thdtem object that is called is passed to a named advice
(Lines 4-6) that prints out some logging text (Line 5). Addiionally, the named advice
has a second argument, a reference to the resultigring object, which is expressed by
the keyword returning (Line 4)2. Re ning named advice subsequently (Lines 10-13),
we introduce an advice method with the same namand the same signature. In our
example the signature is composed of the two advice argumsht

2 The keyword returning means that the advice is executed only when the method execian ter-
minates without throwing an exception.

3 Advice declares arguments at two positions: (1) behind its mme and (2) behind the keywords
returning or throwing .

76

6.2 Mixin-Based Aspect Inheritance

1| aspect Logging {

2 pointcut ItemToString(ltem i) :

3 execution (String Item.toString()) && this (i);
4 after LogToString(ltem i) returning (String s) : ltemToString(i) {
5 System.out.printin("item:" + i + "=" + s);

6] }

7}

8| refines aspect Logging {

9 FileBuffer buf = new FileBuffer("foo");

10 void LogToString(ltem i, String s) {

11 Super .LogToString(i, s);

12 buf.write ("item:" + i + "=" + s);

13 }

14|}

Figure 6.10: Re ning named advice with arguments.

The semantics of named advice is similar to a virtual methodyhich passes the control named advice
ow to the most specialized descendant method of the inhedhce chain. Mapped to behaves like
advice re nement this means that, when the associated poicit matches, the most virtual
specialized advice method is invoked. Figure 6.11 shows aivige method that re nes methods

a named advice (solid arrow). It is is executed (dashed arrejvwhen the pointcut
syncPCmatches (dotted line). Programmers us&uper to navigate the re nement chain

upwards. The root of the re nement chain de nes to which poitcut the piece of advice

is bound.

aspect | matches class
aspect Sync { join points class Buffer {
, pointcut syncPC() : execution(* Buffer.*(..)); 1"~~~ " -\ void put(item e) { ... }
' Object syncMethod around() : syncPC() { ﬂ Item get(inti){ ...}
, 1}
)/ Obiject res = proceed(); /
/) refines /
triggers ‘, } advice /
advice X } ’//
AY !
. refinement | .-~ advises
N - 7 join points
\ refines aspect Sync { =T
Object syncMethod() { -~
Super.syncMethod();
}
}

Figure 6.11: Semantics of advice re nement.

An issue that we left out is how to use and accegsoceed and contextual information accessing the
within named advice and its re nements. We made no statememts to which information join point

of the exposed context of a join point should be visible to desndant advice methods. contextin
This issue arises because programmers may access the conigixg proceed or runtime named advice

77

access rules

Chapter 6 Aligning Aspects and Stepwise Development

variables aghisJoinPoint . Thus, one may use information that is not passed explicitly
via the advice interface. The question that arises is: shalle nements have unlimited
access to context information angroceed?

We argue that an advice re nement should only be permitted tcaccess those pieces
of context information that are passed via the advice intedce, and thus are part
of the advice method signature. This would preclude invokghproceed or accessing
thisJoinPoint from within an advice method. For example, in our logging exaple
the re nement of the advice accesses only those objects thaktre passed via the ad-
vice interface. To preserve simplicity and safety the usag# the re ective support for
accessing context information (e.gthisJoinPoint) is forbidden in advice re nements.
Furthermore, we do not allow named advice to be invoked dirdg by other advice and
methods such a mechanism is out of scope of this dissertatiand addressed elsewhere
(cf. Sec. 6.4).

6.2.4 Discussion

AR and its implementation via mixin-based aspect inheritace o er the following bene-
ts: they allow a base aspect to be composed with a series ofmrements, thus enabling
to customize and reuse aspect code exibly. Pointcut re neent decouples re nements
from their immediate base aspects, thus enhancing the congatility and customization
of the aspect weaving behavior. Advice re nement promotesuse in the same way as
method extension between classes. Named advice can be réuseali erent variants of
an aspect, thus supporting the customization of advice code

At the beginning of this chapter we identi ed three bene cid use cases for AR, which
we now want to revisit:

1. A programmer applies a re nement to adapt an aspect to thehanges made to a
base program. For example, Figure 6.12 shows an aspect thauats the updates
of Buffer objects (Lines 1-7) and a re nement that adapts the aspect taount
also executions otlear (Lines 8-10) that updates theBuffer object state as well;
this is achieved by pointcut re nement (Line 9).

2. A programmer can customize an aspect to react to a changedeu requirement.
Suppose a new design decision that requires dupdateCounter aspect to inform a
listener when an update operation was performed. Figure @ %hows a re nement
that implements this design decision using nhamed advice mement.

3. A programmer can decompose an aspect to decouple it frompeesi ¢ con guration
of the base program. For example, Figure 6.14 shows an asp#Et introduces a
new interfaceSerializable to a set of target classesRuffer , Stack). Figure 6.15

78

6.2 Mixin-Based Aspect Inheritance

1| aspect UpdateCounter {
2 int count = 0;
3 pointcut updatePC() : execution (void Buffer.put(ltem));
4 after updateCounter() returning : updatePC() {
5 count++;
6] }
7}
8| refines aspect UpdateCounter {
9 pointcut updatePC() : Super .updatePC() || execution (void Buffer.clear());
10| }
Figure 6.12: Counting the updates oBuffer objects.
1| refines aspect UpdateCounter {
2 UpdateListener listener = null ;
3 void setListener(UpdateListener |) { listener = I; }
4 void updateCounter() {
5 Super .updateCounter();
6 listener.notify();
7}
8|}

Figure 6.13: Notify a listener wherBuffer objects are updated.

shows the result of decomposing this aspect into a base andtre nements, where
each re nement introduces the interface to one target clas®efore composing and
compiling the nal program, a programmer or a tool select oilthose re nements
that target classes that are actually present in the progranton guration, e.g.,
when Stack is present then also the according re nement is present (L&s 7-9).

1| aspect Serialization {

2 [|

3 declare parents . (Buffer || Stack) implements Serializable;
4

}

Figure 6.14: Introducing the interfaceSerializable to Buffer and Stack.

The use cases discussed have one thing in common: aspect dode base aspect, AR improves
re nements) can be reused in di erent variants of a programaspects can be customizedreuse and
to the speci ¢ needs of a programmer or to t the structure of he base program. customization

It is worth to note that without the notion of AFMs it would be d i cult to realize AR. AFMs and AR
The layered structure of AHEAD designs assigns to each asp@m enclosing feature
module, which is associated to a development step. This infieation helps to organize
and compose re nements and their base aspects, which is eaipkd elsewhere [KAS06].

In the context of AFMs, decomposing an aspect into a base agpend several re ne-
ments means decomposing the enclosing AFM into several medhat are themselves

79

AR as
AHEAD
operator

Chapter 6 Aligning Aspects and Stepwise Development

aspect

Serialization {
/

/
}
refines aspect

declare parents
}

refines aspect
declare parents

Serialization {
: Buffer implements

Serialization {
. Stack implements

Serializable;

Serializable;

O©CoOoO~NOOUAWNEPE

}

Figure 6.15: Decompose&erialization aspect.

AFMs (see Fig. 6.16). Thus the number of AFMs increases butithprovides the neces-
sary exibility to compose di erent sets of features.

1x AFM;
1x aspect

I o

3x AFMs;
1x aspect &
2x refinements

decomposition

feature decomposed feature

Figure 6.16: Decomposing aspects by decomposing AFMs.

According to AHEAD's algebraic model, mixin-based aspeciheritance is simply a
composition operator that is invoked when aspects (and there nements) of di erent

development steps are composed. Hence, this aspect compmsioperator corresponds
to the class composition operator, which composes classssg mixin-based inheritance.

6.3 Tool Support

6.3.1 ARJ

ARJ is a language extension of AspectJ that supports aspect mement. It has been
implemented during this dissertation project as a modularxension to the abc com-
piler framework [ACH' 05]. It extends the abc parser enabling it to recognize our we
syntactical elements and it adds several frontend and back# passes for implementing
a syntax tree transformation. ARJ is implemented to work in cocert with the AHEAD
Tool Suite and Jak to integrate AR into AFMs: ARJ expects a featve expression in
form of an AHEAD equation le. AFMs are represented by contaiment hierarchies
that contain the associated aspects, classes, and re nemeles (class and aspect re-
nements). Further details about ARJ are explained elsewher [KAS06]. The current

80

6.4 Related Work

version of ARJ supports all language constructs proposed leerThe compiler as well as
several documents and examples can be downloaded from the AR@Db site.

6.3.2 FeatureC++

Our FeatureC++ compiler (cf. Sec. 5.5.1) supports a limitedorm of AR. AspectC++
aspects can be re ned (efines aspect ... ') by adding members, extending methods,
and re ning pointcuts. In the current version of FeatureC++ there is no support for
named advice or advice re nement.

6.4 Related Work

Higher-Order Functions, Pointcuts, and Advice

Aspects are re nements and can be modeled as functions [LH8&, LHBCO5, ALOG].

As already explained in Section 5.6, treating aspects as fttions helps to avoid several
problems arising from the unbounded quanti cation of aspés, which are not repeated
here. What is interesting is that in the light of the function nodel, AR is related to

higher-order functions A higher-order function expects a function as input and refrns

another function as output. Since aspects can be modeled amdtions a re nement

of an aspect can be understood as a function that applies to anttion, which is a

higher-order function, e.g.,R(A)(P), where P is a program, A is an aspect, andr is

a re nement of A. It remains open how high-order functions t with current algebraic

models of aspects and features [LHBLO6, LHBCO5, ALO6].

Our notion of aspect re nement is related further to highererder pointcuts and ad-
vice, discussed by Tucker and Krishnamurthi [TKO3]. They itegrate advice and point-
cuts into languages with higher-order functions and modehem as rst-class entities.
Pointcuts can be passed to other pointcuts as arguments. Téuthey can be modi ed,
combined, and extended. In this respect, our approach of asg and pointcut re ne-

ment is similar. We can combine, modify, and extend pointcgtby applying subsequent
re nements.

Due to the opportunity to re ne named advice, we can also mot}i and extend advice
using subsequent advice. This corresponds to higher-ordelvice that expects a piece of
advice as input and returns a modi ed piece of advice. Namedlgice can be passed to
other advice usually to advice that re nes other (input) advice. Thus, re ning advice

is similar to passing a piece of advice to higher-order adeic

4 http://wwwiti.cs.uni-magdeburg.de/iti_db/arj/

81

Chapter 6 Aligning Aspects and Stepwise Development

Implementation of Aspect Re nement

As discussed in Section 5.6, re nement can be implemented @nerent ways, such as
mixins, virtual classes, nested inheritance, or traits. Ithe context of aspects and AR,
a further possibility arises: an aspect could by re ned itdévia advice and inter-type
declarations of another aspect. In this case aspects thertves are part of a base program
and the programmer has the choice to re ne them via mixins, et or aspect weaving.
The answer to the question when to use which re nement mechiam is the same as for
re ning classes: in the case of homogeneous and advancedalyit crosscuts, aspects
are used to re ne base aspects; in all other cases, our notiohAR in the form of mixins
or virtual classes is used to re ne base aspects.

Unifying Advice and Methods

Using the annotation-based programming style of AspectJ, pscts are implemented as
classes and advice is implemented as method and declareduh via annotation. In this
programming style advice is already named and can be re ned/lmethod overriding.
However, it is not obvious how this relates to other mechaniss for re nement, e.g.,
pointcut re nement.

Rajan and Sullivan propose the notion o€lasspectshat combine capabilities of aspects
and classes [RS05]. A classpect associates to each piece wvicada method that is
executed for advising a particular join point. Moreover, @sspects unify aspects and
classes with respect to instantiation. Since advice is imgrthented via methods, it could
be re ned. However, the authors of classpects do not make aattment about this nor
about the consequences.

Aspects and Genericity

Several recent approaches enhance aspects with generjaityg., Sally [HUO3], Generic
Advice [LBS04], LogicAJ [KRO06], Framed Aspects[LR04]. This improves reusability
of aspects in di erent application contexts. Aspect re nenent and mixin-based aspect
inheritance provide an alternative way to customize aspesti.e., by composing a base
aspect and a series of desired re nements. However, ideas ganeric aspects can be
combined with our compositional approach, just ageneric feature modulescombine
AFMs with generics [AKLOG6].

82

6.5 Summary

AspectJ Design Patterns

Hanenberg and Unland discuss the bene ts of inheritance imé context of AOP [HUO1,
HSO03]. They argue that aspect inheritance improves aspeause and propose design
patterns that exploit structural elements specic to Aspet]. Their patterns pointcut
method composite pointcut and chained advicesuggest to re ne pointcuts in subsequent
development steps to improve customizability, reusabilt and extensibility. Due to its
exibility, AR can enhance these patterns by simplifying tre composition of aspects.
The pattern template advicecan be enhanced by the notion of named advice because it
becomes possible to re ne advice directly.

Feature-Optionality Problem

In FOP, features may depend on (or interact with) other feattes that are optional [Pre97,
LBLO6]. In order to be reliable with regard to putting in and removing optional fea-
tures, Prehofer proposes to split features into slices, i.ento a base feature and several
so calledlifters [Pre97]. Lifters encapsulate those pieces of code that dadeon (and in-
teract with) other features. When composing a program from &ures, a programmer or
a tool selects for each feature the base feature and thoseeli§ that refer to features that
actually participate in the current con guration. Liu et al. lay an algebraic foundation
for this methodology [LBLOG].

Our method of splitting aspects into pieces to resolve dep@encies between aspects and
classes of a base program is similar to their approach: ourmements correspond to
lifters, but in the context of AOP.

6.5 Summary

Aspect re nement is the incarnation of SWD in AOP. It follows drectly from the inte-
gration of aspects and feature modules. AR uni es classesdaaspects with respect to
subsequent re nement. We have illustrated three use caseb@ve AR improves reuse and
customization of aspect code. To introduce the principled ®&WD at the programming
language level, we proposed mixin-based aspect inheritenand a set of accompanying
language constructs that facilitate SWD: pointcut re nemem, named advice, and advice
re nement.

Though we feel certain that AR is an improvement in reuse andustomization capabil-
ities of AOP, as mixins, re nements, and virtual classes areo OOP, in Chapter 7 we
evaluate the notion of AR by means of a non-trivial case study

83

CHAPTER 7

Case Study: A Product Line for Peer-to-Peer
Overlay Networks

This chapter shares material with the GPCE'06 paper "When to Use Features
and Aspects? A Case Study' [AB06].

This chapter demonstrates the practical applicability of &AMs and AR to a medium-
sized case study. Furthermore, we address the interestingcafundamental issue, which
arises from the previous two chapters: when should a programer use feature-oriented
mechanisms (i.e., classes, virtual classes, and mixins)dawhen should aspect-oriented
mechanisms (i.e., introductions, pointcuts, and advice) éused to implement features
of a product line? That is, how do our programming guidelinegerform in a non-trivial
software project? Our case study gives answers, providesed sf supporting statistics,
and reveals open issues.

7.1 Overview of P2P-PL

We use a product line forpeer-to-peer overlay networks (P2P-PL)which was imple-
mented by the author [BAS05, ABO5b, ABO5a]. Beside the basianctionality as routing
and data management in a P2P network [ATS04], P2P-PL suppatseveral advanced
features, e.g., query optimization based on exible routig path selection [ABO5b], meta-
data propagation for the continuous exchange of control iafmation among peers [BAS05],
incentive mechanisms to counter peers that misbehavérde riders) [BB06]. Numerous
experiments concerning these features demanded many deat con gurations to make
statements about their speci c e ects, their variants, andcombinations [BAS05]. Hence,
P2P-PL seemed to be a good test case for AFMs and AR.

85

Chapter 7 Case Study: A Product Line for P2P Overlays

ne-grained P2P-PL has a ne-grained design. It follows the principle oévolving a design by starting

design from a minimal base and applying incrementally minimal re mments to implement
design decisions [Par79]. In its current state, it consistsf 113 end-user visible features,
categorized into several subdomains. Aend-user visiblefeature is an increment in
program functionality that users (in case of P2P-PL the autbr is the user) feel is
important in describing and distinguishing programs withn a product line.

Figure 7.1 depicts the rst two levels of the organizationastructure of P2P-PL. The set
of features is divided into features of plain P2P system®2P), of distributed hash tables
(DHT) a special kind of P2P system [ATS04], of content-addresbée networks (CAN)

a special kind of DHT [RFH™ 01], and features for experimental purpose&xp). The
subdomains are subdivided as well. The number behind eachbgiomain refers to the
number of features contained in the subdomain, e.g., subdam Peers contains four
features. The actual features are not shown because of thiErge number.

features

4)
®
®

‘ MessageHandling ‘ 3)

MessageSending @)
[Routing | @

(©)

P2P

1
®)
(10)
(€0

CAN ’—‘ Topology ‘ (6)

(11)
4)
(10
(10)
4)
(©)
(€
®)

Figure 7.1: The organizational structure of P2P-PL.

implementation P2P-PL was implemented using the AHEAD Tool Suite (ATS) and RJ. As explained
in Sections 5.5.2 and 6.3.1, the ATS served for implementifigature modules and ARJ

86

7.1 Overview of P2P-PL

for composing and weaving aspects within feature modulesh& code base of P2P-PL
is approximately 6.4 thousand lines of source code, distuted over 113 features.

7.1.1 Aspectual Feature Modules in P2P-PL

14 of the 113 end-user visible features of P2P-PL (12%) usepests (see Tab. 7.1);
the remaining 99 features were implemented as traditionaédture modules without
aspects. To give the reader an impression of how aspects anidins have been combined
in P2P-PL, we explain two simpli ed examples of AFMs.

| aspect | description \
responding sends message replies automatically
forwarding forwards messages to adjacent peers
message handler | base aspect for message handling
pooling stores and reuses open connections
serialization prepares objects for serialization
illegal parameters | discovers illegal system states
toString introduces toString methods to several classes
log/debug a mix of logging and debugging
dissemination piggyback meta-data propagation
feedback generates feedback by observing peers
query listener waits for query response messages
command line provides command line access
caching caches peer contact data
statistics collects and calculates runtime statistics

Table 7.1: Aspectual Mixin Layers used in P2P-PL.

Feedback Generator

The feedback generator feature is part of an incentive meamiam for penalizingfree feedback
riders peers that pro t by the P2P network but do not contribute ade quately [BB06]. counters free
A feedback generator feature, on top of a peer implementatipidenti es free riders by "ders
keeping track of whether other peers respond adequately toessages. If this is not the

case, an observed peer is considered a free rider. Spechgahe generator observes

the tra c of outgoing and incoming messages and traces whicheers have responded in

time to posted messages. The generator creates positivedtesck to reward cooperative

peers and negative feedback to penalize free riders. Feedbaformation is represented

by objects of classFeedbackand stored in a repository FeedbackRepository); it is

passed to other (trusted) peers attached to outgoing messyin order to inform them

about free riding. Based on the collected information, a pegidges the cooperativeness

87

feedback
generation is
crosscutting

AFM
encapsulates
multiple
artifacts

Chapter 7 Case Study: A Product Line for P2P Overlays

of other peers. Messages from peers considered free rideesgnored only cooperative
peers prot by the overall P2P network [BBOG6].

The implementation of the feedback generator crosscuts tingessage sending and receiv-
ing features. As Figure 7.2 shows, the feedback generator MEontains an aspect (dark
gray) and introduces four new classes for feedback managemeidditionally, it re nes
the peer abstraction (by mixin composition) so that each peewns a log for outgoing
queries and a repository for feedback information.

Peer
QueryListener
/”
MessageSender 7
=z [
Peer f% Feedback QuerylLog Feedback Feedback
Handler -g Repository Feedback Generator

Figure 7.2: Feedback generator AFM.

While the feedback generator feature implements a heteroggus crosscut, it relies on
dynamic context information, i.e., it is an advanced dynana crosscut. Figure 7.3 lists an
excerpt of the aspectFeedbackGenerator. The rst advice re nes the message sending
mechanism by registering outgoing messages in a query logngs 2-7). It is executed
only if the method send was called in the dynamic control ow of the methodforward .
This is expressed using theflow pointcut (Line 5) and avoids advising unintended calls
to send, which are not triggered by the message forwarding mechams The second
advice intercepts the execution of a query listener task fareating feedback (Lines 8-10).

Figure 7.4 lists the re nement of the classPeer implemented as a mixid. It adds a
feedback repository (Line 2) and a query log (Line 3). Moreaey, it re nes the constructor
by registering a feedback handler in the peer's message hiamgl mechanism (Lines 4-7).

In summary, the feedback generator AFM encapsulates fourasises that implement
the basic feedback management, an aspect that interceptsetmessage transfer, and
a mixin that re nes the peer abstraction. Omitting AOP mechalisms would result in
code tangling and scattering since the retrieval of dynamuontext information crosscuts

1 The background of usingcflow it that the method send is called many times inside a peer, but we

wanted to advise only those executions okend that occur when forwarding a message to another
peer.
The actual syntax for constructor re nement in Jak di ers sl ightly [BSR04].

88

7.1 Overview of P2P-PL

ol

1| aspect FeedbackGenerator { ...
2 after (MessageSender sender, Message msg, Peerld id) :
3 target (sender) && args (msg, id) &&
4 call (boolean MessageSender.send(Message, Peerld)) &&
5 cflow (execution (boolean Forwarding.forward(..))) &&
6 if (msg instanceof QueryRequestMessage)
7 {7 ... 1}
8 after (QueryListener listener) : target (listener) &&
9 execution (void QueryListener.run())
0 {r ... 1}
1}
Figure 7.3: Feedback generator aspect (excerpt).
1| refines class Peer {
2 FeedbackRepository fr = new FeedbackRepository();
3 QueryLog gl = new QueryLog();
4 Peer() {
5 Super ();
6 FeedbackHandler fh = new FeedbackHandler(this);
7 this .getMessageHandler().subscribe(fh);
8 1}
9}

Figure 7.4: Feedback management re nement of the claBeer.

other features, e.g., clients of the message forwarding rhanism. On the other hand,
implementing this feature as one standalone aspect wouldtrre ect the structure of the
P2P-PL framework that includes feedback management. All wvad be merged in one or
more aspect(s) that would decrease program comprehensi@ur AFM encapsulates all
contributing elements coherently as a collaboration thate ects the intuitive structure
of the P2P-PL framework we had in mind during its design.

Connection Pooling

The connection pooling feature is a mechanism to save timedaresources for frequently reusing open
establishing and shutting down connections. To integrateomnection pooling into P2P- connections
PL, we implemented a corresponding AFM. Figure 7.5 shows thAFM consisting of the
aspectPooling and the classPool. The aspect intercepts all method calls that create

and close connectiorfs The pool stores open connections.

Figure 7.6 lists the pooling aspect; it uses a pool for stognreferences to connections

(Line 2). The pointcuts close (Lines 3-4) andopen (Lines 5-6) match the join points
that are associated to shutting down and opening connectisn Named adviceputPool

(Lines 7-9) intercepts the shutdown process of connectioasd instead stores the associ-
ated ClientConnection objects in aPool object. Named advicegetPool (Lines 10-13)

3 Note that this is not ideally visualized because the calls areéntercepted at the client side.

89

Why not
using a
feature
module?

Chapter 7 Case Study: A Product Line for P2P Overlays

Peer

T

. 1
Connection 7
/
~ 7

[~ ool | COnrecton
Pooling

Figure 7.5: Connection pooling AFM.

recovers open connections (if available) and passes themdgants that request a new
connection. This aspect makes use of the built-in pointcuthis to limit the advised
calls to those that originate fromMessageSendenbjects.

1| aspect Pooling {

2 static Pool pool = new Pool();

3 pointcut close(ClientConnection con) :

4 call (void ClientConnection.close()) && target (con) && this (MessageSender);
5 pointcut open(ClientSocket socket) :

6 call (ClientConnection. new (ClientSocket)) && args (socket) && this (MessageSender);
7 Object around putPool (ClientConnection con) : close(con) {

8 pool.put(con); return null

9 1}

10 ClientConnection around getPool (ClientSocket socket) : open(socket) {

11 if (pool.empty(socket)) return proceed (socket);

12 return (ClientConnection)pool.get(socket);

13 }

14|}

Figure 7.6: Connection pooling aspect (excerpt).

Implementing this feature using FOP exclusively would leath code tangling and scatter-
ing. We would have to modifyMessageSendeat every place at which the methoctlose
and the constructor of ClientConnection is called. Simply extending both is not pos-
sible since this would a ectall calls, not only those that originate fromMessageSender
We solve this problem elegantly using advice that advisesltsaconditionally, i.e., depen-
dently on the type of the caller, which is an advanced dynamicrosscut.

Furthermore, we did not implementPool as a nested class within the aspe€ooling to
emphasize that it is regular part of the P2P-PL. We considet part of the collaboration
of artifacts that implement the feature. Subsequent re nerants may extend and modify
the classPool.

7.1.2 Aspect Re nement in P2P-PL

We used AR to re ne 7 of the 14 aspects used in P2P-PL. That is, evdecomposed
each of the 7 AFMs with aspects into a base AFM and multiple renements, where

90

7.1 Overview of P2P-PL

each re nement is an AFM itself (cf. Fig. 6.16 in Sec. 6.2.4\We explain two simpli ed
examples below.

Serialization

The feature Serialization consists only of one aspect. Figure 7.7 depicts the aspedtature
Serialization tailored for a fully-con gured P2P system. It enumerates aist of dependencies
declare parent statements that add the interfaceSerializable to a set of target P2P-PL
classes. The key thing to note here is that thelist of declared parents depends on

the set of features that are in a P2P systemThis means that, if the feedback gener-

ator feature is not present in a target P2P system, the stateemt declare parents:

Feedbackin Figure 7.7 would need to be removed from th&erialization aspect,
otherwise a warning would be reported (because there woul@ mo Feedbackclass}.

The same holds forPeerld, Contact, Key, and Dataltem. Thus, the de nition of the
Serialization aspect depends on other features that are present in a targgystem
(according to Sec. 6.2.4, it is an instance of use case 3).

We model the synthesis of a customizeSerialization aspect by re ning a base aspect.
That is, we apply AR to break apart the Serialization =~ aspect into smaller pieces a
base aspect + a series of re nements to synthesize a systespeci ¢ Serialization
aspect.

1| aspect Serialization {

2 declare parents . Message implements Serializable;
3 declare parents . Peerld implements Serializable;
4 declare parents : Contact implements Serializable;
5 declare parents . Key implements Serializable;

6 declare parents . Dataltem implements Serializable;
7 declare parents . Feedback implements Serializable;
8

9}

Figure 7.7: Serialization aspect (excerpt).

Figure 7.8 lists the decomposedberialization aspect, i.e., a baseSerialization
aspect and a set of re nements (merged in one listing). Eacle nement introduces the
Serializable interface to only one target class. This enables programnseto choose
only those pieces (re nements) that are required for a partular con guration of P2P-
PL. For example, the re nement that targets the clas$-eedback(Lines 10-12) is included

4 This particular aspect could also be implemented by enumerang all target classes in
a logical expression, e.g., declare parents : (Message |j Peerld jj ...) implements
Serializable

Not all aspect compilers will issue warnings; some may issuerers when non-existent classes are ref-
erenced. Our use of AR avoids compiler warnings/errors at theexpense of imposing more structure
on synthesized P2P-PL programs.

91

Chapter 7 Case Study: A Product Line for P2P Overlays

only in a program if the feedback generator feature is added avell. How ne-grained
this decomposition should be depends on the exibility of coposing end-user visible
features. In P2P-PL, we split the compoundserialization feature into 12 pieces (1 base
aspect and 11 re nements).

1| aspect Serialization {

2 declare parents . Message implements Serializable;
3}

4| refines aspect Serialization {

5 declare parents . Peerld implements Serializable;
6|}

7| refines aspect Serialization {

8 declare parents : Contact implements Serializable;
9}

10| refines aspect Serialization {

11 declare parents : Feedback implements Serializable;
12|} ...

Figure 7.8: Decomposed serialization aspect (excerpt).

Connection Pooling

implementing Figure 7.6 depicts thePooling aspect for a basic P2P system. By implementing further
design design decisions, the de nition of thé?ooling aspect changes use case 2 (cf. Sec. 6.2.4).
decisions Using AR we implemented these design decisions as re nemgnt

1| refines aspect Pooling {

2 pointcut open(ClientSocket sock) : Super .open(sock) &&
3 cflow (execution (void Peer.main(..)));

4/}

5| refines aspect Pooling {

6 Object putPool(ClientConnection con) {

7 synchronized (pool) { return Super .putPool(con); }
8 1}

9 ClientConnection getPool(ClientSocket sock) {

10 synchronized (pool) { return Super .getPool(sock); }
11 }

12|}

Figure 7.9: Encapsulating design decisions using AR.

Figure 7.9 depicts two re nements (merged in one listing). fie rst (Lines 1-4) re nes
the pointcut opento limit the matched joint points to those that occurs in the @ntrol
ow of Peer. This excludes join points associated to helper and expemmtation classes
that use ClientConnection objects as well. Pointcut re nement decouples the aspect
re nement from a xed base aspect and thus increases the dhility to combine this
re nement with other re nements.

92

7.2 Statistics

The second re nement is more sophisticated (Lines 5-12). ¢ nes both advice (putPool ,
getPool) with synchronization code to guarantee thread safety. Soe the pooling ac-
tivities are implemented via named advice, this re nement @ds synchronization code.

7.2 Statistics

In this section, we present statistics on how and when FOP ardlOP mechanisms were
used in implementing our P2P product line. These statisticprovide insight into the
programming guidelines on mechanism usage, which we discus detail in Section 7.3.

7.2.1 Statistics on Used AOP and FOP Mechanisms

We collected the following statistics: (1) the number of imigmentation mechanisms
used, (2) thelines of code (LOC)associated with these mechanisms, and (3) the LOC
associated with static crosscuts (introductions) and dymaic crosscuts (extending meth-
ods).

Number of Classes, Mixins, and Aspects

The base P2P framework contains only 2 classes. A fully-cayured P2P system consists number of

of 127 classes. Thus, re ning the base framework into a fullyon gured system required aspects sums
the incremental introduction of 125 classes. In addition tolass introductions, there were © 5%

120 class re nements implemented as mixins, and 14 aspectsrevused to modularize
crosscutting concerns. The main point is that we used classand mixins primarily for
implementing features rather than aspects, which were usexhly to a minor degree

about 5% of the overall number of mechanisms for construcgrfeatures (Fig. 7.10).

Oaspects:
14; 5%

O classes:
127; 47%

B mixins:
130; 48%

Figure 7.10: Number of classes, mixins, and aspects in P2R:P

93

aspect code
sums up to
6% of the
code base

dominant
activity of
features is
introduction

Chapter 7 Case Study: A Product Line for P2P Overlays

Oaspects:
406; 6%

Oclasses:
3056;

Emixins: 48%

2964,
46%

Figure 7.11: LOC of classes, mixins, and aspects in P2P-PL.

LOC Associated With Classes, Mixins, and Aspects

The overall code base of P2P-PL consists of 6,426 LOC. Of tke8,056 LOC are asso-
ciated with classes, 2,964 LOC with mixins, and 406 LOC withspects and re nements

of aspects. These statistics are in line with the numbers @ above on the ratio of

implementation mechanism usage. Aspect code sums up to 6%ganixin code to 46%

of the overall code base (Fig. 7.11).

LOC Associated With Re nements and Introductions

1,488 LOC of all mixins and aspects extend existing methoddynamic crosscuts). Of
these, 374 LOC are associated with AspectJ advice and 1,11#lmwmethod extensions
via mixins and overriding. The remaining 4,938 LOC are assated with introductions
of new functionality (static crosscuts). This suggests thahe dominant role of features
is to introduce new structures in P2P-PL (77%), rather than gtending existing methods
(17%) or advising join points (6%) (Fig. 7.12).

O method
extensions:
1114; 17%

B advice:
374; 6%

Ointroductions:
4932; T77%

Figure 7.12: LOC of static and dynamic crosscutting in P2P-P.

94

7.2 Statistics

7.2.2 Statistics on AFMs with Aspects

Number and Properties of Aspects

Of the 14 aspects that were used, 6 modularized homogeneotassscuts (that re ned a most aspects
set of targets coherently with a single piece of code), 7 asteimplemented advanced exploit
dynamic crosscuts (that access dynamic context informatio e.g., cflow), 2 aspects 2dvanced
altered inheritance relationships (that introduce interéces), and 3 aspects implementeofA opP

purely heterogeneous crosscuts (Fig. 7.£3)

O declare
parents:
2;11%

O homogeneous:
6; 33%

Oadvanced
dynamic:
7; 39%

W heterogeneous:
3;17%

Figure 7.13: Number of crosscuts implemented by aspects.

In summary, 11 of 14 aspects (79%) exploit the advanced cajiléles of AOP. Using
mixins exclusively would result in replicated, scatteredand tangled workarounds, as ex-
plained before. Only 3 aspects implement collaborationsahcould also be implemented
by traditional feature modules. Section 7.3 explains why ithese particular cases using
aspects was appropriate.

Number of Feature-Related Classes and Mixins

With respect to the question of if aspects are used standalooe with other classes and
mixins in concert, we observed that an AFM with one aspect adshas 1 to 2 (up to 6)
additional classes and mixins. This demonstrates that AFMs P2P-PL encapsulate
collaborations of aspects, classes, and mixins, rather thaspects in isolation.

7.2.3 Statistics on Aspect Re nement

As explained in Section 7.1.2, AR is useful for decomposingdare ning aspects. Ta-
ble 7.2 lists the decomposed aspects and the number of theernmements. On average,

6 Note that some aspects were counted for more than one categqrg.g., homogeneousnd dynamic.

95

many
problems
could be
solved by FOP

using aspects
standalone
was not
appropriate

Chapter 7 Case Study: A Product Line for P2P Overlays

there were 7 re nements per base aspect and 1/2 of all aspeegtere candidates for de-
composition via AR. While the predominant role of aspect re nment was to add new
structural elements, i.e., advice, pointcuts, methods, les, we re ned only 3 named
advice and 1 pointcut.

decomposed aspect \ number of re nements \

serialization 11
responding 4
toString 12
log/debug 13
pooling 3
dissemination 3
feedback 2

Table 7.2: Aspects decomposed by AR.

7.3 Lessons Learned

7.3.1 Re nements and Aspects When to Use What?

A central question for programmers is when to use re nementa la FOP and when

to use aspects? What we have learned from our case study is thatwide range of
problems can be solved by using object-oriented mechanismasd FOP. Speci cally,

we used FOP for expressing and re ning collaborations of dses. Collaborations are
typically heterogeneous crosscuts with respect to a baseogram. Each added feature
module re ects a subset of the structure of the base program.€., a sparse version
of the class hierarchy of the base program [OH92]) and addswhand re nes existing

structural elements. As we explained in Chapter 4, a signiant body of prior work

advocates this view [VN96¢c, MO04, LLOO03, Ern01, OZ05, OstpAVJ* 01, EOCO06,

TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99].

Using aspects in isolation for implementing collaboratichased designs, as proposed
in [PSR0O0, HUO2, SKO03], would not re ect the object-orientedstructure we had in
mind during the design of P2P-PL. For example, the peer abstction of P2P-PL plays
di erent roles in di erent collaborations, e.g., with the network driver and with the
data management. Encapsulating these di erent roles and #ir collaborations in single
aspects would hinder us and others to recognize and understiathe inherent object-
oriented structure and the meaning of these features. In pagular, if a collaboration
embraces many roles and they are merged into one (or more) rsalone aspect(s), the
resulting code would be hard to read and to understand.

96

7.3 Lessons Learned

Nevertheless, aspects proved to be a useful modularizatiorechanism. In our study we bene cial use
learned that they help in those situations where traditioneOOP and FOP failed: cases for AOP

1. By using aspects and their pattern-matching and wildcardnechanisms for homo-
geneous crosscuts we could avoid code replication. The agpariented implemen-
tation achieves a 5% code reduction compared to an equival@tject-oriented or
feature-oriented variant.

2. Aspects helped to express advanced dynamic crosscuts e implementation of
7 features in P2P-PL. Aspects perform better in this respedhan FOP because
they provide sophisticated language-level constructs thaapture the programmers
intension more precisely and intuitively (e.g.cflow).

Our case study provides statistics on how often AOP and FOP rokanisms are used. statistical
AOP mechanisms were used in 12% of all end-user visible featsi because they allowed support
us to avoid code replication, scattering, and tangling. Hoswer, aspects occupied only

6% of the code base. This is because standard object-oriehteechanisms were su -

cient to implement most features (i.e., 94% of the P2P-PL ca&dbase). Using AOP for
homogeneous crosscuts we coould achieve a code reductiobl6f

7.3.2 Borderline Cases

While we understand the above considerations as guidelines programmers that help
in most situations to decide between aspects and re nementaohanisms like mixins and
virtual classes, we also discovered a few situations wherelecision is not obvious.

We realized that some homogeneous crosscuts could be modméal alternatively by alternative
introducing an abstract base class that encapsulates thismmon behavior. While this implementa-
works, for example, for introducing an integer eld for asgining IDs to di erent types Eg?ngf eneous
of messages, it does not work for classes that are completatyelated, as in the case Cmssguts

of a logging feature. It is up to the programmer to decide if th target classes are
syntactically and semantically close enough to be groupedavan abstract base class.

Though our study has shown that a traditional collaboratiorbased design a la FOP alternative
works well for most features, we found at least one heterogmus feature for which it implementa-
is not clear if an aspect would not be more intuitive. This fetare introduces toString E‘;?efé eneous
methods to a set of classes. Naturally, each of these methasismplemented di erently. Cmsscﬂts
Thus, the feature is a heterogeneous crosscut. However, hist particular case it seems

more intuitive to group all toString methods in one aspect. We believe that this is

caused by the partly homogeneous nature of this crosscutg.i. introducing a set of

methods for the same purpose to di erent classes.

97

AR improved
customizabil-

ity

AR improved
reusability

Chapter 7 Case Study: A Product Line for P2P Overlays

7.3.3 Bene ts of Aspect Re nement

While the application of AR increased the total number of AFMsn P2P-PL consider-
ably, the ne-grained decomposition of aspects (which reks in 48 re nements applied
to 7 aspects) did not only structure the design and implemeation of P2P-PL, but it
also increased the con guration space, i.e., the tailorecaxiants that can be derived by
the con guration process. For example, the aspe@&erialization has as many variants
as di erent sets of target classes are possible in P2P-PL @hbretically 2'°). The aspect
Pooling comes in fewer variants (8) because it has only 3 optional mements, which
can be combined freely2%).

Beside an improvement in customizability we achieved a bett reusability of aspect code
amongst di erent variants of P2P-PL. In our study, all derivable variants of aspects share
common functionality, thus reusing aspect code. In case dfid aspectPooling, each
of the 8 variants reuses code of the base aspect and of 0 to 2nements. On average,
each variant of each of the 7 decomposed aspects reuses cddé d/2 aspects and
re nements. This is because, for most aspects, all variantsn be freely combined, i.e.,
they are optional and can be applied standalone to their basespects, in combination
with someother re nements, or in combination with all other re nements.

Finally, it remains to note that we did not nd many use casesdr advice and pointcut
re nement (3 named advice and 1 pointcut re nement). We bebve that this small
number originates from the refactoring approach we chosegl, we decomposed each
considered aspect retroactively into a base aspect and s&ge nements.

7.4 Open Issues

Granularity and Scalability

On average, in P2P-PL each feature is implemented by 56 LOC.hils, the features
of P2P-PL are very ne-grained. Although, we are not aware ofuidelines that tell
programmers what feature granularity is appropriate, thisne-grained approach might
not scale to larger software projects because programmergght get lost in the myriads
of features. One way to address this issue would be to implembeoarse-grained features,
e.g., as in [TBDO06]. While this solves the problem of limitedcalability, it decreases the
potential scenarios a feature can be reused with [Big98]. Rarkably, not aware of
this fact when implementing P2P-PL, we chose intuitively arapproach in between. As
explained in Section 7.1, we organized the set of 113 featsireto a logical tree structure
of subdomains. All these subdomains have counterparts inghdomain model of P2P
systems. Those subdomains can be understood as large-scalapound features. Such

98

7.4 Open Issues

a hierarchical approach might be a trade-o between ne-graed customizability and
scalability.

Code Tangling

During our study a fundamental question emerged: when is anteraction between to
feature modules (e.g., clasa calls a method of clasd) considered undesirable code
tangling? For example, Figure 7.14 depicts a simpli ed exget of the classPeer that
uses several times the message subsystem for sending messa@/e implemented this
interaction via direct method calls from the classPeer to the class MessageSender
(Lines 7,14). Moreover Peer uses a logging subsystem to log its current state. This is
implemented also via method calls fronfPeer to Log (Lines 5,8,12,15).

1| class Peer {

2 int id;

3 /A |

4 void run() {

5 Log.log("running peer: " + id);

6 [|

7 MessageSender.send(new RequestMessage (this));
8 Log.log("send request: " + id);

9 [|

10 }

11 void startup() {

12 Log.log("startup peer: " + id);

13 [|

14 MessageSender.send(new StartupMessage(this));
15 Log.log("send startup notification: " + id);

16 [|

17|}

18|}

Figure 7.14:Peer invokes methods ofLog and MessageSender

Most programmers would probably agree that the method callsom the classPeer to What is
the classMessageSendemre not undesirable code tangling, but invoking the method undesirable
log in the classLog is considered code tangling. That is, the calls thog should be @ngling?
moved to an aspect, whereas the calls tdessageSendeshould remain inPeer. In this

particular case it might be easy to decide, but in other situgons it might be unclear

when to factor a collaboration in an aspect and when not. So whis the general rule

for considering a uses-relationship as tangling or as meagiul collaboration?

We believe that thelaw of demeter of concerns (LoDC)nay help in this matter [Lie04].
Informally, it states that a concern should only know about oncerns that contribute
to its functionality. Mapped to our problem it is evident that calling methods of
MessageSendels necessary for the operation dPeer, whereas logging is not required.

99

Chapter 7 Case Study: A Product Line for P2P Overlays

Hence, programmers may use the LoDC for deciding when to usspacts and when
collaborations of re nements and classes.

7.5 Related Work

Recent studies have applied and evaluated AOP and FOP by thedpplication to larger
software projects. We review a representative subset.

AOP Case Studies

Colyer and Clement refactored an application server usingspects [CC04]. Speci cally,
they factored 3 homogeneous and 1 heterogeneous crosscuighile the number of
aspects is marginal, the size of the case study is impresgivhigh (millions of LOC).

Although they draw positive conclusions, they admit (but dil not explore) a strong
relationship to FOP. This dissertation demonstrates the weful integration of both worlds.

Zhang and Jacobsen refactored several CORBA ORBs [Z2J04]. Usirggle metrics, they
demonstrate that program complexity could be reduced. Thepropose an incremen-
tal process of refactoring which they calhorizontal decomposition Liu et al. point
to the close relationship to FOP [LBLO6]. Our study conrms hat with respect to
the implementation of program features, aspects are too sthanits of modulariza-
tion [MOO04, LLOO3].

Coady and Kiczales undertook a retroactive study of aspecv@ution in the code of
the FreeBSD operating system (200-400 KLOC) [CKO03]. They ¢tored 4 concerns and
evolved them in three steps; inherent properties of concermere not explained in detail.

Lohmann et al. examine the applicability of AOP to embeddednifrastructure soft-

ware [LST"06]. They show that AOP mechanisms, if carefully used, do nampose

a signi cant overhead. In their study they factored 3 concers of a commercial embed-
ded operating system; 2 concerns were homogeneous and 1rbgeneous. They show
that aspects are useful for encapsulating design decisipnsich is also con rmed by our

study.

FOP Case Studies

A signi cant body of research supports the success of FOP ihé¢ implementation of
large-scale applications, e.g., for the domain of networkféware [BO92], databases [BT97,
LASO05, B0O92], avionics [BCGS95], and command-and-contrsimulators [BJMvHO02],
to mention a few. The AHEAD tool suite is the largest example #h about 80-200
KLOC [BSR04, TBDO06]. However, none of these studies make quiative statements

100

7.6 Summary

about the properties of the implemented features, nor do tgeevaluate the implemen-
tation mechanisms used with respect to the structures of theoncerns. The features
they consider are traditional collaborations with heterogneous crosscuts, which is in
line with our ndings in P2P-PL.

Lopez-Herrejon et al. explore the ability of AOP to implemenproduct lines in a FOP
and SWD fashion [LHO6, LHBO6]. They illustrate how collaborgons are translated
automatically to aspects. They do not address in what situans which implementation
technigue is most appropriate nor how the aspects generataact program comprehen-
sibility.

Xin et al. evaluate Jiazzi and AspectJ for feature-oriented decomposition [XMEHO04].
They reimplemented an AspectJ-based CORBA event service [HEJOby replacing as-
pects with Jiazzi units, which are a form of feature modules. They conclude that Ji-
azzi provides better support for structuring software and m@nipulating features, while
AspectJ is more suitable for manipulating existing Java coden unanticipated ways.
However, they do not examine the structure of the implementefeatures. Their success
in implementing all features of their case study using Jiazteature modules hints that
most of them (if not all) come in form of object-oriented coliborations.

We are not aware of further published studies that take bothAOP and FOP into
account.

7.6 Summary

Our conducted study demonstrated the practical applicabily of the integration of AOP 17% method
and FOP. We observed that the dominant role of features is thtroduction of new extensions;
structural elements adding new classes and new members tisting classes. Re ne- G/Z’jaSpGCt
ment of existing methods involved a small fraction of feat&s in our case study (17%). code

This is in line with prior studies [LHO6, LHBO6]. Further, while aspects were used in-

frequently (6% of the code base), they enhanced the crossoug modularity of features

and reduced code replication. That is, using aspects or reements in isolation would

not have achieved an elegant design or implementation.

The result of our case study is a rst data point. Although we annot generalize of a Are features
single study, we believe this work supports the hypothesifiat object-oriented collabo- predominantly
rations (expressed by classes and mixins) de ne the predamant way in which concerns Eo'r'g'?)ora'
(features) are implemented, where aspects are useful in exgsing homogeneous and

advanced dynamic crosscuts. In the next chapter we addredsd issue in more depth.

Regarding AR we observed that 1/2 of all aspects in our study atd be decomposed to
separate design decisions or to decouple aspects from théade of the base program
(i.e., to synthesize tailored aspects). The composabilityf aspects and their re nements

101

Chapter 7 Case Study: A Product Line for P2P Overlays

increased the con guration space and facilitated aspect de reuse between aspect vari-
ants, which are tailored to di erent program contexts.

In summary, our case study provides supporting evidence thaur programming guide-
lines can assist programmers in choosing and using the rightplementation mechanism
for the right problem. In the next chapter we provide furthersupport for our guidelines
by means of analyzing further studies implemented by others

102

CHAPTER 8

Aspects Versus Collaborations

This chapter shares material with the AOPLE'06 paper "On the Structure of
Crosscutting Concerns: Using Aspects or Collaborations?' [ABROG].

We have shown how integrating AOP and FOP can overcome theindividual limitations.
Our case study supports our claims for a particular softwargroject. We observed that
our programming guidelines are reasonable for this examplaut also that aspects and
collaborations have been applied to di erent extents. Hower, this is only one data
point and furthermore it may be biased even against our besuwill.

In this chapter we revisit the question of when to use what maanism and how imple-
mentation techniques are used today. We formulate a problestatement that serves as
a starting point for our investigations. Subsequently, we gsent a set of code metrics
for analyzing programs based on AOP. Finally, we apply our nrécs to a set of case
studies implemented by others. Based on this, we can makeaiger claims about the
issues regarding the current practice of programming withotlaborations and aspects.

8.1 Problem Statement: Aspects vs. Collaborations

Aspects and collaborations overlap in their capabilitiesa solve certain design and im-
plementation problems. Our derived programming guidelirsere ect this fact and assist
the programmer in choosing the right programming techniquéor the right problem:

1. Collaborations are heterogeneous crosscuts and shoulel &bstracted explicitly,
e.g., by feature modules [BSR04] or related mechanisms [OZB&MOO06, LLOO03,
Her02, TVJ* 01, Ost02].

103

AOP lled a
vacuum

Do aspects
implement
collabora-
tions?

Chapter 8 Aspects Versus Collaborations

2. Aspects should be used in the remaining cases, i.e., fomtageneous crosscuts and
advanced dynamic crosscuts.

These guidelines are not arbitrary at all, but were inferredrom the individual strengths
of aspects and collaboration abstraction mechanisms. Théwild on a long line of work
on OOP and collaboration-based designs [RAB2, GHJV95, VN96c, LLO03, MOO04,
SB02, BSR04, MMP89, Ern01, EOCO06, OZ05, Ste00, NQM06, NCM@®DNO5, CLO1]
and follow the initial idea of AOP, namely to implement only hose concerns as aspects
for which the underlying modularization mechanisms fail [KM* 97, EFBO01].

However, we are aware that although the concept of collabdi@ns predates AOP by
quite some time, mainstream OOP languages have been slow upgorting these con-
structs. AOP has lled the vacuum and o ered some programmig mechanisms that
remain controversial [Lie04, Ste06, Ale03] and that may ldato serious penalties, e.g.,
unpredictable program behavior [MA05, DFS04, LHBLO06], wéamodularity [GSF* 05,
GSC' 03] and decreased evolvability [Lie0O4, LHBL0O6, GB03]. Fuwermore, the weak
support of collaborations and related mechanisms (e.girtual classesfMMP89, EOCO06,
0Z05], mixins [BC90, SB02] nested inheritancelNCM04, NQMO6], classboxe$BDNO5])
has contributed to a confusion regarding their relationspi to crosscutting concerns,
which we have addressed in Chapter 3.

The aim of this chapter is to explore whether aspects used tayl really implement

AOP-speci ¢ problems or implement in fact collaborationswhich could have been im-
plemented by languages that support collaborations. With ta advent of languages that
support collaborations (e.g.Scala[OZ05], Jiazzi [MFHO01], Jx [NCMO04], J& [NQMO06],

Classbox/J [BDNO5], Jak [BSR04], Context] [CHdMO06], Lasagne/J [TVJ* 01], Cae-

sarJ [AGMOO06], Aspectual Collaborations[LLOO03], Object Teams [Her02], Aspectual

Feature Moduleg the question of whether and how aspects should be replaceddollab-

oration abstraction mechanisms arises. Furthermore, weainterested in which design
and implementation problems remain for aspects beyond daborations.

To answer these questions we have analyzed a set of Aspectdgrams. In order to
guantify the application of aspects we propose a set of codestrics for aspect-oriented
programs.

8.2 Metrics

A software metric is a measure of some property of a piece ofta@are or its speci -
cation. The metrics we propose target exclusively the isssigliscussed above, namely
the question in which of our two categories (collaborationranot) a given aspect falls.
Speci cally, we are interested in the following metrics:

104

8.2 Metrics

What fraction of a program's code base is occupied by class@serfaces, and
aspects?

What fraction of inter-type declarations and advice is hetexgeneous and homoge-
neous?

What fraction of advice is basic and advanced?

The metrics are quanti ed by the number of occurrences (NOO)of a certain software
artifact and/or the lines of code (LOC)associated with it.

Classes, Interfaces, and Aspects (CIA)

This metric determines the NOO of classes, interfaces, andpeects, as well as the LOC
associated with them. It tells us whether the number of asptx(as opposed to classes
and interfaces) is a small or a large fraction of the modula@tion mechanisms used in a
program, and whether aspects implement a signi cant or onlg small part of the code
base. However, the CIA metric does not tell us how aspects ansed, e.g., how often
advanced advice is used in an aspect as opposed to basic aghdnd methods. This is
where further metrics come into play.

Heterogeneous and Homogeneous Crosscuts (HHC)

The HHC metric explores to what extent aspects implement hoogeneous and het-
erogeneous crosscuts. Speci cally, we determine the friaet of advice and inter-type

declarations that implement heterogeneous and homogensaerosscuts (NOO) and the
fraction of the code base that is associated with them (LOC)Yhe HHC metric tells us

whether the implemented aspects take advantage of the wilgl@ and pattern-matching

mechanisms of AOP (homogeneous crosscuts) or merely emel®&OP mechanisms (het-
erogeneous Crosscuts).

Basic and Advanced Dynamic Crosscuts (BAC)

The BAC metric determines the NOO of pieces of basic and adveed advice and the
overall LOC associated with them. This metric tells us to whiaextent the aspects of a
program take advantage of the advanced capabilities of AORIfimplementing dynamic
crosscuts. Basic advice can be implemented as method extens via overriding.

105

Chapter 8 Aspects Versus Collaborations

8.2.1 Analyzing AspectJ Programs

As our metrics are language-independent, we now explain hdw collect statistics for
AspectJ programs.

CIA Metric

Collecting data for the CIA metric is straightforward: we simply traverse all source
les included in a given project and count the NOO and LOC of gsects, classes, and
interfaces. Upfront we eliminate blank lines and comments.

HHC Metric

Homogeneous crosscuts a ect multiple join points by applgg identical code. Typi-
cally this can be recognized syntactically by advice and iet-type declarations that
have wildcards (i.e.,*, +, and ..) and disjunctions (e.g., execution(/*...*/) i
execution(/*...*/) "or ‘declare parents : (Line jj Point) implements Shape").
Furthermore, advice is considered homogeneous that doeg gaalify a target method
or eld completely, e.g., by omitting the declaring type: execution(void print()) '

All remaining pieces of advice and inter-type declarationsre considered heterogeneous.

BAC Metric

We consider all pieces of advice as advanced except thoseoaisted with call ' and
execution and that are not combined with any other pointcuts, except wh target
and args?. This is an overestimation: it might consider some pieces aflvice advanced
that is not, but not vice versa. However, our studies show thahis does not a ect the
results, since we found very few pieces of advanced advicgrewith this overestimation.
The remaining advice is considered basic.

8.2.2 AJStats: A Statistics Collector for AspectJ Programs

For collecting statistics of AspectJ programs we developedtool, called AJStats®. The
core of AJStats is an AspectJ parser that is generated by meaata JavaCC grammar,

1 Although the semantics of call is to advise the client side invocations of a method, it can be
implemented as method extension provided thatall calls to the target method are advised.

2 The pointcut execution can be combined also with the pointcutthis .

3 http://wwwiti.cs.uni-magdeburg.de/iti_db/ajstats/

106

8.3 Case Studies

borrowed from [FLGO06]. AJStats analyzes AspectJ programs drcollects the following
data (measured in NOO and LOC):

classes, aspects, interfaces (distinguishes between keyel and nested)

methods, constructors, elds (distinguishes between clsss, interfaces, and as-
pects)

pointcuts, advice

inter-type declarations (eld, methods, constructors, abers)

AJStats does not identify homogeneous and advanced dynamimsscuts. In order to
do so one has to examine the code by hand.

Figure 8.1 shows a screen snapshot of the output of AJStats exftanalysis of an arbitrary
AspectJ program.

8.3 Case Studies

There are not many published, non-trivial studies on Aspedtin the open literature.
We analyze a diverse selection of small-sized, medium-gizand large-sized programs
that we were able to locate. We did not include P2P-PL and othrgorograms of our own
because we did not want to bias the results.

8.3.1 Overview of the Analyzed AspectJ Programs

The rst 5 case studies are small and medium-sized Aspectlqgrams € 20 KLOC);
the last 3 are large-sized AspectdJ programs (20 KLOC).

Tetris: The Game

Tetris is the implementation of the popular game in AspectJ. It was deloped at the
Blekinge Institute of Technology in Sweden. The source codeavailable publicly at the
project Web site*. The code base of Tetris is 1,030 LOC. It implements featurssich as
a GUI, various game levels, or block management.

OAS: An Online Auction System

OAS (Online Auction System)is a system that allows people to negotiate the purchase
and sale of goods in the form of English-style auctions (ovéne Internet). OAS was

4 http://www.guzzzt.com/coding/aspecttetris.shtml

107

Chapter 8 Aspects Versus Collaborations

Figure 8.1: AJStats Screen Snapshot.

108

8.3 Case Studies

developed from scratch using AspectJ at the Lancaster Unigty. The source code was
released kindly by Awais Rashid. The code base of OAS is 1,623C. OAS does not
employ a special notion of features. Nevertheless it factofunctionality such as a GUI,

serialization, as well as auction, user, and bidding managent.

Prevayler: Transparent Persistence for Java

Prevayler is a Java application that implements transparent persistese for Java ob-
jects. It is a fully functional main memory database systemni which business objects
may persist. Prevayler was refactored by the University of dronto using AspectJ and
horizontal decomposition[GJ05, ZJ04]. Successively, a series of features has been de-
tached and encapsulated into aspects. Example features grersistence, transaction,
guery, and replication management. The refactored Aspectdource code is available

at the project Web site’. The code base of Prevayler is 3,964 LOC subdivided into 18
features.

AODP: Aspect-Oriented Implementation of the GoF Design Patterns

AODP (Aspect-Oriented Design Patterns)is an AspectJ implementation of the GoF
(Gang-of-Four) design patterns [GHJV95], implemented at th University of British
Columbia [HK02]. The programmers of AODP restructured seval design patterns
using AspectJ and separated the reusable parts of aspectslatasses. The Aspectd im-
plementation can be obtained at the project Web sife The overall code base consists of
3,995 LOC subdivided into 23 features, which are the di erdrdesign pattern instances.

FACET: An Aspect-Based CORBA Event Channel

FACET (Framework for Aspect Composition for an EvenT channel)s an AspectJ imple-
mentation of a CORBA event channel, developed at the Washingh University [HCO02].
The source code is available publicly at the project Web site The goal of the FACET
project is to investigate the development of customizableindleware using AOP. FACET
implements a real-time event channel in Java and AspectJ, mdee after the TAO Real-
time Event Channel[SLM98]. The code base of FACET is 6,364 LOC subdivided into
34 features. Features in FACET are for example di erent everypes, synchronization,
a CORBA core, or tracing.

5 http://www.msrg.utoronto.ca/code/RefactoredPrevayle rSystem/
6 http://www.cs.ubc.ca/ jan/AODPs/
7 http://www.cs.wustl.edu/ doc/RandD/PCES/facet/

109

Chapter 8 Aspects Versus Collaborations

AJHotDraw: A 2D Graphics Framework

AJHotDraw is an aspect-oriented refactoring of the JHotDraw two-dimesional graphics
framework. It is an open source software project hosted by élfSourceForge.netopen
source development Web portal. The code is publicly availlbat the AJHotDraw project
Web sité®. The code base of AJHotDraw is 22,104 LOC. It provides numersieatures
for drawing and manipulating graphical, planar objects.

Hypercast: A Multicast Overlay Network Protocol

Hypercastis an implementation of a protocol for multicast overlay netork communica-
tion. It was developed at the University of Virginia in coopeation with the Microsoft
Corporation [LB99]. The original object-oriented implemetation was refactored using
AspectJ and crosscutting interfaces[GSS 06]. The source code was released kindly by
Yuanyuan Song and Kevin Sullivan. The code base of the aspextiented implemen-
tation of Hypercast is 67,260 LOC. Example features of Hypeaist are di erent base
protocols (UDP, TCP, HTTP), encryption, or message handlig.

Orbacus: A CORBA Middleware Framework

Orbacusis a mature CORBA-compliant middleware product that has beeneployed by
IONA Technologie$. It has been used successfully in mission-critical systerirsthe
telecommunications, nance, government, defense, aeregge and transportation indus-
tries. We consider the AspectJ-based version of Orbacus (akAbacug developed by
refactoring at the University of Toronto [ZJ04, ZGJO05]. The sorce code was released
kindly by Charles Zhang and Hans-Arno Jacobsen. The code baddhe AspectJ version
of Orbacus is 129,897 LOC. Orbacus is a complex software withmerous features, e.g.,
dynamic invocation interface, event handling, encoding ogersation.

8.4 Statistics

We used AJStats for collecting the statistics. We identi ed lomogeneous advice and
inter-type declarations as well as advanced advice by hande., we examined the code
manually. This method revealed an interesting issue: we idiéed advice and inter-type
declarations that have patterns and wildcards in their poittut expressions but that do
not a ect multiple join points. For example, advice after() : call(* foo(..)) "is

http://sourceforge.net/projects/ajhotdraw/

9 http://www.orbacus.com/

110

8.4 Statistics

Tetris OAS Prevayler AODP
NOO [LOC || NOO | LOC [NOO [LOC || NOO | LOC
features / code base 6 | 1030 1| 1623 18 | 3964 23 3995
classes + interfaces 9 818 21| 1283 107 | 2739 244 3241
aspects 8 212 9 340 55| 1225 41 754
java elds 81 81 64 64 149 149 149 149
java methods a7 583 149 | 1042 338 | 1779 432 2010
java constructors 7 116 37 137 83 351 76 334
aspect elds 17 17 20 20 24 24 16 16
aspect methods 1 11 6 78 1 3 39 205
aspect constructors 0 0 0 0 0 0 0 0
itd elds 0 0 0 0 27 27 2 2
itd methods 0 0 2 15 65 266 41 182
itd constructors 0 0 0 0 7 34 0 0
itd declare 2 2 8 8 23 23 37 37
advice 21 145 20 141 106 518 15 94
hom. advice 0 0 15 61 10 52 5 50
hom. itds 2 2 8 8 3 7 7 7
advanced advice 2 12 4 25 30 136 3 30
basic advice 19 133 16 116 76 382 12 64
het. crosscuts 21 145 7 95 215 809 83 258
FACET AJHotDraw Hypercast Orbacus
NOO [LOC || NOO | LOC [[NOO [LOC || NOO | LOC
features / code base 34| 6364 13 | 22104 10 | 67260 30 | 129897
classes + interfaces 181 | 5143 351 | 21909 328 | 67142 || 1894 | 118938
aspects 113 | 1221 10 195 12 118 125| 10959
java elds 198 198 712 712 || 2691| 2691 | 3180 3180
java methods 340 | 2936| 2850| 15937 3122 | 52130 7659 | 89642
java constructors 88 375 356 | 1461 383 | 6879 | 1447 7219
aspect elds 3 3 0 0 8 8 33 33
aspect methods 57 187 0 0 0 0 19 139
aspect constructors 0 0 0 0 0 0 2 16
itd elds 22 22 1 1 0 0 63 63
itd methods 52 229 20 121 0 0 460 4036
itd constructors 3 12 0 0 0 0 0 0
itd declare 34 34 10 10 0 0 4 4
advice 49 297 5 19 8 27 289 4748
hom. advice 4 16 3 11 8 27 14 209
hom. itds 8 8 1 6 0 0 0 0
advanced advice 11 110 3 12 2 8 53 488
basic advice 38 187 2 7 6 19 236 4260
het. crosscuts 148 570 32 134 0 0 802 8642

Table 8.1: Collected data of the analyzed case studies.

111

Chapter 8 Aspects Versus Collaborations

formally a homogeneous advice but if there is only one methddo in the base program
it is in fact heterogeneous. We address this issue in more tlejin Section 8.5.

Table 8.1 lists the data we collected from the AspectJ prognas. Especially, interesting
for our analysis are the rowslasses + interfacesaspects hom. advice hom. itds, and
advanced adviceln the following paragraphs we discuss the data in depth.

CIA Metric

Since the projects analyzed are of di erent size (1 KLOC 13&LOC) the number of
classes, interfaces, and aspects varies as well. The speutof the number of classes and
interfaces ranges from 9 to 1,894 and the number of aspectsnr9 to 125. The LOC of
classes and interfaces ranges from 818 to 118,938 LOC andlteC of aspects from 118
to 10,959 LOC. Figure 8.2 illustrates that AOP has been usea tdi erent extents (0.2%
to 31% of the code bases). Especially in the small-sized an@dium-sized projects €
20 KLOC) aspects occupy a signi cant part of the code base (#® 31%); in the larger
projects (> 20 KLOC) aspects occupy a smaller fraction (0.2% 8%).

100% - T r

classes + | aspects gg;) |

interfaces g 70% 1
Tetris 79.4 % 20.6 % g 0% i
OAS 791% | 209% 5 el
Prevayler 69.1 % 30.9 % 2 30% - !
AODP 81.1 % 18.9 % £ 20% - :
FACET 80.8 % 192 % 1%] |
AJHotDraw 99.1 % 0.9 % .
Hypercast 99.8 % 0.2 % >
Orbacus 91.6 % 8.4 %

‘ Oclasses + interfaces W aspects

Figure 8.2: NOO and LOC of classes, interfaces, and aspects.

HHC Metric

Homogeneous crosscuts have been used in the analyzed pnogréo di erent extents:
the spectrum ranges from 2 to 209 LOC associated with homogems advice and inter-
type declarations. That is, we found 0.04% to 4.3% of the codmse implementing
homogeneous crosscuts (Fig. 8.3). Note that the 4.3% comesni the second smallest
program (OAS). We revisit this issue in Section 8.5.

In contrast to homogeneous crosscuts, we found 0 to 8,642 L@dplement heterogeneous
advice and inter-type declarations, which are 0% to 20% of ¢hcode base.

112

8.4 Statistics

100% ‘ ; T
90% 1 | | |
] | heterogeneous | homogeneous | 5 8% -
Tetris 14.1% 0.2 % S oo | | |
OAS 5.9 % 43 % 8 50w - | | |
Prevayler 20.4 % 1.5 % g 0%
AODP 6.5 % 1.4 % g oo | | |
FACET 9.0 % 0.4 % = 0w | | |
AJHotDraw 0.6 % 0.1% 0% w w i \ i \ |
Hypercast 0.0 % 0.04 % /\@;& & @\e\ OQQ (55\ oﬁ &q,é Q’Q&
Orbacus 6.7 % 0.2 % S

‘ Oremaining code Mheterogeneous O homogeneous

Figure 8.3: NOO and LOC of heterogeneous and homogeneousssouits.

BAC Metric

Advanced dynamic crosscuts have been used to di erent extsnn the analyzed AspectJ
programs. The spectrum ranges from 8 to 488 LOC, which sums tg 0.01% to 3.4%
(Fig. 8.4). The highest percentage comes from Prevayler, aegiums-sized program.

In contrast to advanced advice, we found 7 to 4,260 LOC impleant basic advice, which
sums up to 0.03% to 13% of the code base.

100% TT =1 ; =
basic advanced Zgjjjj E RIEIE SH P
advice advice & 70w [|
Tetris 12.9 % 1.2 % ‘el B
OAS 71% 15% 5 sl
Prevayler 9.6 % 34% S aom ||
AODP 1.6 % 0.8 % g 20%
FACET 29% 1.7 % 1gj NN
AJHotDraw 0.03 % 0.1% N
Hypercast 0.03 % 0.01 % & & Q@\é VOOQ ch’é\ o\ﬁ g @&%
Orbacus 33% 04 % < & ©

‘ Oremaining code Mbasic advice Oadvanced advice

Figure 8.4: NOO and LOC of basic and advanced advice.

113

advanced
AOP vs.
collaborations

2% of the
code exploits
advanced
AOP

the larger the
code base, the
lesser AOP is
been used

Chapter 8 Aspects Versus Collaborations

8.5 Discussion

Figure 8.5 depicts the fractions of the code base of the Asp&programs analyzed by us
that demand advanced AOP mechanisms and that require only G®and collaboration
abstraction mechanisms. Note that the fractions that reque AOP are not calculated
by simply adding the code associated with homogeneous advi& inter-type declara-
tions and advanced advice together. This is because someatgradvanced advice is also
homogeneous (e.g.after() returning: call(* foo(..)) && cflow(execution(*

bar(..))).

100% 1 -
collaborations advanced 2322 1
AOP & 70w |
Tetris 98.6 % 1.4 % 3 GOZA‘)
OAS 945 % 55 % 5 sl
Prevayler 95.1 % 4.9 % § 30% A
AODP 98.4 % 16 % £ 20% -
FACET 97.9 % 21% g
AJHotDraw 99.9 % 0.1% o o < A s 5 e
Hypercast 99.96 % 0.04 % R Y @0@ o@& & @’Oy
Orbacus 99.5 % 0.5 % a SR
‘ Ocollaborations W advanced AOP ‘

Figure 8.5: Fractions of code that require (1) advanced AOPna (2) OOP and collabo-
ration abstraction mechanisms.

In summary, the spectrum of the fractions of the code base thaxploits advanced
AOP mechanisms ranges from 0.04% to 5.5%, where the smatlesi and medium-sized
programs have the largest fractions (1.4% 5.5%) and the lge-sized programs have
the smallest fractions (0.04% 0.5%).

Interpretation of the Data

A major insight gained from the statistics is that only a minor fraction of the code
base (on average 2%) of the analyzed AspectJ programs exploits the advanced caipsbilit
of AOP, i.e., homogeneous and advanced dynamic crosscuts. Thisoameans that on
average98% of the code base implements collaborations

A further interesting outcome is that there seems to be a caelation between the extent of
advanced AOP in a program and the size of its code base. In ouradyzed programs, we
observed that the larger the code base, the smaller the framt of advanced AOP. While
the small-sized and medium-sized programs (20 KLOC) use some AOP mechanisms

114

8.5 Discussion

(on average 3%), the large-sized programs (20 KLOC) virtually do not make any use
of advanced AOP (on average 0.2%).

These statistics suggest thathe impact of advanced AOP mechanisms decreases as tlteee
program size increasesLarge programs use virtually no advanced AOP but exclusilye suspicions
OOP and collaborations. Though we have no de nitive answerotthe question of why

there is an inversely proportional correlation between pgram size and impact of AOP,

we have three suspicions:

1. The impact of AOP in large-sized programs is negligible bause it is certainly
harder to understand a large-sized program than a small-sid program. This cir-
cumstance may be responsible for why the programmers werd able to discover
homogeneous and advanced dynamic crosscuts in large-sigeagrams. Tool sup-
port for discovering aspects automatically could help to asst the programmer, e.g.,
aspect mining tools [BK04, MvDMO04, TC04] and clone detectiotools [BvDVETO05,
LLMO6, BYM *98, FR99, LPM" 97, Bak95].

2. The impact of AOP in large-sized programs is negligible bause these programs
have not been developed with AOP in mind. All of them have beeronstructed via
a refactorization of object-oriented code into aspect-@nted code. It may be that
the programmers simply stopped using AOP after having dethed a reasonable
number of aspects. Thus, the ratio of aspect code and objemtiented code di ers
in small-sized and large-sized programs. The developmeiftagpect-oriented large-
sized programs from scratch might con rm this conjecture.

3. The impact of AOP in large-sized programs is negligible bause the design and
implementation problems that occur in large-sized prograsnare predominantly
collaborations. This could be explained by the sheer complty of these problems
that is incompatible with the generic character of homogewes crosscuts. That
is, it is really hard to nd problems in large-sized programghat a ect many join
points and that do the same thing at all points. The same mighbe true for
advanced dynamic crosscuts.

Code reduction

We have argued that aspects are useful for reducing code iegation in a program. AOP reduces
Imagine an aspect that advises 100 join points and executeseach join point 10 lines code

of code encapsulated in one piece of advice. Compared to an ®@quivalent, this Teplication
aspect would reduce the code size by approximately 990 linglscode. This benet is

not re ected in our metrics and statistics. An aspect-orieted program may have only

a few pieces of advice and reduce code replication signi ¢ign

115

Chapter 8 Aspects Versus Collaborations

In order to explore this issue, we analyzed for all the congickd AspectJ programs, the
reduction of code replication achieved by using aspects forodularizing homogeneous
crosscutting concerns.

100% T
90% - I N N
] | code reduction | g B80%
Tetris 0.0 % 5 oo]
OAS 22.0% 8 s0% |- |
Prevayler 27 % S 40%
AODP 1.7 % g ol !
FACET 7.7 % 10% 1 |
AJHotDraw 0.2 % 0% ‘ i ‘ ‘ ;
Hypercast 0.1 % SIS SR N
O)rltr))acus 0.5 % “© e Q@@ © & @09« ng’o &

‘ O code base without replication M code reduction

Figure 8.6: Code reduction achieved by using AOP.

small-sized vs. Figure 8.6 shows di erent degrees of code reduction achieivBy using AspectJ instead

large-sized
programs

impact on
large-sized
programs

4% code
reduction
through AOP

of Java in the analyzed programs. In OAS the code size is redddey 22% compared
to an OOP equivalent; in FACET a reduction of 7.7% has been amved; all other code
reductions are 3% and below. It is interesting that the secarrsmallest program achieves
the highest degree of code reduction (OAS; 22%). Howevénge ability of AOP to the
reduce code decreases as the program size increa¥®hile we observed a signi cant code
reduction (on average 7%) in the small-sized and medium-stz programs, we observed
almost no reduction (on average 0.3%) in the large-sized gmams.

The reason why the bene t of using AOP in large-sized prograsnis so marginal might
be that aspects have not been used to the same extent as in shs@#ted programs. When
the impact of aspects in large-sized programs increasesrihtis reasonable to expect a
reduction of code replication similar to the one in small-ged programs (7%).

Nevertheless, the observed code reduction of on average 486 ©ns our programming
guidelines: use AOP for homogeneous crosscuts because yuavoid code replication.
Though 4% may seem to be a marginal bene t, it has been obsedvehat any kind of
code replication may lead to serious maintenance probleni&ak95, LPM* 97, BYM* 98,
FR99, LLMO06]. Furthermore, this result is in line with prior work on clone detection
that conjectures that 5% to 15% of large software projects arclones, i.e., replicated
code fragments [Bak95, LPM97, BYM™ 98].

116

8.6 Related Work

Misuse of Wildcards

A further observation of our study is that the programmers othe analyzed AspectJ wildcards are
programs used wildcards to match sets of join points (homogeous crosscuts). We used for single
discovered that sometimes these wildcard-based pointcuti® not match multiple join o points
points, but each pointcut matches exactly one join point (hierogeneous crosscuts). It

follows that identifying wildcards in pointcut expressios of an AspectJ program does not

indicate how many homogeneous crosscuts were implementegtduse they may match

single join points only. We suspect two possible reasons fiis: (1) the programmers

anticipated features to be added subsequently to the progres, or (2) they used wildcard

because they are a “convenient' way to save time and codingo€.

Regarding the second alternative it remains to note that thigrogramming style may
come at a high price [Ale03]. Programmers may get lost easiyhen adding new features
because it may be hard to gure out whether all the pointcuts bthe program a ect the
correct sets of join points after this change [LHBLOG6].

8.6 Related Work

There is some related work on a quanti cation of the use of AORia code metrics.

Zhang and Jacobson use a set of object-oriented metrics to qtify the program com-
plexity reduction when applying AOP to middleware systemsZJ03, ZJ04]. They show
that refactoring a middleware system (23 KLOC code base) iotaspects reduces the
complexity (quanti ed by McCabe's cyclomatic complexity)and results in a code reduc-
tion of 2% 3%, which is in line with our results.

Garcia et al. analyzed and compared several aspect-oriethtprograms (4 KLOC 7
KLOC code bases) and their object-oriented counterparts & 05, KSG" 06]. They
observe that the aspect-oriented variants exhibited supier stability and reusability
through the changes, as it has resulted in fewer lines of cod&% code reduction), etc.

Benn et al. apply the metrics of Garcia et al. to a distributedcomputing application
(0.7 KLOC code base) [BCP05]. They observe a code reduction of 11% of the aspect-
refactored variant compared to an OOP equivalent.

Zhao and Xu propose several metrics for aspect cohesion lthea aspect dependency
graphs [ZX04]. Ceccato and Tonella propose metrics for measg the coupling degree
between program elements [CT04]. To our knowledge, they didt evaluate their metrics

by a case study. Gelinas et al. discuss previous work on cabesmetrics and propose a
novel approach based on dependencies between aspect memfi@BB06]. They evaluate

di erent metrics by three small-sized and medium-sized casstudies € 7 KLOC).

117

What fraction
of aspects
implements
collabora-
tions?

2% of the
code bases is
associated to
advanced
AOP

AOP vs.
advanced
AOP

Chapter 8 Aspects Versus Collaborations

All of the above proposals and case studies take neither theusture of crosscutting
concerns nor the di erence between collaborations and otheoncerns into account.

Lopez-Herrejon and the author propose a set of code metricy fanalyzing the cross-
cutting structure of aspect-based product line features HHAO7]. However, this work
focuses exclusively on homogeneous and heterogeneousscutsng concerns. It does
not consider elementary crosscuts but analyzes crosscogiproperties of entire features,
which may have a substantial size. This way, the crosscutignstructure of a feature can
be homogeneous, heterogeneous, or any value in between fhectum of both. We ap-
plied these metrics to a large-scale case study (200 KLOC)dnobserved that virtually

every feature was predominantly heterogeneous.

8.7 Summary and Perspective

The motivation for our study was to determine the fraction ofaspects that have been used
to implement collaborations. The background is that there i@ two classes of modular-
ization mechanisms for crosscutting concerns: (1) collatadion abstraction mechanisms
and (2) aspect-oriented mechanisms. Due to the missing sugpfor collaborations in
contemporary mainstream programming languages, aspecte drequently used to im-
plement collaborations, which we identied as one categorgf crosscutting concerns
(cf. Chapter 3). However, with the advent of collaboration bstraction mechanisms
(e.g., classboxes, nested inheritance, virtual classeglehation layers, AFMSs) it stands
to question how many of these aspects implement collaboratis, and how many are
used for alternative use cases beyond collaborations, j.eomogeneous and advanced
dynamic crosscuts.

To address this issue we analyzed a set of AspectJ programsikable publicly, which
range from small-sized and medium-sized (1 KLOC 6 KLOC) todrge-sized AspectJ
programs (20 KLOC 120 KLOC). We found that in these programson average 2% of
the code bases is associated with advanced AOP; 98% is assgedi with collaborations
and OOP. This result is in line with our experience and the exgrience of others, who
distiguish between aspects and collaborations [LH06, LHBD

It is worth noting that the fraction of 2% is in contrast to the real use of AOP mechanisms
in the analyzed programs, which is on average 15%. This resldads us to conclude
that, given an appropriate support of implementing and comgsing collaborations, col-
laboration abstraction mechanisms can replace traditiom@aspects to a signi cant extent

in contemporary aspect-oriented programs. That is, 13% ohé code base of the ana-
lyzed AspectJ programs is associated with aspects that ingrvhent collaborations and

that should be implemented using languages that support daborations.

118

8.7 Summary and Perspective

Furthermore, we revealed an inversely proportional corrafion between program size and impact of
the impact of advanced AOP. This is remarkable since we exgded a constant percentage program size
of advanced AOP code without any dependence on the progranzesi Though we have

no de nitive answer for why this is the case, we have three psible suggestions, which

largely build on the fact that the increasing complexity in &rge-sized program prevents
programmers to discover or to implement aspects that are nabllaborations. In any

case, we conjecture that a fraction of around 5% is a typicapper limit for the use of

advanced AOP.

Nevertheless, AOP should not be avoided completely. In thdissertation, we condensed use cases for
two reasons why one should use AOP: (1) when modularizing hogeneous crosscut-AOP

ting concerns a code reduction can be achieved (on average #P®ur analysis) and

(2) advanced dynamic crosscuts can be expressed more intgty, at a higher level of

abstraction (on average 1% of the code bases in our analysi€ur analysis of AspectJ

programs supports our belief that AFM are an appropriate apach to implement such

software projects because they integrate collaboratiorabed design and AOP, which are

both necessary for certain design and implementation pradhs.

Finally, our study revealed that sometimes the powerful AOFPnechanisms, i.e., wildcards misuse of
in pointcut expressions were used without any bene t. It ha®een argued that this may Wwildcards
lead to serious problems regarding reliability and evolvaily [LHBLO6, Ale03]. We

argue that our programming guidelines help avoiding such suse of AOP since they

point programmers to this problem and assist them to chooséé right technique for the

right problem.

119

CHAPTER 9

Concluding Remarks and Further Work

The principles of separation of concerns and modularity aimt solving problems associ- problem area
ated with the software crisis, i.e., canceled projects, pjrcts running over-time, projects

running over-budget, etc. Though in the recent years signtant progress has been made,

the current situation in software development is far from aelquate. According to the

most recent Standish Group report, only 34% of all softwarerpjects are successful.

This dissertation aspires to contribute to this line of resarch by analyzing, explaining, aim of the
combining, and devising conceptual, methodical, practitaand tool-related means to dissertation
improve separation of concerns and modularity in softwareSpeci cally, we focus on

two programming paradigms, FOP and AOP that have been discased intensively in the

literature. This dissertation can be understood as a histaral survey of the author's work

on FOP and AOP, their evaluation, comparison, combinationanalysis, and discussion.

The structure of the dissertation re ects, beside the chraslogy of work on this topic,

also the evolution of the author's understanding of FOP, AOPand their relationship.

9.1 Summary of the Dissertation

We presented in Chapter 3 a classi cation of crosscutting agerns, which are the main Chapter 3
design and implementation problems addressed by FOP and AOPhis classi cation is

crucial to a systematic discussion about separation and moldrization of crosscutting
concerns. It is a prerequisite for an evaluation and compaon of FOP and AOP.

The evaluation in Chapter 4 revealed that FOP and AOP are not@mpeting approaches Chapter 4
and that their combination can overcome their individual Imitations. The strengths

and weaknesses of FOP and AOP are expressed in programmingdglines that assist
programmers to choose the right implementation techniqueif the right problem.

121

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9 Concluding Remarks and Further Work

In Chapter 5 we presented an approach for the combination ofGP and AOP. The
symbiosis of FOP and AOP incorporates the strengths of FOP a@nAOP into one uni-
form approach, which we callaspectual mixin layers (AFMs) AFMs provide a way of
designing and implementing programs incrementally; theyombine aspect-oriented and
feature-oriented programming mechanisms; and they are lgmage-independent. Addi-
tionally, we provide tool support for Java/Aspect] and C++/A spectC++. The assess-
ment of AFMs is driven by our evaluation criteria and programiming guidelines that
demonstrate the successful symbiosis of FOP and AOP, i.e.FNs prot largely from
the strengths of FOP and AOP.

Given the integration of feature modules and aspects, we a@dsed in Chapter 6 the
issue of whether and how aspect-oriented mechanisms t theepwise development style
of FOP. We observed that current AOP language mechanisms amet adequate and pro-
posed the integration of aspects and a set of accompanyingdmage mechanisms, which
we call aspect re nement (AR). AR uni es classes and aspects with respect to stepwise
development. According to this view, aspects are just anoth software artifact that can
be subject of subsequent re nement, which satis es the praiple of uniformity [BSR04].

In Chapter 7 we presented and discussed the results of applgithe notions of AFMs
and AR to a non-trivial, medium-sized software project. In his study we implemented
14 of 113 features as AFMs; 8 aspects were re ned using AR. Thdemonstrates the
practical applicability of AFMs and AR. An interesting insight gained in this study is
that aspect-oriented (advice and inter-type declaratiojsand feature-oriented (collab-
orations) mechanisms are not used to the same extent. We falthat the dominant
role of features is the introduction of new functionality (7% of the code base) and the
extension of methods (17% of the code base). Only 6% of the eobase represents
aspect-oriented mechanisms.

In Chapter 8 we examined the disproportion of code related t6OP and AOP noted
in our case study. We derived from our experience a problemagtment. What is the
current practice of using AOP and FOP-related mechanisms? hE background is that
we noticed a confusion about the relationship of crosscutty concerns and collabora-
tions, which was revealed and resolved by this dissertatiorDue to the long-standing
missing support of collaborations in main stream programmg languages, AOP lled a
vacuum, i.e., aspects were used for implementing collabboms. But, with the advent of
languages, tools, methods, and formalisms that support tatborations, aspects should
be avoided in these situations.

The questions that arise are: How many aspects implement tddorations and how
many solve problems beyond collaborations, i.e., homogens and advanced dynamic
crosscuts. To answer these questions, we de ned in Chaptera8set of code metrics
and applied them with tools we provide to 8 AspectJ programsfali erent size. We

found that on average 2% of the code base of the analyzed prams represents ad-

122

9.2 Contributions and Perspective

vanced AOP and 98% represents collaborations. We noted th#éte impact of AOP
decreases as the program size increases, i.e., in smaélesiand medium-sized programs
we found 3% of the code base associated with advanced AOP andarge-sized pro-
gram only 0.2%. Furthermore, we observed that, despite the arginal use, advanced
AOP mechanisms reduced code replication by on average 4%sd@here we found that
the bene t of code reduction decreases as the program sizereases, i.e., 7% in small-
sized and medium-sized programs and 0.3% in large-sizedgraoms. We summarize our
suspicions regarding this phenomenon in the following semts.

9.2 Contributions and Perspective

The contribution of this dissertation is twofold. First, we evaluated, compared, and impact of
combined FOP and AOP to overcome their individual limitatims. This resulted in the AFMs and AR
notions of AFM and AR. However, our work on AFMs and AR contribdes not only a

design method, language and tool support but also helps in derstanding the relation-

ship of aspects and feature modules. FOP and AOP are not contipg programming
paradigms, but merely decompose software in di erent way®ghat their combination

leads to a better program design. Our programming guideliseassist not only program-

mers but sensitize them to the issues discussed in the digagon. The tools we provide

enable other researchers to make their own investigations AFMs and AR. Finally, our

case study demonstrated the practical applicability of AFM and AR and it pointed to

a further fundamental question: What is the current practiceof AOP and how many

aspects implement collaborations?

Answering this question is the second contribution of thisidsertation. Especially, that advanced
advanced AOP is rarely used and that its impact even decreasat larger scales are AOP is rarely
interesting observations. While we expected the fraction @efdvanced AOP to be around used

5%, we did not expect that the fraction decreases as the pragn size increases. We

have several intuitive explanations that roughly boil dowrto the sheer complexity that

either prevents the programmer to discover aspects or makesplementation problems

so complicated that they cannot be modularized well using adnced AOP.

An interesting, related branch of research might provide nre satisfying answers. Work clone
on clone detection suggests that 5% 15% of the code base ofragram is associated detection
with code clones [Bak95, LPM97, BYM* 98], which are in fact a kind of homogeneous
crosscutting concerns. It is known that clones are hard to sttover and to avoid and that

tool support is necessary. Using clone detection tools weutth explore whether there

are use cases of aspects additionally to the ones found by Harso the upper limit for

the percentage of code clones could be similar to the uppenii for the percentage of
advanced AOP (5% 15%)).

123

advanced
clones

quanti cation
and functional
aspects

What is
essential?

features and
genericity

Chapter 9 Concluding Remarks and Further Work

However, the clone detection community considers also pamnaterized clones and clones
that are equal in parts, which we calladvanced clonesPossibly, advanced clones can-
not be modularized using AOP mechanisms, i.e., homogeneadvice and inter-type
declarations. This may be because a part or even only a patters equal in all clones
and AOP does not provide appropriate language mechanisms ¢éxpress the common-
alities and variabilities of the clones. Thus, the 5% 15% déisnation might be too
optimistic. Personally, the author estimates that approxinately 5% of a program code
base is associated with advanced AOP.

9.3 Suggestions for Further Work

According to the two main clusters of contributions of this dssertation, we see two
clusters of suggestions for further work: (1) FOP and AOP, (Zaspects vs. collaborations.

Further Work on FOP and AOP

Regarding the symbiosis of FOP and AOP, we suggest to explonather their relation-

ship at the design and the language level. It is interestingptknow how the global quan-
ti cation of aspects a ects or even hinders the incrementatlevelopment style of FOP.
Although touched in this dissertation (cf. Sec. 5.6 and 6.4)we omitted an in-depth
investigation. In a ongoing branch of work we address thissse [ALS05, AL06, KAS06].

Another interesting issue is how to strip down the integrate approach of FOP and
AOP to provide a minimal set of abstractions and language mekanisms. The question
is: What is essential and how can we develop a consistent desigethod, language, and
tool suite? Several researchers made already rst steps anthis direction [LHBCO5,
LHBLO6, Hut06]

A further interesting line of research arises from the impiaentation of AFMs with
FeatureC++. Similar to C++, FeatureC++ provides a template mechanism for generic
programming. This poses the question of when to use gener&sxl when to use feature
modules to make a program customizable. The background isathboth techniques
support the implementation of customizable and reusable de. We observed that the
combination of generics and feature modules improves custizability and reusability in
SPLs since they act at di erent scales [AKLO6]. While featurenodules are the building
blocks of an SPL, generics enable feature modules to be adapto speci ¢ needs. We call
the combination generic feature modulesnd it is implemented in FeatureC++ [AKLO6].
It would be interesting to explore the impact of genericity o non-standard FOP/AOP
mechanisms like AFMs and AR.

124

9.3 Suggestions for Further Work

While this dissertation targets the principal di erences an commonalities of FOP and refactoring
AOP in software development, others explored their benet o refactoring. It will

be interesting to revisit work on aspect-oriented refactoring (AOR)[HMKO05, CBO05,

MF05, CC04, Z2J04, GJ05, CK03, LST06, BCP* 05] and feature-oriented refactoring

(FOR) [LHBLO6, TBDO06, LHO06, LHB06, XMEHO04] by taking the results aad experi-

ences of this dissertation into account.

Further Work on Aspects vs. Collaborations

The most remarkable result of this dissertation is probablyhat, in the analyzed Aspect] automatic
programs, only 2% of the code base is associated with advath@gOP and 98% with clone
collaborations. Moreover, the impact of AOP decreases asetiprogram size increases.detection
We suggest that clone detection tools may help to nd out whdter this proportion

should be expected generally or whether either programmerss AOP languages today

are simply not capable of exploiting the advantages of AOP.@hsequently, it is promising

to evaluate several clone detection methods and tools andeih use for quantifying the

impact of AOP compared to collaborations and OOP. Taking thexistence of advanced

clones into account, we conjecture that approximately 5% dhe code base may be
associated with advanced AOP and 95% with collaborations. U2 to the multiplicity

and diversity of clone detection approaches, this attempsia non-trivial endeavor and

part of further work.

Finally, it is interesting to compare di erent collaboration abstraction mechanisms and empirical and
programming languages and to reimplement aspect-orient@dograms by replacing as- comparative
pects that implement collaborations. The Aspect] programanalyzed here qualify as a Studies
starting point. Empirical studies on the aspect-oriented iad collaboration-based vari-

ants can quantify their performance with respect to undersindability, maintainability,

reusability, and customizability, etc. A point that is not stressed in this dissertation is the

impact of the cognitive distance between programmer and pgoam that depends clearly

on the used programming paradigm and its mechanisms. Furthempirical studies will

have to shed light on this issue.

125

[AAC T 05]

[ABO4]

[ABO5a]

[ABO5b]

[ABO6]

[ABRO6]

[ACH* 05]

Bibliography

C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S<uzins, O. Lho-
tak, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Addig Trace
Matching with Free Variables to AspectJ. InProceedings of the Interna-
tional Conference on Object-Oriented Programming, Systems, Language
and Applications (OOPSLA), pages 345 364. ACM Press, 2005.

S. Apel and K. Bohm. Towards the Development of Ubigtous Mid-
dleware Product Lines. InProceedings of ASE Workshop on Software
Engineering and Middleware (SEM) volume 3437 ofLecture Notes in
Computer Sciencepages 137 153. Springer, 2004.

S. Apel and K. Béhm. Self-Organization in Overlay Nevorks. In Proceed-
ings of CAISE'05 Workshops (Workshop on Adaptive and Self-Managing
Enterprise Applications), volume 2, pages 139 153. FEUP Edicoes, 2005.

S. Apel and E. Buchmann. Biology-Inspired Optimiztions of Peer-to-
Peer Overlay Networks. Practices in Information Processing and Com-
munications (Praxis der Informationsverarbeitung und Kommunikation)
28(4):199 205, 2005.

S. Apel and D. Batory. When to Use Features and Aspects® Case Study.
In Proceedings of the International Conference on Generative Program-
ming and Component Engineering (GPCE)pages 59 68. ACM Press,
2006.

S. Apel, D. Batory, and M. Rosenmdiller. On the Structue of Crosscutting
Concerns: Using Aspects or Collaborations? IGPCE Workshop on
Aspect-Oriented Product Line Engineering (AOPLE) 2006. Published at
the workshop Web site: http://www.softeng.ox.ac.uk/aopk/.

P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins]. Lhotak,
O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble abc:

127

Bibliography

[AGMOO06]

[AKLO6]

[ALO6]

[AldO5]

[Ale03]

[ALRSO5]

[ALSO5]

[ALSO06]

[ATS04]

128

An Extensible AspectJ Compiler. InProceedings of the International Con-
ference on Aspect-Oriented Software Development (AOS)ages 87 98.
ACM Press, 2005.

l. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann An Overview
of CaesarJ. Transactions on Aspect-Oriented Software Development I,
Lecture Notes in Computer Scienge3880:135 173, 2006.

S. Apel, M. Kuhlemann, and T. Leich. Generic FeatureModules: Two-
Staged Program Customization. InProceedings of the International Con-
ference on Software and Data Technologies (ICSOFTpages 127 132.
INSTICC Press, 2006.

S. Apel and J. Liu. On the Notion of Functional Aspectsn Aspect-
Oriented Refactoring. In Proceedings of the ECOOP Workshop on As-
pects, Dependencies, and Interactions (AD))pages 1 9. Computing De-
partment, Lancaster University, 2006.

J. Aldrich. Open Modules: Modular Reasoning about Adee. In Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 3586 ofLecture Notes in Computer Sciengepages
144 168. Springer, 2005.

R. Alexander. The Real Costs of Aspect-Oriented Progmming. |IEEE
Software 20(6):92 93, 2003.

S. Apel, T. Leich, M. Rosenmiiller, and G. Saake. FeaeC++: On the
Symbiosis of Feature-Oriented and Aspect-Oriented Progmaming. In
Proceedings of the International Conference on Generative Programming
and Component Engineering (GPCE)volume 3676 ofLecture Notes in
Computer Sciencepages 125 140. Springer, 2005.

S. Apel, T. Leich, and G. Saake. Aspect Re nement anddBinded Quan-
ti cation in Incremental Designs. In Proceedings of the Asia-Paci ¢ Soft-
ware Engineering Conference (APSEC)pages 796 804. IEEE Computer
Society, 2005.

S. Apel, T. Leich, and G. Saake. Aspectual Mixin Lays: Aspects and
Features in Concert. InProceedings of the International Conference on
Software Engineering (ICSE) pages 122 131. ACM Press, 2006.

S. Androutsellis-Theotokis and D. Spinellis. A Swey of Peer-to-Peer
Content Distribution Technologies. ACM Computing Surveys (CSUR)
36(4):335 371, 2004.

Bibliography

[Bak95]

[BASO5]

[Bat88]

[Bat05]

[Bax92]

[BBO6]

[BBG™ 88]

[BCYO]

[BCGS95]

[BCP* 05]

B. S. Baker. On Finding Duplication and Near-Dupliation in Large Soft-
ware Systems. InProceedings of the Working Conference on Reverse En-
gineering (WCRE), pages 86 95. IEEE Computer Society, 1995.

E. Buchmann, S. Apel, and G. Saake. Piggyback Metaafa Propagation
in Distributed Hash Tables. In Proceedings of the International Confer-
ence on Web Information Systems and Technologies (WEBISTpages
72 79. INSTICC Press, 2005.

D. Batory. Concepts for a Database System Synthesiz In Proceedings
of the International Symposium on Principles of Database Systenpgges
184 192. ACM Press, 1988.

D. Batory. Feature Models, Grammars, and Propositinal Formulas.
In Proceedings of the International Software Product Line Conference
(SPLC), volume 3714 ofLecture Notes in Computer Sciencepages 7
20. Springer, 2005.

I. D. Baxter. Design Maintenance Systems&Communications of the ACM
(CACM), 35(4):73 89, 1992.

K. B6hm and E. Buchmann. Free-Riding-Aware Forwardig in Content-
Addressable NetworksVLDB Journal, Online First, 2006.

D. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C.
Twichell, and T. E. Wise. GENESIS: An Extensible Database Man
agement System. IEEE Transactions on Software Engineering (TSE)
14(11):2711 1730, 1988.

G. Bracha and W. R. Cook. Mixin-Based Inheritance. IfProceedings of
the International Conference on Object-Oriented Programming, Systemn
Languages, and Applications (OOPSLA) and the European Conference
on Object-Oriented Programming (ECOOP) pages 303 311. ACM Press,
1990.

D. Batory, L. Coglianese, M. Goodwin, and S. ShafeCreating Reference
Architectures: An Example from Avionics. InProceedings of the Sympo-
sium on Software Reusability (SSR)pages 27 37. ACM Press, 1995.

J. Benn, C. Constantinides, H. K. Padda, K. H. Pedersen, RRioux, and
X. Ye. Reasoning on Software Quality Improvement with AspeeOriented
Refactoring: A Case Study. InProceedings of the International Confer-
ence on Software Engineering and Applications (SEApages 476 483.
International Association of Science and Technology for Belopment,
2005.

129

Bibliography

[BDNO5]

[BFS8]

[BFS06]

[BG97]

[BHMOO04]

[Big98]

[BIMVHO2]

[BKO4]

[BKO6]

[BLS03]

[BO92]

130

A. Bergel, S. Ducasse, and O. Nierstrasz. Classbdx/Controlling the
Scope of Change in Java. IfProceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 177 189. ACM Press, 2005.

L. Bouge; and N. Francez. A Compositional Approach t&uperimpo-
sition. In Proceedings of the International Symposium on Principles of
Programming Languages (POPL)pages 240 249. ACM Press, 1988.

E. Bodden, F. Forster, and F. Steimann. Avoiding Innite Recursion with
Strati ed Aspects. In Proceedings of the International Net.ObjectDays
Conference pages 49 64. Gesellschaft fur Informatik, 2006.

D. Batory and B. J. Geraci. Composition Validation andSubjectivity in
GenVoca GeneratorslEEE Transactions on Software Engineering (TSE)
23(2):67 82, 1997.

C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.Virtual Machine

Support for Dynamic Join Points. In Proceedings of the International
Conference on Aspect-Oriented Software Development (AOS[pages 83

92. ACM Press, 2004.

T. J. Biggersta . A Perspective of Generative ReuseAnnals of Software
Engineering 5:169 226, 1998.

D. Batory, C. Johnson, B. MacDonald, and D. v. Heeder Achieving
Extensibility Through Product-Lines and Domain-Speci ¢ Languages: A
Case Study.ACM Transactions on Software Engineering and Methodology
(TOSEM), 11(2):191 214, 2002.

S. Breu and J. Krinke. Aspect Mining Using Event Traces In Proceed-
ings of the International Conference on Automated Software Engineering
(ASE), pages 310 315. IEEE Computer Society, 2004.

D. J. Barnes and M. Kolling. Objects First with Java A Practical In-
troduction using Blued Prentice Hall / Pearson Education, 3rd edition,
2006.

D. Batory, J. Liu, and J. N. Sarvela. Re nements and MultDimensional
Separation of Concerns. IProceedings of the International Symposium
on Foundations of Software Engineering (FSE)pages 48 57. ACM Press,
2003.

D. Batory and S. O'Malley. The Design and Implementabn of Hierar-
chical Software Systems with Reusable ComponentdCM Transactions
on Software Engineering and Methodology (TOSEM])(4):355 398, 1992.

Bibliography

[BoeO06]

[Bo093]

[Bos99]

[Bow96]

[BRJO5]

[BSO01]

[BSR04]

[BT97]

[BVDVETO05]

[BYM* 98]

[BZMO1]

[CBO5]

B. Boehm. A View of 20th and 21st Century Software Engeering. InPro-
ceedings of the International Conference on Software Engineering (ICSE)
pages 12 29. ACM Press, 2006.

G. Booch.Object-Oriented Analysis and Design with ApplicationsAddi-
son Wesley Professional, 2nd edition, 1993.

J. Bosch. Super-Imposition: A Component Adaptatiofiechnique. Infor-
mation and Software Technology41(5):257 273, 1999.

J. Bowen.Formal Speci cation and Documentation using Z: A Case Study
Approach Thomson Publishing, 1996.

G. Booch, J. Rumbaugh, and I. Jacobsoflhe Uni ed Modeling Language
User Guide Addison Wesley Professional, 2nd edition, 2005.

M. Broy and K. Stoelen. Speci cation and Development of Interactive
Systems: Focus on Streams, Interfaces, and Re nemerpringer, 2001.

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling&i-Wise Re ne-
ment. IEEE Transactions on Software Engineering (TSE)30(6):355 371,
2004.

D. Batory and J. Thomas. P2: A Lightweight DBMS Generaor. Journal
of Intelligent Information Systems (JIIS), 9(2):107 123, 1997.

M. Bruntink, A. van Deursen, R. van Engelen, and T.Tourwe. On the
Use of Clone Detection for Identifying Crosscutting ConcerCode. IEEE
Transactions on Software Engineering (TSE)31(10):804 818, 2005.

I. D. Baxter, A. Yahin, L. Moura, M. Sant'‘Anna, and L. Bier. Clone De-
tection Using Abstract Syntax Trees. InProceedings of the International
Conference on Software Maintenance (ICSMpages 368 377. IEEE Com-
puter Society, 1998.

E. D. Berger, B. G. Zorn, and K. S. McKinley. Composig High-
Performance Memory Allocators. InProceedings of the International Con-
ference on Programming Language Design and Implementation (PLDI)
pages 114 124. ACM Press, 2001.

L. Cole and P. Borba. Deriving Refactorings for Aspedt In Proceedings

of the International Conference on Aspect-Oriented Software Development
(AOSD), pages 123 134. ACM Press, 2005.

131

Bibliography

[CBMLO2]

[CCO04]

[CEOO]

[CHAMOB]

[CKO3]

[CLO1]

[CM86]

[CNO2]

[Con68]

[Co089]

[CRBO4]

132

R. Cardone, A. Brown, S. McDirmid, and C. Lin. Using Mxins to
Build Flexible Widgets. In Proceedings of the International Conference
on Aspect-Oriented Software Development (AOSDpages 76 85. ACM
Press, 2002.

A. Colyer and A. Clement. Large-Scale AOSD for Middeare. In Pro-
ceedings of the International Conference on Aspect-Oriented Software-D
velopment (AOSD) pages 56 65. ACM Press, 2004.

K. Czarnecki and U. Eisenecker.Generative Programming: Methods,
Tools, and Applications Addison-Wesley, 2000.

P. Costanza, R. Hirschfeld, and W. de Meuter. E cientLayer Activation
for Switching Context-Dependent Behavior. InProceedings of the Joint
Modular Languages Conference (JMLG)\olume 4228 ol ecture Notes in
Computer Sciencgpages 84 103. Springer, 2006.

Y. Coady and G. Kiczales. Back to the Future: A Retroadve Study of
Aspect Evolution in Operating System Code. IrProceedings of the Inter-
national Conference on Aspect-Oriented Software Development (AOSD)
pages 50 59. ACM Press, 2003.

R. Cardone and C. Lin. Comparing Frameworks and LayeileRe nement.
In Proceedings of the International Conference on Software Engineering
(ICSE), pages 285 294. IEEE Computer Society, 2001.

M. Chandy and J. Misra. An Example of Stepwise Re nemenbf Dis-
tributed Programs: Quiescence Detection. ACM Transactions on Pro-
gramming Languages and Systems (TOPLASS(3):326 343, 1986.

P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

L. L. Constantine. Segmentation and Design Strategg for Modular Pro-
gramming. In Proceedings of the National Symposium on Modular Pro-
gramming Information and Systems Press, 1968.

W. R. Cook.A Denotational Semantics of Inheritance PhD thesis, De-
partment of Computer Science, Brown University, 1989.

A. Colyer, A. Rashid, and G. Blair. On the Separation ofConcerns in
Program Families. Technical Report COMP-001-2004, Compung De-
partment, Lancaster University, 2004.

Bibliography

[CTO04]

[DDH72]

[DFS02]

[DFES04]

[Dij68]

[Dij72]

[Dij76]

[Dij82]

[DNS' 06]

[DWO6]

[EFBO1]

[EOCO6]

M. Ceccato and P. Tonella. Measuring the Eects of Sof
ware Aspectization. In WCRE Workshop on Aspect Reverse En-
gineering (WARE), 2004. Published at the workshop Web site:
http://homepages.cwi.nl/ tourwe/ware/submissions.ht ml.

O.-J. Dahl, E. W. Dijkstra, and C. Hoare. Structured Programming Aca-
demic Press, 1972.

R. Douence, P. Fradet, and M. Sudholt. A Framework fathe Detection
and Resolution of Aspect Interactions. InProceedings of the Interna-
tional Conference on Generative Programming and Component Engineer-
ing (GPCE), volume 2487 ofLecture Notes in Computer Sciencepages
173 188. Springer, 2002.

R. Douence, P. Fradet, and M. Sudholt. Composition, Ree and Interac-
tion Analysis of Stateful Aspects. InProceedings of the International Con-
ference on Aspect-Oriented Software Development (AOSD)ages 141

150. ACM Press, 2004.

E. W. Dijkstra. The Structure of the THE -Multiprog ramming System.
Communications of the ACM (CACM), 11(5):341 346, 1968.

E. W. Dijkstra. The Humble Programmer. Communications of the ACM
(CACM), 15(10):859 866, 1972.

E. W. Dijkstra. A Discipline of Programming Prentice Hall, 1976.

E. W. Dijkstra. On the Role of Scienti ¢ Thought. In Selected Writings
on Computing: A Personal Perspectivepages 60 66. Springer, 1982.

S. Ducasse, O. Nierstrasz, N. Scharli, R. Wuyts, and A. Bl Traits: A
Mechanism for Fine-Grained ReuseACM Transactions on Programming
Languages and Systems (TOPLASP8(2):331 388, 2006.

D. S. Dantas and D. Walker. Harmless Advice. IRroceedings of the Inter-
national Symposium on Principles of Programming Languages (POPL)
pages 383 396. ACM Press, 2006.

T. Elrad, R. E. Filman, and A. Bader. Aspect-OrientedProgramming:
Introduction. Communications of the ACM (CACM), 44(10):29 32, 2001.

E. Ernst, K. Ostermann, and W. R. Cook. A Virtual Class @lculus.
In Proceedings of the International Symposium on Principles of Program-
ming Languages (POPL) pages 270 282. ACM Press, 2006.

133

Bibliography

[Ern01]

[Ern03]

[FGG* 06]

[FLGOG]

[FR99]

[GBO3]

[GBBO6]

[GHJIV95]

[GJO5]

[Gla0s]

[Gla06]

[Gro95]

134

E. Ernst. Family Polymorphism. In Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOR)volume 2072 ol ecture
Notes in Computer Sciencepages 303 326. Springer, 2001.

E. Ernst. Higher-Order Hierarchies. InProceedings of the European Con-
ference on Object-Oriented Programming (ECOOR)volume 2743 ofLec-
ture Notes in Computer Sciencepages 303 329. Springer, 2003.

P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longat, R. Kaz-
man, M. Klein, L. Northrop, D. Schmidt, K. Sullivan, and K. Wallnau.
Ultra-Large-Scale Systems The Software Challenge of the FuturBoft-
ware Engineering Institute, Carnegie Mellon, 2006.

E. Figueiredo, C. Lucena, and A. Garcia. AJATO: An AspctJ Assess-
ment Tool. In Demo Session of the European Conference on Object-
Oriented Programming (ECOOP) 2006.

R. Fanta and V. Rajlich. Removing Clones from the CodeJournal of
Software Maintenance 11(4):223 243, 1999.

K. Gybels and J. Brichau. Arranging Language Featurdsr More Robust
Pattern-Based Crosscuts. InProceedings of the International Conference
on Aspect-Oriented Software Development (AOSDpages 60 69. ACM
Press, 2003.

J. F. Gelinas, M. Badri, and L. Badri. A Cohesion Mease for Aspects.
Journal of Object Technology (JOT) 5(7):75 95, 2006.

E. Gamma, R. Helm, R. Johnson, and J. VlissidesDesign Patterns:
Elements of Reusable Object-Oriented Softwardddison-Wesley, 1995.

I. Godil and H.-A. Jacobsen. Horizontal Decompositionf Prevayler. In
Proceedings of the International Conference of the Centre for Advanced
Studies on Collaborative Research (CASCONpages 83 100. IBM Press,
2005.

R. L. Glass. IT Failure Rates 70 Percent or 10 15 Pera#? I|EEE
Software 22(3):110 111, 2005.

R. L. Glass. The Standish Report: Does it Really Desceba Software
Crisis? Communications of the ACM (CACM), 49(8):15 16, 2006.

The Standish Group. Chaos Report. Technical reporGtandish Group
International, 1995.

Bibliography

[Gro03] The Standish Group. Chaos Report. Technical reporGtandish Group
International, 2003.

[GSO04] J. Green eld and K. Short.Software Factories Assembling Applications
with Patterns, Models, Frameworks, and ToolsWiley, 2004.

[GSC 03] A. Garcia, C. Sant'Anna, C. Chavez, V. Silva, A. v. Staa, rad C. Lucena.
Separation of Concerns in Multi-Agent Systems: An EmpiridaStudy.
In Software Engineering for Multi-Agent Systems Il, Research Issuasd
Practical Applications, volume 2940 ofLecture Notes in Computer Sci-
ence Springer, 2003.

[GSF 05] A. Garcia, C. Sant'‘Anna, E. Figueiredo, U. Kulesza, C. Leena, and
A. v. Staa. Modularizing Design Patterns with Aspects: A Quatitative
Study. In Proceedings of the International Conference on Aspect-Oriented
Software Development (AOSD)pages 3 14. ACM Press, 2005.

[GSS 06] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewariy. Cai, and
H. Rajan. Modular Software Design with Crosscutting Interfaes. IEEE
Software 23(1):51 60, 2006.

[HCO2] F. Hunleth and R. Cytron. Footprint and Feature Managenent Using
Aspect-Oriented Programming Techniques. IfProceedings of Joint Con-
ference on Languages, Compilers, and Tools for Embedded Systems &
Software and Compilers for Embedded Systems (LCTES/SCOPE$ages
38 45. ACM Press, 2002.

[Her02] S. Herrmann. Object Teams: Improving Modularity foCrosscutting Col-
laborations. In Proceedings of the International Net.ObjectDays Confer-
ence volume 2591 ofLecture Notes in Computer Sciengepages 248 264.
Springer, 2002.

[HFC76] A. N. Habermann, L. Flon, and L. Cooprider. Modularzation and Hier-
archy in a Family of Operating Systems.Communications of the ACM
(CACM), 19(5):266 272, 1976.

[HGO6] B. Harbulot and J. R. Gurd. A Join Point for Loops in Aspeci. In
Proceedings of the International Conference on Aspect-Oriented Softwar
Development (AOSD) pages 63 74. ACM Press, 2006.

[HKOZ] J. Hannemann and G. Kiczales. Design Pattern Implemgtion in Java
and AspectJ. InProceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 161 173. ACM Press, 2002.

135

Bibliography

[HMKO5]

[HS03]

[HUO1]

[HUO02]

[HUO3]

[Hut06]

[Jac02]

[Jac06]

[JSHS96]

[KASO06]

136

J. Hannemann, G. C. Murphy, and G. Kiczales. Role-BageRefactoring

of Crosscutting Concerns. IrProceedings of the International Conference
on Aspect-Oriented Software Development (AOSDpages 135 146. ACM

Press, 2005.

S. Hanenberg and A. Schmidmeier. Idioms for Buildirfgoftware Frame-
works in AspectJ. INAOSD Workshop on Aspects, Components, and Pat-
terns for Infrastructure Software (ACP4IS), 2003. Published at the work-
shop Web site: http://www.cs.ubc.ca/ ycoady/acp4is03/papers.html.

S. Hanenberg and R. Unland. Using and Reusing Aspects AspectJ.
In OOPSLA Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (ASoC)2001. Published at the workshop Web site:
http://www.cs.ubc.ca/ kdvolder/Workshops/OOPSLA2001 /ASoC.html.

S. Hanenberg and R. Unland. Roles and Aspects: Simiteas, Di er-
ences, and Synergetic Potential. IfProceedings of International Confer-
ence on Object-Oriented Information Systems (OOI$)volume 2425 of
Lecture Notes in Computer Sciengepages 507 520. Springer, 2002.

S. Hanenberg and R. Unland. Parametric Introductionsin Proceedings
of the International Conference on Aspect-Oriented Software Development
(AOSD), pages 80 89. ACM Press, 2003.

D. Hutchins. Eliminating Distinctions of Class: Usng Prototypes to
Model Virtual Classes. InProceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 1 19. ACM Press, 2006.

D. Jackson. Alloy: A Lightweight Object Modelling Noation. ACM
Transactions on Software Engineering and Methodology (TOSEWM)
11(2):256 290, 2002.

M. Jackson. The Structure of Software Development Thght. In
Structure for Dependability: Computer-Based Systems from an Interdis
ciplinary Perspective pages 228 253. Springer, 2006.

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas.ROLL: A
Language for Object-Oriented Speci cation of InformatiorSystems. ACM
Transactions on Information Systems (TOIS) 14(2):175 211, 1996.

C. Kastner, S. Apel, and G. Saake. Implementing Bodiled Aspect Quan-
ti cation in Aspectd. In Proceedings of the ECOOP Workshop on Re-
ection, AOP and Meta-Data for Software Evolution (RAM-SE), pages
111 122. School of Computer Science, University of Magdetgy 2006.

Bibliography

[Kat93]

[KCH* 90]

[Ken99]

[Kic08]

[KLM *97]

[KROB]

[Kru92]

[KSG* 06]

[LAm99]

[LAMSO05]

S. Katz. A Superimposition Control Construct for Dstributed Systems.
ACM Transactions on Programming Languages and Systems (TOPLAS)
15(2):337 356, 1993.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. FeaatOriented
Domain Analysis (FODA) Feasibility Study. Technical ReportCMU/SEI-
90-TR-21, Software Engineering Institute, Carnegie Mellotniversity,
1990.

E. A. Kendall. Role Model Designs and Implementatianwith Aspect-
Oriented Programming. In Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 353 369. ACM Press, 1999.

G. Kiczales. Radical Research In Modularity: Aspedbriented Pro-
gramming and Other Ideas. InKeynote of the International Soft-
ware Product Line Conference (SPLC)IEEE Computer Society, 2006.
http://www.sei.cmu.edu/splc2006/splc_kiczales.pdf.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. LogeJ.-M. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. InProceedings of the
European Conference on Object-Oriented Programming (ECOOPYol-
ume 1241 ol ecture Notes in Computer Scienggages 220 242. Springer,
1997.

G. Kniesel and T. Rho. A De nition, Overview and Taxonony of Generic
Aspect LanguagesL'Objet, 11(3):9 39, 2006.

C. W. Krueger. Software Reuse. ACM Computing Surveys (CSUR)
24(2):131 183, 1992

U. Kulesza, C. Sant'Anna, A. Garcia, R. Coelho, A. v. Staaand C. Lu-
cena. Quantifying the E ects of Aspect-Oriented Programmmg: A Main-
tenance Study. InProceedings of the International Conference on Software
Maintenance (ICSM), pages 223 233. IEEE Computer Society, 2006.

R. Lammel. Declarative Aspect-Oriented Programman In Proceedings of
the International Symposium on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM), pages 131 146. ACM Press, 1999.

T. Leich, S. Apel, L. Marnitz, and G. Saake. Tool Suport for Feature-
Oriented Software Development FeaturelDE: An Eclipse-Bsed Ap-
proach. In Proceedings of the OOPSLA Workshop on Eclipse Technology
eXchange (ETX), pages 55 59. ACM Press, 2005.

137

Bibliography

[LASO05]

[LB99]

[LBLOG]

[LBNOS]

[LBS04]

[LHO6]

[LHAO7]

[LHBO6]

[LHBCO5]

138

T. Leich, S. Apel, and G. Saake. Using Step-Wise Re namt to Build

a Flexible Lightweight Storage Manager. InProceedings of the East-
European Conference on Advances in Databases and Information Systems
(ADBIS) , volume 3631 olecture Notes in Computer Sciencegpages 324
337. Springer, 2005.

J. Liebeherr and T. K. Beam. HyperCast: A Protocol for Mintaining
Multicast Group Members in a Logical Hypercube Topology. IrPro-
ceedings of the International COST264 Workshop on Networked Group
Communication (NGC), pages 72 89. Springer, 1999.

J. Liu, D. Batory, and C. Lengauer. Feature-OrientedRefactoring of
Legacy Applications. InProceedings of the International Conference on
Software Engineering (ICSE) pages 112 121. ACM Press, 2006.

J. Liu, D. Batory, and S. Nedunuri. Modeling Interactons in Feature-
Oriented Designs. InProceedings of the International Conference on Fea-
ture Interactions (ICFI) , pages 178 197. 10S Press, 2005.

D. Lohmann, G. Blaschke, and O. Spinczyk. Generic #ite: On the
Combination of AOP with Generative Programming in AspectC+-. In
Proceedings of the International Conference on Generative Programming
and Component Engineering (GPCE)volume 3286 ofLecture Notes in
Computer Sciencepages 55 74. Springer, 2004.

R. Lopez-Herrejon.Understanding Feature Modularity PhD thesis, De-
partment of Computer Sciences, The University of Texas at Astin, 2006.

R. Lopez-Herrejon and S. Apel. Measuring and Charaatizing Cross-
cutting in Aspect-Based Programs: Basic Metrics and Case Lties. In
Proceedings of the International Conference on Fundamental Approaches
to Software Engineering (FASE) Lecture Notes in Computer Science.
Springer, 2007. to appear.

R. Lopez-Herrejon and D. Batory. From Crosscutting @ncerns to Prod-
uct Lines: A Function Composition Approach. Technical RepdrTR-06-
24, Department of Computer Sciences, The University of Tezaat Austin,
2006.

R. Lopez-Herrejon, D. Batory, and W. R. Cook. Evaluatig Support for
Features in Advanced Modularization Technologies. IRroceedings of the
European Conference on Object-Oriented Programming (ECOOPYol-
ume 3586 ol ecture Notes in Computer Scienggages 169 194. Springer,
2005.

Bibliography

[LHBLO6]

[Lie86]

[Lie04]

[LipO5]

[LLM99]

[LLMOB]

[LLOO3]

[Lod04]

[LPM* 97]

[LRO4]

R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Didplined Approach
to Aspect Composition. InProceedings of the International Symposium on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM)
pages 68 77. ACM Press, 2006.

H. Liebermann. Using Prototypical Objects to Implement Shared Be-
havior in Object-Oriented Systems. InProceedings of the International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 214 223. ACM Press, 1986.

K. Lieberherr. Controlling the Complexity of Softwvare Designs. InPro-
ceedings of the International Conference on Software Engineering (ICSE)
pages 2 11. IEEE Computer Society, 2004.

H. Lipson. Assembly, Integration, & Evolution Ovewiew. In
Build Security In. Software Engineering Institute and DHS Na-
tional Cyber Security Division, 2005. https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/best-practices/assembly14.html.

K. Lieberherr, D. Lorenz, and M. Mezini. Programmirg with Aspectual
Components. Technical Report NU-CCS-99-01, College of Coutpr Sci-
ence, Northeastern University, 1999.

Z. Li, S. Lu, and S. Myagmar. CP-Miner: Finding CopyPaste and Re-
lated Bugs in Large-Scale Software CodéEEE Transactions on Software
Engineering (TSE), 32(3):176 192, 2006.

K. J. Lieberherr, D. Lorenz, and J. Ovlinger. AspectubCollaborations
Combining Modules and AspectsThe Computer Journal 46(5):542 565,
2003.

K. N. Lodding. The Hitchhiker's Guide to Biomorphic Software. ACM
Queue 2(4):66 75, 2004.

B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl Assess-
ing the Bene ts of Incorporating Function Clone Detection h a Develop-
ment Process. InProceedings of the International Conference on Software
Maintenance (ICSM), pages 314 321. IEEE Computer Society, 1997.

N. Loughran and A. Rashid. Framed Aspects: Supportingariability and
Con gurability for AOP. In Proceedings of the International Conference
on Software Reuse (ICSR)volume 3107 ofLecture Notes in Computer
Science pages 127 140. Springer, 2004.

139

Bibliography

[LST* 06]

[MAOS]

[MFO5]

[MFHO1]

[MKO03a]

[MKO3b]

[MLO8]

[MLWRO1]

[MMP89]

140

D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schder-
Preikschat. A Quantitative Analysis of Aspects in the eCos Krnel. In
Proceedings of the International EuroSys Conference (EuroSyspages
191 204. ACM Press, 2006.

N. McEachen and R. T. Alexander. Distributing Classesith Woven
Concerns: An Exploration of Potential Fault Scenarios. IfProceedings of
the International Conference on Aspect-Oriented Software Development
(AOSD), pages 192 200. ACM Press, 2005.

M. P. Monteiro and J. M. Fernandes. Towards a Catalog oAspect-

Oriented Refactorings. InProceedings of the International Conference
on Aspect-Oriented Software Development (AOSDpages 111 122. ACM
Press, 2005.

S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-AgeComponents
for Old-Fashioned Java. InProceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 211 222. ACM Press, 2001.

H. Masuhara and K. Kawauchi. Data ow Pointcut in Aspect-Oriented
Programming. In Proceedings of the Asian Symposium on Programming
Languages and Systems (APLASYolume 2895 ol ecture Notes in Com-
puter Science pages 105 121. Springer, 2003.

H. Masuhara and G. Kiczales. Modeling Crosscuttingn Aspect-Oriented
Mechanisms. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP) volume 2743 olecture Notes in Com-
puter Science pages 2 28. Springer, 2003.

M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for
Evolutionary Software Development. InProceedings of the International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 97 116. ACM Press, 1998.

G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. Separating

Features in Source Code: An Exploratory Study. IrProceedings of the
International Conference on Software Engineering (ICSE)pages 275

284. IEEE Computer Society, 2001.

O. L. Madsen and B. Moller-Pedersen. Virtual Classe A Powerful Mech-

anism in Object-Oriented Programming. InProceedings of the Interna-
tional Conference on Object-Oriented Programming, Systems, Language
and Applications (OOPSLA), pages 397 406. ACM Press, 1989.

Bibliography

[MOO02]

[MOO3]

[MOO04]

[MogO06]

[MSLOO]

[MvDMO04]

[NCM04]

[Nov0O0]

INQMO6]

[NR69]

M. Mezini and K. Ostermann. Integrating IndependenComponents with
On-Demand Remodularization. InProceedings of the International Con-
ference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), pages 52 67. ACM Press, 2002.

M. Mezini and K. Ostermann. Conquering Aspects with @esar. InPro-
ceedings of the International Conference on Aspect-Oriented Software-D
velopment (AOSD) pages 90 100. ACM Press, 2003.

M. Mezini and K. Ostermann. Variability Management wth Feature-
Oriented Programming and Aspects. InProceedings of the International
Symposium on Foundations of Software Engineering (FSEpages 127
136. ACM Press, 2004.

J. C. Mogul. Emergent (Mis)behavior vs. Complex Sofare Systems.
In Proceedings of the International EuroSys Conference (EuroSy$)ages
293 304. ACM Press, 2006.

M. Mezini, L. Seiter, and K. Lieberherr. Component Integration with
Pluggable Composite AdapterKluwer, 2000.

M. Marin, A. van Deursen, and L. Moonen. Identifying Aspects Using
Fan-In Analysis. In Proceedings of the Working Conference on Reverse
Engineering (WCRE), pages 132 141. IEEE Computer Society, 2004.

N. Nystrom, S. Chong, and A. C. Myers. Scalable Exteibility via Nested
Inheritance. In Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 99 115. ACM Press, 2004.

G. S. Novak. Interactions of Abstractions in Progmaming. In Proceedings
of the International Symposium on Abstraction, Reformulation, and Ap-
proximation (SARA), volume 1864 otf.ecture Notes in Computer Scienge
pages 185 201. Springer, 2000.

N. Nystrom, X. Qi, and A. C. Myers. J&: Nested Interseton for Scalable
Software Composition. InProceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 21 35. ACM Press, 2006.

P. Naur and B. Randell, editors. Software Engineering: Report of the

Working Conference on Software Engineering, Garmisch, Germany, Oc-
tober 1968 NATO Science Committee, 1969.

141

Bibliography

[OAT * 06]

[OH92]

[OMBO5]

[Ost02]

[OTO0]

[0Z05]

[Par72a]

[Par72b]

[Par76]

[Par79]

[PGAO2]

142

N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. de Mor, and
G. Sittampalam. Adding Open Modules to AspectJ. InProceedings of
the International Conference on Aspect-Oriented Software Development
(AOSD), pages 39 50. ACM Press, 2006.

H. Ossher and W. Harrison. Combination of Inheritancelierarchies. In
Proceedings of the International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLAjpages 25 40.
ACM Press, 1992.

K. Ostermann, M. Mezini, and C. Bockisch. ExpressesPointcuts for In-
creased Modularity. InProceedings of the European Conference on Object-
Oriented Programming (ECOOP) volume 3586 ofecture Notes in Com-
puter Science pages 214 240. Springer, 2005.

K. Ostermann. Dynamically Composable Collaborains with Delegation
Layers. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), volume 2374 olecture Notes in Computer Sci-
ence pages 89 110. Springer, 2002.

H. Ossher and P. Tarr. Hyper/J: Multi-Dimensional Sepration of Con-
cerns for Java. InProceedings of the International Conference on Software
Engineering (ICSE), pages 734 737. IEEE Computer Society, 2000.

M. Odersky and M. Zenger. Scalable Component Abstitaans. In Pro-
ceedings of the International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLApages 41 57.
ACM Press, 2005.

D. L. Parnas. A Technique for Software Module Specation with Ex-
amples. Communications of the ACM (CACM), 15(5):330 336, 1972.

D. L. Parnas. On the Criteria to be Used in Decompasj Systems into
Modules.Communications of the ACM (CACM), 15(12):1053 1058, 1972.

D. L. Parnas. On the Design and Development of PrograFamilies. IEEE
Transactions on Software Engineering (TSE)SE-2(1):1 9, 1976.

D. L. Parnas. Designing Software for Ease of Extensi and Contrac-
tion. IEEE Transactions on Software Engineering (TSE) SE-5(2):264
277, 1979.

A. Popovici, T. Gross, and G. Alonso. Dynamic Weavig for Aspect-

Oriented Programming. In Proceedings of the International Conference
on Aspect-Oriented Software Development (AOSDpages 141 147. ACM

Press, 2002.

Bibliography

[PHOAS9]

[Pre97]

[PSRO0]

[RAB*92]

[RFH* 01]

[RSO5]

[SB02]

[SCTO3]

[SGS 05]

L. Peterson, N. Hutchinson, S. O'Malley, and M. Abbtt. RPC in the
x-Kernel: Evaluating New Design Techniques. IriProceedings of the In-
ternational Symposium on Operating Systems Principles (SOSR)ages
91 101. ACM Press, 1989.

C. Prehofer. Feature-Oriented Programming: A Fréd_ook at Objects. In
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 1241 ot.ecture Notes in Computer Sciengepages 419
443. Springer, 1997.

E. Pulvermdller, A. Speck, and A. Rashid. Implementm Collaboration-
Based Design Using Aspect-Oriented Programming. IRroceedings of
the International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS-USA) pages 95 104. IEEE Computer Society,
2000.

T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmky O. Lehne,
E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. &islet.
OORASS: Seamless Support for the Creation and Maintenance@bject-
Oriented Systems.Journal of Object-Oriented Programming 5(6):27 41,
1992.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schesik A Scal-
able Content-Addressable Network. InProceedings of the International
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM) pages 161 172. ACM Press,
2001.

H. Rajan and K. J. Sullivan. Classpects: Unifying Aspectaind Object-
Oriented Language Design. IfProceedings of the International Conference
on Software Engineering (ICSE) pages 59 68. ACM Press, 2005.

Y. Smaragdakis and D. Batory. Mixin Layers: An ObjecOriented Imple-

mentation Technique for Re nements and Collaboration-Bask Designs.
ACM Transactions on Software Engineering and Methodology (TOSEM)
11(2):215 255, 2002.

Y. Sato, S. Chiba, and M. Tatsubori. A Selective, Jush-Time Aspect
Weaver. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE)volume 2830 ofLec-
ture Notes in Computer Sciencepages 189 208. Springer, 2003.

K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle, N. &wari, and
H. Rajan. Information Hiding Interfaces for Aspect-Oriente Design. In

143

Bibliography

[Sha84]

[Sin96]

[SKO3]

[SLMO8]

[SLUOS]

[SMC74]

[Ste00]

[Ste05]

[Ste06]

[Taios]

[TBDO6]

144

Proceedings of the International Symposium on Foundations of Software
Engineering (FSE) pages 166 175. ACM Press, 2005.

M. Shaw. Abstraction Techniques in Modern Programng Languages.
IEEE Software, 1(4):10 26, 1984.

V. Singhal. A Programming Language for Writing Domain-Speci ¢ Soft-
ware System GeneratorsPhD thesis, Department of Computer Sciences,
University of Texas at Austin, 1996.

M. Sihman and S. Katz. Superimpositions and Aspects@nted Program-
ming. The Computer Journal 46(5):529 541, 2003.

D. C. Schmidt, D. L. Levine, and S. Mungee. The Desigand Perfor-
mance of Real-Time Object Request Broker€omputer Communications
21(4):294 324, 1998.

0. Spinczyk, D. Lohmann, and M. Urban. AspectC++: AnAOP Exten-
sion for C++. Software Developer's Journalpages 68 74, 2005.

W. P. Stevens, G. J. Myers, and L. L. Constantine. Striigred Design.
IBM Systems Journa) 13(2):115 139, 1974.

F. Steimann. On the Representation of Roles in Obje€riented and Con-
ceptual Modeling. Data and Knowledge Engineering (DKE) 35(1):83
106, 2000.

F. Steimann. Domain Models are Aspect Free. IRroceedings of the
International Conference on Model Driven Engineering Languages and
Systems (MoDELS/UML), volume 3713 ofLecture Notes in Computer
Science pages 171 185. Springer, 2005.

F. Steimann. The Paradoxical Success of Aspect-@ried Programming.
In Proceedings of the International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLAJages 481
497. ACM Press, 2006.

A. Taivalsaari. On the Notion of Inheritance. ACM Computing Surveys
(CSUR), 28(3):438 479, 1996.

S. Trujillo, D. Batory, and O. Diaz. Feature Refactoing a Multi-
Representation Program into a Product Line. InProceedings of the In-
ternational Conference on Generative Programming and Component En-
gineering (GPCE), pages 191 200. ACM Press, 2006.

Bibliography

[TCO04]

[TKO3]

P. Tonella and M. Ceccato. Aspect Mining through the &rmal Concept
Analysis of Execution Traces. InProceedings of the Working Conference
on Reverse Engineering (WCRE)pages 112 121. IEEE Computer Soci-
ety, 2004.

D. Tucker and S. Krishnamurthi. Pointcuts and Advicein Higher-Order
Languages. InProceedings of the International Conference on Aspect-
Oriented Software Development (AOSD)pages 158 167. ACM Press,
2003.

[TOHSMS99] P. Tarr, H. Ossher, W. Harrison, and Jr. S. M. Sutton N Degrees of

[TVJ*01]

[VGBSO01]

[VN96a]

[VNO6b]

[VN96C]

[Wir71]

[Wir76]

Separation: Multi-Dimensional Separation of Concerns. liRProceedings
of the International Conference on Software Engineering (ICSEpages
107 119. IEEE Computer Society, 1999.

E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Ngggaard Jar-
gensen. Dynamic and Selective Combination of Extensions@omponent-
Based Applications. InProceedings of the International Conference on
Software Engineering (ICSE) pages 233 242. IEEE Computer Society,
2001.

J. van Gurp, J. Bosch, and M. Svahnberg. On the Notionf &ariability

in Software Product Lines. InProceedings of the Working Conference on
Software Architecture (WICSA), pages 45 55. IEEE Computer Society,
2001.

M. VanHilst and D. Notkin. Decoupling Change from Dsign. In Pro-
ceedings of the International Symposium on Foundations of Software En-
gineering (FSE), pages 58 69. ACM Press, 1996.

M. VanHilst and D. Notkin. Using C++ Templates to Imp lement Role-
Based Designs. INISSST International Symposium on Object Technolo-
gies for Advanced Software (ISOTAS)volume 1049 ofLecture Notes in
Computer Sciencepages 22 37. Springer, 1996.

M. VanHilst and D. Notkin. Using Role Components in Implement
Collaboration-based Designs. IrProceedings of the International Con-
ference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), pages 359 369. ACM Press, 1996.

N. Wirth. Program Development by Stepwise Re hement.Communica-
tions of the ACM (CACM), 14(4):221 227, 1971.

N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

145

Bibliography

[WKDO4]

[XMEHO04]

[YC79]

[2GJO5]

[2J03]

[2J04]

[ZX04]

146

M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Avice and
Dynamic Join Points in Aspect-Oriented Programming.ACM Transac-
tions on Programming Languages and Systems (TOPLAS)6(5):890 910,
2004.

B. Xin, S. McDirmid, E. Eide, and W. C. Hsieh. A Compairson of Jiazzi
and AspectJ for Feature-Wise Decomposition. Technical RegddUCS-
04-001, School of Computing, The University of Utah, 2004.

E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of
a Discipline of Computer Program and Systems DesigrYourdon Press,
1979. copyright 1979 by Prentice-Hall.

C. Zhang, D. Gao, and H.-A. Jacobsen. Towards Just-Inifie Middleware
Architectures. In Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD)ages 63 74. ACM Press, 2005.

C. Zhang and H.-A. Jacobsen. Quantifying Aspects in Mitleware Plat-
forms. In Proceedings of the International Conference on Aspect-Oriented
Software Development (AOSD)pages 130 139. ACM Press, 20083.

C. Zhang and H.-A. Jacobsen. Resolving Feature Convalut in Middle-
ware Systems. InProceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 188 205. ACM Press, 2004.

J. Zhao and B. Xu. Measuring Aspect Cohesion. IRroceedings of the
International Conference on Fundamental Approaches to Software En-
gineering (FASE), volume 2984 ofLecture Notes in Computer Scienge
pages 54 68. Springer, 2004.

Curriculum Vitae

1977, Apr. 21 Born in Osterburg, Germany

1983 1990 Karl-Marx-Oberschule Osterburg, Germany

1990 1995 Gymnasium Osterburg, Germany; graduated with the Ger-
man "Abitur’

1995 1996 Civilian service, Hospital Johanniter Krankenhaus der Ak
mark , Stendal, Germany

1996 2002 Studies in Computer Science, Otto-von-Guericke-Univetét

Magdeburg, Germany; graduated with degree "Diplom-
Informatiker' (equivalent to MSc in Computer Science)

1998 2002 Student assistant, Department of Distributed and Operat-
ing Systems, Otto-von-Guericke-Universitat Magdeburg, &-
many

2002 2003 IT-consultant, METOP Private Research Institute, Magde-
burg, Germany

2003 2007 Ph.D. student, Department of Technical and Business Infor-
mation Systems, Otto-von-Guericke-Universitat Magdebu,
Germany

Magdeburg, March 22, 2007

147

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Overview
	Contribution
	Outline

	Separation of Concerns and Modularity
	Separation of Concerns
	Stepwise Software Development
	Stepwise Refinement
	Program Family Development
	Stepwise Refinement Versus Program Families
	Software Product Lines

	Modules
	Feature-Oriented Programming
	Features, Concerns, and Collaborations
	Jak: FOP for Java
	GenVoca
	AHEAD

	Aspect-Oriented Programming
	Crosscutting Concerns
	Aspects: An Alternative Modularization Mechanism
	AspectJ: AOP for Java

	Terminology Used in this Dissertation

	A Classification Framework for Crosscutting Concerns
	Homogeneous and Heterogeneous Crosscutting Concerns
	Static and Dynamic Crosscutting Concerns
	Summary: Classification Matrix

	A Conceptual Evaluation of AOP and FOP
	Evaluation Criteria
	Abstraction
	Crosscutting Modularity
	Feature Cohesion
	Feature Integration
	Feature Composition

	Evaluation of AOP and FOP
	Abstraction
	Crosscutting Modularity
	Feature Cohesion
	Feature Integration
	Feature Composition

	Summary, Perspective, and Goals

	The Symbiosis of Feature Modules and Aspects
	Design Space
	The Integration of Feature Modules and Aspects
	Aspectual Feature Modules
	A Conceptual Evaluation of Aspectual Feature Modules
	Abstraction
	Crosscutting Modularity
	Feature Cohesion
	Feature Integration
	Feature Composition

	Tool Support
	FeatureC++
	AHEAD Tool Suite & AspectJ
	FeatureIDE

	Related Work
	Summary

	Aligning Aspects and Stepwise Development
	Aspects and Stepwise Software Development
	An Example of Aspect Refinement
	Limited Language-Level Support for Aspect Refinement

	Mixin-Based Aspect Inheritance
	Adding Members and Extending Methods.
	Pointcut Refinement
	Advice Refinement
	Discussion

	Tool Support
	ARJ
	FeatureC++

	Related Work
	Summary

	Case Study: A Product Line for P2P Overlays
	Overview of P2P-PL
	Aspectual Feature Modules in P2P-PL
	Aspect Refinement in P2P-PL

	Statistics
	Statistics on Used AOP and FOP Mechanisms
	Statistics on AFMs with Aspects
	Statistics on Aspect Refinement

	Lessons Learned
	Refinements and Aspects -- When to Use What?
	Borderline Cases
	Benefits of Aspect Refinement

	Open Issues
	Related Work
	Summary

	Aspects Versus Collaborations
	Problem Statement: Aspects vs. Collaborations
	Metrics
	Analyzing AspectJ Programs
	AJStats: A Statistics Collector for AspectJ Programs

	Case Studies
	Overview of the Analyzed AspectJ Programs

	Statistics
	Discussion
	Related Work
	Summary and Perspective

	Concluding Remarks and Further Work
	Summary of the Dissertation
	Contributions and Perspective
	Suggestions for Further Work

	Bibliography

