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Abstract

In the 60s and 70s thesoftware engineeringo�ensive emerged from long-standing prob-
lems in software development, which are captured by the termsoftware crisis. Though
there has been signi�cant progress since then, the current situation is far from satisfac-
tory. According to the recent report of the Standish Group, still only 34% of all software
projects succeed.

Since the early days, two fundamental principles drive software engineering research to
cope with the software crisis:separation of concernsand modularity. Building software
according to these principles is supposed to improve its understandability, maintainabil-
ity, reusability, and customizability. But it turned out th at providing adequate concepts,
methods, formalisms, and tools is di�cult.

This dissertation aspires to contribute to this �eld. Speci�cally, we target the two novel
programming paradigmsfeature-oriented programming (FOP)and aspect-oriented pro-
gramming (AOP) that have been discussed intensively in the literature. Both paradigms
focus on a speci�c class of design and implementation problems, which are calledcross-
cutting concerns. A crosscutting concern is a single design decision or issuewhose imple-
mentation typically is scattered throughout the modules ofa software system. Hence,
crosscutting concerns contradict and violate the principles of separation of concerns and
modularity.

Though FOP and AOP provide method-level, language-level, and tool-supported means
to deal with crosscutting concerns, they do so in di�erent ways. In this dissertation we
demonstrate that FOP and AOP are not competing approaches but that their combi-
nation can overcome their individual limitations. We underpin this insight by a clas-
si�cation of crosscutting concerns and an evaluation of FOPand AOP with respect to
di�erent classes of crosscutting concerns. The result is a set of programming guidelines
in form of a catalog that contrasts the strengths and weaknesses of FOP and AOP.

In order to pro�t from their individual strengths, we propose the symbiosis of FOP
and AOP. To this end, we presentaspectual feature modules (AFMs)that realize the
symbiosis by the integration of concepts, design rationales, languages constructs, and
tools for FOP and AOP. An evaluation and comparison with traditional FOP and AOP
corroborates that AFMs largely pro�t from either's strengths.
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Furthermore, we emphasize that current AOP languages are not suited to be combined
with the stepwise development style of FOP. Consequently, we introduce the notion of
aspect re�nement (AR) that uni�es AOP and stepwise software development and that
is underpinned by a set of accompanying language constructsand tools.

A non-trivial case study demonstrates the practical applicability of AFMs and AR to a
medium-sized software project. This study reveals a further fundamental issue: Given
the programming guidelines, how are mechanisms related to AOP and FOP used in con-
temporary programs? The background is that a speci�c class of crosscutting concerns,
called collaborations, is connected naturally with FOP. Due to the missing supportin
main stream programming languages today, AOP has frequently been used to implement
collaborations.

However, with the advent of languages that support collaborations and the classi�cation
and evaluation contributed by this dissertation, we ask: What fraction of aspect-oriented
code implements collaborations? What fraction implements crosscutting concerns be-
yond collaborations? A quantitative analysis of 8 AspectJ programs of di�erent size
reveals that on average 98% of the code base is associated with collaborations and only
2% exploits the advanced capabilities of AOP. Furthermore,we observed that the impact
of AOP decreases as the program size increases.

Finally, the dissertation discusses why this (dis)proportion of code related to AOP and
FOP is not surprising and whether and how the impact of AOP canbe increased.
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Zusammenfassung

Der Begri� Softwaretechnikund die damit verbundene O�ensive erwuchs in den 60ern
und 70ern aus den anhaltenden Problemen bei der Entwicklungvon Software, welche
unter dem Begri� Softwarekrisezusammengefasst werden. Obwohl sich seitdem einiges
bewegt hat, ist die derzeitige Situation in der Softwareentwicklung alles andere als
zufrieden stellend. Laut dem aktuellen Bericht der Standish Group werden nur 34%
aller Softwareprojekte erfolgreich zum Abschluss gebracht.

Seit dem werden zwei Prinzipien eng mit der Überwindung der Softwarekrise in Verbin-
dung gebracht: Trennung von Belangen (separation of concerns)und Modularität (mo-
dularity) . Finden diese Prinzipien in der Entwicklung von Software Beachtung, lässt
sich die Verständlichkeit, Wartbarkeit, Wiederverwendbarkeit und Maÿschneiderbarkeit
von Software signi�kant verbessern. Allerdings stellte sich schnell heraus, dass es weit
komplizierter ist, adäquate Konzepte, Methoden, Formalismen und Werkzeuge zu ent-
wickeln, als zunächst angenommen.

Diese Dissertation hat zum Ziel, zu diesem Bereich der Forschung beizutragen. Im
Speziellen beschäftigt sich die Arbeit mit zwei derzeitig diskutierten Programmierparadig-
men, derFeature-orientierten Programmierung (FOP)und der Aspekt-orientierten Pro-
grammierung (AOP). Beide Paradigmen konzentrieren sich auf eine bestimmte Klasse
von Entwurfs- und Implementierungsproblemen, die so genannten querschneidenden
Belange (crosscutting concerns). Ein querschneidender Belang entspricht einer einzel-
nen Entwurfs- oder Implementierungsentscheidung bzw. einer Fragestellung oder eines
Ansinnens, dessen Implementierung typischerweise über weite Teile eines Softwaresys-
tems verstreut ist. Aus diesem Grund widersprechen querschneidene Belange den Prin-
zipien der Trennung von Belangen und der Modularität.

FOP und AOP stellen beide methodische und programmiersprachliche Mittel und Werk-
zeuge bereit, gehen das Problem der querschneidenden Belange aber auf sehr unter-
schiedliche Weise an. In dieser Dissertation wird jedoch festgestellt, dass FOP und AOP
keine konkurrierenden Ansätze sind, sondern dass ihre Kombination die individuellen
Schwächen überwinden kann. Diese Einsicht wird untermauert durch eine Klassi�kation
von querschneidenden Belangen und eine Evaluierung von FOPund AOP hinsichtlich
der verschiedenen Klassen querschneidender Belange. Ergebnis ist ein Satz von Pro-
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grammierrichtlinien in Form eines Katalogs, der die Stärken und Schwächen von FOP
und AOP gegenüberstellt.

Um von den individuellen Stärken beider Paradigmen zu pro�tieren, wird in dieser Dis-
sertation die Symbiose von FOP und AOP vorgeschlagen. Insbesondere präsentieren
wir den Ansatz derAspekt-basierten Featuremodule (aspectual feature modules � AFMs),
welche die Symbiose umsetzen, indem sie die Entwurfsphilosophien, Sprachmechanismen
und Werkzeuge von FOP und AOP kombinieren. Eine Evaluierungund eine Gegenüber-
stellung mit traditioneller FOP und AOP demonstrieren die Überlegenheit von AFMs.

Des Weiteren wird in der Dissertation herausgestellt, dassderzeitige AOP-Sprachen
nicht uneingeschränkt geeignet sind, in die schrittweise Entwurfsphilosophie von FOP
integriert zu werden. Konsequenterweise wird der Ansatz der Aspektverfeinerung (aspect
re�nement � AR ) vorgestellt, welcher AOP und schrittweise Softwareentwicklung à la
FOP vereinheitlicht. Weiterhin werden entsprechende Sprachkonstrukte und Werkzeuge
zur Verfügung gestellt.

Mittels einer nicht-trivialen Fallstudie wird die praktische Anwendbarkeit von AFMs
und AR auf ein mittelgroÿes Softwareprojekt demonstriert.Die Studie wirft weiterhin
eine fundamentale Frage auf: Wie werden Mechanismen von FOP und AOP heutzutage
verwendet. Hintergrund ist, dass eine spezielle Klasse vonquerschneidenden Belangen
eng mit FOP verknüpft ist, die so genanntenKollaborationen (collaborations). Durch
die fehlende Unterstützung von Kollaborationen in aktuellen Programmiersprachen wird
dafür heute oft AOP benutzt.

Durch das Aufkommen von Programmiersprachen, die Kollaborationen explizit unter-
stützen, sowie durch die in dieser Dissertation präsentierte Klassi�kation und Evaluie-
rung, stellen sich jedoch folgende Fragen: Welcher Anteil von Aspektcode implementiert
Kollaborationen? Welcher Anteil implementiert querschneidene Belange, die darüber
hinaus AOP benötigen? Eine quantitative Analyse von 8 AspectJ-Programmen unter-
schiedlicher Gröÿe ergibt, dass durchschnittlich 98% der Codebasis der analysierten Pro-
gramme mit Kollaborationen verknüpft sind und nur 2% die erweiterten Mittel von AOP
jenseits von Kollaborationen ausnutzen. Weiterhin wird beobachtet, dass mit steigender
Programmgröÿe der Ein�uss von AOP sinkt.

In der Dissertation wird die Frage beantwortet, warum dieses (Miss)Verhältnis zwi-
schen AOP und FOP-Code besteht, und warum dies nicht überrascht. Weiterhin wird
diskutiert, ob und wie der positive Ein�uss von AOP gesteigert werden kann.
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CHAPTER 1

Introduction

1.1 Overview

software
engineering
and software
crisis

The term s̀oftware engineering' was introduced in the NATO Working Conference on
Software Engineering in 1968 [NR69]. Though there are alternative de�nitions we use the
following: software engineering is the analysis, design, implementation, documentation,
customization, deployment, and maintenance of software by combining and applying tech-
nologies and practices from several �elds, e.g., computer science, project management,
engineering. The software engineering o�ensive was started to cope witha whole class of
phenomena observed in software development that were summarized by the term s̀oft-
ware crisis'. The software crisis became manifest in projects running over-time, projects
running over-budget, low-quality software, software thatdid not meet its requirements,
projects that were unmanageable, and code that was di�cult to maintain.

causes for the
software crisis

Edsger Dijkstra, a pioneer of software engineering, explained the major cause for the
software crisis as follows [Dij72]:

...machines have become several orders of magnitude more powerful! To put
it quite bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming became a
mild problem, and now we have gigantic computers, programming has become
an equally gigantic problem.

progress and
disillusion

Since the 60s, tremendous progress has been made in dealing with the software crisis.
It became possible to construct increasingly complex software systems. However, the
progress in developing concepts, methods, and tools for software engineering did not
keep track with the enormous boost of the complexity and the sheer size of contem-
porary software systems. That is, the aspiration to establish software development as
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an engineering discipline is, to a signi�cant extent, stillan aspiration [FGG+ 06]. The
current software science and technology base is inadequateto meet current and future
needs in software construction [Jac06, Boe06].

the Standish
Group reports

According to the Standish Group in 1995, only about 16% of software projects were suc-
cessful, 53% were fraught with problems (cost or budget overruns, content de�ciencies),
and 31% were cancelled; the average software project ran 222% late, 189% over budget
and delivered only 61% of the speci�ed functions [Gro95]. According to the Standish
Group's most recent report, only 34% of all software projects were deemed to be suc-
cessful [Gro03]. Evidence suggests that despite the improvement from 1995 to 2003 the
current situation in software development is far from adequate [FGG+ 06, Jac06, Boe06,
Gla05, Gla06].

separation of
concerns and
modularity

Fundamental principles that drive the research on softwareengineering since the early
days areseparation of concernsand modularity, which are highly related to each other.
Building software according to these principles makes it more manageable and under-
standable and consequently software reuse, evolution, andmaintenance is improved.

Separation of concerns means to break down a software into pieces [Dij82, Dij76,
Par76, Par79]. These pieces are theconcerns of a software system, in which a
concern is a semantically coherent issue of a problem domainthat is of interest.
A concern may be a requirement such as `realtime operation',a program feature
such as `RSA encryption', a data structure such as a B-tree, oreven a tiny issue
like implementing a length counter as long integer or as short integer. Concerns
are the primary criteria for decomposing software into smaller, more manageable,
and comprehensible parts, which is embodied by the principle of separation of
concerns.

However, the de�nition of separation of concerns does not provide guidance on how
to identify and arrange concerns.Cohesionproved to be an appropriate criterion.
Cohesion is the grade of functional relatedness of the pieces of code that imple-
ment a concern [YC79]. High cohesion is preferable because it is associated with
several desirable properties of software, e.g., robustness, reliability, reusability, and
understandability. Structuring software on the basis of this criterion enables the
software developer to concentrate on the issues regarding one concern in isolation,
thus minimizing the distraction by implementation detailsof other concerns. Par-
nas describes this approach asdesign for change[Par79]: a programmer structures
software such that the concern implementations encapsulate code that is likely to
change. Following this approach, separation of concerns enables the change of a
concern's implementation without a�ecting or depending onother concerns.

Modularity is the principle to structure software into modules or, expressed more quan-
titatively, it measures the extent to which modules are usedin a software system.
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The idea of modules emerged from several tracks of research,in particular, modular
programming [Con68],program speci�cation [Par72a, Par72b],structured program-
ming [DDH72, Dij76], and structured design[SMC74, YC79]. Though there are
various de�nitions, it has been agreed that a module must be apart of a larger
system and inter-operate with other modules. Modules are self-contained, cohe-
sive building blocks of software. A module is a device to implement a concern and
modularity is a consequence of separation of concerns.

A module provides and communicates via aninterface to hide speci�c details
of the concern it implements (information hiding) [Par72b]. Interfaces decouple
concern implementations from each other and minimize concern interdependencies.
Modules with interfaces provide an enabling mechanism for separation of concerns
and design for change.

challengesThe history of software engineering and programming language research is to a signif-
icant extent the history of supporting and improving separation of concerns and mod-
ularity. The challenge for the research community and the industry is to provide the
right languages, abstractions, models, methods, and toolsto assist software developers in
building well-structured and modular software. This wouldbe a major step to overcome
the software crisis. Unfortunately, it turned out that this is a di�cult task.

aim of the
dissertation

This dissertation aspires to make a contribution to this �eld, i.e., to provide concep-
tual, methodological, practical, and tool-related means to improve the separation of
concerns and modularity in software. Speci�cally, this dissertation focuses on two
novel programming and software development paradigms,feature-oriented programming
(FOP) [Pre97, BSR04] andaspect-oriented programming (AOP)[KLM + 97, EFB01].

crosscutting
concerns

Both, FOP and AOP target a speci�c class of design and implementation problems,
which are calledcrosscutting concerns[KLM + 97]. A crosscutting concern is a single
design or implementation decision or issue whose implementation typically must be
scattered throughout the modules of a software system, thatresults in inter-mingled
code, and that leads to code replication. Crosscutting concerns are special as they
challenge traditional programming and development paradigms such asobject-oriented
programming (OOP). It has been observed that crosscutting concerns lead to inherently
suboptimally structured code that decreases understandability and manageability of
software [KLM+ 97, EFB01, TOHSMS99].

tyranny of the
dominant
decomposition

The problem of crosscutting is not a matter of a good or bad programming style or
software design. It emerges directly from the missing support of traditional program-
ming paradigms (e.g., OOP) to decompose software in multiple ways (along multiple
dimensions), which is called thetyranny of the dominant decomposition[TOHSMS99].
That is, a program can be modularized in only one way at a time (along one dimension),
and the many kinds of concerns that do not align with that modularization end up in
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scattered, tangled, and replicated code. FOP and AOP address this issue explicitly and
provide mechanisms for decomposing software along more than one dimension.

Although both FOP and AOP aim at modularizing crosscutting concerns, they approach
this problem from di�erent sides. While FOP deals with the automated synthesis of
software out of features, AOP provides meta-level1 language constructs that enable to
reason about and manipulate base programs. In both FOP and AOP a programmer
de�nes the points in a program to be extended (a.k.a.join points) and a set of actions,
extensions, or transformations to be performed at these points.

AOP and
FOP can
pro�t from
each other

Though it seems that FOP and AOP are competing approaches, inthis dissertation
we observe that FOP and AOP are complementary techniques. They decompose and
structure software in di�erent ways, along di�erent dimensions, which leads to di�erent
program designs. We demonstrate how the combination of FOP and AOP can overcome
their individual limitations. The di�erent strengths and w eaknesses revealed and sys-
tematized in this dissertation call for a symbiosis of both programming paradigms in
order to pro�t from their advantages and to minimize their shortcomings.

programming
guidelines

Given the numerous, individual strengths and weaknesses ofFOP and AOP, we need
guidelines to assist programmers in choosing the right technique for the right problem.
The entire dissertation is steeped in these guidelines and can be understood as a historical
overview of the author's investigations in this problem �eld: the programming guidelines
have been derived from the evaluation of FOP and AOP and drivethe proposal of the
symbiosis of both; they have been evaluated in a non-trivialcase study, and help to
identify the current practice of using mechanisms of FOP andAOP.

In a nutshell, the guidelines for using FOP and AOP based on their strengths and weak-
nesses are the essence for comparing, combining, and unifying FOP and AOP. They
guide the way to a better understanding of crosscutting concerns and of the correspond-
ing implementation mechanisms, which, taken by itself, is acontribution to the debate
about modularity and separation of concerns.

1.2 Contribution

1. We evaluate FOP and AOP with respect to their performance in facilitating sep-
aration and modularization of crosscutting concerns, as well as related evaluation
criteria. This evaluation is preceded by a systematic classi�cation of crosscutting
concerns on the basis of their structural properties, whichenables to systematize

1 Steimann shows that AOP languages are essentially second-order languages. The processing of an
aspect requires reasoning about and involves manipulationof a program, i.e., AOP is de facto a
meta-programming technique [Ste05].
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the evaluation process. The result is a set of programming guidelines that empha-
sizes the individual strengths and weaknesses of FOP and AOP.

2. We propose the symbiosis of FOP and AOP. We discuss its design space, present
a concrete realization at the implementation level, and contribute several tools to
assist programmers in combing FOP and AOP mechanisms.

3. Given the combination of FOP and AOP, we present a uni�cation of AOP and the
stepwise development methodology of FOP. This uni�cation enables the uniform
treatment of all implementation artifacts of a program feature (i.e., classes and
aspects). This follows directly from theprinciple of uniformity that states that
program features consist of various types of software artifacts andall artifacts can
be subject of subsequent re�nement [BSR04].

4. We demonstrate the practical applicability of our proposal by applying the core
language constructs and tools to a medium-sized case study.This provides �rst
insights into how FOP and AOP techniques would be combined ina non-trivial
setting.

5. Finally, we present our investigations in how AOP and FOP mechanisms are used
in third-party software projects. Background is that our programming guidelines
devise in which situations AOP mechanisms outperform FOP mechanisms, and
vice versa. By de�ning a set of code metrics, appropriate tool support, and an
analysis of a set of third-party programs, we shed light on the questions: What is
the current practice of using AOP and FOP? And to what extent related design
and implementation problems occur?

1.3 Outline

Chapter 2 lays the foundations for understanding the central ideas ofthis dissertation.
It limits its focus on essential concepts related to separation of concerns, mod-
ularity, FOP, AOP, and their connection to software engineering. Consciously,
we avoid getting into much detail; we do not give a comprehensive or historical
overview of related programming and software development approaches.

Chapter 3 introduces a classi�cation framework for crosscutting concerns. This classi-
�cation forms a systematic basis for the evaluation and comparison of FOP and
AOP; it is essential to infer programming guidelines for choosing the right imple-
mentation technique for the right class of crosscutting concerns.

Chapter 4 presents the evaluation of FOP and AOP. For this purpose, we de�ne a set
of evaluation criteria that is applied in a comparison of FOPand AOP. The result
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is a catalog that contrasts the strengths and weaknesses of FOP and AOP, which
can be understood as a set of programming guidelines.

Chapter 5 elaborates on the symbiosis of FOP and AOP. After a brief discussion of
the design space, the chapter introduces the notion of anaspectual feature module
(AFM) that realizes the symbiosis. AFMs are evaluated using our criteria and
compared to traditional FOP and AOP. Finally, we give an overview of several
tools that have been developed in this dissertation and discuss related approaches.

Chapter 6 introduces the notion ofaspect re�nement (AR), which uni�es aspects and
the stepwise development methodology of FOP. After a discussion we point to a
tool developed in this dissertation and discuss related work.

Chapter 7 reviews the results of the application of AFMs and AR to a product line
for overlay networks. We examine the collected data and discuss open issues and
related studies.

Chapter 8 re�ects on the experiences gained in the case study and extracts a problem
statement. We de�ne a set of code metrics and provide tool support for program
analysis. We discuss the results of applying our metrics to 8small-sized to large-
sized AspectJ programs.

Chapter 9 summarizes the dissertation, puts the results into perspective, and lists sug-
gestions for further work.
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CHAPTER 2

Design and Implementation Techniques for
Separation of Concerns and Modularity

This chapter lays the foundations for understanding the central ideas of this dissertation.
It is not intended as a historical overview or as a comprehensive survey on design and
implementation techniques for separation of concerns and modularity.

2.1 Separation of Concerns

Separation of concerns (SoC)is a fundamental principle of software engineering. It is
credited to Dijkstra [Dij76] and Parnas [Par76, Par79] who applied the principle ofdivide-
and-conquer to software development:it is easier to manage a problem by breaking it
down into smaller pieces than to solve the problem as is. Such pieces are the concerns of
a software system, where a concern is a semantically coherent issue of a problem domain
that is of interest. Cohesionis the grade of functional relatedness of the pieces of code
that implement a concern [YC79]. High cohesion is preferable because it is associated
with several desirable properties of software, e.g., robustness, reliability, reusability, and
understandability.

software
decomposition

In software development, separation of concerns is relatedto the decomposition mecha-
nisms of design and implementation. Concerns are the primary criteria for decomposing
software into smaller, more manageable and comprehensibleparts. The resulting pieces
are not the concerns themselves but their representations at design and implementation
levels. For example, a concern may be a requirement such as `realtime operation', a
program feature such as `RSA encryption', a data structure such as a B-tree, or even
a tiny issue like implementing a length counter as long integer or as short integer. For
simplicity, we equate concerns and their representations in the remaining dissertation.
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bene�ts of
separation of
concerns

The goal of separation of concerns is to localize, untangle,separate, and encapsulate the
representations of concerns in a software system. The following bene�ts are attributed
to software with well separated concerns:

Comprehension: A well structured system is easier to understand [Par79, Dij76]. A
localized and separated concern representation enables the programmer to concen-
trate on that concern in isolation without getting distracted by details of other
concerns. Dijkstra formulates this as follows:

Our heads are so small that we cannot deal with multiple aspects simul-
taneously without getting confused.

Comprehensibility is a critical requirement for tasks likesoftware reuse, customiza-
tion, and maintenance. Thus, achieving comprehensibilityis the primary goal of
separation of concerns.

Reuse: Software reuse is the process of creating software systems from existing software
rather than building software systems from scratch [Kru92]. Separated concerns
can be more easily reused in di�erent contexts than intermingled ones. The more
independent a concern is, the easier it can be detached from or attached to a
software system. The spectrum of reuse reaches from reusinga concern, i.e., its
implementation, in di�erent variants of one software product (e.g., a component)
to reusing a concern in di�erent, unrelated software systems (e.g., a library func-
tion) [Big98].

Maintenance: Updating, debugging, and evolving a software system are frequent tasks
in software maintenance. They usually boil down to adding, removing or changing
concern implementations. Parnas was the �rst to proclaim that change should be
considered when designing software; this concept is calleddesign for change[Par79].
The idealized goal is to change software as much as possible in a non-invasive way,
i.e., by applying new pieces that implement the change and removing unneeded
ones instead of modifying existing pieces [OH92, VN96a].

Structuring software along concerns enables (1) the addition of new concerns in
form of distinct pieces of software and (2) the modi�cation or exchange of existing
concerns in isolation.

Customization: Typically, di�erent stakeholders have di�erent requirements on a soft-
ware system. Thus, there is a need to customize software to meet the speci�c needs
of stakeholders. Ideally, a software design and implementation is variable, i.e., it
supports the easy derivation of system variants. Customizing a software system
means adjusting the given system structure in the boundaries of the supported
variability [vGBS01]. Separation of concerns is bene�cialin that the implementa-
tion of a concern can come in di�erent variants and concerns can be combined in
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di�erent ways. Customizing software means then to choose the concerns desired
and to select those implementations that �t a requirement speci�cation best.

software
decomposition
and
composition

Concerns are separated by decomposing software along concern representations. That
is, in all phases of the software life cycle, concerns of a software system are separate
pieces, distinguishable from other concerns. However, such separation is non-trivial
to achieve, especially in large-scale and evolved software. Design and implementation
techniques have to support separation of concerns explicitly by providing appropriate
(de)composition mechanisms.Decompositionmeans to break down a software design into
pieces;composition ties these pieces together to get a complete software product. Design
and implementation techniques have to provide di�erent kinds of (de)composition mech-
anisms at di�erent levels of abstraction in order to accountfor the diversity of possible
concerns. Prominent examples are the concepts offunctions in structured programming
and classesin OOP. While functions decompose a software system along itsinstructions,
classes decompose a software system along the data to be encapsulated.

The exploration and analysis of (de)composition mechanisms is a major subject of re-
search in software engineering and programming languages.Early work addressed issues
like structured programming and information hiding. Recentwork aims at software
structures at a larger scale and occurring in all phases of the software life cycle. The
following sections introduce the design and implementation techniques relevant for this
dissertation.

2.2 Stepwise Software Development

Stepwise re�nement[Wir71] and program families [Par76] are two design methodologies
that are fundamental to software engineering. Both addressexplicitly the issue of sep-
aration of concerns. They support the incremental development of software over time
by implementing a series of design decisions being applied in several development steps,
which is calledstepwise development (SWD). This way, the resulting software forms a
layered design such that each layer implements a concern that corresponds to a design
decision and a development step; subsequently applied layers build up on previously
applied layers.

2.2.1 Stepwise Re�nement

Wirth was the �rst to articulate the role of stepwise re�nement in program design [Wir71].
According to his view a program (or its speci�cation) is gradually developed in a sequence
of re�nement steps. In each step, the structural elements of the given program (instruc-
tions and data) are decomposed into more detailed elements.That is, re�nement is the
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revealing of design and implementation details that have not yet been exposed and each
re�nement step implies adesign decision. The successive decomposition or re�nement
of program speci�cations terminates when all structural program elements are expressed
in terms of an underlying programming language. Hence, the process of stepwise re�ne-
ment is a mapping between two representations of a program, where the representation
that is re�ned is more abstract than the representation thatresults.

A program speci�cation could be written informally as natural language text, e.g.,

given an arrayA of sizeN , permute the elements ofA in such a way thatA
is sorted in increasing order [Wir76].

Alternatively a speci�cation could be expressed in a formal(programming or mathemat-
ical) language that is usually tailored to a speci�c problemdomain, e.g., information
system development [JSHS96], interactive systems [BS01], object modeling [Jac02], or
network services [Bow96], to name a few.

re�nement
tree

Since for each re�nement step alternative design decisionsare possible, the overall re�ne-
ment process results in are�nement tree. The leaves of a re�nement tree de�ne di�erent
implementations of the considered program. The path from the root of the tree to a leaf
expresses the program's design and implementation � it is a series of re�nements that
explains how a program implements its speci�cation.

Figure 2.1 depicts an example re�nement tree, adopted from [Bax92]. The root of the
tree is a program speci�cation in form of an abstract syntax tree, which represents an
arithmetic expression (3 � (y + z) + 4 ). By applying the two transformation rules dist
and com that implement familiar distributivity and commutativity laws the original
speci�cation is re�ned into two new speci�cations: 3̀ � y + 3 � z + 4 ' and `4 + 3 � (z + y)'.
These two alternative re�nement steps result in two new leaves of the re�nement tree,
which are two alternative abstract syntax trees.

With stepwise re�nement the programmer makes decisions how to derive a more concrete
representation of the program starting from a more general one. The resulting re�nement
tree contains all alternative design decisions (in our example, applying the distributivity
and the commutativity law) made during the re�nement process.

2.2.2 Program Family Development

Parnas proposed a related methodology for SWD: aprogram family is a set of similar
programs [Par76]. The idea is to concentrate on the commonalities of a set of programs
instead of their di�erences with the goal of sharing functionality between program family
members. To achieve the needed degree of reusability withina program family, Parnas
and others [Dij68, Dij76] proposed implementing software starting from a minimal base
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Figure 2.1: Implementing two design decisions by applying two re�nements [Bax92]

of functionality and evolving the functionality by addingminimal extensionsin a series of
development steps, which leads to conceptually layered designs. Parnas further proposed
the concept of modules that implement layers, which we explain soon (Sec. 2.3).

operating
system family
development

Figure 2.2 depicts the design of a family of operating systems [HFC76]. In contrast to
Wirth's re�nements, the layers of a program family are displayed in bottom-up order.
Starting from the layer h̀ardware', which is the base of the operating system family,
the subsequent layers extend previous layers, e.g., layer `synchronization' extends layer
`process management'. Note that one layer can be extended by multiple other layers,
e.g., layer s̀ynchronization' is extended by s̀pecial devices' and `address space creation'.
Di�erent family members consist of di�erent sets of layers.In our example, three family
members can be derived, i.e., three operating systems: a batch system, a process control
system, and a time sharing system. Adding a layer means extending a whole family of
programs because each family member may potentially use this new layer.

2.2.3 Stepwise Re�nement Versus Program Families

While Parnas' and Wirth's approaches are not equivalent thereare certain fundamental
similarities.
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system

a process control
system

a batch
system

swapping

a time sharing

address space creation

process management

address spaces

disc I/O

user interface

process creation

job control system

file system

hardware

special devices

synchronization

Figure 2.2: A program family of operating systems [HFC76].

Wirth's
re�nement

Wirth's stepwise re�nement has been associated historically with the progressive rewrit-
ing of a formal speci�cation of a program into executable code. With each step the
program becomes more concrete and eliminates nondeterminism of program behavior.
Thus, a re�nement does not extend the program behavior but makes it more concrete,
e.g., by re�ning the speci�cation to strengthen the condition x̀ > 0' to `x = 10'. With
each step the set of possible programs that satisfy a speci�cation decreases.

Parnas'
program
families

Following Parnas' approach, a family of programs is developed incrementally. The dif-
ference to Wirth's approach is that this process starts with aminimal base and proceeds
by extending the functionality in order to encapsulate design decisions step by step. The
evolution of a program family does not start with a complete speci�cation but with a
possibly empty base program. With each step, the set of possible programs that can be
derived from the program family increases, which is in contrast to Wirth's approach in
which the number of potential programs decreases with each step.

uni�cation of
Wirth's and
Parnas' worlds

However, an alternative interpretation of Parnas's work isthat a programmer starts with
a domain model that is implemented by a program family. A domain model captures
and relates all the knowledge that is of interest to a group ofstakeholders [CE00].
By adding successively new extensions to a base the scope of possible programs that
share these extensions narrows, i.e., the program family becomes more concrete. We
and others [Big98, BSR04] favor this view since it uni�es the early work of Wirth and
Parnas on stepwise software development.
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Adopting this interpretation we de�ne a re�nement as a set of changes applied to a
program. That is, a re�nement extends a program by adding newconstructs and it
modi�es the existing structures of a program. This excludesthe mere removal of existing
structural elements. A re�nement is associated with adevelopment stepand can be
understood as concern being implemented.

2.2.4 Software Product Lines

Research onsoftware product line (SPL)development is related to SWD (especially to
program families) with a special focus on economics. The Carnegie Mellon Software
Engineering Institute (SEI) describes a SPL as follows1:

A software product line (SPL) is a set of software-intensive systems that
share a common, managed set of features satisfying the speci�c needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way.

Furthermore, the SEI makes the following statement as to whySPLs are important:

Software product lines are rapidly emerging as a viable and important soft-
ware development paradigm allowing companies to realize order-of-magnitude
improvements in time to market, cost, productivity, quality, and other busi-
ness drivers. Software product line engineering can also enable rapid market
entry and �exible response, and provide a capability for mass customization.

structural
features

To achieve the advantages stated above, Czarnecki argues that the ideal way of SPL
development is to implement a SPL as a program family [CE00].That is, each layer
(or a set of layers) of a program family implements a feature of the corresponding SPL,
where a feature corresponds to a (set of) core asset(s). Furthermore, it is assumed that
the considered features arestructural features [LBN05]. A structural feature is a feature
that has an explicit representation at design and implementation level. That is, the
assets of a feature are physically or visually represented,e.g., by �les, program text,
design documents.

emergent
features

This de�nition excludes those features � if they are even features in the sense of do-
main modeling � that implement program behaviors that emerge indirectly from the
combination of other featuresat runtime, which is in science widely known asemergent
behavior [Mog06, Lod04]. For example, security characteristics of software emerge from
the concrete composition of features when the program is running [Lip05]; there is not
one or a set of assets that represent the security feature.
1 http://www.sei.cmu.edu/productlines/
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SPLs and
program
families

The approach of implementing SPLs as program families leadsto a small time to market
and a high degree of reusability and customizability since new, tailored products can be
derived more easily by composing the layers that correspondthe desired features [CN02,
GS04, CE00]. This also implies that SPLs are implemented in astepwise manner, true
to the motto of SWD.

2.3 Modules

What is a
module?

A module is a structural mechanism that facilitates separation of concerns. The idea of
modules emerged from several tracks of research, namelymodular programming[Con68],
program speci�cation [Par72a, Par72b],structured programming [DDH72, Dij76], and
structured design[SMC74, YC79]. Today it has been agreed that modules are self-
contained, cohesive pieces of a software system, wherecohesiverefers to the ability of
a module to localize program and data structures physically, e.g., in program text or
in the �le system. A module has a well-de�ned interface for communicating with other
modules and it can be compiled separately.Modularity is the principle to structure
software into modules. A more quantitative de�nition is that modularity measures the
extent to which modules are used in a software system.

information
hiding and
encapsulation

Modules embody the principle ofinformation hiding [Par72b]. This principle states pro-
grammers should hide those design decisions in a software system that are most likely to
change (design for change), thus protecting other parts of the program from modi�cation
if the design decision is changed. Often, information hiding is used synonymously with
encapsulation, where a module encapsulates data and program structures. Information
hiding and modules facilitate separation of concerns sincea concern implementation
(module) becomes decoupled from other concern implementations. Due to the encap-
sulation property, modules can be modi�ed or even exchangedwithout a�ecting other
modules.

modules vs.
classes

The concept of modules has evolved to object-oriented language constructs such as
classes. Their primary focus is not on separate developmentbut on structuring software
to improve comprehensibility, reusability, maintainability, customizability, and evolvabil-
ity [Boo93, GHJV95]. Like a module a class encapsulates data and program structures
and provides an interface (information hiding). Classes can be aggregated hierarchically
to form compound classes. In contrast to the early idea of modules, classes can be
instantiated and support inheritance and subtype polymorphism. Hence, with respect
to its static properties, a class (or a set of classes) can be understood as a traditional
module.
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2.4 Feature-Oriented Programming

2.4.1 Features, Concerns, and Collaborations

What is a
feature?

Research onfeature-oriented programming (FOP)studies the modularity of features in
software product lines, where a feature is an increment in program functionality [BSR04].
The concept of features is closely related to that of concerns � some researchers even
equate them [MLWR01]. We prefer a di�erent view: while features re�ect directly
the requirements of the stakeholders and are used to specifyand distinguish di�erent
software products [KCH+ 90, CE00], concerns are at a lower level, more �ne-grained, and
not in any case of interest to stakeholders. Features are concerns, but not all concerns
are features.

feature
modules

Feature modulesare modules that realize features at design and implementation levels.
They support information hiding by exploiting underlying OOP mechanisms. They are
be composed statically and can be compiled independently. Typically, features modules
re�ne the content of other features modules in an incremental fashion. This follows
directly the early principles of SWD. The goal of FOP is to synthesize software (indi-
vidual programs) by composing a series of desired feature modules. As feature modules
re�ect the requirements on a software, FOP bridges the gap between analysis, design,
and implementation. We use the terms feature and feature module in the remaining
dissertation interchangeable.

collaborationsAn important observation is that features are implemented seldomly by single classes but
instead by a whole set of collaborating classes, where acollaboration is a set of classes
that communicate with one another to implement a feature [RAB+ 92, VN96c, MO04,
LLO03, BSR04, SB02, OZ05, Ern01, Ern03]. Feature modules abstract and explicitly
represent such collaborations. Hence, FOP stands in the long line of prior work on
object-oriented design and role modeling, as surveyed in [Ste00].

rolesClasses play di�erentroles in di�erent collaborations [VN96c]. A role encapsulates the
behavior or functionality that a class provides when a corresponding collaboration with
other classes is established � or in context of FOP, when a corresponding feature module
is present. That is, a role is that part of a class that implements the communication
protocol with other classes participating in a particular collaboration. Figure 2.3 shows
four classes participating in three collaborations. For example, classA participates in
collaboration I and II , i.e., two distinct roles implement the communication protocol
necessary for these collaborations.

From the FOP perspective, each role is implemented by a re�nement (declared by the
keyword refines ). That is, a role adds new elements to a class and extends existing
elements, such as methods. Usually features extend a program by adding several new
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collaboration II

collaboration I

collaboration III

class A class B class C class D

Figure 2.3: Collaboration-based design.

classesand by applying several new roles to existing classes simultaneously. Hence, the
implementation of a feature cuts across several places in the base program.

Figure 2.4 depicts the collaboration-based design of a simple program that deals with
graph data structures. The diagram uses theUML notation [BRJ05] with some exten-
sions: white boxes represent classesor roles; gray boxes denote collaborations; solid
arrows denote re�nement, i.e., to add a new role to a class.

Weight

class Node

void print();

Basic
Graph

refines class Edge

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

class Graph

refines class Graph

Node a, b;

void print();

class Weight

void print();

class Edge

Figure 2.4: Collaboration-based design of a graph implementation.

The feature BasicGraph consists of the classesGraph, Node, and Edge that together
provide functionality to construct and display graph structures2. The feature Weight
adds roles toGraph and to Edge as well as a classWeight to implement a weighted
graph, i.e., a graph that assigns to each edge a speci�c weight value.

2 In this dissertation we write feature names initalic fonts and names of internal elements of features
(e.g., classes, methods, �elds) intypewriter fonts.
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2.4.2 Jak: FOP for Java

Jak constantsJak3 is an extension of Java for FOP. It supports a special languageconstruct to express
re�nements of classes, e.g., for implementing roles. Classes in Jak are implemented as
standard Java classes. Figure 2.5 depicts our featureBasicGraph implemented in Jak4.
It consists of the classesGraph(Lines 1-15),Node(Lines 16-20), andEdge(Lines 21-28).
A programmer can add nodes (Lines 3-7) and print out the graphstructure (Lines 8-14).

1 c lass Graph {
2 Vector nodes = new Vector (); Vector edges = new Vector ();
3 Edge add(Node n, Node m) {
4 Edge e = new Edge (n , m);
5 nodes .add (n); nodes .add (m);
6 edges .add (e); return e;
7 }
8 void print () {
9 for ( int i = 0; i < edges . size (); i ++) {

10 (( Edge ) edges .get ( i )). print ();
11 i f ( i < edges . size () - 1)
12 System .out . print ( " , " );
13 }
14 }
15 }
16 c lass Node {
17 int id = 0;
18 Node (int _id ) { id = _id ; }
19 void print () { System .out . print ( id ); }
20 }
21 c lass Edge {
22 Node a, b;
23 Edge (Node _a , Node _b) { a = _a ; b = _b; }
24 void print () {
25 System .out . print ( " ( " ); a . print (); System .out . print ( " , " );
26 b. print (); System .out . print ( " ) " );
27 }
28 }

Figure 2.5: A simple graph implementation (BasicGraph).

Jak
re�nements

A re�nement in Jak encapsulates the changes a feature appliesto a class. It is declared
by the keywordrefines . A sequence of re�nements applied to a class is calledre�nement
chain, i.e., a class composed with a series of re�nements forms a new class.

mixin
composition

A re�nement in Jak is implemented by amixin [BC90, SB02]. A mixin is anabstract
subclassthat can be applied to various classes to form a new classes. Composing a mixin
and a class is calledmixin composition; the relationship between mixin and superclass

3 http://www.cs.utexas.edu/users/schwartz/ATS.html
4 For simplicity, we merge in code listings all classes and allre�nements of a feature into one piece

of code; in truth each class or re�nement is located in a distinct �le.
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is calledmixin-based inheritance, a form of inheritance that delays the coupling between
subclass and superclass until composition time (a.k.a.mixin instantiation ). Alternative
implementation mechanisms for re�nements arevirtual classes[MMP89, EOC06, OZ05],
traits [DNS+ 06], or nested inheritance[NCM04, NQM06].

Figure 2.6 depicts the featureWeight implemented in Jak: it introduces a class that
represents the weight of an edge (Lines 15-19); it re�nes theclassGraph(Lines 1-6) by
introducing a new methodadd that assigns a weight value to an edge (Lines 2-5); it
re�nes the classEdge(Lines 7-14) by adding a �eld (Line 8) and a method for assigning
the weight value (Line 9) and by extending theprint method to display the weight
(Lines 10-13).

A method extensionis implemented by overriding the method to be extended, adding
code, and calling the overridden method via the keywordSuper5 (Lines 3,11).

1 re f ines c lass Graph {
2 Edge add(Node n, Node m, Weight w) {
3 Edge res = Super .add (n , m);
4 res . setWeight (w); return res ;
5 }
6 }
7 re f ines c lass Edge {
8 Weight w = new Weight (0);
9 void setWeight ( Weight _w) { w = _w; }

10 void print () {
11 Super . print ();
12 System .out . print ( " [ " ); w. print (); System .out . print ( " ] " );
13 }
14 }
15 c lass Weight {
16 int w = 0;
17 Weight ( int _w) { w = _w; }
18 void print () { System .out . print (w); }
19 }

Figure 2.6: Adding support for weighted graphs (Weight).

Jak feature
modules

Jak's feature modules are represented by �le system directories. Thus, they have no
textual representation at the code level. The artifacts, i.e., classes and re�nements
found inside a directory are members (assets) of the enclosing feature. Figure 2.7 shows
the directory hierarchy of our graph example, including thefeaturesBasicGraph, Weight,
and Color.

In its current version, Jak supports separate compilation offeature modules but does
not support explicit interfaces, i.e., the interface of a feature module is the sum of the

5 We capitalize Super to emphasize the di�erence to the Java keywordsuper , which refers to the par-
ent type of a class (traditional inheritance). For brevity w e write Super instead of Super( < argument
types> ) , which is used actually in Jak.
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Figure 2.7: Directory structure of a graph implementation.

interfaces of the participants of the encapsulated collaboration. However, other FOP
languages support collaboration interfaces [MO02].

2.4.3 GenVoca

GenVoca6 is an algebraic model for FOP [BO92]. Features are modeled asoperations of
an algebra. Each SPL is modeled by one associated algebra, which is called aGenVoca
model. For example, G̀raph = {BasicGraph, Weight, Color} ' denotes a modelGraph
that has the featuresBasicGraph, Weight, and Color.

constants and
functions

Features are modeled asfunctions. A constant function (a.k.a. constant) represents
a base program. All other functions receive programs as input and return modi�ed
programs as output. That is, functions represent program re�nements that implement
program features. For example,Ẁeight � X ' and `Color � X ' add features to program
X, where �̀ ' denotes function composition. The design of a software product is a named
feature expression, e.g., ẀeightedGraph = Weight� BasicGraph' and `ColoredWeighted-
Graph = Color � Weight � BasicGraph'. Note that not all possible feature expressions
must be valid, i.e., there may be expressions represent syntactically or semantically in-

6 The name GenVoca is derived from the systemsGenesis [BBG+ 88, Bat88] and Avoca [PHOA89]
that demonstrated �rst the duality between re�nement and mo dules in di�erent domains (i.e.,
data management and network protocols); GenVoca refers to the underlying domain-independent
methodology to develop software by stepwise re�nement.
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correct programs [BG97, Bat05]. The set of all valid featureexpressions corresponds to
the SPL, i.e., all derivable products of a given GenVoca model.

2.4.4 AHEAD

principle of
uniformity

AHEAD (Algebraic Hierarchical Equations for Application Design)is an architectural
model for large-scale program composition and the successor of GenVoca [BSR04]. It
scales the ideas of GenVoca to all kinds of software artifacts. That is, features do not
only consist of source code but of all artifacts that contribute to that feature, e.g., docu-
mentation, test cases, design documents, make�les, performance pro�les, mathematical
models. Furthermore, theprinciple of uniformity states that every kind of software
artifact that is part of a feature can be subject of subsequent re�nement [BSR04].

containment
hierarchy

With AHEAD, each feature is represented by acontainment hierarchy, which is a
directory that maintains a subdirectory structure to organize the feature's artifacts.
Composing features means composing containment hierarchies and, to this end, com-
posing corresponding artifacts byhierarchy combination [OH92] (a.k.a. mixin compo-
sition [BC90, SB02, OZ05],hierarchy inheritance [Ern03], or superimposition [Bos99,
BF88, CM86, Kat93]). Hence, for each artifact type a di�erent implementation of the
composition operatorhas to be provided.

Figure 2.8 shows the featuresBasicGraph and Weight; each consists of several source
code �les as well as an HTML documentation;BasicGraphcontains additionally an XML
build script. The feature expressionẀeightedGraph = Weight� BasicGraph' combines
both features, which is implemented as a recursive combination of their containment
hierarchies. For example, the resulting �leEdge.jak is composed of its counterparts
in BasicGraph and in Weight. The composition is speci�c to the type of the software
artifact, e.g., composing HTML is di�erent from composing XML or Java.

The AHEAD Tool Suite (ATS) 7 implements the ideas of AHEAD. It contains several
tools for developing, debugging, and composing source codeand non-source code ar-
tifacts. The Jak language is integrated into the ATS and thereare tools to compose
Java-based source code artifacts.

7 http://www.cs.utexas.edu/users/schwartz/ATS.html
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build.xml

Weight.jak Graph.jak Edge.jak Graph.jak Edge.jakNode.jak Graph.html

build.xml

Graph.htmlGraph.jak Graph.htmlEdge.jakNode.jak

Edge.jak = Edge.jak   Edge.jak

Weight.jak

src docsrc docsrc

WeightWeightedGraph BasicGraph

doc

Figure 2.8: Combining the containment hierarchies of two features.

2.5 Aspect-Oriented Programming

2.5.1 Crosscutting Concerns

Aspect-oriented programming (AOP)is a programming paradigm that aims at modular-
izing crosscutting concerns[KLM + 97, EFB01]. Crosscutting is a structural relationship
between the representations of two concerns. In other words, a representation of a
concern crosscuts the representation of another concern. Crosscutting is an alternative
structural relationship to hierarchical and block structure. It is not de�ned between con-
cerns but between their representations, i.e., the modulesthat implement the concerns.

collaborations
are crosscuts

In our remarks on FOP, we have already considered a kind of crosscutting concern:
collaborations extend a program at di�erent places, thus cutting across the module
boundaries introduced by classes. Feature modules modularize collaborations, which
implement features. AOP considers crosscutting concerns in general, without special
focus on feature modularity or collaborations.

tyranny of the
dominant
decomposition

Traditional languages and modularization mechanisms su�er from a limitation that is
referred to as thetyranny of the dominant decomposition, which seems to be the cause
of crosscutting [TOHSMS99]: a program can be modularized inonly one way (along
one dimension) at a time, and the many kinds of concerns that do not align with that
modularization end up in scattered, tangled, and replicated code. Figure 2.9 illustrates
di�erent dimensions of separation of concerns, e.g., alongthe feature dimension or the
object dimension8.

8 http://www.research.ibm.com/hyperspace/HyperJ/HyperJ. htm
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objects

features

functions

artifacts

variants
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Figure 2.9: Dimensions of separation of concerns.

code
scattering,
tangling

Code scatteringrefers to a concern implementation that is scattered acrossmany other
concerns implementations;code tanglingrefers to the intermingled implementation of
several concerns within a module. Both decrease modularityand violate the principle
of information hiding [KLM + 97, EFB01, Kic06].

Figure 2.10 shows how the implemention the featureColor crosscuts our basic graph
implementation (the code associated with the featureColor is underlined). The classes
Nodeand Edgeget a �eld color (Lines 3,14) and two methodssetColor (Lines 4,15) and
getColor (Lines 5,16). Further on, theprint methods ofNodeand Edgeare modi�ed to
display the colors appropriately (Lines 9,20). The implementation of the feature Color
is scattered across three classes (Color , Node, Edge) and within these classes it changes
two methods. Moreover, it is tangled with the featureDisplay for displaying the graph
structure, which is itself scattered overGraph, Node, and Edge.

code
scattering and
tangling
degrade com-
prehensibility

Code scattering and tangling degrade a program's comprehensibility. The programmer
becomes distracted when dealing with tangled code, i.e., code that addresses multiple
concerns. Scattered code forces the programmer to reason about a concern in mul-
tiple places of a program. Overall, scattered and tangled code decreases reusability,
maintainability, and customizability since the concerns become coupled � short their
implementation violates the principle of separation of concerns [KLM+ 97, EFB01].

code
replication

A further negative e�ect of crosscutting is code replication, which occurs typically when
a concern interacts with multiple concerns and all interactions are implemented identi-
cally. For example, the implementation of our featureColor results in code for man-
aging and changing colors that is replicated in the classesEdgeand Node. It has been
observed that code replication is a serious problem: besidethe handicap of reimplement-
ing the same functionality again and again, code replication reduces software maintain-
ability [FR99] and is a potential substrate for errors causedby copy and paste of code
fragments [LLM06].
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1 c lass Graph { / � . . . � / }
2 c lass Node {
3 Color color;
4 void setColor(Color c) { color = c; }
5 Color getColor() { return color; }
6 int id = 0;
7 Node (int _id ) { id = _id ; }
8 void print () {
9 Color.changeDisplayColor(getColor());

10 System .out . print ( id );
11 }
12 }
13 c lass Edge {
14 Color color;
15 void setColor(Color c) { color = c; }
16 Color getColor() { return color; }
17 Node a, b;
18 Edge (Node _a , Node _b) { a = _a ; b = _b; }
19 void print () {
20 Color.changeDisplayColor(getColor());
21 System .out . print ( " ( " ); a . print (); System .out . print ( " , " );
22 b. print (); System .out . print ( " ) " );
23 }
24 }
25 class Color {
26 static void changeDisplayColor(Color c) { /* ... */ }
27 }

Figure 2.10: Implementing the featureColor leads to code scattering, tangling, and repli-
cation (code associated to the featureColor is underlined).

2.5.2 Aspects: An Alternative Modularization Mechanism

AOP addresses the problems caused by crosscutting concernsas follows: concerns that
can be modularized well using the given decomposition mechanisms of a programming
language (a.k.a.host programming language) are implemented using these mechanisms.
All other concerns that crosscut the implementation of other concerns are implemented
as so-calledaspects.

An aspect is a kind of module that encapsulates the implementation of a crosscutting
concern. It enables code that is associated with one crosscutting concern to be encap-
sulated into one module, thereby eliminating code scattering and tangling. Moreover,
aspects can a�ect multiple other concerns via one piece of code, thereby avoiding code
replication.

aspect
weaving

An aspect weavermerges the separate aspects of a program and the remaining program
elements at prede�nedjoin points. This process is calledaspect weaving. Join points can
be syntactical elements of a program, e.g., a class declaration, or events in the dynamic
execution of the program, e.g., a call to a method in the control �ow of another method.
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Figure 2.11 illustrates the weaving of two aspects into a base program consisting of three
components.

base program code aspect code

finally woven program

component B

component C

component A

weaver
aspect

aspect A

aspect B

component A component B

component C

Figure 2.11: Aspect weaving.

aspects
violate
information
hiding

Although often referred to as modularization mechanism, the traditional aspect violates
the principle of information hiding [LLO03, Ald05, SGS+ 05, DW06]: while the aspect
itself has an interface, it a�ects other modules directly, without the indirection of an
interface. This precludes developing and modifying modules independently. However, it
has been argued that traditional modularization mechanisms themselves do not perform
well with respect to crosscutting concerns [LLO03, Kic06].Hence, aspects seem to be a
pragmatic alternative. There are several e�orts that aim atrestoring information hiding
in AOP [Ald05, OAT + 06, DW06, SGS+ 05].

aspects vs.
classes

In most AOP languages the concept of an aspect extends the concept of a class. Besides
structural elements known from OOP, e.g., methods and �elds, aspects may contain also
pointcuts, advice, and inter-type declarations.

Pointcuts: A pointcut is a declarative speci�cation of the join points that an aspect will
be woven into, i.e., it is an expression (quanti�cation) that determines whether a
given join point matches.

24



2.5 Aspect-Oriented Programming

Advice: An advice is a method-like element of an aspect that encapsulates the instruc-
tions that are supposed to be executed at a set of join points.Pieces of advice are
bound to pointcuts that de�ne the set of join points beingadvised.

Inter-type declarations: An inter-type declaration adds methods, �elds, or interfaces
to existing classes from inside an aspect.

2.5.3 AspectJ: AOP for Java

AspectJ9 is an AOP language extension of Java. Figure 2.12 illustrateshow an aspect in
concert with a class and an interface implements ourColor feature. The dashed arrows
denote the structural elements of the graph implementationa�ected by the aspect (only
a subset is depicted). The AspectJ weaver merges the aspect implementation and the
basic graph implementation.

aspect AddColor

Graph

class Color

...
interface Colored

class Node

void print();

void print();

class Weight

before() : execution(void print());

...
...

Edge add(Node, Node);

class Graph

Node a, b;

class Edge

Weight weight;

void print();

Edge add(Node, Node, Weight);

void print();

Weighted

Figure 2.12: Implementing theColor feature as aspect.

Figure 2.13 depicts one possible implementation of theColor feature in AspectJ. The
aspectAddColor de�nes an interfaceColored for all classes that maintain a color (Line 2)
and declares via inter-type declaration thatNodeand Edge implement that interface
(Line 4). Furthermore, it introduces via inter-type declarations a �eld color and two
accessor methods toNodeand Edge. Finally, it advises the execution of the method
print of all colored entities, i.e.,Edgeand Node, to change the display color.

inter-type
declarations
for multiple
types

Note that, in AspectJ, one cannot declare one �eld or method for multiple types simul-
taneously. This leads to a replication of code in ourColor feature: the code for introduc-
ing the �eld color and the two accessor methods is replicated (Fig. 2.13, Lines6-8 and
10-12). To overcome this limitation of AspectJ, we prefer thefollowing syntax in the
remaining dissertation: Color (Node jj Edge).color introduces a �eld color to the

9 http://www.eclipse.org/aspectj/
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1 aspect AddColor {
2 interface Colored { Color getColor (); }
3
4 declare parents : (Node || Edge ) implements Colored ;
5
6 Color Node . color ;
7 void Node . setColor ( Color c) { color = c; }
8 public Color Node . getColor () { return color ; }
9

10 Color Edge . color ;
11 void Edge . setColor ( Color c) { color = c; }
12 public Color Edge . getColor () { return color ; }
13
14 before ( Colored c) : execution ( void *. print ()) && th is (c) {
15 Color . changeDisplayColor (c . getColor ());
16 }
17 }

Figure 2.13: Implementing theColor feature using AspectJ (excerpt).

types Nodeand Edge. Using this syntax we can eliminate the redundant code caused by
inter-type declarations in our aspectAddColor, as shown in Figure 2.14.

1 aspect AddColor {
2 interface Colored { Color getColor (); }
3
4 declare parents : (Node || Edge ) implements Colored ;
5
6 Color (Node || Edge ). color ;
7 void (Node || Edge ). setColor ( Color c) { color = c; }
8 public Color (Node || Edge ). getColor () { return color ; }
9

10 before ( Colored c) : execution ( void *. print ()) && th is (c) {
11 Color . changeDisplayColor (c . getColor ());
12 }
13 }

Figure 2.14: A more compact syntax for inter-type declarations in AspectJ.

2.6 Terminology Used in this Dissertation

In the remaining dissertation we use the following terminology and conventions. We
assume that a SPL is implemented as a program family in a SWD manner. A series
of features re�nes a given base program in several development steps. A re�nement
encapsulates a set of changes made to a program, i.e., it addsnew structures and modi�es
existing ones.

We consider AOP and FOP techniques for SWD of SPLs with the primary goal of sepa-
ration of concerns and feature modularity. Consequentially, aspects and feature modules
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implement structural features of a SPL. An aspect is a class-like implementation mecha-
nism that contains additionally pointcuts, advice, and inter-type declarations, as exem-
pli�ed by the AspectJ programming language. A feature module is an implementation
mechanism that supports the encapsulation of a collaboration of several software arti-
facts, as exempli�ed by the Jak programming language. Furthermore, feature modules
are composed by mixin composition.
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CHAPTER 3

A Classi�cation Framework for Crosscutting
Concerns

This chapter shares material with the ICSE'06 paper `Aspectual Mixin Lay-
ers: Aspects and Features in Concert' [ALS06], and the AOPLE'06 paper
`On the Structure of Crosscutting Concerns: Using Aspects or Collabora-
tions?' [ABR06].

In order to compare FOP and AOP, we present a classi�cation framework for crosscutting
concerns. Subsequently, we demonstrate that AOP and FOP perform di�erently in
modularizing the di�erent classes of crosscutting concerns.

Within our framework, we classify crosscutting concerns (crosscutsfor short) along two
dimensions: (1) the structure of a crosscut can be homogeneous or heterogeneous and
(2) concerns can crosscut the static structure or the dynamic structure of a program.

3.1 Homogeneous and Heterogeneous Crosscutting Concerns

homogeneous
crosscuts

A homogeneous crosscutextends a program at multiple join points by adding oneex-
tension, which is a modular piece of code [CRB04]. For example, ourColor feature is
a homogeneous crosscut. It extends the two classesNodeand Edge in the same way
(cf. Fig. 2.12 and Fig. 2.13): the aspectAddColor contains an advice that advises two
method executions (print in Nodeand Edge) and four inter-type declarations that in-
troduce members and an interface to both classes,Nodeand Edge.
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heterogeneous

extension

crosscut
homogeneous

crosscut

Figure 3.1: Homogeneous and heterogeneous crosscuts.

heterogeneous
crosscuts

A heterogeneous crosscutextends multiple join points by adding multiple extensions,
where each individual extension is implemented by a distinct piece of code, which a�ects
exactly one join point [CRB04]. For example, ourWeight feature is a heterogeneous
crosscut (cf. Fig. 2.4 and Fig. 2.6). It extends the classesGraph and Edgebut each in
a di�erent way: the re�nement of Graph introduces the methodadd; the re�nement of
Edgeintroduces the methodsetWeight and the �eld weight , and it extends the method
print .

comparison Figure 3.1 illustrates the di�erence between homogeneous and heterogeneous crosscuts.
White boxes denote the individual extensions made to a program, e.g., encapsulated in
classes, methods, or advice. Gray boxes denote the program and the crosscut that a�ects
the program. Figure 3.1 indicates that a homogeneous crosscut can be implemented
using a set of distinct extensions, like a heterogeneous crosscut; but this results in code
replication. For example, Figure 3.2 depicts an aspect withone piece of advice that
advises three methods; Figure 3.3 depicts an equivalent aspect but with three distinct
pieces of advice that advise only one method each � all with anidentical advice body.

1 aspect FooAspect {
2 af ter () : execution ( void A. foo ()) ||
3 execution ( void B. foo ()) ||
4 execution ( void C. foo ()) {
5 / � do something � /
6 }
7 }

Figure 3.2: A homogeneous crosscut im-
plemented using one piece of
advice.

1 aspect FooAspect {
2 af ter () : execution ( void A. foo ()) {
3 / � do something � /
4 }
5 af ter () : execution ( void B. foo ()) {
6 / � do something � /
7 }
8 af ter () : execution ( void C. foo ()) {
9 / � do something � /

10 }
11 }

Figure 3.3: A homogeneous crosscut
implemented using three
pieces of advice.
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3.2 Static and Dynamic Crosscutting Concerns

static
crosscuts

A static crosscut extends the structure of a program statically [MO04], i.e.,it adds
new classes and interfaces and injects new �elds, methods, interfaces, etc. Note that
method extensions are not static crosscuts, as we will explain soon. AspectJ's inter-
type declarations and Jak's re�nements that introduce new members are examples of
implementations of static crosscuts (Fig. 3.4).

1 re f ines c lass Edge {
2 Weight w = new Weight (0);
3 void setWeight ( Weight _w) {
4 w = _w;
5 }
6 }

1 aspect AddWeight {
2 Weight Edge .w = new Weight (0);
3 void Edge . setWeight ( Weight _w) {
4 w = _w;
5 }
6 }

Figure 3.4: Implementing static crosscuts in Jak (left) and AspectJ (right).

dynamic
crosscuts

A dynamic crosscuta�ects the runtime control �ow of a program [MO04]. The seman-
tics of a dynamic crosscut can be understood and de�ned in terms of an event-based
model [WKD04, Läm99]: a dynamic crosscuts runs additional code when prede�ned
events occur during the program execution. Such events are also calleddynamic join
points [MK03b, WKD04, OMB05]. Examples of programming constructs that imple-
ment dynamic crosscuts are method extensions in Jak (via overriding) and advice in
AspectJ (Fig. 3.5). While the former is limited to method-related join points [MO04],
the latter may advise a more sophisticated set of events.

1 re f ines c lass Edge {
2 void print () {
3 Super . print ();
4 System .out . print ( " [ " );
5 w. print ();
6 System .out . print ( " ] " );
7 }
8 / � . . . � /
9 }

1 aspect AddWeight {
2 af ter (Edge e) :
3 execution ( void Edge . print ()) && th is (e) {
4 System .out . print ( " [ " );
5 e.w. print ();
6 System .out . print ( " ] " );
7 }
8 / � . . . � /
9 }

Figure 3.5: Implementing dynamic crosscuts in Jak (left) andAspectJ (right).

comparisonFigure 3.6 illustrates the di�erence between static and dynamic crosscuts. The left
shows a static crosscut. It crosscuts the static structure of a program, here represented
as a class graph. White boxes denote classes or their extensions; empty arrows denote
inheritance and �lled arrows denote the application of extensions; an extension to a
dashed box means the introduction of a new class.
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execute code
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Figure 3.6: Static and dynamic crosscuts.

The right shows a dynamic crosscut. It a�ects the dynamic structure of the program,
here represented as a control �ow graph. The extensions are applied to join points that
are events in the dynamic control �ow. In our example, the elements of the control �ow
graph are method executions and the arrows between them are calls. An extension may
by applied to a method call or a method execution.

Note that dynamic crosscutting should not be confused withdynamic weaving, which
refers to the weaving of code at loadtime or runtime [PGA02, SCT03, BHMO04].

Basic and Advanced Dynamic Crosscuts

Dynamic crosscuts are especially interesting when they notonly a�ect method calls
or executions. Work on AOP suggests that expressing a program extension in terms
of sophisticated events increases the abstraction level and captures the programmer's
intension more directly. Capturing and advising these events using traditional OOP
mechanisms results in complicated workarounds. There are many proposals for new
language constructs for de�ning and catching new kinds of events during the program
execution [OMB05, HG06, MK03a]. In order to distinguish these new kinds of events
and the novel language mechanisms that support them from simpler events known from
OOP, we distinguish betweenbasic dynamic crosscutsand advanced dynamic crosscuts,
which we de�ne as follows:

1. A basic dynamic crosscut addresses only events that are related to method calls and
executions; advanced dynamic crosscuts address all kinds of events, e.g., throwing
an exception or assigning a value to a �eld.

2. A basic dynamic crosscut accesses only runtime variablesthat are related to the
method call or execution that is advised, i.e., arguments, result value, and enclosing
object instance of the advised method; advanced dynamic crosscuts can expose
more information related to a join point, e.g., the runtime type of the caller of a
method.
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3. Basic dynamic crosscuts a�ect a program control �ow unconditionally; advanced
dynamic crosscuts may specify a condition that is evaluatedat runtime, e.g., a
method execution is only a�ected if it occurs in the control �ow of another method
execution.

4. Basic dynamic crosscuts address only simple events; advanced dynamic crosscuts
can specify composite events and event patterns, e.g.,trace matchesare executed
when events �re in a speci�c pattern, thus, involving the history of computa-
tion [AAC + 05].

basic dynamic
crosscuts are
method
extensions

Principally, basic dynamic crosscuts can be implemented asmethod extensions using
traditional OOP. They extend a method execution/call unconditionally and access only
information that is available in method extensions, i.e., the arguments, the result, and
the enclosing runtime object.

3.3 Summary: Classi�cation Matrix

Table 3.1 contrasts several examples of the di�erent classes of crosscutting concerns
written in AspectJ. It can be seen that our classi�cation framework lays out the set
of possible crosscutting concerns in a two-dimensional space. Homogeneous as well as
heterogeneous crosscuts can be either static or dynamic. Dynamic crosscuts can be basic
dynamic and advanced dynamic.

homogeneous heterogeneous
static /* Introducing a method to two classes */

void (Point jj Shape).setX(int x)
{ /* : : : */ }

/* Introducing a method to one class */
void Point.setX(int x)
{ /* : : : */ }

basic
dynamic

/* Advising a set of method executions */
before() : execution(* set*(..))
{ /* : : : */ }

/* Advising one method execution */
before() : execution(void Point.setX(int))
{ /* : : : */ }

advanced
dynamic

/* Advising a set of method executions de-
pendently on the program control �ow */
before() : execution(* set*(..)) &&
!cflow(execution(* rotate(..)))
{ /* : : : */ }

/* Advising one method execution dependently on the
program control �ow */
before() : execution(void Point.setX(int)) &&
!cflow(execution(void Line.rotate(double)))
{ /* : : : */ }

Table 3.1: Classi�cation matrix with AspectJ examples.

issues to
address

Given these di�erent classes of crosscutting concerns it isstraightforward to ask whether
and how FOP and AOP support their modularization. Also it is interesting to contem-
plate how often these di�erent kinds of concerns occur when implementing program fea-
tures and which mechanisms are bene�cial for implementation. This kind of knowledge
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helps (1) build better tools that re�ect the programmer's needs; (2) provide program-
ming guidelines for exploiting programming mechanisms better; (3) discover misuse of
programming mechanisms.
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CHAPTER 4

A Conceptual Evaluation of Aspect-Oriented
and Feature-Oriented Programming

This chapter shares material with the ICSE'06 paper `Aspectual Mixin Lay-
ers: Aspects and Features in Concert' [ALS06].

This chapter presents a conceptual evaluation and comparison of AOP and FOP with
respect to implementing program features. First, we propose a set of evaluation criteria
that build upon our classi�cation framework for crosscutting concerns. Then, we apply
our criteria to evaluate and compare AOP and FOP. Finally, weput our results in
perspective and formulate a goal statement for this dissertation.

focus on
programming
support

In our evaluation we focus exclusively on the implementation mechanisms associated
to FOP and AOP. We do not take software development methodologies, tool support,
type systems, or mathematical foundations discussed in context of AOP and FOP into
account. For FOP this means that a feature module encapsulates a collaboration of
software artifacts that are composed by mixin composition.For AOP this means that
an aspect is a class-like entity that contains additionallypointcuts, advice, and inter-type
declarations.

4.1 Evaluation Criteria

4.1.1 Abstraction

Abstraction in computer science helps to manage the complexity of software [Sha84].
Abstraction is the process of emphasizing and hiding the details of software at di�erent
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levels and to di�erent degrees. Abstraction refers also to aconstruct or concept that
has been subjected to the process of abstraction [Kru92]. Separation of concerns and
modules are the enabling technologies for abstraction. Butabstraction is more than
breaking down a system into modules. Abstracting from details means to introduce new
concepts or constructs and to introduce new descriptions orformalizations that condense
relevant information and that reduce complexity. A principal goal of abstraction is to
express a design or implementation issue in terms of abstractions that are close to what
the programmer has in mind when thinking about this issue.

An abstraction of a software artifact consists of a high-level, intuitive, and useful spec-
i�cation that maps to a realization at a lower level; the speci�cation describes �what�
the abstraction does, whereas the realization of the abstraction describes �how� it is
done [Kru92].

In our evaluation we examine the abstraction capabilities of FOP and AOP for imple-
menting program features. Since both AOP and FOP rely on OOP,we focus only on
those abstraction mechanisms that exceed the level of traditional OOP (e.g., classes,
methods) and on how they di�er.

4.1.2 Crosscutting Modularity

Modularity is the property of software systems that measures the extent to which they
have been composed of modules. We focus exclusively on crosscutting modularity since
FOP and AOP are equal with respect to modularization mechanisms known from OOP.
Speci�cally, we use the results of the previous chapter to examine how aspects and feature
modules perform in modularizing the di�erent classes of crosscutting concerns that occur
when implementing features, which are classi�ed by our framework. That is, we evaluate
how AOP and FOP perform in modularizing homogeneous and heterogeneous as well as
static and dynamic crosscutting concerns.

4.1.3 Feature Cohesion

Cohesion is the ability of a feature to encapsulate all implementation details that de-
�ne the feature in one unit [BK06, LHBC05]. While modularity addresses the internal
structure of a feature, i.e., the modular implementation ofthe artifacts that implement a
feature, cohesion addresses the feature as a whole, i.e., the encapsulation of all artifacts
that contribute to the feature. The highest degree of cohesion is achieved by a one-to-one
mapping of requirements to corresponding units at implementation level [CE00].

For example, it is easier and more intuitive to plug a cohesive data management com-
ponent to a cohesive network driver in one step than to connect the data management
and the network software in many places by hand.
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composed programbase program feature

Figure 4.1: Integrating features by superimposition.

4.1.4 Feature Integration

Once a set of desired features has been selected, they are integrated to form a tailored
software product. Principally, we distinguish between twotypes of feature integration:

Superimposition: One way to apply a feature to a program is tosuperimposethe pro-
gram structure with the structure of the feature [OH92, Ern03, SB02, BSR04,
OZ05, Bos99]. The concept of superimposition was �rst proposed for combin-
ing control structures of distributed processes [BF88, CM86, Kat93]. In terms of
object-orientation, superimposition means that the classhierarchy of the program
is merged with the class hierarchy of the feature [OH92], where the latter hierarchy
is a sparse version of the former. The merging is applied recursively and structural
elements are merged by name and type; merging classes is implemented by set
union and merging methods is implemented by overriding.

Figure 4.1 illustrates the process of superimposition by example: on the left side is
the class hierarchy of the base program; classes of the base program are depicted
as white boxes. The program's class hierarchy is superimposed (denoted by �̀ ')
by a sparse class hierarchy of a feature; gray boxes are the classes of the feature
and dashed white boxes mark the not-a�ected classes of the base program. On the
right side the result of superimposing the structures of thebase program and the
feature is depicted; white boxes are the unmodi�ed classes of the base program;
gray boxes are the classes introduced by the applied feature; boxes that are half
white and half gray denote the merged classes of base programand feature.

Crosscutting integration: Superimposition as feature integration technique is not al-
ways su�cient [MO02, MO03, LLO03]. Sometimes the structureof a feature does
not �t the structure of the base program. This happens (1) when a feature is
reused in di�erent base programs that have di�erent structures and (2) when a
programmer wants to express a new feature in terms of abstractions that di�er
from those in the base program [Nov00]. For example, supposea network software
is re�ned by an application protocol. The protocol at application level can be ex-
pressed more easily in terms of producer (server), consumer(client), and product
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composed programbase program feature

Figure 4.2: Crosscutting integration of features.

(delivered data) than by using the basic network abstractions such as sockets and
streams. Since there are no structural counterparts between the two components
it is complicated to achieve a clean mapping, i.e., it is not possible to superimpose
their structures. Thus, such integration results in code scattering and tangling.

Figure 4.2 illustrates the process of a crosscutting integration of features: the left
side shows the base program, the middle a feature, and the right side the composed
program. Within the composed program the original base program and the applied
feature are integrated via a set oflinks (denoted by dashed arrows) that connect
the structural elements of both sides, e.g., object references, method invocations,
advice, wrappers. In contrast to superimposing features, the integration pattern
is cluttered. The links between base program and feature crosscut the program's
as well as the feature's structure. Moreover, additional code for establishing the
links is necessary.

4.1.5 Feature Composition

Features can be composed to form a new features. Technically, features are composed by
superimposition or crosscutting integration. Using feature composition a programmer
reuses code, which is bene�cial because thinking in terms ofexisting features is often
easier than building features from scratch. For example, constructing a data manage-
ment feature out of simpler features such a storage management, query evaluation, and
caching, is more e�cient than constructing a tailored data management component for
each use case from scratch.

4.2 Evaluation of AOP and FOP

We apply our catalog of criteria to evaluate and compare AOP and FOP.
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4.2.1 Abstraction

FOP and AOP provide di�erent abstraction mechanisms beyondthose used in OOP.

FOP abstracts
from
composition
details

FOP's feature modules encapsulate all software artifacts that implement a feature, which
may be of di�erent types. The de�nition of a feature module isseparated from the com-
position speci�cation, which enumerates the desired features by name. This hides the
details of composing the internal artifacts from the programmer. The keywordrefines
denotes the composition of artifacts by set union (e.g., classes) and sequence combi-
nation (e.g., method extensions). It abstracts from a concrete implementation (e.g.,
mixin-based inheritance[BC90, SB02, BSR04],jampack composition[BSR04], virtual
classes[MMP89, EOC06, OZ05],nested inheritance[NCM04, NQM06],traits [DNS+ 06],
or classboxes[BDN05]).

AOP
abstracts
from the
control �ow

AOP increases the level of abstraction by introducing the concept of join points. A
join point refers either to a lexical point in the static program structure or to an event
in the dynamic �ow of a program. This way programmers specifyprogram extensions
with respect to the dynamic program semantics [WKD04]. The programmer can think in
terms of events and actions without being aware of the details that enable event handling
and action triggering. For example, the pointcutcflow refers to the dynamic control �ow
of a program; it can be used to limit a set of join points to those that occur in the control
�ow of another join point. Of course, cflow can be implemented using standard OOP
techniques [LHBL06] � but this obscures the programmers intention and leads to code
scattering and tangling. AOP's pattern-matching and wildcard mechanisms abstract
from workarounds necessary for re�ning each join point by a separate extension.

di�erent
abstraction
mechanisms

The bottomline is that both, FOP and AOP, provide sophisticated but di�erent mecha-
nisms that exceed the capabilities of OOP. While feature modules abstract from details
about composition and re�nement, aspects provide abstractions for the control �ow and
for selecting and re�ning multiple join points.

4.2.2 Crosscutting Modularity

Homogeneous and Heterogeneous Crosscuts

A signi�cant body of work has exposed that collaborations ofclasses are predominantly
of a heterogeneous structure [VN96c, MO04, LLO03, Ern01, OZ05, Ost02, TVJ+ 01,
EOC06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99]. That is,the roles and classes
added to a program di�er in their functionality, as in our graph example. A collaboration
is a heterogeneous crosscut and a heterogeneous crosscut can be understood as collabo-
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ration applied to a program. Hence, a feature module is well quali�ed to implement a
heterogeneous crosscut.

In contrast to feature modules, aspects perform well in extending a set of join points
using one coherent advice or one localized inter-type declaration, thus, modularizing a
homogeneous crosscut. This way programmers avoid code replication. The more join
points are captured by a homogeneous crosscut, the higher the pay-o� of AOP.

Although both approaches support the implementation of thecrosscuts the other ap-
proach focuses on, they cannot do so elegantly [MO04].

1 re f ines c lass Node {
2 Color color ;
3 Color getColor () { return color ; }
4 void setColor ( Color c) { color = c; }
5 void print () {
6 Color . changeDisplayColor ( getColor ());
7 }
8 }
9 re f ines c lass Edge {

10 Color color ;
11 Color getColor () { return color ; }
12 void setColor ( Color c) { color = c; }
13 void print () {
14 Color . changeDisplayColor ( getColor ());
15 }
16 }
17 c lass Color { / � . . . � / }

Figure 4.3: Implementing theColor feature as a feature module.

using
collaborations
instead of
aspects

Implementing our Color feature (a homogeneous crosscut) using FOP we would intro-
duce two re�nements to the classesNodeand Edge, which introduce exactly the same
code (Fig. 4.3). Our AOP-based solution proposed previously avoids this code replication
(Fig. 4.4).

using aspects
instead of
collaborations

Conversely, an aspect may implement a collaboration (a heterogeneous crosscut) by
bundling a set of inter-type declarations and advice, as shown in Figure 4.5. The aspect
AddWeightintroduces the methodadd and the �eld weight via inter-type declarations
(Fig 4.6, Lines 2-5; Line 6) and extends theprint method via advice (Lines 7-11).
Hence, it implements a heterogeneous crosscut, which is a collaboration of Weight and
two roles, a role ofEdgeand a role ofGraph. We have noticed and so have others [Ste05,
MO04, Bos99] that not expressing a collaboration in terms ofobject-oriented design
(i.e., roles implemented as re�nements) decreases programcomprehensibility. This is
because programmers cannot recognize the original structure of the base program within
a subsequent re�nement � in our example the structuring inGraph, Node, and Edge.
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1 aspect AddColor {
2 interface Colored { Color getColor (); }
3 declare parents : (Node || Edge ) implements Colored ;
4 Color (Node || Edge ). color ;
5 void (Node || Edge ). setColor ( Color c) { color = c; }
6 public Color (Node || Edge ). getColor () { return color ; }
7 before ( Colored c) : execution ( void *. print ()) && th is (c) {
8 Color . changeDisplayColor (c. getColor ());
9 }

10 }
11 c lass Color { / � . . . � / }

Figure 4.4: Implementing theColor feature as an aspect.

aspect AddWeight

class Node

void print();

class Weight

void print();

Edge add(Node, Node);

void print();

class Graph

Node a, b;

void print();

class Edge

Edge Graph.add(Node, Node, Weight);

Weight Edge.weight;

after(Edge) : execution(void Edge.print()) ...; <<advice>>

<<inter-type decl.>><<inter-type decl.>>

Basic
Graph

Figure 4.5: Implementing a collaboration as an aspect.

large-scale
features

One may argue that, for this simple example, it does not really matter whether one uses
feature modules or aspects. But the di�erence between FOP and AOP becomes more
obvious when considering features at a larger scale. Then itbecome clear that aspects
lack scalability. Suppose a base program consists of many classes and a feature extends
most of them. In a FOP solution the programmer de�nes, per class to be extended, a
new role with the same name (Fig. 4.7). This way the programmer is able to retrieve the
program structure within the new feature. There is a one-to-one mapping between the
structural elements of the base program and the elements of the feature; base program
and feature are merged recursively by name and type.

In an AOP solution one would merge all participating roles into one (or more) aspect(s)
(Fig. 4.8). While this is possible, it �attens the inherent object-oriented structure of the
feature and makes it hard to trace the mapping between base program and feature [Ste05,
MO04]. Note that the di�erence between AOP and FOP, as shown in the Figures 4.7
and 4.8, is not only a matter of visualization. The point is that the inner structure of the
aspect does not re�ect the structure of the base program; there is no natural mapping
between structural elements of the base program and the feature. So it is no coincidence
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1 aspect AddWeight {
2 Edge Graph .add (Node n, Node m, Weight w) {
3 Edge res = add(n , m);
4 res . weight = w; return res ;
5 }
6 Weight Edge . weight ;
7 af ter (Edge e) : th is (e) && execution ( void Edge . print ()) {
8 System .out . print ( " [ " );
9 e. weight . print ();

10 System .out . print ( " ] " );
11 }
12 }

Figure 4.6: An AspectJ aspect that implements a collaboration.

feature
module

base
program

Figure 4.7: Implementing a large-scale feature using a feature module.

that the mapping is complicated and hard to trace for the programmer. The one-to-one
mapping of the FOP solution is easier to understand especially for large-scale features.

roles and
aspects

Implementing each role as a distinct aspect, as suggested byHanenberg et al. [HU02],
Kendall [Ken99], and Sihman et al. [SK03], would obscure theobject-oriented structure
as well. In our example we would implement the re�nements ofGraph and Edge as
two distinct aspects. This approach would enable to establish a one-to-one mapping
between the structural elements of the base program and the elements of the feature
(provided reasonable naming conventions). However, this way inheritance and re�ne-
ment is replaced simply by aspect weaving without any further bene�t. We and oth-
ers [Ste05, MO04] argue that such a replacement of object-oriented techniques without
any bene�t is questionable, especially with respect to the additional complexity intro-
duced by aspect weaving [Ste06, Ale03].
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base

aspect

program

Figure 4.8: Implementing a large-scale feature using an aspect.

The reason why aspects fail in expressing collaborations appropriately is that roles are
closely connected to their classes; role-based design is inherently object-oriented [Ste00].

Static and Dynamic Crosscuts

static
crosscuts

Features and aspects may extend the structure of a base program statically, i.e., by in-
jecting new members and introducing new superclasses and interfaces to existing classes.
Figure 4.9 depicts a re�nement and an aspect, which both inject a method and a �eld
as well as introduce a new interface to the classEdge.

1 re f ines c lass Edge
2 implements Comparable {
3 boolean compare (Edge e) {
4 / � . . . � /
5 }
6 }

1 aspect ComparableEdge {
2 declare parents : Edge implements Comparable ;
3 boolean Edge . compare (Edge e) {
4 / � . . . � /
5 }
6 }

Figure 4.9: Implementing a static crosscut via re�nement (left) and via aspect (right).

Additionally, features are able to encapsulate and introduce new classes. Traditional
aspects, as exempli�ed by AspectJ, are not able to introduce independent classes � at
least not as part of an encapsulated feature. While it is correct that one can just add

43



Chapter 4 A Conceptual Evaluation of AOP and FOP

node

composite node (subgraph)

Figure 4.10: A recursive graph data structure.

another class to an environment, e.g., using AspectJ, this isat the tool level and not at
a model level. The programmer has to build his own mechanisms(outside of the tool) to
implement feature modularity [LHBC05], e.g., inFACET , an AspectJ implementation
of a CORBA event channel, the programmers implemented a non-trivial mechanism for
feature management [HC02].

dynamic
crosscuts

As opposed to AOP, FOP provides no extra language support forimplementing dy-
namic crosscuts. That is, dynamic crosscuts can be implemented but there are no
tailored abstraction mechanisms to express them in a more intuitive way, e.g., by an
event-condition-action pattern. Without depending on a workaround, FOP supports
just basic dynamic crosscuts, i.e., method extensions [MO04]. While this works for
many implementation problems, there are certain situations in which a programmer
may want to express a new program feature in terms of the dynamic semantics of the
base program, i.e., to implement an advanced dynamic crosscut (cf. Sec. 3.2). Aspects
are intended exactly for this kind of crosscut. They providea sophisticated set of mech-
anisms to re�ne a base program based upon its execution, e.g., mechanisms for tracing
the dynamic control �ow and for accessing the runtime context of join points.

extending
recursive data
structures
demands
aspects

When extending the printing mechanism of our graph implementation, we can take
advantage of these sophisticated mechanisms of AOP. Background is that the print
methods of the participants of the graph implementation call each other, � especially,
when nodes of a graph may be (sub)graphs themselves (Fig. 4.10).

Generally, recursive data structures are an appropriate use case for AOP. The AOP
language constructs for advanced dynamic crosscuts (e.g.,cflow , cflowbelow ) enable
to advise only selected join points within the control �ow ofa program. For example,
to make sure that we do not advise all calls toprint , but only the top-level calls, i.e.,
calls that do not occur in the dynamic control �ow of other executions of print , we can
use thecflowbelow pointcut as condition evaluated at runtime (Fig. 4.11). Theadvice
shown is an example of an advanced dynamic crosscut.

44



4.2 Evaluation of AOP and FOP

1 aspect PrintHeader {
2 before () : execution ( void *. print ()) && ! cflowbelow ( execution ( void *. print ())) {
3 pr intHeader ();
4 }
5 void pr intHeader () {
6 System .out . print ( " header : " );
7 }
8 }

Figure 4.11: Advising the printing mechanism using advanced advice.

using FOP for
advanced
dynamic
crosscuts

Though language abstractions such ascflow and cflowbelow can be implemented (em-
ulated) by FOP, this usually results in code replication, tangling, and scattering. For
example, Figure 4.12 depicts the above extension to the printing mechanism implemented
using FOP. Omitting AOP constructs results in a complicatedworkaround (underlined)
for tracing the control �ow (Lines 2,6,8) and executing the actual extension conditionally
(Lines 4-5). Compared to the FOP solution, the AOP solution captures the intension of
the programmer more precisely and explicitly (cf. Fig. 4.11).

1 re f ines c lass Node {
2 static int count = 0;
3 void print () {
4 if(count == 0)
5 printHeader ();
6 count++;
7 Super . print ();
8 count�-;
9 }

10 void pr intHeader () { / � . . . � / }
11 }

Figure 4.12: Implementing the extended printing mechanismvia re�nement.

The bottomline is that FOP and AOP are complementary with respect to crosscutting
modularity. FOP is strong in modularizing collaborations,which are heterogeneous
and basic dynamic crosscuts. AOP performs well in modularizing homogeneous and
advanced dynamic crosscuts.

4.2.3 Feature Cohesion

Features implemented via feature modules have an explicit representation at the design
and implementation level. All structural elements that contribute to the feature are
encapsulated inside the feature module. Hence, a high degree of feature cohesion is
achieved.
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Using AOP, a programmer expresses new features by aspects, but in many cases features
cannot be expressed using one single aspect, especially notin complex programs [LHBC05,
MO04]. Often the programmer introduces several aspects andadditional classes, e.g.,
the Weight feature consists of the aspectAddWeight and the classWeight. One may
argue that we could express every feature using only one aspect, but this violates the
principle of separation of concerns � it destroys the inner structure of a feature's im-
plementation, as explained in Section 4.2.2. Classes and aspects are too small units of
modularity and therefore not suitable for implementing features [VN96c, MO04, LLO03,
Ern01, OZ05, Ost02, TVJ+ 01, EOC06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99].

Nevertheless, aspects can be encapsulated in packages or may contain nested classes but
there are no mechanisms for re�ning and composing these constructs. However, hybrid
approaches likeCaesar [MO02, MO03, MO04] exploit the mechanisms of collaboration-
based designs such as mixin composition and virtual classes.

In summary, feature modules provide appropriate means for the cohesive implementation
of program features. The reason for that is they encapsulatecollaborations of artifacts
and they can be composed. An aspect should not implement an entire feature because
in traditional AOP it is a class-like entity that cannot express a collaboration. What
follows is that aspects can be a part of a feature implementation, as we will show in
Chapter 5.

4.2.4 Feature Integration

When applying a feature to a program, an FOP compiler superimposes the structure of
the feature module with the structure of the base program. Superimposition is imple-
mented by merging recursively the hierarchical structuresof feature modules by name
and type (mixin composition) [BSR04, OZ05, AGMO06, Ern03].

If a feature module is of a di�erent structure than the base program, the code for
integrating the feature and the base program has to be implemented by hand. Usually,
this results in code scattering and tangling [MO04, LLO03].The bottomline is that
FOP does not support crosscutting integration very well.

It has been shown that aspects, in collaboration with other mechanisms such as wrap-
pers, can help in integrating structurally independent components, i.e., features that
di�er in their inner structure [MO02, MO03, LLO03]. Pointcuts and advice are hereby
used to modularize the crosscutting integration code, which would otherwise lead to
code tangling, scattering, and replication. Hence, aspects facilitate a well modularized
crosscutting integration of features.

But AOP does not support superimposition. Indeed, aspects may implement roles or
even entire collaborations but they always have to specify explicitly where the base
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program is to be modi�ed. There is no matching by name, type, and/or structure, as
advocated in [SB02, BSR04, TOHSMS99, OZ05, AGMO06, Ern03].

The bottomline is that FOP is appropriate for superimposition and AOP for crosscutting
integration of features.

4.2.5 Feature Composition

Feature modules can be composed to form new features modules. This enables the
programmer to generate compound features out of basic ones.A feature module is im-
plemented as a containment hierarchy, which can be nested hierarchically. The algebraic
theory behind FOP models a feature as a function; applying a feature to a program is
modeled as function application and composing features as function composition.

It has been observed that composing aspects is non-trivial or even impossible [LHBC05,
LHBL06]. While aspects can be applied to a program individually, two aspects cannot
be composed to form a new aspect. The composition is further complicated by the
hard-to-understand precedence rules for ordering the application of aspects.

4.3 Summary, Perspective, and Goals

Table 4.1 summarizes the results of our conceptual evaluation. It reveals that both pro-
gramming paradigms complement one another. That is, both have strengths where the
respective other is weak. For example, while FOP is su�cientto encapsulate collab-
orations, which are heterogeneous crosscuts, AOP su�ces inexpressing homogeneous
crosscuts, thus avoiding code replication. Furthermore, AOP is strong in abstracting
the dynamic control �ow and FOP in abstracting the composition of features. The
bene�ts of using both AOP and FOP together o�er rewards that neither of them could
accomplish in isolation.

symbiosis of
FOP & AOP

A clever symbiosis of both paradigms might replace the weaknesses of one paradigm
with the strengths of the other. However, an unfavorable symbiosis might lead to even
worse results. The following chapters address this issue ingreater depth.

A further crucial issue that arises from the symbiosis proposed is to what extent the
individual mechanisms of AOP and FOP are really needed. In this dissertation we
discuss �rst results of analyzing a series of case studies toaddress this issue.
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evaluation criteria FOP AOP
abstraction good support : FOP provides

abstraction mechanisms and tool
support for feature composition
and program re�nement

good support : AOP has an
event-based model and abstracts
from details of re�ning multiple
join points

crosscutting
modularity

heterogeneous
crosscuts

good support : feature modules
encapsulate and compose collab-
orations of classes and re�ne-
ments

limited support : aspects bun-
dle sets of inter-type declarations
and advice, but lack of abstract-
ing and expressing collaborations

homogeneous
crosscuts

no support : feature modules
provides no explicit language
constructs for re�ning multiple
join points simultaneously

good support : aspects provide
wildcards and pattern matching
mechanisms to re�ne multiple
join points simultaneously

static
crosscuts

good support : feature modules
can inject new �elds, methods,
and classes as well as declare new
superclasses/interfaces

limited support : aspects can
inject new �elds and methods �
but no classes � as well as declare
new superclasses/interfaces

dynamic
crosscuts

weak support : feature mod-
ules can implement only basic
dynamic crosscuts via overriding
(method extensions); there is no
support for advanced dynamic
crosscuts

good support : aspects provide
sophisticated mechanisms for ad-
vising a program based on its dy-
namic semantics (basic and ad-
vanced dynamic crosscuts)

feature cohesion high degree : feature mod-
ules encapsulate all artifacts that
contribute to a feature

low degree : aspects cannot en-
capsulate collaborations of mul-
tiple artifacts that contribute to
a feature

feature
integration

super-
imposition

good support : FOP provides
explicit support for superimposi-
tion � merging hierarchical struc-
tures recursively by name and
type

no support : AOP does not pro-
vide any mechanisms for super-
imposing hierarchical structures
of software artifacts

crosscutting
integration

no support : no mechanisms
for expressing and modularizing
crosscutting integration code

good support : aspects can
connect feature implementations
and modularize the integration
code

feature composition good support : feature modules
can be composed to form new
features; this is modeled by func-
tion composition

no support : aspects cannot be
composed; di�cult composition
rules

Table 4.1: A comparison of FOP and AOP.
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CHAPTER 5

The Symbiosis of Feature Modules and Aspects

This chapter shares material with the ICSE'06 paper `Aspectual Mixin Lay-
ers: Aspects and Features in Concert' [ALS06] and the GPCE'05 paper `Fea-
tureC++: On the Symbiosis of Feature-Oriented and Aspect-Oriented Pro-
gramming' [ALRS05].

In this chapter we address the following issues: (1) how to combine FOP and AOP and
(2) does their combination outperform FOP and AOP in isolation?

First, we explore the space for achieving the symbiosis of FOP and AOP. Then, we
present our approach for integrating feature modules and aspects, which we callaspectual
feature modules (AFMs). Finally, we present our attempts to provide adequate tool
support and discuss related approaches.

5.1 Design Space

FOP and AOP can be combined principally in two ways: (1) design a programming
language that combines the mechanisms of AOP and FOP, which we call anin-language
approach, and (2) integrate aspects as software artifacts into the development style of
FOP and SWD, which we call anarchitectural approach.

in-language
approach

The in-language approach enables to explore the language properties of FOP and AOP
as well as their possible integration. As our evaluation will reveal, some language mech-
anisms of AOP and FOP are redundant. It is an interesting research question what a
novel language should look like that integrates AOP and FOP,but in an aggregated and
stripped-down form. To put it in other words, with the in-language approach we can
explore the minimal core language for implementing features, true to the motto: what
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is not essential will be omitted. Moreover, it would be possible to address advanced
language level issues such as type systems and soundness.

architectural
approach

The architectural approach is a software engineering approach. It takes into account
that FOP is also a design method to develop SPLs in a SWD manner.AHEAD as archi-
tectural model comprises all kinds of software artifacts and lays an algebraic foundation
for features and SWD. In this sense, aspects are just a new software artifact that should
be integrated into the architectural model as well, however, with special characteristics
and individual support at the language level. Choosing thisapproach would combine
the implementation mechanisms of AOP and FOP. We could explore the relationship
of feature modules and aspects with respect to the implementation of the large-scale
building blocks of SPLs and their impact on software design.

While both approaches promise interesting insights, we can choose only one in order
not to exceed the scope of this dissertation. Since we aim at SPLs and SWD it is
reasonable to explore the architectural approach �rst. Though we address one or the
other language level issue (e.g., in Chapter 6), an in-depthanalysis of what a minimal
and e�cient FOP/AOP language would look like is relegated tofuture work.

5.2 The Integration of Feature Modules and Aspects

Since AHEAD provides an architectural model for FOP, we describe our integration of
FOP and AOP on top of the AHEAD model.

feature
modules
decompose
object-
oriented
designs

When designing and implementing SPLs in a feature-oriented way, a programmer starts
usually by modeling and abstracting real-world entities interms of classes and objects
and their collaborations. The result is an object-orienteddesign (left side of Fig. 5.1).
FOP further structures this design along collaborations that classes undergo. Only
the subsets of classes (roles) that participate in a collaboration to implement a certain
feature are encapsulated inside the corresponding featuremodule, i.e., features crosscut
the object-oriented design (right side of Fig. 5.1). Subsequent features re�ne existing
features by superimposing their structure (collaborations) [OH92, BSR04, SB02, Bos99,
OZ05, Ern03]. Hence, a feature module is a mechanism that decomposes an object-
oriented design along a further dimension, i.e., the features of a program.

feature
modules lack
crosscutting
modularity

Our evaluation pointed us to the fact that in some situationsthe implementation of
a feature cannot be modularized appropriately by using a traditional feature module
implemented for instance in Jak, i.e., attempts to do so result in code replication, and
code scattering and tangling. Typically, these situationsare related to crosscutting
phenomena. We argue that the shortcomings of FOP revealed byour evaluation are
directly responsible for this issue.
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inheritance refinement associationclassfeature module

decomposition

Figure 5.1: Feature-driven decomposition of an object-oriented design.

integrating
aspects to
improve
crosscutting
modularity

To address this issue, we propose to employ AOP since it provides powerful mechanisms
to modularize crosscutting concerns. Nevertheless, as ourevaluation revealed, simply
using aspects instead of feature modules for implementing program features is not ap-
propriate either, e.g., because of the lack of feature cohesion and the missing abstraction
mechanisms for collaborations. Instead, we propose to use aspects to implement only
concerns that crosscut a given object-oriented design and that cannot be modularized
well using feature modules, thus creating an aspect-oriented design, i.e., a hierarchy of
classes and aspects (left side of Fig. 5.2).

decomposing
aspect-
oriented
designs

In order not to forgo the bene�ts of feature modules, we suggest further to decompose
such aspect-oriented design using the mechanisms of FOP:While the aspect-oriented
design serves as a substructure, feature modules decompose this designfurther, along the
features of the program.. Hence, a feature is implemented by a collaboration of classes
and aspects (right side of Fig. 5.2)1. Bene�t of this integration is that we have well
encapsulated large-scale feature modules that re�ne one another incrementally and that
dispose of powerful mechanisms for dealing with crosscutting phenomena.

inheritance associationclass

weaving
feature module

decomposition

aspect refinement

Figure 5.2: Feature-driven decomposition of an aspect-oriented design.

1 Note that the original aspect has been split into two pieces (abase and a subsequent re�nement).
In Chapter 6, we address this issue in more depth.
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aspects and
feature
modules do
not compete

In summary, aspects and feature modules are not competing implementation techniques
but decompose a program in di�erent ways. That is, from our perspective a program
design is decomposed along three dimensions: classes, aspects, and features. An object-
oriented design is the basis; aspects modularize certain kinds of concerns that crosscut
the underlying object-oriented design; feature modules decompose the design to impose
a structure that is of interest to stakeholders, i.e., the features of the program. In
this symbiosis, FOP and AOP pro�t from each other and overcome their individual
limitations, as we will illustrate in this dissertation.

5.3 Aspectual Feature Modules

Aspectual feature modules (AFMs)is a concrete approach to implement the integration
of AOP and FOP. AFMs extend the notion of a traditional feature module known from
Jak by encapsulating, beside classes and re�nements of classes, also aspects. That is,
an AFM encapsulates the roles of collaborating classesand aspects that contribute to
a feature. Hence, a feature is implemented by a collection ofartifacts, among them
classes, re�nements, and aspects. We argue that this is close to the ideal of what a
feature should be. Thus, a feature is implemented by di�erent kinds of artifacts, each
artifact appropriate for a speci�c design or implementation problem.

Figure 5.3 shows a base program (light gray box above) re�nedby an AFM (light
gray box below). The AFM re�nes the base program in two ways: (1) it contains a
class re�nement and (2) an aspect (dark gray box) to implement the changes to be
made to the base program. Our implementation of AFMs relies on mixin layers [SB02]
and AHEAD re�nements [BSR04]. Other mechanisms such asvirtual classes[MMP89,
EOC06, OZ05],nested inheritance[NCM04, NQM06], and traits [DNS+ 06] would be
possible (see Sec. 5.6).

inheritance

mixin-based inheritance

weaving

association aspect

class, mixin

Figure 5.3: Aspectual feature modules.

two ways of
re�nement

An AFM can re�ne a base program in two ways: (1) by using mixin-composition or (2) by
using aspect-oriented mechanisms, i.e., advice and inter-type declarations. Probably the
most important contribution of AFMs is that programmers maychoose the appropriate
technique � re�nements or aspects � that �ts a given problem best. Moreover, they can
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apply a combination of both and decide to what extent either technique is used. The
questions that arise consequentially are (1) when to use AOPand FOP mechanisms
and (2) how often their application really occurs in real-world software projects. We
elaborate on this in more depth in Chapter 7 and Chapter 8.

Figure 5.4 depicts the feature-oriented design of our graphimplementation, consisting of
the featuresBasicGraph, Weight, and Color. Color is implemented by using an aspect
and a class; it is encapsulated by an AFM. As we discussed before, advising executions
of the methodsprint in Nodeand Edgeis a homogeneous crosscut � the same is true
for injecting the �eld color and the methodssetColor and getColor to Nodeand Edge
(cf. Fig. 4.4). In this situation, it is bene�cial to use an aspect because it is able to
avoid replicated code. Encapsulating the aspectAddColor and the classColor improves
feature cohesion, compared to a pure AOP variant.

Weight

class Node

void print();

class Color

...

void print();

class Weight

Basic

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

Node a, b;

void print();

before() : execution(void print());

...

aspect AddColor

class Graph__Basic class Edge__Basic

class Graph class Edge

Graph

Color

Figure 5.4: Implementing the featureColor as an aspectual feature module.

superimposing
containment
hierarchies

As with standard feature modules, an AFM is represented as a containment hierarchy.
Besides Java or C++ artifacts an AFM contains also aspect �les. Figure 5.5 depicts
the simpli�ed containment hierarchies of our graph features BasicGraph, Weight, and
Color. The containment hierarchy synthesized �nally is generated by superimposing the
three feature hierarchies. The composition order is speci�ed via a feature expression.
During the composition the programmer needs not to be aware of which kinds of software
artifacts actually are inside the features to be composed. This helps to concentrate on the
composition process at the feature level and facilitates compositional reasoning because
implementation details are hidden. That is, the programmerneeds not to know which
�les and types of artifacts contribute to a feature implementation.
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Graph.jak Edge.jak Graph.jak Edge.jakNode.jakColor.jakWeight.jakColor.jakAddColor.aj Weight.jakGraph.jak Edge.jakNode.jak AddColor.aj

ColoredWeightedGraph WeightColor BasicGraph

Figure 5.5: Superimposing containment hierarchies including aspects.

mixin and
jampack
composition

The result of superimposing containment hierarchies is a program, i.e., a set of collab-
orating software artifacts. Batory et al. propose two principal ways of implementing
the actual composition [BSR04]. Figure 5.6 depicts a possible hierarchy of classes and
aspects synthesized by the above feature selection. Classes and their re�nements are
merged into composite classes, which is calledjampack composition; Figure 5.7 depicts
the same program synthesized by mixin composition, which translates re�nement to
subclassing, i.e., a base class and a series of re�nements istranslated to a base class
and a series of subclasses. Note that, beside these two solutions, also alternative mech-
anisms such as virtual classes, nested inheritance, and traits could implement (emulate)
re�nements of classes.

before() : execution(void print());

...

aspect AddColor

class Color

...

Weighted
Graph

Colored

void print();

class Node

void print();

void print();

class Weight

Weight weight;

void print();

Edge add(Node, Node, Weight);

Edge add(Node, Node);

class Graph

Node a, b;

class Edge

Figure 5.6: Jampack-composed graph implementation.

two-staged
composition
of AFMs

Either way, after the composition process we have in case of AFMs a traditional aspect-
oriented program (and in case of traditional feature modules an object-oriented pro-
gram). Now it becomes clear that it is necessary to weave the aspects and the object-
oriented base program in a subsequent step � after the base classes and re�nements have
been composed. These two steps can be accomplished by di�erent compiler passes or by
di�erent tools.

AFMs are
language
independent

AFMs integrate feature modules and aspects. The AHEAD architectural model is the
basis for the integration. Thus, AFMs are independent of a speci�c host language. They
can be implemented in any pair of object-oriented and aspect-oriented language which
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before() : execution(void print());

...

aspect AddColor
Graph
Weighted
Colored

class Edge

class Node

void print();

void print();

class Weight class Color

...

class Graph__Basic class Edge__Basic

class Graph

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

Node a, b;

void print();

Figure 5.7: Mixin-composed graph implementation.

can be woven, e.g., Java and AspectJ, C++ andAspectC++ 2, or C# and AspectC#3,
etc. This circumstance makes the concept of AFMs invariant to the speci�cs of the
host languages. When the host languages improve, especiallythe AOP languages, then
AFMs improve as well. Thus, AFMs can pro�t from research in AOP and FOP. With
an in-language approach that would not be possible or only with a major e�ort.

5.4 A Conceptual Evaluation of Aspectual Feature Modules

To evaluate AFMs and to compare them to traditional FOP and AOP we apply our
evaluation criteria.

5.4.1 Abstraction

AFMs support the combined abstraction mechanisms of feature modules and aspects.
On the one hand, AFMs are treated as regular feature modules;a programmer com-
poses AFMs by enumerating the feature names without needingto know the internal
implementation details. The keywordrefines abstracts from the composition seman-
tics, i.e., mixin composition, jampack composition, and others4. On the other hand,
AFMs contain aspects and thus build upon the advanced capabilities of AOP to imple-
ment a program re�nement in dependence of the runtime control �ow. Features can be

2 http://www.aspectc.org/
3 http://www.dsg.cs.tcd.ie/dynamic/?category_id=169
4 Chapter 6 explains how this maps to aspects in order to compose and re�ne them as well.
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implemented on top of the event model of AOP. The wildcard andpattern matching
mechanisms of AOP avoid code replication in case of homogeneous crosscuts.

The integration of feature modules and aspects leads to a broader arsenal of abstrac-
tion mechanisms available when implementing and composingfeatures � it uni�es the
strengths of FOP and AOP.

5.4.2 Crosscutting Modularity

Homogeneous and Heterogeneous Crosscuts

The integration of aspects and the traditional constituents of feature modules enables the
programmer to choose the right technique for solving the right problem: the programmer
uses aspects to implement homogeneous crosscuts and a set ofclasses and re�nements
to implement heterogeneous crosscuts, which are in fact collaborations. As mentioned,
this is independent of whether a crosscut is static or dynamic. Aspects, classes, and
re�nements can be combined at will.

Static and Dynamic Crosscuts

The integration of FOP and AOP allows us to express static crosscuts in two ways, using
re�nements of classes and using inter-type declarations inaspects. This introduces
a semantic redundancy. As mentioned in the previous paragraph, we propose to use
aspects to implement static crosscuts that are homogeneousand to use traditional feature
modules to implement static crosscuts that are heterogeneous.

By using aspects, a programmer can implement features depending on the runtime con-
trol �ow. As with static crosscuts, method extensions can beimplemented by aspects
(using advice) and by re�nements (using method overriding). We handle this analo-
gously to static crosscuts: use aspects for dynamic crosscuts that are homogeneous and
use feature modules and method extensions for basic dynamiccrosscuts that are het-
erogeneous. Advanced dynamic crosscuts are always implemented using advice because
FOP does not supports adequate language mechanisms.

An observance of these guidelines improves the crosscutting modularity of AFMs com-
pared to traditional feature modules without destroying the object-oriented structure
per se.
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5.4.3 Feature Cohesion

Since we encapsulate aspects in feature modules, we achievea high degree of feature
cohesion. Aspects as well as collaborating classes (e.g., aspectAddColor and classColor )
are located in one feature module along with other software artifacts that contribute to
the implementation of the feature (e.g., documentation, make�les, test cases). Despite
their encapsulation in feature modules, aspects still crosscut module boundaries, but
this is intended to be able to modularize certain kinds of crosscuts. We are aware that
this property is controversial [Ste06, Ale03], but our approach does not rely on a speci�c
AOP mechanism and will pro�t by improvements to AOP, e.g.,open modules[Ald05,
OAT + 06], information hiding interfaces [SGS+ 05],strati�ed aspects [BFS06], orharmless
advice [DW06]. What is novel is that the programmer is able to recognize explicitly
which artifacts belong to a feature, not only at the �le system or tool level but also at
the model level.

5.4.4 Feature Integration

The structures of feature modules are superimposed during composition. While this is
appropriate for many integration problems [BSR04, SB02, Ern03, Bos99, OH92, OZ05],
superimposition is not always su�cient [MO02, MO03, TOHSMS99]. Using tradi-
tional feature modules in the form of collaborations the integration of non-related,
structural di�ering features results in workarounds, codescattering, and code tan-
gling [MO03, LLO03, Her02]. This is because of their manifold dependencies and in-
teractions [Nov00]. But it has been shown that aspects in concert with wrappers can
modularize such integration code [MO03]. AFMs support superimposition and can em-
ploy aspects for crosscutting integration, thus outperforming FOP and AOP used in
isolation.

5.4.5 Feature Composition

AFMs can be aggregated to form new AFMs. At implementation level this is accom-
plished by nesting containment hierarchies. At model levelit is described by function
composition. Thus, aspects as software artifacts become nested in feature hierarchies.
With traditional AOP such mechanisms have to be implemented by hand, which is non-
trivial, e.g., as done in the FACET project [HC02]. However,the problem of composing
aspects to form new aspects is not solved.
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5.5 Tool Support

We provide tool support for AFMs on top of two host programming languages, C++
and Java.

5.5.1 FeatureC++

FeatureC++ 5 was developed by the author within the scope of this dissertation. It is
a language extension of C++ that supports FOP. It consists ofa tool for composing
feature modules and an FOP compiler for C++ artifacts. Speci�cally, it introduces
class re�nement to the C++ language in the form of the syntax presented here, i.e.,
the keywordsrefines and Super � with some minor adaptations to the C++ standard.
FeatureC++ supports AFMs by integrating AspectC++ [SLU05] aspects into feature
modules. Furthermore, it supports the AHEAD algebraic expressions and design rule
checks for compositional reasoning [BSR04].

FeatureC++
feature
modules

Figure 5.8 depicts a template classList (Lines 1-6) and a re�nement (Lines 7-13). The
class List receives the type of the items being stored. The re�nement adds a new
variable size (Line 11) and extends the methodput (Line 12) to increment the size.
Note that the re�nement extends also the type argument list.Given this re�nement, the
programmer speci�es the type of the items and the type of the size counter. This kind of
re�nement is called generic re�nement and it is embedded in ageneric feature module.
Generic feature modules can be parameterized statically using the powerful template
mechanism of C++. A deeper explanation of generic feature modules is out of scope of
this dissertation and described elsewhere [AKL06].

1 template <typename _ItemT >
2 c lass List {
3 typedef _ItemT ItemT ;
4 ItemT *head ;
5 void put ( ItemT *i ) { i ->next = head ; head = i ; }
6 };
7 template <typename _ItemT , typename _SizeT >
8 re f ines c lass List {
9 typedef _ItemT ItemT ;

10 typedef _SizeT SizeT ;
11 SizeT size ;
12 void put ( ItemT *i ) { super :: put ( i ); size ++; }
13 };

Figure 5.8: A FeatureC++ code example.

5 http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/
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compilation
process

Figure 5.9 depicts the process of compiling AFMs using FeatureC++. The compiler
receives FeatureC++ code as input and transforms it to native C++ code and to As-
pectC++ code. The transformation is done on top of abstract syntax trees. The Fea-
tureC++ parser uses thePUMA6 framework. In a second step PUMA is used to weave
the AspectC++ aspects and the native C++ code. Finally, the woven C++ code is
compiled to produce binaries. A deeper description of the FeatureC++ compiler is out
of scope of this dissertation and is published elsewhere [ALRS05, AKL06].

.cc

.o

.fcc

AspectC++ / C++

compiler

binaries

.cc

.o

compiler

.fcc

transformed

sources

PUMA

C++
compiler

AspectC++

FeatureC++

sources
FeatureC++

.o

.fcc

.cc

Figure 5.9: FeatureC++ compilation process.

5.5.2 AHEAD Tool Suite & AspectJ

A further way to implement AFMs is to combine the AHEAD Tool Suite (ATS) and
AspectJ. While Jak is used to compose traditional feature modules, AspectJ weaves
the aspects of the individual feature modules to the synthesized class hierarchies. The
examples given in this dissertation are written in this way.This necessitates some minor
tool support and modi�cations to the aspect code. For example, a build script needs to
keep track of the aspects included in the selected feature modules and to weave them
in a subsequent step. Also the programmer has to be aware of the fact that the target
classes of an aspect are renamed during the compilation process, e.g., classList of
featureBasicList is renamed to classList__BasicList . In FeatureC++ this is handled
automatically. While a further explanation of the technicalproblems is out of scope of
this dissertation, we refer to the successful application of this approach to a non-trivial
software project (see Chapter 7).

The process of compiling AFMs using the ATS and AspectJ is similar to the one of
FeatureC++ (cf. Fig. 5.9). It is worth to note that we were able to integrate two tools

6 http://ivs.cs.uni-magdeburg.de/�puma/
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(ATS and AspectJ) to achieve an appropriate support for AFMs.This demonstrates
that AFMs indeed are a language-independent approach that is realizable with current
tools. Of course, in contrast to the integrated solution of FeatureC++, some workaround
is necessary (build scripts, minor code adjustments).

5.5.3 FeatureIDE

Supporting feature-oriented software development acrossthe entire software life cycle is
the aim of a parallel dissertation project. It provides a tool FeatureIDE that is an inte-
grated development environment forfeature-oriented domain analysis (FODA)[KCH+ 90],
FOP, as well as the subsequent con�guration.FeatureIDE was developed (and is still
under development) in cooperation with the author of this dissertation [LAMS05]. It
supports AFMs based on FeatureC++ as well as AHEAD & AspectJ. Figure 5.10 de-
picts a FeatureIDE screen snapshot that shows the FODA features model of our graph
example. It contains the featuresBasicGraph, Weight, Color, and PrintHeader, all visu-
alized as boxes. The feature model is created in a drag-and-drop way like in a drawing
program.

Figure 5.11 depicts a stack of feature modules generated automatically from the fea-
ture diagram. It consists of the feature modulesBasicGraph, Weight, and PrintHeader.
The generation process creates the underlying �le system structure for the containment
hierarchies of the feature modules. Feature modules are visualized as gray boxes and
artifacts within a module as white boxes. In our example,PrintHeader is an AFM and
contains an aspect.

5.6 Related Work

Implementation of Re�nements

Our approach of implementing class re�nement is based on mixins and mixin-based
inheritance [BC90, VN96b]. We chose mixins because of theirsuccess in several do-
mains [CBML02, BZM01, BJMvH02, BCGS95, VN96c, AB04, LAS05].However, we
are aware of several alternative mechanisms that might achieve similar results (we dis-
cuss only a representative selection).

Traits aim at structuring object-oriented programs [DNS+ 06]. Traits are stateless units
of code reuse that group multiple methods, but not state-holding members. Multiple
traits can be combined usinggluesin order to synthesize a �nal class. Traits o�er cus-
tomizability at a more �ne-grained level than mixins. Traits could be used to implement
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Figure 5.10: Feature modeling in FeatureIDE.

Figure 5.11: A stack of feature modules in FeatureIDE.

re�nements of classes that contain methods only. However, in our experience re�nements
of classes often requires to add state variables, i.e., �elds.

Virtual classesare a sophisticated mechanism to combine mixin compositionwith poly-
morphism [MMP89, EOC06]. Since virtual classes depend on the dynamic type of an
enclosing object (class-valued attributes of the object),their semantics varies depending
on the dynamic object identity. Virtual classes have been shown useful for the implemen-
tation of collaboration-based designs [AGMO06], but they require runtime instances of
collaborations as a whole. It is not obvious how to align thatwith the AHEAD principle
of uniformity where features contain beside code artifactsalso non-code artifacts.
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Nested inheritance[NCM04] and classboxes[BDN05] are related to virtual classes. The
di�erence is that the types of the inner classes (the participants of a collaboration) do
not depend on the runtime type of the enclosing object but on the static type of the
enclosing class. Therefore, these both approaches are closer to the static composition
semantics of AHEAD and AFMs than virtual classes are. Thoughnested inheritance
and classboxes are in-language approaches they might be adopted to implement AFMs.

Delegation is a mechanism for implementingobject-based inheritance[Lie86]. This en-
ables the runtime recon�guration of inheritance hierarchies and could be used to im-
plement re�nements of classes. As with virtual classes, this is only meaningful for
collaborations that are instantiated and composed at runtime, e.g., as withdelegation
layers [Ost02]. This is di�cult to align with the AHEAD architectur al model and de-
mands further investigation.

Implementation of Feature Modules

Several languages and tools support collaboration-based design. Potentially all of them
could be used to implement feature modules and AFMs, however, each with some limi-
tations.

Several languages support the abstraction and static composition of mixin layers, e.g.,
C++ mixin layers [SB02], P++ [Sin96], andJava layers [CL01]. Other approaches
exploit related ideas of composing and nesting class hierarchies [Coo89, Ern03], e.g.,
Scala [OZ05], Jx [NCM04], J& [NQM06], Classbox/J [BDN05], CaesarJ [AGMO06],
ContextJ [CHdM06], to name a few; all these are in-language approaches.

A main advantage of AFMs is that they have AHEAD as an architectural model � the
approaches mentioned above do not refer to any model. Hence,AFMs build upon the
strengths of AHEAD: beside classes and aspects also other kinds of software artifacts
may be included in a feature; feature modules are composed declaratively by means of
a separate language (feature expressions) and checked against domain-speci�c design
rules [Bat05]. This opens the door to automatic algebra-based optimization and com-
positional reasoning [BSR04]. It is not obvious how to carry this over to in-language
approaches because the de�nition of features is done in the same language as their com-
position. That is, without a separated composition mechanism/language it is not trivial
to implement mechanisms for optimizing and reasoning aboutcomposition speci�cations.

Jiazzi is a component system that supports the composition of binary collaborations
via external rules [MFH01]. Since collaborations are abstracted outside of the language
Jiazzi �ts the AHEAD architectural model. However, while aspects could possibly be
integrated, it is not obvious how to compile them independently.
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Aspects and Collaborations

Several studies suggest to exploit the synergetic potential of mechanisms for aspects
and collaborations, e.g.,Aspectual Components[LLM99], Adaptive Plug-and-Play Com-
ponents [ML98], Pluggable Composite Adapters[MSL00], Caesar [AGMO06], Aspectual
Collaborations [LLO03], and Object Teams[Her02]. Since these approaches are highly
in�uenced by one another, we compare our approach to their general concepts.

All the approaches mentioned abstract collaborations explicitly at the languages level
and integrate di�erent kinds of mechanisms associated to AOP, e.g., pointcuts and ad-
vice, aspectual methods, traversals, adapters, and bindings. These AOP mechanisms are
intended mainly for the modularization of crosscutting concerns that arise from integrat-
ing two collaborations, which we call crosscutting integration in AFMs (cf. Sec. 4.1.4).

According to the design space of integrating AOP and FOP, theapproaches above fall
into the �rst category: they integrate AOP and FOP mechanisms at language level. This
is advantageous when exploring issues like typing and polymorphism. Consequently,
these approaches address issues such ason-demand remodularization(a.k.a. a-posteriori
integration) of collaborations,aspectual polymorphism, dynamic aspect deployment, and
distributed aspect components, which all are not supportedby AFMs.

Aspects and Roles

Pulvermüller et al. [PSR00] and Sihmam et al. [SK03] propose to implement collabora-
tions as single aspects that inject the participating rolesinto the base program by using
introductions and advice. In our experience, explicitly representing collaborations by
traditional object-oriented techniques and re�nements facilitates program comprehen-
sibility, which is in line with prior work [VN96c, MO04, LLO03, Ern01, OZ05, Ost02,
TVJ + 01, EOC06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99]. Favoring the ap-
proach of Pulvermüller et al. and and Sihmam et al. would leadin the end to a base
program with empty classes that are extended by a series of aspects that inject structure
and behavior. This would destroy the object-oriented design of the program and prevent
the programmer from understanding the structure and behavior of the overall program
as well as its individual features.

Hanenberg et al. [HU02], Kendall [Ken99], and Sihmam et al. [SK03] suggest to use as-
pects for implementing individual roles. In our context this would mean to replace
each re�nement of a class within a feature by one or more aspects. We and oth-
ers [Ste05, MO04] argue that replacing traditional object-oriented techniques that su�ce
(e.g., inheritance) is questionable. Instead, we favor to use aspects only when traditional
techniques fail.

63



Chapter 5 The Symbiosis of Feature Modules and Aspects

Multi-Dimensional Separation of Concerns

Multi-dimensional separation of concerns (MDSoC)is a concept and method that aims
at the clean separation of multiple, potentially overlapping and interacting concerns
simultaneously, with support for on-demand remodularization to encapsulate new con-
cerns at any time [TOHSMS99].Hyper/J supports MDSoC for Java [OT00]; it intro-
duces the concept ofhyperslices, which maps roughly to an encapsulated collaboration
of classes. It has been observed that features in AHEAD and hyperslices have many
commonalities, especially regarding their composition semantics based on superimposi-
tion and their mechanisms for composing hyperslices/features [BLS03]. What di�ers in
FOP is that integrating two features that are of a di�erent structure demands a man-
ual integration of the artifacts inside the features, e.g.,by using wrappers or multiple
inheritance [MO02, Her02]. Hyper/J supports declarative composition rules to estab-
lish a (possibly complex) mapping between di�erent hyperslices. AHEAD supports only
recursive merging of containment hierarchies by type and name.

AFMs, as extension to traditional feature modules, use aspects to establish the mapping
between two unrelated features, as suggested �rst by Meziniet al. [MO03]. This is related
to the Hyper/J composition rules, but at a lower level (language level). In this respect,
AFMs follow more the approach of Caesar than of Hyper/J. It remains an open issue
which variant of on-demand remodularization and crosscutting integration is preferable.

Aspect Quanti�cation and Composition

Traditionally, aspects are quanti�ed globally. Conceptually, they may a�ect potentially
all elements of a program. Unfortunately, this approach ignores the principle of SWD
that re�nements are permitted to a�ect only re�nements that have been applied in
previous development steps [Wir71, Dij76, Par76, Par79]. Several studies show that
this circumstance is directly responsible for several problems and penalties, e.g., unpre-
dictable program behavior [MA05, DFS04, DFS02, LHBL06], weak modularity [GSF+ 05,
GSC+ 03] and decreased evolvability [Lie04, LHBL06, GB03].

In order to address this issue, Lopez-Herrejon et al. propose an approach to aspect
composition [LHBL06]. They model aspects asfunctions that operate on programs.
Applying several aspects to a program maps to function composition. For example,
A2(A1(P)) denotes a programP re�ned by aspect A1, and the result re�ned by A2. In
this way the scope of aspects is restricted to a particular step in a program's development,
e.g., A1 can adviseP but not A2. This is called bounded quanti�cation of aspects as
opposed tounbounded quanti�cationused in traditional AOP.

The idea of bounding aspect quanti�cation can be integratedseamlessly into AFMs:
Since a compiler, e.g., FeatureC++, knows to which development step (feature module)
each aspect and each re�nement belongs, it can determine which program parts the
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aspects are permitted to a�ect. In [ALS05, KAS06, AL06] we discuss an approach for
implementing functional aspects(aspects with bounded quanti�cation) by restructuring
their pointcut expressions. In a nutshell, pointcuts are modi�ed such that the connected
advice a�ects only join points associated with previous development steps, i.e., feature
modules that have been applied before (Fig 5.12). A more detailed explanation is out
of scope of this dissertation and can be found elsewhere [ALS05, KAS06, AL06].

restructured
pointcuts don't
match subsequent
features

Figure 5.12: Implementing functional aspects via pointcutrestructuring.

What is important is that the notion of AFMs enables, for the �rst time, to implement
and experiment withbounded aspect quanti�cation. Even if there is no agreementon
the bene�ts of bounded aspect quanti�cation [LHBL06], our approach may help to prove
corresponding arguments and deliver empirical evidence.

Aspects and Information Hiding

One issue of AFMs is that current AOP languages do not respectthe principle of in-
formation hiding [Ste06, SGS+ 05, Ald05, OAT+ 06]. However, there are several e�orts
to solve this problem, e.g.,open modules[Ald05, OAT+ 06] and information hiding in-
terfaces [SGS+ 05, GSS+ 06] propose module interfaces that specify explicitly which join
points may be advised � the others are hidden.Harmless adviceis a restricted form
of advice that is designed to obey a weak non-interference property [DW06]. It may
change the termination behavior of computations and use I/O, but it does not otherwise
in�uence the �nal result of the mainline code. Strati�ed aspectsadjust the quanti�cation
mechanism of aspects to avoid in�nite recursion caused by advice that unintentionally
advise itself [BFS06].

The point here is that AFMs can pro�t from these developments. Since AFMs do not
depend on a speci�c host language, new languages can easily be integrated. This is a
major advantage of AFMs compared to in-language approaches.
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heterogeneous homogeneous
static a set of re�nements that

add
elements

one piece of inter-type
declaration

basic
dynamic

a set of re�nements that
override methods

one piece of basic advice

advanced
dynamic

a set of advanced advice one piece of advanced
advice

Table 5.1: What implementation technique for which kind of crosscutting concern?

5.7 Summary

The notion of AFMs de�nes a feature as a collection of artifacts, among them classes,
re�nements, and aspects that collaborate. We argue that this is close to the ideal of
what a feature should be. They are implemented by di�erent kinds of artifacts, each
artifact appropriate for a speci�c design or implementation problem.

The conceptual evaluation has shown that regarding almost any criterion AFMs perform
better than aspects or Jak-like feature modules in isolation. However, mixin composi-
tion and aspect weaving overlap with regard to the implementation of re�nements: (1)
inter-type declarations and re�nements of classes inject new members (static crosscuts);
(2) advice and method overriding re�ne methods calls/executions (dynamic crosscuts).
Hence, a crucial question arises: when to use what mechanismwithout interspersing
both? As explained, our evaluation gives the answer: on the one hand, the programmer
uses collaborations of classes and re�nements in the situations in which they su�ce,
i.e., in implementing heterogeneous and basic dynamic crosscuts. On the other hand,
the programmer uses aspects to implement certain kinds of crosscutting concerns, i.e.,
homogeneous and advanced dynamic crosscuts, where traditional feature modules fail.
Table 5.1 summarizes what implementation technique shouldbe used for which kind of
crosscut.

We conclude that AFMs perform better than FOP and AOP by themselves because they
combine the strengths of both � presuming programmers applythe right technique for
implementing the right problem. While the guidelines in Table 5.1 are reasonable, they
provide no certainty that the resulting implementation is structured appropriately nor
that the combination of AOP and FOP mechanisms does not lead to hidden con�icts
or inconsistencies. In Chapter 7, we present our experiences of applying AFMs to a
non-trivial case study, thus evaluating our programming guidelines.

In the next chapter we address several interesting issues that arise from the integration
of aspects into the incremental development model of FOP.
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CHAPTER 6

Aligning Aspects and Stepwise Development

This chapter shares material with the APSEC'05 paper `Aspect Re�nement
and Bounded Quanti�cation in Incremental Designs' [ALS05].

AFMs integrate aspects into the incremental development style of FOP and AHEAD.
Consequently, the following issues arise, which we addressin this chapter: (1) does AOP
�t with the principles of SWD and, if not, (2) how can AOP be aligned with SWD?

6.1 Aspects and Stepwise Software Development

aspects are
just another
kind of
software
artifact

AHEAD, the architectural model of AFMs, de�nes that a feature is implemented by
a collection of collaborating software artifacts of varying types. In this sense aspects
are just another kind of software artifact. The AHEAD principle of uniformity has an
interesting consequence: since aspects are artifacts as any others, it is natural to re�ne
them in a SWD manner as well. That is, AFMs may not only extend and modify classes
via subsequent re�nement but also aspects, which we callaspect re�nement (AR). Hence,
AR is the consequential application of SWD principles to the world of AOP.

three use
cases for AR

With AR, aspects evolve over time, as do all other software artifacts. In each develop-
ment step aspects may be re�ned, i.e., extended and modi�ed.In this dissertation we
focus on three use cases for re�ning aspects, which may overlap in parts:

1. Adapting aspects to the changes made to a base program, e.g., join points have
changed or new join points occur.

2. Tailoring aspects to changing user requirements, e.g., the user needs an aspect to
implement a new design decision.
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3. Decomposing aspects to decouple them from a speci�c con�guration of the base
program, e.g., a base program in di�erent con�gurations demands aspects in dif-
ferent variants.

Applying AR to deal with the above situations means a decomposition and subsequent
composition of an aspect out of a base aspect and a series of re�nements. Re�nements
should be freely combinable � of course, in the limits of desired program behavior. This
�exibility facilitates reuse of aspect code. The user-driven composition of AFMs and
thus of aspects and their re�nements customizes aspect-speci�c functionality. AR en-
ables a similar improvement in reusability and customizability of aspect code as the
analogous object-oriented mechanisms do for classes, e.g., mixins [BC90, SB02], re�ne-
ments [BSR04], and virtual classes [MMP89, EOC06, OZ05].

uni�cation of
classes and
aspects

AR bears the potential to unify classes and aspects with respect to subsequent re�ne-
ment. An advantage of this view is that several ideas of classre�nement can be mapped
directly to aspects, as we will show. But more interesting isthe fact that it becomes
possible to re�ne also aspect-speci�c structural elements, in particular pointcuts and
advice, which opens new possibilities of aspect reuse and customization.

6.1.1 An Example of Aspect Re�nement

Figure 6.1 illustrates the evolution of a program developedusing AFMs. The program
contains classes for bu�ers and sockets as well as aspects for synchronizing concurrent
access to the data structures. The evolution spans four steps shown in four sub�gures
(I-IV). Each development step is explained in terms of its Java/Jak/AspectJ code and in
diagram form; re�nements of aspects are implemented as subaspects for the time being;
aspect weaving is denoted by dashed arrows.

I. Buffer objects store sets of data items; classBuffer provides the methodsput
and get for accessing the stored items.

II. The aspect BufferSync synchronizes the access to the methodsput and get of
Buffer by invoking the methodslock and unlock .

III. The class Stack is introduced; in order to synchronize the access toStack objects,
the aspectStackSync re�nes the aspectBufferSync . Speci�cally, StackSync ex-
tends the set of intercepted method executions bypush and pop; for that it over-
rides and reuses the pointcutsyncPCof aspectBufferSync .

IV. The class Socket is introduced; a Socket object uses severalBuffer and Stack
objects. The aspectSocketSync limits the set of synchronized methods to those
that are inside the control �ow of Socket, i.e., method executions are synchronized
only when they are initiated directly or indirectly by a Socket object. This is
achieved by overriding the pointcutsyncPCand restricting the set of captured join
points via cflow .
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1 c lass Buffer {
2 Vector < Item > buf = new Vector < Item >();
3 void put ( Item e) { buf .add (e ); }
4 Item get ( int i ) { return buf .get ( i ); }
5 }

Buffer Item (I)

1 abstract aspect BufferSync {
2 pointcut syncPC () :
3 execution ( Item Buffer .get ( int )) ||
4 execution ( void Buffer .put ( Item ));
5 Object around () : syncPC () {
6 lock ();
7 Object res = proceed ();
8 unlock ();
9 return res ;

10 }
11 }

Buffer

Buffer
Sync

Item

(II)

1 c lass Stack {
2 LinkedList < Item > list = new LinkedList < Item >();
3 void push ( Item i) { l ist . addFirst ( i ); }
4 Item pop () { return list . getFirst (); }
5 }
6 abstract aspect StackSync extends BufferSync {
7 pointcut syncPC () :
8 BufferSync . syncPC () ||
9 execution ( Item Stack .pop ()) ||

10 execution ( void Stack .push ( Item ));
11 }

Buffer

Sync
Stack

Buffer

Sync

Item

Stack

(III)

1 c lass Socket {
2 void receive () {
3 Buffer buf = new Buffer ();
4 Stack stack = new Stack (); / � . . . � /
5 }
6 }
7 aspect SocketSync extends StackSync {
8 pointcut syncPC () :
9 StackSync . syncPC () &&

10 cflow ( execution (* Socket .*( . . ))) ;
11 }

Stack
Sync
Stack

Sync
Socket Socket

Buffer
Sync

ItemBuffer

(IV)

Figure 6.1: Four steps in the evolution of a program using AFMs.
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AR is the
application of
SWD to AOP

This example illustrates the usefulness of re�ning aspectsin a step-wise manner over
several development steps. Aspect re�nement is a logical consequence of applying SWD
principles to AOP. The incremental development process makes the evolution of the
program explicit. Design decisions are encapsulated and can be modi�ed in separation
as well as combined and reused in di�erent variants. A reasonable desire is to derive
di�erent customized program variants that share common features and reuse invariant
code. For example, one variant contains only a synchronizedbu�er:

BasicBu�er = Bu�erSync � Bu�er

another contains a bu�er that is synchronized only with respect to calls fromSocket:

SocketBu�er = SocketSync� Bu�erSync � Bu�er

and a third contains a bu�er that combines the entire functionality:

SocketStackBu�er= SocketSync� StackSync� Bu�erSync � Bu�er

6.1.2 Limited Language-Level Support for Aspect Re�nement

Beside the advantages of AR, our example also demonstrates the shortcomings of As-
pectJ in supporting SWD:

Aspect inheritance: Inheritance is known as a concept for reusing and non-invasively
re�ning software artifacts [Tai96]. Therefore, most AOP languages support aspect
inheritance. Although this enables to re�ne aspects to somedegree, it lacks �exi-
bility to interchange and reuse re�nements. Using aspect inheritance, a re�nement
(subaspect) is �xed to a speci�c base aspect. Hence, re�nements cannot be com-
bined �exibly in di�erent orderings for customization and adaptation purposes.
For example, we are not able to derive di�erent variants of our bu�er example
without changing code invasively.

Constrained aspect extension: Using traditional aspect inheritance in AspectJ, an as-
pect has to be declared asabstract to be able to be re�ned. This means that adding
a subaspect requires the programmer to modify the parent aspect. This and simi-
lar requirements1 cause a fundamental problem regarding SWD: implementing an
aspect in a particular development step forces the programmer to decide whether
the aspect will be re�ned in a later step. Unfortunately, this cannot always be
anticipated by the programmer. Hence, the programmer has a serious dilemma.
Declaring the aspect as abstract makes it necessary to add later at least one con-
crete subaspect. But this may not happen and then the aspect does not work.
If the programmer decides to declare an aspect as concrete (without modi�er) he
prevents the later re�nement of this aspect.

1 For example, re�ning a pointcut in AspectC++ requires to decl are the parent pointcut as virtual .
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Advice is not �rst-class: Advice is one of the main mechanisms of AOP [MK03b]. A
piece of advice is invoked implicitly, i.e., it executes code when an associated point-
cut matches. This prevents other advice or methods from invoking it explicitly.
Since advice has no name it cannot be overridden and extendedby another piece
of advice, inside a re�nement. This prevents reusing and customizing advice code.

Aspects are not functions: A re�nement in SWD is modeled as a function [HFC76,
Wir71, Par79, Bax92, BSR04, LHBL06, AL06]. It expects a program as input and
returns a modi�ed program as output. Applying a series of aspects to a program
� which is in fact a series of re�nements [LHBL06, LHBC05, AL06] � di�ers from
this scheme. Potentially, each aspect may a�ect every artifact of a program no
matter whether it is applied before or subsequently in the evolution of a program
(unbounded quanti�cation). This behavior does not follow a functional approach
and bears some potential errors and misbehavior, as explained in Section 5.6. In
this dissertation we do not address this issue since it has already been explored
and solved in parts by introducingbounded quanti�cation of aspects (cf. Sec. 5.6).
Nevertheless, in Section 6.4 we discuss an interesting consequence of AR with
regard to modeling aspects as functions.

The problems sketched above show that current AOP languagesas exempli�ed by As-
pectJ do not support SWD appropriately at the language level.Consequently, we pro-
pose an alternative approach implementing AR and a set of accompanying language
mechanisms.

6.2 Mixin-Based Aspect Inheritance

mixin
composition
of aspects

In order to support AR at the language level, we introduce thenotion of mixin-based
inheritance [BC90] to AOP: mixin-based aspect inheritanceexplicitly supports SWD at
the language level by introducing mixin capabilities to aspects. Though most aspect lan-
guages, such as AspectJ, support a limited form of aspect inheritance, they do not �exibly
enough to express re�nements of aspects and their structural elements. Mixin-based as-
pect inheritance overcomes this limitation by decoupling re�nements from base aspects
and providing a set of accompanying language mechanisms forre�ning independently
all the kinds of structural elements of aspects. Speci�cally, we provide mechanisms for
re�ning pointcuts ( pointcut re�nement ) and advice (named advice, advice re�nement),
which are tailored to AspectJ-like languages.

We use Jak as archetype for expressing AR at the language level. This emphasizes the
uniformity of classes and aspects with respect to re�nement. As with class re�nement,
aspect re�nement could also be implemented using alternative mechanisms, such as vir-
tual classes or traits. With respect to this issue, we refer tothe discussion in Section 5.6.
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Figure 6.2 shows a synchronization aspect (Lines 1-4) and a re�nement (Lines 5-21)
extending the aspect. Re�nements may introduce new structural elements as well as ex-
tend existing ones, as we will explain soon. They can be applied to abstract and concrete
aspects as well as to other re�nements. This eliminates the dilemma of anticipating sub-
sequently applied re�nements by declaring base aspects as abstract. Moreover, it allows
a series of re�nements to be applied to an aspect in di�erent permutations.

1 aspect Sync {
2 void lock () { / � l o c k i n g access � / }
3 void unlock () { / � un lock ing access � / }
4 }
5 re f ines aspect Sync {
6 int threads ;
7 void lock () {
8 threads ++; Super . lock ();
9 }

10 void unlock () {
11 threads - -; Super . unlock ();
12 }
13 pointcut syncPC () : execution ( Item Buffer .get ( int )) ||
14 execution ( void Buffer .put ( Item ));
15 Object around () : syncPC () {
16 lock ();
17 Object res = proceed ();
18 unlock ();
19 return res ;
20 }
21 }

Figure 6.2: Adding members and extending methods via AR.

AR weaving
semantics

Notably, re�ning aspects is conceptually di�erent from applying aspects. Applying two
aspects modi�es the base program in two independent steps. In our example this would
lead to two di�erent instances of the synchronization aspect. Instead, AR results in two
aspect fragments that are merged via mixin composition. That is, an aspect together
with all of its re�nements constitutes the �nal aspect that is wovenonce to the base
program. Figure 6.3 illustrates this semantics of AR: on the left side there is an aspect
and a set of compatible re�nements. Subsequently, the base aspect is composed with
a series of user-selected re�nements, which results in a �nal aspect. This one is then
woven to the base program (right side).

6.2.1 Adding Members and Extending Methods.

A re�nement may extend an aspect by adding new members. As shown in Figure 6.2, the
re�nement adds a �eld (Line 6), a pointcut (Lines 13-14), andan advice (Lines 15-20).
Re�nements may also extend methods to reuse existing functionality (Lines 7-9 and 10-
12). A method extension usually overrides and calls the parent method (Lines 8,11).
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composed aspect

weavingcomposition

base programbase aspect

set of refinements

class

aspect

aspect

class

class

refinement

refinement

refinement

Figure 6.3: AR composition and weaving semantics.

6.2.2 Pointcut Re�nement

A re�nement may extend the pointcuts of an aspect. Recall our example aspect that
synchronizes the access to the methods ofBuffer (cf. Fig. 6.1). For this aspect we
de�ned two re�nements, an aspect that extends the set of advised join points by all
executions ofStack methods (III), and an aspect that constrains this set to executions
that occur in the control �ow of Socket methods (IV). Both aspects were derived using
traditional aspect inheritance. They override the pointcut syncPC, reuse its expression,
and add new pointcut expressions that extend or constrain the set of matched join points.

decoupling
re�nements
from base
pointcuts

In AspectJ, pointcuts have to be accessed by their full-quali�ed name, in our example,
BufferSync.syncPC. Thus, the programmer is forced to hard-wire the aspect to bere-
�ned and the subaspect. This tight coupling decreases reusability. Figure 6.4 depicts
the synchronization aspect forBuffer and our re�nements regardingStack and Socket,
but now implemented using mixin-based aspect inheritance.Using Super the program-
mer refers to the parent's pointcut (base pointcut) without being aware of what actual
sequence of re�nements is applied to the base aspect. For example, with traditional
inheritance each re�nement would change the �nal type of theaspect and thus �x the
pointcut re�nement to a speci�c base aspect. With mixin-based inheritance the order is
variable.

semantics of
pointcut
re�nement

The semantics of pointcut re�nement is as follows: the most re�ned (specialized) point-
cut in a series of pointcut re�nements speci�es when connected advice is executed.
Which pieces of advice are executed can be speci�ed all along the re�nement chain, i.e.,
in every re�nement of an aspect advice may be connected to a pointcut, although the
base pointcut was declared before and re�nements to that pointcut subsequently. Fig-
ure 6.5 shows a pointcut that matches a set of join points (dotted arrow), that triggers
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1 aspect Sync { // synchron ize Buf fe r
2 pointcut syncPC () : execution ( Item Buffer .get ( int )) ||
3 execution ( void Buffer .put ( Item ));
4 Object around () : syncPC () { / � s ynch ron i za t i on � / }
5 }
6 re f ines aspect Sync { // synchron ize Stack
7 pointcut syncPC () : Super . syncPC () || execution (* Stack .*(. .)) ;
8 }
9 re f ines aspect Sync { // on ly w i t h i n c f l ow o f Socket

10 pointcut syncPC () : Super . syncPC () && cflow ( execution (* Socket .*( . . ))) ;
11 }

Figure 6.4: Altering the set of locked methods via pointcut re�nement.

a connected advice (dashed arrow), and an advice that advises the selected join points
(dot-dashed arrow). Figure 6.6 demonstrates that re�ning this pointcut (solid arrow)
alters the triggering mechanism: the most re�ned pointcut extends the set of matched
join points (dotted arrows) and triggers the advice (dashedarrow), albeit the advice was
de�ned and connected in the base aspect. After the re�nementthe advice advised the
extended set of join points (dot-dashed arrows).

aspect Sync {
  pointcut syncPC() : execution(* Buffer.*(..));
  Object around() : syncPC() { ... }
}

triggers

advice

advises
join points

join points
matches

class Buffer {
  void put(Item e) { ... }
  Item get(int i) { ... }
}

classaspect

Figure 6.5: Pointcut-advice-binding.

join points
matches

aspect Sync {
  pointcut syncPC() : execution(* Buffer.*(..));
  Object around() : syncPC() { ... }
}

advises
join points

refines aspect Sync {

}

  pointcut syncPC() : Super.syncPC() ||
execution(* Stack.*(..));

refinement
refines

}

class Stack {
  void push(Item e) { ... }

class

class Buffer {
  void put(Item e) { ... }
  Item get(int i) { ... }
}

class

pointcut
triggers
advice

  Item pop() { ... }

aspect
join points
matches

Figure 6.6: The most re�ned pointcut triggers connected advice.
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6.2.3 Advice Re�nement

Before explaining advice re�nement it is necessary to introduce the notion of named
advice.

Named Advice

Named advice is a named element of an aspect. It can be overridden and referred to
from advice inside subsequent re�nements.

named advice
= unnamed
advice +
advice
method

Figure 6.7 depicts an aspect for synchronization that contains a named advice (Lines 3-
8). Named advice is de�ned by a result type (Object ), an advice type (around), a
name (syncMethod), an argument list (empty), an exception list (empty), a binding to
a pointcut (syncPC), and an advice body. One can think of named advice as a pair
of unnamed advice and a separate method, which we calladvice method. The advice
method contains the whole advice functionality; unnamed advice simply invokes this
method and passes all arguments (Fig. 6.8). The di�erence isthat named advice has
full access to the dynamic context (proceed and join point API). Though named advice
can be implemented di�erently, this view is helpful for understanding the semantics of
advice re�nement.

1 aspect Sync {
2 pointcut syncPC () : execution (* Buffer .*( . . )) ;
3 Object around syncMethod () : syncPC () {
4 lock ();
5 Object res = proceed ();
6 unlock ();
7 return res ;
8 }
9 }

Figure 6.7: An aspect with named advice.

Re�ning Named Advice

advice
re�nement =
method
re�nement

As opposed to traditional advice, named advice can be re�nedin subsequent development
steps. The key idea is to treat named advice in subsequent re�nements similarly to a
method. This is possible since named advice has at least a name, a result type, and
an argument list. As mentioned, named advice can be understood roughly as a pair of
unnamed advice and corresponding advice method. Hence, an advice re�nement simply
re�nes the advice method by method overriding, i.e., by de�ning a method with the
same name and signature as the piece of named advice to be re�ned.
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1 aspect Sync {
2 pointcut syncPC () : execution (* Buffer .*( . . )) ;
3 Object around () : syncPC () {
4 return syncMethod ();
5 }
6 Object syncMethod () {
7 lock ();
8 Object res = proceed ();
9 unlock ();

10 return res ;
11 }
12 Object proceed () { / � i nvok ing the adv i sed method � / }
13 }

Figure 6.8: Implementing named advice as pair of unnamed advice and advice method.

Figure 6.9 depicts an aspect that re�nes our synchronization aspect by extending its
named advice. The re�nement contains an advice methodsyncMethod(Lines 3-8) that
overrides the parent named advice by counting the number of threads. Since we exploit
method overriding, the re�ning method must have the same name and the same signature
as the parent advice. The keywordSuper is used to refer to the parent advice (Line 4).

1 re f ines aspect Sync {
2 int count = 0;
3 Object syncMethod () {
4 count ++;
5 Object res = Super . syncMethod ();
6 count - -;
7 return res ;
8 }
9 }

Figure 6.9: Re�ning named advice.

named advice
with
arguments

Figure 6.10 depicts a more complex example of advice re�nement, in which the named
advice has multiple arguments: a logging aspect advises allexecutions ofItem.toString
(Lines 2-3). A reference to theItem object that is called is passed to a named advice
(Lines 4-6) that prints out some logging text (Line 5). Additionally, the named advice
has a second argument, a reference to the resultingString object, which is expressed by
the keyword returning (Line 4)2. Re�ning named advice subsequently (Lines 10-13),
we introduce an advice method with the same nameand the same signature. In our
example the signature is composed of the two advice arguments3.

2 The keyword returning means that the advice is executed only when the method execution ter-
minates without throwing an exception.

3 Advice declares arguments at two positions: (1) behind its name and (2) behind the keywords
returning or throwing .
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1 aspect Logging {
2 pointcut I temToStr ing ( Item i) :
3 execution ( Str ing Item . toStr ing ()) && th is ( i );
4 af ter LogToStr ing ( Item i) returning ( Str ing s) : I temToStr ing ( i ) {
5 System .out . pr int ln (" item :" + i + "=" + s);
6 }
7 }
8 re f ines aspect Logging {
9 Fi leBuffer buf = new Fi leBuffer (" foo " );

10 void LogToStr ing ( Item i , Str ing s) {
11 Super . LogToStr ing (i , s );
12 buf . write (" item :" + i + "=" + s);
13 }
14 }

Figure 6.10: Re�ning named advice with arguments.

named advice
behaves like
virtual
methods

The semantics of named advice is similar to a virtual method,which passes the control
�ow to the most specialized descendant method of the inheritance chain. Mapped to
advice re�nement this means that, when the associated pointcut matches, the most
specialized advice method is invoked. Figure 6.11 shows an advice method that re�nes
a named advice (solid arrow). It is is executed (dashed arrows) when the pointcut
syncPCmatches (dotted line). Programmers useSuper to navigate the re�nement chain
upwards. The root of the re�nement chain de�nes to which pointcut the piece of advice
is bound.

advice

aspect Sync {
  pointcut syncPC() : execution(* Buffer.*(..));

class Buffer {
  void put(Item e) { ... }
  Item get(int i) { ... }
}

class

    ...

    ...
  }
}

refines aspect Sync {

refinement

    ...

    ...
  }
}

    Super.syncMethod();

  Object syncMethod around() : syncPC() {

triggers
advice

join points
matches

join points
advises

  Object syncMethod() {

    Object res = proceed();

aspect

refines

Figure 6.11: Semantics of advice re�nement.

accessing the
join point
context in
named advice

An issue that we left out is how to use and accessproceed and contextual information
within named advice and its re�nements. We made no statementas to which information
of the exposed context of a join point should be visible to descendant advice methods.
This issue arises because programmers may access the context using proceed or runtime
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variables asthisJoinPoint . Thus, one may use information that is not passed explicitly
via the advice interface. The question that arises is: should re�nements have unlimited
access to context information andproceed?

access rules We argue that an advice re�nement should only be permitted toaccess those pieces
of context information that are passed via the advice interface, and thus are part
of the advice method signature. This would preclude invoking proceed or accessing
thisJoinPoint from within an advice method. For example, in our logging example
the re�nement of the advice accesses only those objects thatwere passed via the ad-
vice interface. To preserve simplicity and safety the usageof the re�ective support for
accessing context information (e.g.,thisJoinPoint ) is forbidden in advice re�nements.
Furthermore, we do not allow named advice to be invoked directly by other advice and
methods � such a mechanism is out of scope of this dissertation and addressed elsewhere
(cf. Sec. 6.4).

6.2.4 Discussion

AR and its implementation via mixin-based aspect inheritance o�er the following bene-
�ts: they allow a base aspect to be composed with a series of re�nements, thus enabling
to customize and reuse aspect code �exibly. Pointcut re�nement decouples re�nements
from their immediate base aspects, thus enhancing the composability and customization
of the aspect weaving behavior. Advice re�nement promotes reuse in the same way as
method extension between classes. Named advice can be reused in di�erent variants of
an aspect, thus supporting the customization of advice code.

At the beginning of this chapter we identi�ed three bene�cial use cases for AR, which
we now want to revisit:

1. A programmer applies a re�nement to adapt an aspect to the changes made to a
base program. For example, Figure 6.12 shows an aspect that counts the updates
of Buffer objects (Lines 1-7) and a re�nement that adapts the aspect tocount
also executions ofclear (Lines 8-10) that updates theBuffer object state as well;
this is achieved by pointcut re�nement (Line 9).

2. A programmer can customize an aspect to react to a changed user requirement.
Suppose a new design decision that requires ourUpdateCounter aspect to inform a
listener when an update operation was performed. Figure 6.13 shows a re�nement
that implements this design decision using named advice re�nement.

3. A programmer can decompose an aspect to decouple it from a speci�c con�guration
of the base program. For example, Figure 6.14 shows an aspectthat introduces a
new interfaceSerializable to a set of target classes (Buffer , Stack). Figure 6.15
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1 aspect UpdateCounter {
2 int count = 0;
3 pointcut updatePC () : execution ( void Buffer .put ( Item ));
4 af ter updateCounter () returning : updatePC () {
5 count ++;
6 }
7 }
8 re f ines aspect UpdateCounter {
9 pointcut updatePC () : Super . updatePC () || execution ( void Buffer . clear ());

10 }

Figure 6.12: Counting the updates ofBuffer objects.

1 re f ines aspect UpdateCounter {
2 UpdateListener l istener = nul l ;
3 void setListener ( UpdateListener l ) { l istener = l ; }
4 void updateCounter () {
5 Super . updateCounter ();
6 l istener . noti fy ();
7 }
8 }

Figure 6.13: Notify a listener whenBuffer objects are updated.

shows the result of decomposing this aspect into a base and two re�nements, where
each re�nement introduces the interface to one target class. Before composing and
compiling the �nal program, a programmer or a tool select only those re�nements
that target classes that are actually present in the programcon�guration, e.g.,
when Stack is present then also the according re�nement is present (Lines 7-9).

1 aspect Serial izat ion {
2 / � . . . � /
3 declare parents : ( Buffer || Stack ) implements Serial izable ;
4 }

Figure 6.14: Introducing the interfaceSerializable to Buffer and Stack.

AR improves
reuse and
customization

The use cases discussed have one thing in common: aspect code(i.e., base aspect,
re�nements) can be reused in di�erent variants of a program;aspects can be customized
to the speci�c needs of a programmer or to �t the structure of the base program.

AFMs and ARIt is worth to note that without the notion of AFMs it would be d i�cult to realize AR.
The layered structure of AHEAD designs assigns to each aspect an enclosing feature
module, which is associated to a development step. This information helps to organize
and compose re�nements and their base aspects, which is explained elsewhere [KAS06].

In the context of AFMs, decomposing an aspect into a base aspect and several re�ne-
ments means decomposing the enclosing AFM into several pieces that are themselves
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1 aspect Serial izat ion {
2 / � . . . � /
3 }
4 re f ines aspect Serial izat ion {
5 declare parents : Buffer implements Serial izable ;
6 }
7 re f ines aspect Serial izat ion {
8 declare parents : Stack implements Serial izable ;
9 }

Figure 6.15: DecomposedSerialization aspect.

AFMs (see Fig. 6.16). Thus the number of AFMs increases but this provides the neces-
sary �exibility to compose di�erent sets of features.

decomposed featurefeature

decomposition

1x aspect
2x refinements

3x AFMs;1x AFM;
1x aspect &

Figure 6.16: Decomposing aspects by decomposing AFMs.

AR as
AHEAD
operator

According to AHEAD's algebraic model, mixin-based aspect inheritance is simply a
composition operator that is invoked when aspects (and their re�nements) of di�erent
development steps are composed. Hence, this aspect composition operator corresponds
to the class composition operator, which composes classes using mixin-based inheritance.

6.3 Tool Support

6.3.1 ARJ

ARJ is a language extension of AspectJ that supports aspect re�nement. It has been
implemented during this dissertation project as a modular extension to the abc com-
piler framework [ACH+ 05]. It extends the abc parser enabling it to recognize our new
syntactical elements and it adds several frontend and backend passes for implementing
a syntax tree transformation. ARJ is implemented to work in concert with the AHEAD
Tool Suite and Jak to integrate AR into AFMs: ARJ expects a feature expression in
form of an AHEAD equation �le. AFMs are represented by containment hierarchies
that contain the associated aspects, classes, and re�nement �les (class and aspect re-
�nements). Further details about ARJ are explained elsewhere [KAS06]. The current
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version of ARJ supports all language constructs proposed here. The compiler as well as
several documents and examples can be downloaded from the ARJWeb site4.

6.3.2 FeatureC++

Our FeatureC++ compiler (cf. Sec. 5.5.1) supports a limitedform of AR. AspectC++
aspects can be re�ned (r̀efines aspect ... ') by adding members, extending methods,
and re�ning pointcuts. In the current version of FeatureC++ there is no support for
named advice or advice re�nement.

6.4 Related Work

Higher-Order Functions, Pointcuts, and Advice

Aspects are re�nements and can be modeled as functions [LHBL06, LHBC05, AL06].
As already explained in Section 5.6, treating aspects as functions helps to avoid several
problems arising from the unbounded quanti�cation of aspects, which are not repeated
here. What is interesting is that in the light of the function model, AR is related to
higher-order functions. A higher-order function expects a function as input and returns
another function as output. Since aspects can be modeled as functions a re�nement
of an aspect can be understood as a function that applies to a function, which is a
higher-order function, e.g.,R(A)(P), where P is a program,A is an aspect, andR is
a re�nement of A. It remains open how high-order functions �t with current algebraic
models of aspects and features [LHBL06, LHBC05, AL06].

Our notion of aspect re�nement is related further to higher-order pointcuts and ad-
vice, discussed by Tucker and Krishnamurthi [TK03]. They integrate advice and point-
cuts into languages with higher-order functions and model them as �rst-class entities.
Pointcuts can be passed to other pointcuts as arguments. Thus, they can be modi�ed,
combined, and extended. In this respect, our approach of aspect and pointcut re�ne-
ment is similar. We can combine, modify, and extend pointcuts by applying subsequent
re�nements.

Due to the opportunity to re�ne named advice, we can also modify and extend advice
using subsequent advice. This corresponds to higher-orderadvice that expects a piece of
advice as input and returns a modi�ed piece of advice. Named advice can be passed to
other advice � usually to advice that re�nes other (input) advice. Thus, re�ning advice
is similar to passing a piece of advice to higher-order advice.

4 http://wwwiti.cs.uni-magdeburg.de/iti_db/arj/
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Implementation of Aspect Re�nement

As discussed in Section 5.6, re�nement can be implemented indi�erent ways, such as
mixins, virtual classes, nested inheritance, or traits. Inthe context of aspects and AR,
a further possibility arises: an aspect could by re�ned itself via advice and inter-type
declarations of another aspect. In this case aspects themselves are part of a base program
and the programmer has the choice to re�ne them via mixins, etc. or aspect weaving.
The answer to the question when to use which re�nement mechanism is the same as for
re�ning classes: in the case of homogeneous and advanced dynamic crosscuts, aspects
are used to re�ne base aspects; in all other cases, our notionof AR in the form of mixins
or virtual classes is used to re�ne base aspects.

Unifying Advice and Methods

Using the annotation-based programming style of AspectJ, aspects are implemented as
classes and advice is implemented as method and declared as such via annotation. In this
programming style advice is already named and can be re�ned by method overriding.
However, it is not obvious how this relates to other mechanisms for re�nement, e.g.,
pointcut re�nement.

Rajan and Sullivan propose the notion ofclasspectsthat combine capabilities of aspects
and classes [RS05]. A classpect associates to each piece of advice a method that is
executed for advising a particular join point. Moreover, classpects unify aspects and
classes with respect to instantiation. Since advice is implemented via methods, it could
be re�ned. However, the authors of classpects do not make a statement about this nor
about the consequences.

Aspects and Genericity

Several recent approaches enhance aspects with genericity, e.g., Sally [HU03], Generic
Advice [LBS04], LogicAJ [KR06], Framed Aspects[LR04]. This improves reusability
of aspects in di�erent application contexts. Aspect re�nement and mixin-based aspect
inheritance provide an alternative way to customize aspects, i.e., by composing a base
aspect and a series of desired re�nements. However, ideas ongeneric aspects can be
combined with our compositional approach, just asgeneric feature modulescombine
AFMs with generics [AKL06].
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AspectJ Design Patterns

Hanenberg and Unland discuss the bene�ts of inheritance in the context of AOP [HU01,
HS03]. They argue that aspect inheritance improves aspect reuse and propose design
patterns that exploit structural elements speci�c to AspectJ. Their patterns pointcut
method, composite pointcut, and chained advicesuggest to re�ne pointcuts in subsequent
development steps to improve customizability, reusability and extensibility. Due to its
�exibility, AR can enhance these patterns by simplifying the composition of aspects.
The pattern template advicecan be enhanced by the notion of named advice because it
becomes possible to re�ne advice directly.

Feature-Optionality Problem

In FOP, features may depend on (or interact with) other features that are optional [Pre97,
LBL06]. In order to be reliable with regard to putting in and removing optional fea-
tures, Prehofer proposes to split features into slices, i.e., into a base feature and several
so calledlifters [Pre97]. Lifters encapsulate those pieces of code that depend on (and in-
teract with) other features. When composing a program from features, a programmer or
a tool selects for each feature the base feature and those lifters that refer to features that
actually participate in the current con�guration. Liu et al . lay an algebraic foundation
for this methodology [LBL06].

Our method of splitting aspects into pieces to resolve dependencies between aspects and
classes of a base program is similar to their approach: our re�nements correspond to
lifters, but in the context of AOP.

6.5 Summary

Aspect re�nement is the incarnation of SWD in AOP. It follows directly from the inte-
gration of aspects and feature modules. AR uni�es classes and aspects with respect to
subsequent re�nement. We have illustrated three use cases where AR improves reuse and
customization of aspect code. To introduce the principles of SWD at the programming
language level, we proposed mixin-based aspect inheritance and a set of accompanying
language constructs that facilitate SWD: pointcut re�nement, named advice, and advice
re�nement.

Though we feel certain that AR is an improvement in reuse and customization capabil-
ities of AOP, as mixins, re�nements, and virtual classes areto OOP, in Chapter 7 we
evaluate the notion of AR by means of a non-trivial case study.
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CHAPTER 7

Case Study: A Product Line for Peer-to-Peer
Overlay Networks

This chapter shares material with the GPCE'06 paper `When to Use Features
and Aspects? A Case Study' [AB06].

This chapter demonstrates the practical applicability of AFMs and AR to a medium-
sized case study. Furthermore, we address the interesting and fundamental issue, which
arises from the previous two chapters: when should a programmer use feature-oriented
mechanisms (i.e., classes, virtual classes, and mixins) and when should aspect-oriented
mechanisms (i.e., introductions, pointcuts, and advice) be used to implement features
of a product line? That is, how do our programming guidelinesperform in a non-trivial
software project? Our case study gives answers, provides a set of supporting statistics,
and reveals open issues.

7.1 Overview of P2P-PL

We use a product line forpeer-to-peer overlay networks (P2P-PL), which was imple-
mented by the author [BAS05, AB05b, AB05a]. Beside the basicfunctionality as routing
and data management in a P2P network [ATS04], P2P-PL supports several advanced
features, e.g., query optimization based on �exible routing path selection [AB05b], meta-
data propagation for the continuous exchange of control information among peers [BAS05],
incentive mechanisms to counter peers that misbehave (free riders) [BB06]. Numerous
experiments concerning these features demanded many di�erent con�gurations to make
statements about their speci�c e�ects, their variants, andcombinations [BAS05]. Hence,
P2P-PL seemed to be a good test case for AFMs and AR.
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�ne-grained
design

P2P-PL has a �ne-grained design. It follows the principle ofevolving a design by starting
from a minimal base and applying incrementally minimal re�nements to implement
design decisions [Par79]. In its current state, it consistsof 113 end-user visible features,
categorized into several subdomains. Anend-user visiblefeature is an increment in
program functionality that users (in case of P2P-PL the author is the user) feel is
important in describing and distinguishing programs within a product line.

Figure 7.1 depicts the �rst two levels of the organizationalstructure of P2P-PL. The set
of features is divided into features of plain P2P systems (P2P), of distributed hash tables
(DHT ) � a special kind of P2P system [ATS04], of content-addressable networks (CAN )
� a special kind of DHT [RFH+ 01], and features for experimental purposes (Exp). The
subdomains are subdivided as well. The number behind each subdomain refers to the
number of features contained in the subdomain, e.g., subdomain Peers contains four
features. The actual features are not shown because of theirlarge number.
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Figure 7.1: The organizational structure of P2P-PL.

implementation P2P-PL was implemented using the AHEAD Tool Suite (ATS) and ARJ. As explained
in Sections 5.5.2 and 6.3.1, the ATS served for implementingfeature modules and ARJ
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for composing and weaving aspects within feature modules. The code base of P2P-PL
is approximately 6.4 thousand lines of source code, distributed over 113 features.

7.1.1 Aspectual Feature Modules in P2P-PL

14 of the 113 end-user visible features of P2P-PL (12%) use aspects (see Tab. 7.1);
the remaining 99 features were implemented as traditional feature modules � without
aspects. To give the reader an impression of how aspects and mixins have been combined
in P2P-PL, we explain two simpli�ed examples of AFMs.

aspect description
responding sends message replies automatically
forwarding forwards messages to adjacent peers
message handler base aspect for message handling
pooling stores and reuses open connections
serialization prepares objects for serialization
illegal parameters discovers illegal system states
toString introduces toString methods to several classes
log/debug a mix of logging and debugging
dissemination piggyback meta-data propagation
feedback generates feedback by observing peers
query listener waits for query response messages
command line provides command line access
caching caches peer contact data
statistics collects and calculates runtime statistics

Table 7.1: Aspectual Mixin Layers used in P2P-PL.

Feedback Generator

feedback
counters free
riders

The feedback generator feature is part of an incentive mechanism for penalizing free
riders � peers that pro�t by the P2P network but do not contribute adequately [BB06].
A feedback generator feature, on top of a peer implementation, identi�es free riders by
keeping track of whether other peers respond adequately to messages. If this is not the
case, an observed peer is considered a free rider. Speci�cally, the generator observes
the tra�c of outgoing and incoming messages and traces whichpeers have responded in
time to posted messages. The generator creates positive feedback to reward cooperative
peers and negative feedback to penalize free riders. Feedback information is represented
by objects of classFeedback and stored in a repository (FeedbackRepository); it is
passed to other (trusted) peers attached to outgoing messages in order to inform them
about free riding. Based on the collected information, a peer judges the cooperativeness
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of other peers. Messages from peers considered free riders are ignored � only cooperative
peers pro�t by the overall P2P network [BB06].

feedback
generation is
crosscutting

The implementation of the feedback generator crosscuts themessage sending and receiv-
ing features. As Figure 7.2 shows, the feedback generator AFM contains an aspect (dark
gray) and introduces four new classes for feedback management. Additionally, it re�nes
the peer abstraction (by mixin composition) so that each peer owns a log for outgoing
queries and a repository for feedback information.

MessageSender

Feedback
Generator

Feedback Feedback
Repository

QueryLog
Feedback

QueryListener

Peer

Peer

Handler
Feedback

Generator

Figure 7.2: Feedback generator AFM.

While the feedback generator feature implements a heterogeneous crosscut, it relies on
dynamic context information, i.e., it is an advanced dynamic crosscut. Figure 7.3 lists an
excerpt of the aspectFeedbackGenerator. The �rst advice re�nes the message sending
mechanism by registering outgoing messages in a query log (Lines 2-7). It is executed
only if the method send was called in the dynamic control �ow of the methodforward .
This is expressed using thecflow pointcut (Line 5) and avoids advising unintended calls
to send, which are not triggered by the message forwarding mechanism1. The second
advice intercepts the execution of a query listener task forcreating feedback (Lines 8-10).

Figure 7.4 lists the re�nement of the classPeer implemented as a mixin2. It adds a
feedback repository (Line 2) and a query log (Line 3). Moreover, it re�nes the constructor
by registering a feedback handler in the peer's message handling mechanism (Lines 4-7).

AFM
encapsulates
multiple
artifacts

In summary, the feedback generator AFM encapsulates four classes that implement
the basic feedback management, an aspect that intercepts the message transfer, and
a mixin that re�nes the peer abstraction. Omitting AOP mechanisms would result in
code tangling and scattering since the retrieval of dynamiccontext information crosscuts

1 The background of usingcflow it that the method send is called many times inside a peer, but we
wanted to advise only those executions ofsend that occur when forwarding a message to another
peer.

2 The actual syntax for constructor re�nement in Jak di�ers sl ightly [BSR04].
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1 aspect FeedbackGenerator { ...
2 af ter ( MessageSender sender , Message msg , PeerId id ) :
3 target ( sender ) && args (msg , id ) &&
4 c a l l ( boolean MessageSender . send (Message , PeerId )) &&
5 cflow ( execution ( boolean Forwarding . forward (..))) &&
6 i f (msg instanceof QueryRequestMessage )
7 { / � . . . � / }
8 af ter ( QueryListener l istener ) : target ( l istener ) &&
9 execution ( void QueryListener . run ())

10 { / � . . . � / }
11 }

Figure 7.3: Feedback generator aspect (excerpt).

1 re f ines c lass Peer {
2 FeedbackReposi tory fr = new FeedbackReposi tory ();
3 QueryLog ql = new QueryLog ();
4 Peer () {
5 Super ();
6 FeedbackHandler fh = new FeedbackHandler ( th is );
7 th is . getMessageHandler (). subscribe ( fh );
8 }
9 }

Figure 7.4: Feedback management re�nement of the classPeer.

other features, e.g., clients of the message forwarding mechanism. On the other hand,
implementing this feature as one standalone aspect would not re�ect the structure of the
P2P-PL framework that includes feedback management. All would be merged in one or
more aspect(s) that would decrease program comprehension.Our AFM encapsulates all
contributing elements coherently as a collaboration that re�ects the intuitive structure
of the P2P-PL framework we had in mind during its design.

Connection Pooling

reusing open
connections

The connection pooling feature is a mechanism to save time and resources for frequently
establishing and shutting down connections. To integrate connection pooling into P2P-
PL, we implemented a corresponding AFM. Figure 7.5 shows this AFM consisting of the
aspectPooling and the classPool. The aspect intercepts all method calls that create
and close connections3. The pool stores open connections.

Figure 7.6 lists the pooling aspect; it uses a pool for storing references to connections
(Line 2). The pointcuts close (Lines 3-4) andopen (Lines 5-6) match the join points
that are associated to shutting down and opening connections. Named adviceputPool
(Lines 7-9) intercepts the shutdown process of connectionsand instead stores the associ-
ated ClientConnection objects in aPool object. Named advicegetPool (Lines 10-13)

3 Note that this is not ideally visualized because the calls areintercepted at the client side.
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Connection
Pooling

Pool

Peer

Pooling

Connection

Figure 7.5: Connection pooling AFM.

recovers open connections (if available) and passes them toclients that request a new
connection. This aspect makes use of the built-in pointcutthis to limit the advised
calls to those that originate fromMessageSenderobjects.

1 aspect Pool ing {
2 s ta t i c Pool pool = new Pool ();
3 pointcut close ( Cl ientConnect ion con ) :
4 c a l l ( void Cl ientConnect ion . close ()) && target ( con ) && th is ( MessageSender );
5 pointcut open ( Cl ientSocket socket ) :
6 c a l l ( Cl ientConnect ion . new ( Cl ientSocket )) && args ( socket ) && th is ( MessageSender );
7 Object around putPool ( Cl ientConnect ion con ) : close (con ) {
8 pool .put ( con ); return nul l ;
9 }

10 Cl ientConnect ion around getPool ( Cl ientSocket socket ) : open ( socket ) {
11 i f ( pool . empty ( socket )) return proceed ( socket );
12 return ( Cl ientConnect ion )pool . get ( socket );
13 }
14 }

Figure 7.6: Connection pooling aspect (excerpt).

Why not
using a
feature
module?

Implementing this feature using FOP exclusively would leadto code tangling and scatter-
ing. We would have to modifyMessageSenderat every place at which the methodclose
and the constructor ofClientConnection is called. Simply extending both is not pos-
sible since this would a�ectall calls, not only those that originate fromMessageSender.
We solve this problem elegantly using advice that advises calls conditionally, i.e., depen-
dently on the type of the caller, which is an advanced dynamiccrosscut.

Furthermore, we did not implementPool as a nested class within the aspectPooling to
emphasize that it is regular part of the P2P-PL. We consider it part of the collaboration
of artifacts that implement the feature. Subsequent re�nements may extend and modify
the classPool.

7.1.2 Aspect Re�nement in P2P-PL

We used AR to re�ne 7 of the 14 aspects used in P2P-PL. That is, we decomposed
each of the 7 AFMs with aspects into a base AFM and multiple re�nements, where
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each re�nement is an AFM itself (cf. Fig. 6.16 in Sec. 6.2.4).We explain two simpli�ed
examples below.

Serialization

feature
dependencies
in P2P-PL

The feature Serialization consists only of one aspect. Figure 7.7 depicts the aspect
Serialization tailored for a fully-con�gured P2P system. It enumerates a list of
declare parent statements that add the interfaceSerializable to a set of target
classes4. The key thing to note here is that the list of declared parents depends on
the set of features that are in a P2P system. This means that, if the feedback gener-
ator feature is not present in a target P2P system, the statement declare parents:
Feedback in Figure 7.7 would need to be removed from theSerialization aspect,
otherwise a warning would be reported (because there would be no Feedbackclass)5.
The same holds forPeerId , Contact , Key, and DataItem. Thus, the de�nition of the
Serialization aspect depends on other features that are present in a targetsystem
(according to Sec. 6.2.4, it is an instance of use case 3).

We model the synthesis of a customizedSerialization aspect by re�ning a base aspect.
That is, we apply AR to break apart the Serialization aspect into smaller pieces � a
base aspect + a series of re�nements � to synthesize a system-speci�c Serialization
aspect.

1 aspect Serial izat ion {
2 declare parents : Message implements Serial izable ;
3 declare parents : PeerId implements Serial izable ;
4 declare parents : Contact implements Serial izable ;
5 declare parents : Key implements Serial izable ;
6 declare parents : DataItem implements Serial izable ;
7 declare parents : Feedback implements Serial izable ;
8 ...
9 }

Figure 7.7: Serialization aspect (excerpt).

Figure 7.8 lists the decomposedSerialization aspect, i.e., a baseSerialization
aspect and a set of re�nements (merged in one listing). Each re�nement introduces the
Serializable interface to only one target class. This enables programmers to choose
only those pieces (re�nements) that are required for a particular con�guration of P2P-
PL. For example, the re�nement that targets the classFeedback(Lines 10-12) is included

4 This particular aspect could also be implemented by enumerating all target classes in
a logical expression, e.g., d̀eclare parents : (Message jj PeerId jj ... ) implements
Serializable '.

5 Not all aspect compilers will issue warnings; some may issue errors when non-existent classes are ref-
erenced. Our use of AR avoids compiler warnings/errors at theexpense of imposing more structure
on synthesized P2P-PL programs.
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only in a program if the feedback generator feature is added as well. How �ne-grained
this decomposition should be depends on the �exibility of composing end-user visible
features. In P2P-PL, we split the compoundSerialization feature into 12 pieces (1 base
aspect and 11 re�nements).

1 aspect Serial izat ion {
2 declare parents : Message implements Serial izable ;
3 }
4 re f ines aspect Serial izat ion {
5 declare parents : PeerId implements Serial izable ;
6 }
7 re f ines aspect Serial izat ion {
8 declare parents : Contact implements Serial izable ;
9 }

10 re f ines aspect Serial izat ion {
11 declare parents : Feedback implements Serial izable ;
12 } ...

Figure 7.8: Decomposed serialization aspect (excerpt).

Connection Pooling

implementing
design
decisions

Figure 7.6 depicts thePooling aspect for a basic P2P system. By implementing further
design decisions, the de�nition of thePooling aspect changes � use case 2 (cf. Sec. 6.2.4).
Using AR we implemented these design decisions as re�nements.

1 re f ines aspect Pool ing {
2 pointcut open ( Cl ientSocket sock ) : Super . open (sock ) &&
3 cflow ( execution ( void Peer .main (..))) ;
4 }
5 re f ines aspect Pool ing {
6 Object putPool ( Cl ientConnect ion con ) {
7 synchronized (pool ) { return Super . putPool ( con ); }
8 }
9 Cl ientConnect ion getPool ( Cl ientSocket sock ) {

10 synchronized (pool ) { return Super . getPool ( sock ); }
11 }
12 }

Figure 7.9: Encapsulating design decisions using AR.

Figure 7.9 depicts two re�nements (merged in one listing). The �rst (Lines 1-4) re�nes
the pointcut open to limit the matched joint points to those that occurs in the control
�ow of Peer. This excludes join points associated to helper and experimentation classes
that use ClientConnection objects as well. Pointcut re�nement decouples the aspect
re�nement from a �xed base aspect and thus increases the �exibility to combine this
re�nement with other re�nements.
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The second re�nement is more sophisticated (Lines 5-12). Itre�nes both advice (putPool ,
getPool ) with synchronization code to guarantee thread safety. Since the pooling ac-
tivities are implemented via named advice, this re�nement adds synchronization code.

7.2 Statistics

In this section, we present statistics on how and when FOP andAOP mechanisms were
used in implementing our P2P product line. These statisticsprovide insight into the
programming guidelines on mechanism usage, which we discuss in detail in Section 7.3.

7.2.1 Statistics on Used AOP and FOP Mechanisms

We collected the following statistics: (1) the number of implementation mechanisms
used, (2) thelines of code (LOC)associated with these mechanisms, and (3) the LOC
associated with static crosscuts (introductions) and dynamic crosscuts (extending meth-
ods).

Number of Classes, Mixins, and Aspects

number of
aspects sums
to 5%

The base P2P framework contains only 2 classes. A fully-con�gured P2P system consists
of 127 classes. Thus, re�ning the base framework into a fully-con�gured system required
the incremental introduction of 125 classes. In addition toclass introductions, there were
120 class re�nements implemented as mixins, and 14 aspects were used to modularize
crosscutting concerns. The main point is that we used classes and mixins primarily for
implementing features rather than aspects, which were usedonly to a minor degree �
about 5% of the overall number of mechanisms for constructing features (Fig. 7.10).

mixins:
130; 48%

classes: 
127; 47%

aspects: 
14; 5%

Figure 7.10: Number of classes, mixins, and aspects in P2P-PL.
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mixins: 
2964; 
46%

classes:
3056; 
48%

aspects:
406; 6%

Figure 7.11: LOC of classes, mixins, and aspects in P2P-PL.

LOC Associated With Classes, Mixins, and Aspects

aspect code
sums up to
6% of the
code base

The overall code base of P2P-PL consists of 6,426 LOC. Of these, 3,056 LOC are asso-
ciated with classes, 2,964 LOC with mixins, and 406 LOC with aspects and re�nements
of aspects. These statistics are in line with the numbers given above on the ratio of
implementation mechanism usage. Aspect code sums up to 6% and mixin code to 46%
of the overall code base (Fig. 7.11).

LOC Associated With Re�nements and Introductions

dominant
activity of
features is
introduction

1,488 LOC of all mixins and aspects extend existing methods (dynamic crosscuts). Of
these, 374 LOC are associated with AspectJ advice and 1,114 with method extensions
via mixins and overriding. The remaining 4,938 LOC are associated with introductions
of new functionality (static crosscuts). This suggests that the dominant role of features
is to introduce new structures in P2P-PL (77%), rather than extending existing methods
(17%) or advising join points (6%) (Fig. 7.12).

method 
extensions: 
1114; 17%

introductions: 
4932; 77%

advice:
 374; 6%

Figure 7.12: LOC of static and dynamic crosscutting in P2P-PL.

94



7.2 Statistics

7.2.2 Statistics on AFMs with Aspects

Number and Properties of Aspects

most aspects
exploit
advanced
AOP

Of the 14 aspects that were used, 6 modularized homogeneous crosscuts (that re�ned a
set of targets coherently with a single piece of code), 7 aspects implemented advanced
dynamic crosscuts (that access dynamic context information, e.g., cflow ), 2 aspects
altered inheritance relationships (that introduce interfaces), and 3 aspects implemented
purely heterogeneous crosscuts (Fig. 7.13)6.

heterogeneous:
3; 17%

declare 
parents:
2; 11%

advanced 
dynamic:
7; 39%

homogeneous:
6; 33%

Figure 7.13: Number of crosscuts implemented by aspects.

In summary, 11 of 14 aspects (79%) exploit the advanced capabilities of AOP. Using
mixins exclusively would result in replicated, scattered,and tangled workarounds, as ex-
plained before. Only 3 aspects implement collaborations that could also be implemented
by traditional feature modules. Section 7.3 explains why inthese particular cases using
aspects was appropriate.

Number of Feature-Related Classes and Mixins

With respect to the question of if aspects are used standaloneor with other classes and
mixins in concert, we observed that an AFM with one aspect also has 1 to 2 (up to 6)
additional classes and mixins. This demonstrates that AFMsin P2P-PL encapsulate
collaborations of aspects, classes, and mixins, rather than aspects in isolation.

7.2.3 Statistics on Aspect Re�nement

As explained in Section 7.1.2, AR is useful for decomposing and re�ning aspects. Ta-
ble 7.2 lists the decomposed aspects and the number of their re�nements. On average,

6 Note that some aspects were counted for more than one category, e.g., homogeneousand dynamic.
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there were 7 re�nements per base aspect and 1/2 of all aspectswere candidates for de-
composition via AR. While the predominant role of aspect re�nement was to add new
structural elements, i.e., advice, pointcuts, methods, �elds, we re�ned only 3 named
advice and 1 pointcut.

decomposed aspect number of re�nements
serialization 11
responding 4
toString 12
log/debug 13
pooling 3
dissemination 3
feedback 2

Table 7.2: Aspects decomposed by AR.

7.3 Lessons Learned

7.3.1 Re�nements and Aspects � When to Use What?

many
problems
could be
solved by FOP

A central question for programmers is when to use re�nementsà la FOP and when
to use aspects? What we have learned from our case study is thata wide range of
problems can be solved by using object-oriented mechanismsand FOP. Speci�cally,
we used FOP for expressing and re�ning collaborations of classes. Collaborations are
typically heterogeneous crosscuts with respect to a base program. Each added feature
module re�ects a subset of the structure of the base program (i.e., a sparse version
of the class hierarchy of the base program [OH92]) and adds new and re�nes existing
structural elements. As we explained in Chapter 4, a signi�cant body of prior work
advocates this view [VN96c, MO04, LLO03, Ern01, OZ05, Ost02, TVJ + 01, EOC06,
TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99].

using aspects
standalone
was not
appropriate

Using aspects in isolation for implementing collaboration-based designs, as proposed
in [PSR00, HU02, SK03], would not re�ect the object-orientedstructure we had in
mind during the design of P2P-PL. For example, the peer abstraction of P2P-PL plays
di�erent roles in di�erent collaborations, e.g., with the network driver and with the
data management. Encapsulating these di�erent roles and their collaborations in single
aspects would hinder us and others to recognize and understand the inherent object-
oriented structure and the meaning of these features. In particular, if a collaboration
embraces many roles and they are merged into one (or more) standalone aspect(s), the
resulting code would be hard to read and to understand.
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bene�cial use
cases for AOP

Nevertheless, aspects proved to be a useful modularizationmechanism. In our study we
learned that they help in those situations where traditional OOP and FOP failed:

1. By using aspects and their pattern-matching and wildcardmechanisms for homo-
geneous crosscuts we could avoid code replication. The aspect-oriented implemen-
tation achieves a 5% code reduction compared to an equivalent object-oriented or
feature-oriented variant.

2. Aspects helped to express advanced dynamic crosscuts in the implementation of
7 features in P2P-PL. Aspects perform better in this respectthan FOP because
they provide sophisticated language-level constructs that capture the programmers
intension more precisely and intuitively (e.g.,cflow ).

statistical
support

Our case study provides statistics on how often AOP and FOP mechanisms are used.
AOP mechanisms were used in 12% of all end-user visible features, because they allowed
us to avoid code replication, scattering, and tangling. However, aspects occupied only
6% of the code base. This is because standard object-oriented mechanisms were su�-
cient to implement most features (i.e., 94% of the P2P-PL code base). Using AOP for
homogeneous crosscuts we coould achieve a code reduction of5%.

7.3.2 Borderline Cases

While we understand the above considerations as guidelines for programmers that help
in most situations to decide between aspects and re�nement mechanisms like mixins and
virtual classes, we also discovered a few situations where adecision is not obvious.

alternative
implementa-
tion of
homogeneous
crosscuts

We realized that some homogeneous crosscuts could be modularized alternatively by
introducing an abstract base class that encapsulates this common behavior. While this
works, for example, for introducing an integer �eld for assigning IDs to di�erent types
of messages, it does not work for classes that are completelyunrelated, as in the case
of a logging feature. It is up to the programmer to decide if the target classes are
syntactically and semantically close enough to be grouped via an abstract base class.

alternative
implementa-
tion of
heterogeneous
crosscuts

Though our study has shown that a traditional collaboration-based design à la FOP
works well for most features, we found at least one heterogeneous feature for which it
is not clear if an aspect would not be more intuitive. This feature introduces toString
methods to a set of classes. Naturally, each of these methodsis implemented di�erently.
Thus, the feature is a heterogeneous crosscut. However, in this particular case it seems
more intuitive to group all toString methods in one aspect. We believe that this is
caused by the partly homogeneous nature of this crosscut, i.e., introducing a set of
methods for the same purpose to di�erent classes.
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7.3.3 Bene�ts of Aspect Re�nement

AR improved
customizabil-
ity

While the application of AR increased the total number of AFMsin P2P-PL consider-
ably, the �ne-grained decomposition of aspects (which results in 48 re�nements applied
to 7 aspects) did not only structure the design and implementation of P2P-PL, but it
also increased the con�guration space, i.e., the tailored variants that can be derived by
the con�guration process. For example, the aspectSerialization has as many variants
as di�erent sets of target classes are possible in P2P-PL (theoretically 210). The aspect
Pooling comes in fewer variants (8) because it has only 3 optional re�nements, which
can be combined freely (23).

AR improved
reusability

Beside an improvement in customizability we achieved a better reusability of aspect code
amongst di�erent variants of P2P-PL. In our study, all derivable variants of aspects share
common functionality, thus reusing aspect code. In case of the aspectPooling , each
of the 8 variants reuses code of the base aspect and of 0 to 2 re�nements. On average,
each variant of each of the 7 decomposed aspects reuses code of 1 1/2 aspects and
re�nements. This is because, for most aspects, all variantscan be freely combined, i.e.,
they are optional and can be applied standalone to their baseaspects, in combination
with someother re�nements, or in combination with all other re�nements.

Finally, it remains to note that we did not �nd many use cases for advice and pointcut
re�nement (3 named advice and 1 pointcut re�nement). We believe that this small
number originates from the refactoring approach we chose, i.e., we decomposed each
considered aspect retroactively into a base aspect and several re�nements.

7.4 Open Issues

Granularity and Scalability

On average, in P2P-PL each feature is implemented by 56 LOC. Thus, the features
of P2P-PL are very �ne-grained. Although, we are not aware ofguidelines that tell
programmers what feature granularity is appropriate, this�ne-grained approach might
not scale to larger software projects because programmers might get lost in the myriads
of features. One way to address this issue would be to implement coarse-grained features,
e.g., as in [TBD06]. While this solves the problem of limited scalability, it decreases the
potential scenarios a feature can be reused with [Big98]. Remarkably, not aware of
this fact when implementing P2P-PL, we chose intuitively anapproach in between. As
explained in Section 7.1, we organized the set of 113 features into a logical tree structure
of subdomains. All these subdomains have counterparts in the domain model of P2P
systems. Those subdomains can be understood as large-scalecompound features. Such
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a hierarchical approach might be a trade-o� between �ne-grained customizability and
scalability.

Code Tangling

During our study a fundamental question emerged: when is an interaction between to
feature modules (e.g., classA calls a method of classB) considered undesirable code
tangling? For example, Figure 7.14 depicts a simpli�ed excerpt of the classPeer that
uses several times the message subsystem for sending messages. We implemented this
interaction via direct method calls from the classPeer to the class MessageSender
(Lines 7,14). Moreover,Peer uses a logging subsystem to log its current state. This is
implemented also via method calls fromPeer to Log (Lines 5,8,12,15).

1 c lass Peer {
2 int id ;
3 / � . . . � /
4 void run () {
5 Log . log (" running peer : " + id );
6 / � . . . � /
7 MessageSender . send (new RequestMessage (th is ));
8 Log . log (" send request : " + id );
9 / � . . . � /

10 }
11 void startup () {
12 Log . log (" startup peer : " + id );
13 / � . . . � /
14 MessageSender . send (new StartupMessage ( th is ));
15 Log . log (" send startup not i f icat ion : " + id );
16 / � . . . � /
17 }
18 }

Figure 7.14:Peer invokes methods ofLog and MessageSender.

What is
undesirable
tangling?

Most programmers would probably agree that the method callsfrom the classPeer to
the classMessageSenderare not undesirable code tangling, but invoking the method
log in the classLog is considered code tangling. That is, the calls toLog should be
moved to an aspect, whereas the calls toMessageSendershould remain inPeer. In this
particular case it might be easy to decide, but in other situations it might be unclear
when to factor a collaboration in an aspect and when not. So what is the general rule
for considering a uses-relationship as tangling or as meaningful collaboration?

We believe that thelaw of demeter of concerns (LoDC)may help in this matter [Lie04].
Informally, it states that a concern should only know about concerns that contribute
to its functionality. Mapped to our problem it is evident that calling methods of
MessageSenderis necessary for the operation ofPeer, whereas logging is not required.
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Hence, programmers may use the LoDC for deciding when to use aspects and when
collaborations of re�nements and classes.

7.5 Related Work

Recent studies have applied and evaluated AOP and FOP by theirapplication to larger
software projects. We review a representative subset.

AOP Case Studies

Colyer and Clement refactored an application server using aspects [CC04]. Speci�cally,
they factored 3 homogeneous and 1 heterogeneous crosscuts.While the number of
aspects is marginal, the size of the case study is impressively high (millions of LOC).
Although they draw positive conclusions, they admit (but did not explore) a strong
relationship to FOP. This dissertation demonstrates the useful integration of both worlds.

Zhang and Jacobsen refactored several CORBA ORBs [ZJ04]. Using code metrics, they
demonstrate that program complexity could be reduced. Theypropose an incremen-
tal process of refactoring which they callhorizontal decomposition. Liu et al. point
to the close relationship to FOP [LBL06]. Our study con�rms that with respect to
the implementation of program features, aspects are too small units of modulariza-
tion [MO04, LLO03].

Coady and Kiczales undertook a retroactive study of aspect evolution in the code of
the FreeBSD operating system (200-400 KLOC) [CK03]. They factored 4 concerns and
evolved them in three steps; inherent properties of concerns were not explained in detail.

Lohmann et al. examine the applicability of AOP to embedded infrastructure soft-
ware [LST+ 06]. They show that AOP mechanisms, if carefully used, do notimpose
a signi�cant overhead. In their study they factored 3 concerns of a commercial embed-
ded operating system; 2 concerns were homogeneous and 1 heterogeneous. They show
that aspects are useful for encapsulating design decisions, which is also con�rmed by our
study.

FOP Case Studies

A signi�cant body of research supports the success of FOP in the implementation of
large-scale applications, e.g., for the domain of network software [BO92], databases [BT97,
LAS05, BO92], avionics [BCGS95], and command-and-controlsimulators [BJMvH02],
to mention a few. The AHEAD tool suite is the largest example with about 80-200
KLOC [BSR04, TBD06]. However, none of these studies make quantitative statements
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about the properties of the implemented features, nor do they evaluate the implemen-
tation mechanisms used with respect to the structures of theconcerns. The features
they consider are traditional collaborations with heterogeneous crosscuts, which is in
line with our �ndings in P2P-PL.

Lopez-Herrejon et al. explore the ability of AOP to implement product lines in a FOP
and SWD fashion [LH06, LHB06]. They illustrate how collaborations are translated
automatically to aspects. They do not address in what situations which implementation
technique is most appropriate nor how the aspects generateda�ect program comprehen-
sibility.

Xin et al. evaluate Jiazzi and AspectJ for feature-oriented decomposition [XMEH04].
They reimplemented an AspectJ-based CORBA event service [HC02] by replacing as-
pects with Jiazzi units, which are a form of feature modules. They conclude that Ji-
azzi provides better support for structuring software and manipulating features, while
AspectJ is more suitable for manipulating existing Java codein unanticipated ways.
However, they do not examine the structure of the implemented features. Their success
in implementing all features of their case study using Jiazzifeature modules hints that
most of them (if not all) come in form of object-oriented collaborations.

We are not aware of further published studies that take both,AOP and FOP into
account.

7.6 Summary

17% method
extensions;
6% aspect
code

Our conducted study demonstrated the practical applicability of the integration of AOP
and FOP. We observed that the dominant role of features is theintroduction of new
structural elements � adding new classes and new members to existing classes. Re�ne-
ment of existing methods involved a small fraction of features in our case study (17%).
This is in line with prior studies [LH06, LHB06]. Further, while aspects were used in-
frequently (6% of the code base), they enhanced the crosscutting modularity of features
and reduced code replication. That is, using aspects or re�nements in isolation would
not have achieved an elegant design or implementation.

Are features
predominantly
collabora-
tions?

The result of our case study is a �rst data point. Although we cannot generalize of a
single study, we believe this work supports the hypothesis that object-oriented collabo-
rations (expressed by classes and mixins) de�ne the predominant way in which concerns
(features) are implemented, where aspects are useful in expressing homogeneous and
advanced dynamic crosscuts. In the next chapter we address this issue in more depth.

Regarding AR we observed that 1/2 of all aspects in our study could be decomposed to
separate design decisions or to decouple aspects from the details of the base program
(i.e., to synthesize tailored aspects). The composabilityof aspects and their re�nements
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increased the con�guration space and facilitated aspect code reuse between aspect vari-
ants, which are tailored to di�erent program contexts.

In summary, our case study provides supporting evidence that our programming guide-
lines can assist programmers in choosing and using the rightimplementation mechanism
for the right problem. In the next chapter we provide furthersupport for our guidelines
by means of analyzing further studies implemented by others.
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CHAPTER 8

Aspects Versus Collaborations

This chapter shares material with the AOPLE'06 paper `On the Structure of
Crosscutting Concerns: Using Aspects or Collaborations?' [ABR06].

We have shown how integrating AOP and FOP can overcome their individual limitations.
Our case study supports our claims for a particular softwareproject. We observed that
our programming guidelines are reasonable for this example, but also that aspects and
collaborations have been applied to di�erent extents. However, this is only one data
point and furthermore it may be biased � even against our bestwill.

In this chapter we revisit the question of when to use what mechanism and how imple-
mentation techniques are used today. We formulate a problemstatement that serves as
a starting point for our investigations. Subsequently, we present a set of code metrics
for analyzing programs based on AOP. Finally, we apply our metrics to a set of case
studies implemented by others. Based on this, we can make stronger claims about the
issues regarding the current practice of programming with collaborations and aspects.

8.1 Problem Statement: Aspects vs. Collaborations

Aspects and collaborations overlap in their capabilities to solve certain design and im-
plementation problems. Our derived programming guidelines re�ect this fact and assist
the programmer in choosing the right programming techniquefor the right problem:

1. Collaborations are heterogeneous crosscuts and should be abstracted explicitly,
e.g., by feature modules [BSR04] or related mechanisms [OZ05, AGMO06, LLO03,
Her02, TVJ+ 01, Ost02].
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2. Aspects should be used in the remaining cases, i.e., for homogeneous crosscuts and
advanced dynamic crosscuts.

These guidelines are not arbitrary at all, but were inferredfrom the individual strengths
of aspects and collaboration abstraction mechanisms. Theybuild on a long line of work
on OOP and collaboration-based designs [RAB+ 92, GHJV95, VN96c, LLO03, MO04,
SB02, BSR04, MMP89, Ern01, EOC06, OZ05, Ste00, NQM06, NCM04,BDN05, CL01]
and follow the initial idea of AOP, namely to implement only those concerns as aspects
for which the underlying modularization mechanisms fail [KLM + 97, EFB01].

AOP �lled a
vacuum

However, we are aware that although the concept of collaborations predates AOP by
quite some time, mainstream OOP languages have been slow in supporting these con-
structs. AOP has �lled the vacuum and o�ered some programming mechanisms that
remain controversial [Lie04, Ste06, Ale03] and that may lead to serious penalties, e.g.,
unpredictable program behavior [MA05, DFS04, LHBL06], weak modularity [GSF+ 05,
GSC+ 03] and decreased evolvability [Lie04, LHBL06, GB03]. Furthermore, the weak
support of collaborations and related mechanisms (e.g.,virtual classes[MMP89, EOC06,
OZ05],mixins [BC90, SB02],nested inheritance[NCM04, NQM06],classboxes[BDN05])
has contributed to a confusion regarding their relationship to crosscutting concerns,
which we have addressed in Chapter 3.

Do aspects
implement
collabora-
tions?

The aim of this chapter is to explore whether aspects used today really implement
AOP-speci�c problems or implement in fact collaborations,which could have been im-
plemented by languages that support collaborations. With the advent of languages that
support collaborations (e.g.,Scala [OZ05], Jiazzi [MFH01], Jx [NCM04], J& [NQM06],
Classbox/J [BDN05], Jak [BSR04], ContextJ [CHdM06], Lasagne/J [TVJ + 01], Cae-
sarJ [AGMO06], Aspectual Collaborations[LLO03], Object Teams [Her02], Aspectual
Feature Modules) the question of whether and how aspects should be replaced by collab-
oration abstraction mechanisms arises. Furthermore, we are interested in which design
and implementation problems remain for aspects � beyond collaborations.

To answer these questions we have analyzed a set of AspectJ programs. In order to
quantify the application of aspects we propose a set of code metrics for aspect-oriented
programs.

8.2 Metrics

A software metric is a measure of some property of a piece of software or its speci�-
cation. The metrics we propose target exclusively the issues discussed above, namely
the question in which of our two categories (collaboration or not) a given aspect falls.
Speci�cally, we are interested in the following metrics:
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� What fraction of a program's code base is occupied by classes,interfaces, and
aspects?

� What fraction of inter-type declarations and advice is heterogeneous and homoge-
neous?

� What fraction of advice is basic and advanced?

The metrics are quanti�ed by the number of occurrences (NOO)of a certain software
artifact and/or the lines of code (LOC)associated with it.

Classes, Interfaces, and Aspects (CIA)

This metric determines the NOO of classes, interfaces, and aspects, as well as the LOC
associated with them. It tells us whether the number of aspects (as opposed to classes
and interfaces) is a small or a large fraction of the modularization mechanisms used in a
program, and whether aspects implement a signi�cant or onlya small part of the code
base. However, the CIA metric does not tell us how aspects areused, e.g., how often
advanced advice is used in an aspect as opposed to basic advice and methods. This is
where further metrics come into play.

Heterogeneous and Homogeneous Crosscuts (HHC)

The HHC metric explores to what extent aspects implement homogeneous and het-
erogeneous crosscuts. Speci�cally, we determine the fraction of advice and inter-type
declarations that implement heterogeneous and homogeneous crosscuts (NOO) and the
fraction of the code base that is associated with them (LOC).The HHC metric tells us
whether the implemented aspects take advantage of the wildcard and pattern-matching
mechanisms of AOP (homogeneous crosscuts) or merely emulate OOP mechanisms (het-
erogeneous crosscuts).

Basic and Advanced Dynamic Crosscuts (BAC)

The BAC metric determines the NOO of pieces of basic and advanced advice and the
overall LOC associated with them. This metric tells us to what extent the aspects of a
program take advantage of the advanced capabilities of AOP for implementing dynamic
crosscuts. Basic advice can be implemented as method extensions via overriding.
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8.2.1 Analyzing AspectJ Programs

As our metrics are language-independent, we now explain howto collect statistics for
AspectJ programs.

CIA Metric

Collecting data for the CIA metric is straightforward: we simply traverse all source
�les included in a given project and count the NOO and LOC of aspects, classes, and
interfaces. Upfront we eliminate blank lines and comments.

HHC Metric

Homogeneous crosscuts a�ect multiple join points by applying identical code. Typi-
cally this can be recognized syntactically by advice and inter-type declarations that
have wildcards (i.e., * , +, and .. ) and disjunctions (e.g., èxecution(/*...*/) jj
execution(/*...*/) ' or `declare parents : (Line jj Point) implements Shape ').
Furthermore, advice is considered homogeneous that does not qualify a target method
or �eld completely, e.g., by omitting the declaring type: èxecution(void print()) '.
All remaining pieces of advice and inter-type declarationsare considered heterogeneous.

BAC Metric

We consider all pieces of advice as advanced except those associated with call 1 and
execution and that are not combined with any other pointcuts, except with target
and args 2. This is an overestimation: it might consider some pieces ofadvice advanced
that is not, but not vice versa. However, our studies show that this does not a�ect the
results, since we found very few pieces of advanced advice, even with this overestimation.
The remaining advice is considered basic.

8.2.2 AJStats: A Statistics Collector for AspectJ Programs

For collecting statistics of AspectJ programs we developeda tool, calledAJStats3. The
core of AJStats is an AspectJ parser that is generated by meansof a JavaCC grammar,

1 Although the semantics of call is to advise the client side invocations of a method, it can be
implemented as method extension � provided that all calls to the target method are advised.

2 The pointcut execution can be combined also with the pointcut this .
3 http://wwwiti.cs.uni-magdeburg.de/iti_db/ajstats/
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borrowed from [FLG06]. AJStats analyzes AspectJ programs and collects the following
data (measured in NOO and LOC):

� classes, aspects, interfaces (distinguishes between top-level and nested)
� methods, constructors, �elds (distinguishes between classes, interfaces, and as-

pects)
� pointcuts, advice
� inter-type declarations (�eld, methods, constructors, others)

AJStats does not identify homogeneous and advanced dynamic crosscuts. In order to
do so one has to examine the code by hand.

Figure 8.1 shows a screen snapshot of the output of AJStats after analysis of an arbitrary
AspectJ program.

8.3 Case Studies

There are not many published, non-trivial studies on AspectJ in the open literature.
We analyze a diverse selection of small-sized, medium-sized, and large-sized programs
that we were able to locate. We did not include P2P-PL and other programs of our own
because we did not want to bias the results.

8.3.1 Overview of the Analyzed AspectJ Programs

The �rst 5 case studies are small and medium-sized AspectJ programs (< 20 KLOC);
the last 3 are large-sized AspectJ programs (> 20 KLOC).

Tetris: The Game

Tetris is the implementation of the popular game in AspectJ. It was developed at the
Blekinge Institute of Technology in Sweden. The source codeis available publicly at the
project Web site4. The code base of Tetris is 1,030 LOC. It implements featuressuch as
a GUI, various game levels, or block management.

OAS: An Online Auction System

OAS (Online Auction System)is a system that allows people to negotiate the purchase
and sale of goods in the form of English-style auctions (overthe Internet). OAS was

4 http://www.guzzzt.com/coding/aspecttetris.shtml
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Figure 8.1: AJStats Screen Snapshot.
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developed from scratch using AspectJ at the Lancaster University. The source code was
released kindly by Awais Rashid. The code base of OAS is 1,623 LOC. OAS does not
employ a special notion of features. Nevertheless it factors functionality such as a GUI,
serialization, as well as auction, user, and bidding management.

Prevayler: Transparent Persistence for Java

Prevayler is a Java application that implements transparent persistence for Java ob-
jects. It is a fully functional main memory database system in which business objects
may persist. Prevayler was refactored by the University of Toronto using AspectJ and
horizontal decomposition[GJ05, ZJ04]. Successively, a series of features has been de-
tached and encapsulated into aspects. Example features arepersistence, transaction,
query, and replication management. The refactored AspectJsource code is available
at the project Web site5. The code base of Prevayler is 3,964 LOC subdivided into 18
features.

AODP: Aspect-Oriented Implementation of the GoF Design Patterns

AODP (Aspect-Oriented Design Patterns)is an AspectJ implementation of the GoF
(Gang-of-Four) design patterns [GHJV95], implemented at the University of British
Columbia [HK02]. The programmers of AODP restructured several design patterns
using AspectJ and separated the reusable parts of aspects and classes. The AspectJ im-
plementation can be obtained at the project Web site6. The overall code base consists of
3,995 LOC subdivided into 23 features, which are the di�erent design pattern instances.

FACET: An Aspect-Based CORBA Event Channel

FACET (Framework for Aspect Composition for an EvenT channel)is an AspectJ imple-
mentation of a CORBA event channel, developed at the Washington University [HC02].
The source code is available publicly at the project Web site7. The goal of the FACET
project is to investigate the development of customizable middleware using AOP. FACET
implements a real-time event channel in Java and AspectJ, modeled after theTAO Real-
time Event Channel[SLM98]. The code base of FACET is 6,364 LOC subdivided into
34 features. Features in FACET are for example di�erent event types, synchronization,
a CORBA core, or tracing.

5 http://www.msrg.utoronto.ca/code/RefactoredPrevayle rSystem/
6 http://www.cs.ubc.ca/�jan/AODPs/
7 http://www.cs.wustl.edu/�doc/RandD/PCES/facet/
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AJHotDraw: A 2D Graphics Framework

AJHotDraw is an aspect-oriented refactoring of the JHotDraw two-dimensional graphics
framework. It is an open source software project hosted by the SourceForge.netopen
source development Web portal. The code is publicly available at the AJHotDraw project
Web site8. The code base of AJHotDraw is 22,104 LOC. It provides numerous features
for drawing and manipulating graphical, planar objects.

Hypercast: A Multicast Overlay Network Protocol

Hypercast is an implementation of a protocol for multicast overlay network communica-
tion. It was developed at the University of Virginia in cooperation with the Microsoft
Corporation [LB99]. The original object-oriented implementation was refactored using
AspectJ andcrosscutting interfaces[GSS+ 06]. The source code was released kindly by
Yuanyuan Song and Kevin Sullivan. The code base of the aspect-oriented implemen-
tation of Hypercast is 67,260 LOC. Example features of Hypercast are di�erent base
protocols (UDP, TCP, HTTP), encryption, or message handling.

Orbacus: A CORBA Middleware Framework

Orbacusis a mature CORBA-compliant middleware product that has beendeployed by
IONA Technologies9. It has been used successfully in mission-critical systemsin the
telecommunications, �nance, government, defense, aerospace and transportation indus-
tries. We consider the AspectJ-based version of Orbacus (a.k.a. Abacus) developed by
refactoring at the University of Toronto [ZJ04, ZGJ05]. The source code was released
kindly by Charles Zhang and Hans-Arno Jacobsen. The code baseof the AspectJ version
of Orbacus is 129,897 LOC. Orbacus is a complex software withnumerous features, e.g.,
dynamic invocation interface, event handling, encoding conversation.

8.4 Statistics

We used AJStats for collecting the statistics. We identi�ed homogeneous advice and
inter-type declarations as well as advanced advice by hand,i.e., we examined the code
manually. This method revealed an interesting issue: we identi�ed advice and inter-type
declarations that have patterns and wildcards in their pointcut expressions but that do
not a�ect multiple join points. For example, advice àfter() : call(* foo(..)) ' is

8 http://sourceforge.net/projects/ajhotdraw/
9 http://www.orbacus.com/

110



8.4 Statistics

Tetris OAS Prevayler AODP
NOO LOC NOO LOC NOO LOC NOO LOC

features / code base 6 1030 1 1623 18 3964 23 3995
classes + interfaces 9 818 21 1283 107 2739 244 3241
aspects 8 212 9 340 55 1225 41 754
java �elds 81 81 64 64 149 149 149 149
java methods 47 583 149 1042 338 1779 432 2010
java constructors 7 116 37 137 83 351 76 334
aspect �elds 17 17 20 20 24 24 16 16
aspect methods 1 11 6 78 1 3 39 205
aspect constructors 0 0 0 0 0 0 0 0
itd �elds 0 0 0 0 27 27 2 2
itd methods 0 0 2 15 65 266 41 182
itd constructors 0 0 0 0 7 34 0 0
itd declare 2 2 8 8 23 23 37 37
advice 21 145 20 141 106 518 15 94
hom. advice 0 0 15 61 10 52 5 50
hom. itds 2 2 8 8 3 7 7 7
advanced advice 2 12 4 25 30 136 3 30
basic advice 19 133 16 116 76 382 12 64
het. crosscuts 21 145 7 95 215 809 83 258

FACET AJHotDraw Hypercast Orbacus
NOO LOC NOO LOC NOO LOC NOO LOC

features / code base 34 6364 13 22104 10 67260 30 129897
classes + interfaces 181 5143 351 21909 328 67142 1894 118938
aspects 113 1221 10 195 12 118 125 10959
java �elds 198 198 712 712 2691 2691 3180 3180
java methods 340 2936 2850 15937 3122 52130 7659 89642
java constructors 88 375 356 1461 383 6879 1447 7219
aspect �elds 3 3 0 0 8 8 33 33
aspect methods 57 187 0 0 0 0 19 139
aspect constructors 0 0 0 0 0 0 2 16
itd �elds 22 22 1 1 0 0 63 63
itd methods 52 229 20 121 0 0 460 4036
itd constructors 3 12 0 0 0 0 0 0
itd declare 34 34 10 10 0 0 4 4
advice 49 297 5 19 8 27 289 4748
hom. advice 4 16 3 11 8 27 14 209
hom. itds 8 8 1 6 0 0 0 0
advanced advice 11 110 3 12 2 8 53 488
basic advice 38 187 2 7 6 19 236 4260
het. crosscuts 148 570 32 134 0 0 802 8642

Table 8.1: Collected data of the analyzed case studies.
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formally a homogeneous advice but if there is only one methodfoo in the base program
it is in fact heterogeneous. We address this issue in more depth in Section 8.5.

Table 8.1 lists the data we collected from the AspectJ programs. Especially, interesting
for our analysis are the rowsclasses + interfaces, aspects, hom. advice, hom. itds, and
advanced advice. In the following paragraphs we discuss the data in depth.

CIA Metric

Since the projects analyzed are of di�erent size (1 KLOC � 130KLOC) the number of
classes, interfaces, and aspects varies as well. The spectrum of the number of classes and
interfaces ranges from 9 to 1,894 and the number of aspects from 9 to 125. The LOC of
classes and interfaces ranges from 818 to 118,938 LOC and theLOC of aspects from 118
to 10,959 LOC. Figure 8.2 illustrates that AOP has been used to di�erent extents (0.2%
to 31% of the code bases). Especially in the small-sized and medium-sized projects (<
20 KLOC) aspects occupy a signi�cant part of the code base (19% � 31%); in the larger
projects (> 20 KLOC) aspects occupy a smaller fraction (0.2% � 8%).

classes +
interfaces

aspects

Tetris 79.4 % 20.6 %
OAS 79.1 % 20.9 %
Prevayler 69.1 % 30.9 %
AODP 81.1 % 18.9 %
FACET 80.8 % 19.2 %
AJHotDraw 99.1 % 0.9 %
Hypercast 99.8 % 0.2 %
Orbacus 91.6 % 8.4 %
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Figure 8.2: NOO and LOC of classes, interfaces, and aspects.

HHC Metric

Homogeneous crosscuts have been used in the analyzed programs to di�erent extents:
the spectrum ranges from 2 to 209 LOC associated with homogeneous advice and inter-
type declarations. That is, we found 0.04% to 4.3% of the codebase implementing
homogeneous crosscuts (Fig. 8.3). Note that the 4.3% comes from the second smallest
program (OAS). We revisit this issue in Section 8.5.

In contrast to homogeneous crosscuts, we found 0 to 8,642 LOCimplement heterogeneous
advice and inter-type declarations, which are 0% to 20% of the code base.
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heterogeneous homogeneous
Tetris 14.1 % 0.2 %
OAS 5.9 % 4.3 %
Prevayler 20.4 % 1.5 %
AODP 6.5 % 1.4 %
FACET 9.0 % 0.4 %
AJHotDraw 0.6 % 0.1 %
Hypercast 0.0 % 0.04 %
Orbacus 6.7 % 0.2 %
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Figure 8.3: NOO and LOC of heterogeneous and homogeneous crosscuts.

BAC Metric

Advanced dynamic crosscuts have been used to di�erent extents in the analyzed AspectJ
programs. The spectrum ranges from 8 to 488 LOC, which sums upto 0.01% to 3.4%
(Fig. 8.4). The highest percentage comes from Prevayler, a mediums-sized program.

In contrast to advanced advice, we found 7 to 4,260 LOC implement basic advice, which
sums up to 0.03% to 13% of the code base.

basic
advice

advanced
advice

Tetris 12.9 % 1.2 %
OAS 7.1 % 1.5 %
Prevayler 9.6 % 3.4 %
AODP 1.6 % 0.8 %
FACET 2.9 % 1.7 %
AJHotDraw 0.03 % 0.1 %
Hypercast 0.03 % 0.01 %
Orbacus 3.3 % 0.4 %
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Figure 8.4: NOO and LOC of basic and advanced advice.
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8.5 Discussion

advanced
AOP vs.
collaborations

Figure 8.5 depicts the fractions of the code base of the AspectJ programs analyzed by us
that demand advanced AOP mechanisms and that require only OOP and collaboration
abstraction mechanisms. Note that the fractions that require AOP are not calculated
by simply adding the code associated with homogeneous advice & inter-type declara-
tions and advanced advice together. This is because sometimes advanced advice is also
homogeneous (e.g., `after() returning: call(* foo(..)) && cflow(execution(*
bar(..))' ).

collaborations advanced
AOP

Tetris 98.6 % 1.4 %
OAS 94.5 % 5.5 %
Prevayler 95.1 % 4.9 %
AODP 98.4 % 1.6 %
FACET 97.9 % 2.1 %
AJHotDraw 99.9 % 0.1 %
Hypercast 99.96 % 0.04 %
Orbacus 99.5 % 0.5 %
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Figure 8.5: Fractions of code that require (1) advanced AOP and (2) OOP and collabo-
ration abstraction mechanisms.

In summary, the spectrum of the fractions of the code base that exploits advanced
AOP mechanisms ranges from 0.04% to 5.5%, where the small-sized and medium-sized
programs have the largest fractions (1.4% � 5.5%) and the large-sized programs have
the smallest fractions (0.04% � 0.5%).

Interpretation of the Data

2% of the
code exploits
advanced
AOP

A major insight gained from the statistics is that only a minor fraction of the code
base (on average 2%) of the analyzed AspectJ programs exploits the advanced capabilities
of AOP, i.e., homogeneous and advanced dynamic crosscuts. This also means that on
average98% of the code base implements collaborations.

the larger the
code base, the
lesser AOP is
been used

A further interesting outcome is that there seems to be a correlation between the extent of
advanced AOP in a program and the size of its code base. In our analyzed programs, we
observed that the larger the code base, the smaller the fraction of advanced AOP. While
the small-sized and medium-sized programs (< 20 KLOC) use some AOP mechanisms
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(on average 3%), the large-sized programs (> 20 KLOC) virtually do not make any use
of advanced AOP (on average 0.2%).

three
suspicions

These statistics suggest thatthe impact of advanced AOP mechanisms decreases as the
program size increases. Large programs use virtually no advanced AOP but exclusively
OOP and collaborations. Though we have no de�nitive answer to the question of why
there is an inversely proportional correlation between program size and impact of AOP,
we have three suspicions:

1. The impact of AOP in large-sized programs is negligible because it is certainly
harder to understand a large-sized program than a small-sized program. This cir-
cumstance may be responsible for why the programmers were not able to discover
homogeneous and advanced dynamic crosscuts in large-sizedprograms. Tool sup-
port for discovering aspects automatically could help to assist the programmer, e.g.,
aspect mining tools [BK04, MvDM04, TC04] and clone detection tools [BvDvET05,
LLM06, BYM + 98, FR99, LPM+ 97, Bak95].

2. The impact of AOP in large-sized programs is negligible because these programs
have not been developed with AOP in mind. All of them have beenconstructed via
a refactorization of object-oriented code into aspect-oriented code. It may be that
the programmers simply stopped using AOP after having detached a reasonable
number of aspects. Thus, the ratio of aspect code and object-oriented code di�ers
in small-sized and large-sized programs. The development of aspect-oriented large-
sized programs from scratch might con�rm this conjecture.

3. The impact of AOP in large-sized programs is negligible because the design and
implementation problems that occur in large-sized programs are predominantly
collaborations. This could be explained by the sheer complexity of these problems
that is incompatible with the generic character of homogeneous crosscuts. That
is, it is really hard to �nd problems in large-sized programsthat a�ect many join
points and that do the same thing at all points. The same mightbe true for
advanced dynamic crosscuts.

Code reduction

AOP reduces
code
replication

We have argued that aspects are useful for reducing code replication in a program.
Imagine an aspect that advises 100 join points and executes at each join point 10 lines
of code encapsulated in one piece of advice. Compared to an OOP equivalent, this
aspect would reduce the code size by approximately 990 linesof code. This bene�t is
not re�ected in our metrics and statistics. An aspect-oriented program may have only
a few pieces of advice and reduce code replication signi�cantly.
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In order to explore this issue, we analyzed for all the considered AspectJ programs, the
reduction of code replication achieved by using aspects formodularizing homogeneous
crosscutting concerns.

code reduction
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OAS 22.0 %
Prevayler 2.7 %
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Figure 8.6: Code reduction achieved by using AOP.

small-sized vs.
large-sized
programs

Figure 8.6 shows di�erent degrees of code reduction achieved by using AspectJ instead
of Java in the analyzed programs. In OAS the code size is reduced by 22% compared
to an OOP equivalent; in FACET a reduction of 7.7% has been achieved; all other code
reductions are 3% and below. It is interesting that the second smallest program achieves
the highest degree of code reduction (OAS; 22%). However,the ability of AOP to the
reduce code decreases as the program size increases. While we observed a signi�cant code
reduction (on average 7%) in the small-sized and medium-sized programs, we observed
almost no reduction (on average 0.3%) in the large-sized programs.

impact on
large-sized
programs

The reason why the bene�t of using AOP in large-sized programs is so marginal might
be that aspects have not been used to the same extent as in small-sized programs. When
the impact of aspects in large-sized programs increases then it is reasonable to expect a
reduction of code replication � similar to the one in small-sized programs (7%).

4% code
reduction
through AOP

Nevertheless, the observed code reduction of on average 4% con�rms our programming
guidelines: use AOP for homogeneous crosscuts because you can avoid code replication.
Though 4% may seem to be a marginal bene�t, it has been observed that any kind of
code replication may lead to serious maintenance problems [Bak95, LPM+ 97, BYM+ 98,
FR99, LLM06]. Furthermore, this result is in line with prior work on clone detection
that conjectures that 5% to 15% of large software projects are clones, i.e., replicated
code fragments [Bak95, LPM+ 97, BYM+ 98].
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Misuse of Wildcards

wildcards are
used for single
join points

A further observation of our study is that the programmers ofthe analyzed AspectJ
programs used wildcards to match sets of join points (homogeneous crosscuts). We
discovered that sometimes these wildcard-based pointcutsdo not match multiple join
points, but each pointcut matches exactly one join point (heterogeneous crosscuts). It
follows that identifying wildcards in pointcut expressions of an AspectJ program does not
indicate how many homogeneous crosscuts were implemented because they may match
single join points only. We suspect two possible reasons forthis: (1) the programmers
anticipated features to be added subsequently to the programs, or (2) they used wildcard
because they are a `convenient' way to save time and coding e�ort.

Regarding the second alternative it remains to note that thisprogramming style may
come at a high price [Ale03]. Programmers may get lost easilywhen adding new features
because it may be hard to �gure out whether all the pointcuts of the program a�ect the
correct sets of join points after this change [LHBL06].

8.6 Related Work

There is some related work on a quanti�cation of the use of AOPvia code metrics.

Zhang and Jacobson use a set of object-oriented metrics to quantify the program com-
plexity reduction when applying AOP to middleware systems [ZJ03, ZJ04]. They show
that refactoring a middleware system (23 KLOC code base) into aspects reduces the
complexity (quanti�ed by McCabe's cyclomatic complexity)and results in a code reduc-
tion of 2% � 3%, which is in line with our results.

Garcia et al. analyzed and compared several aspect-oriented programs (4 KLOC � 7
KLOC code bases) and their object-oriented counterparts [GSF+ 05, KSG+ 06]. They
observe that the aspect-oriented variants exhibited superior stability and reusability
through the changes, as it has resulted in fewer lines of code(12% code reduction), etc.

Benn et al. apply the metrics of Garcia et al. to a distributedcomputing application
(0.7 KLOC code base) [BCP+ 05]. They observe a code reduction of 11% of the aspect-
refactored variant compared to an OOP equivalent.

Zhao and Xu propose several metrics for aspect cohesion based on aspect dependency
graphs [ZX04]. Ceccato and Tonella propose metrics for measuring the coupling degree
between program elements [CT04]. To our knowledge, they didnot evaluate their metrics
by a case study. Gelinas et al. discuss previous work on cohesion metrics and propose a
novel approach based on dependencies between aspect members [GBB06]. They evaluate
di�erent metrics by three small-sized and medium-sized case studies (< 7 KLOC).
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All of the above proposals and case studies take neither the structure of crosscutting
concerns nor the di�erence between collaborations and other concerns into account.

Lopez-Herrejon and the author propose a set of code metrics for analyzing the cross-
cutting structure of aspect-based product line features [LHA07]. However, this work
focuses exclusively on homogeneous and heterogeneous crosscutting concerns. It does
not consider elementary crosscuts but analyzes crosscutting properties of entire features,
which may have a substantial size. This way, the crosscutting structure of a feature can
be homogeneous, heterogeneous, or any value in between the spectrum of both. We ap-
plied these metrics to a large-scale case study (200 KLOC) and observed that virtually
every feature was predominantly heterogeneous.

8.7 Summary and Perspective

What fraction
of aspects
implements
collabora-
tions?

The motivation for our study was to determine the fraction ofaspects that have been used
to implement collaborations. The background is that there are two classes of modular-
ization mechanisms for crosscutting concerns: (1) collaboration abstraction mechanisms
and (2) aspect-oriented mechanisms. Due to the missing support for collaborations in
contemporary mainstream programming languages, aspects are frequently used to im-
plement collaborations, which we identi�ed as one categoryof crosscutting concerns
(cf. Chapter 3). However, with the advent of collaboration abstraction mechanisms
(e.g., classboxes, nested inheritance, virtual classes, delegation layers, AFMs) it stands
to question how many of these aspects implement collaborations, and how many are
used for alternative use cases beyond collaborations, i.e., homogeneous and advanced
dynamic crosscuts.

2% of the
code bases is
associated to
advanced
AOP

To address this issue we analyzed a set of AspectJ programs available publicly, which
range from small-sized and medium-sized (1 KLOC � 6 KLOC) to large-sized AspectJ
programs (20 KLOC � 120 KLOC). We found that in these programson average 2% of
the code bases is associated with advanced AOP; 98% is associated with collaborations
and OOP. This result is in line with our experience and the experience of others, who
distiguish between aspects and collaborations [LH06, LHB06].

AOP vs.
advanced
AOP

It is worth noting that the fraction of 2% is in contrast to the real use of AOP mechanisms
in the analyzed programs, which is on average 15%. This result leads us to conclude
that, given an appropriate support of implementing and composing collaborations, col-
laboration abstraction mechanisms can replace traditional aspects to a signi�cant extent
in contemporary aspect-oriented programs. That is, 13% of the code base of the ana-
lyzed AspectJ programs is associated with aspects that implement collaborations and
that should be implemented using languages that support collaborations.
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impact of
program size

Furthermore, we revealed an inversely proportional correlation between program size and
the impact of advanced AOP. This is remarkable since we expected a constant percentage
of advanced AOP code without any dependence on the program size. Though we have
no de�nitive answer for why this is the case, we have three possible suggestions, which
largely build on the fact that the increasing complexity in large-sized program prevents
programmers to discover or to implement aspects that are notcollaborations. In any
case, we conjecture that a fraction of around 5% is a typical upper limit for the use of
advanced AOP.

use cases for
AOP

Nevertheless, AOP should not be avoided completely. In thisdissertation, we condensed
two reasons why one should use AOP: (1) when modularizing homogeneous crosscut-
ting concerns a code reduction can be achieved (on average 4%in our analysis) and
(2) advanced dynamic crosscuts can be expressed more intuitively, at a higher level of
abstraction (on average 1% of the code bases in our analysis). Our analysis of AspectJ
programs supports our belief that AFM are an appropriate approach to implement such
software projects because they integrate collaboration-based design and AOP, which are
both necessary for certain design and implementation problems.

misuse of
wildcards

Finally, our study revealed that sometimes the powerful AOPmechanisms, i.e., wildcards
in pointcut expressions were used without any bene�t. It hasbeen argued that this may
lead to serious problems regarding reliability and evolvability [LHBL06, Ale03]. We
argue that our programming guidelines help avoiding such misuse of AOP since they
point programmers to this problem and assist them to choose the right technique for the
right problem.
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CHAPTER 9

Concluding Remarks and Further Work

problem areaThe principles of separation of concerns and modularity aimat solving problems associ-
ated with the software crisis, i.e., canceled projects, projects running over-time, projects
running over-budget, etc. Though in the recent years signi�cant progress has been made,
the current situation in software development is far from adequate. According to the
most recent Standish Group report, only 34% of all software projects are successful.

aim of the
dissertation

This dissertation aspires to contribute to this line of research by analyzing, explaining,
combining, and devising conceptual, methodical, practical, and tool-related means to
improve separation of concerns and modularity in software.Speci�cally, we focus on
two programming paradigms, FOP and AOP that have been discussed intensively in the
literature. This dissertation can be understood as a historical survey of the author's work
on FOP and AOP, their evaluation, comparison, combination,analysis, and discussion.
The structure of the dissertation re�ects, beside the chronology of work on this topic,
also the evolution of the author's understanding of FOP, AOP, and their relationship.

9.1 Summary of the Dissertation

Chapter 3We presented in Chapter 3 a classi�cation of crosscutting concerns, which are the main
design and implementation problems addressed by FOP and AOP. This classi�cation is
crucial to a systematic discussion about separation and modularization of crosscutting
concerns. It is a prerequisite for an evaluation and comparison of FOP and AOP.

Chapter 4The evaluation in Chapter 4 revealed that FOP and AOP are not competing approaches
and that their combination can overcome their individual limitations. The strengths
and weaknesses of FOP and AOP are expressed in programming guidelines that assist
programmers to choose the right implementation technique for the right problem.
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Chapter 5 In Chapter 5 we presented an approach for the combination of FOP and AOP. The
symbiosis of FOP and AOP incorporates the strengths of FOP and AOP into one uni-
form approach, which we callaspectual mixin layers (AFMs). AFMs provide a way of
designing and implementing programs incrementally; they combine aspect-oriented and
feature-oriented programming mechanisms; and they are language-independent. Addi-
tionally, we provide tool support for Java/AspectJ and C++/A spectC++. The assess-
ment of AFMs is driven by our evaluation criteria and programming guidelines that
demonstrate the successful symbiosis of FOP and AOP, i.e., AFMs pro�t largely from
the strengths of FOP and AOP.

Chapter 6 Given the integration of feature modules and aspects, we addressed in Chapter 6 the
issue of whether and how aspect-oriented mechanisms �t the stepwise development style
of FOP. We observed that current AOP language mechanisms arenot adequate and pro-
posed the integration of aspects and a set of accompanying language mechanisms, which
we call aspect re�nement (AR). AR uni�es classes and aspects with respect to stepwise
development. According to this view, aspects are just another software artifact that can
be subject of subsequent re�nement, which satis�es the principle of uniformity [BSR04].

Chapter 7 In Chapter 7 we presented and discussed the results of applying the notions of AFMs
and AR to a non-trivial, medium-sized software project. In this study we implemented
14 of 113 features as AFMs; 8 aspects were re�ned using AR. Thisdemonstrates the
practical applicability of AFMs and AR. An interesting insight gained in this study is
that aspect-oriented (advice and inter-type declarations) and feature-oriented (collab-
orations) mechanisms are not used to the same extent. We found that the dominant
role of features is the introduction of new functionality (77% of the code base) and the
extension of methods (17% of the code base). Only 6% of the code base represents
aspect-oriented mechanisms.

Chapter 8 In Chapter 8 we examined the disproportion of code related toFOP and AOP noted
in our case study. We derived from our experience a problem statement: What is the
current practice of using AOP and FOP-related mechanisms? The background is that
we noticed a confusion about the relationship of crosscutting concerns and collabora-
tions, which was revealed and resolved by this dissertation. Due to the long-standing
missing support of collaborations in main stream programming languages, AOP �lled a
vacuum, i.e., aspects were used for implementing collaborations. But, with the advent of
languages, tools, methods, and formalisms that support collaborations, aspects should
be avoided in these situations.

The questions that arise are: How many aspects implement collaborations and how
many solve problems beyond collaborations, i.e., homogeneous and advanced dynamic
crosscuts. To answer these questions, we de�ned in Chapter 8a set of code metrics
and applied them with tools we provide to 8 AspectJ programs of di�erent size. We
found that on average 2% of the code base of the analyzed programs represents ad-

122



9.2 Contributions and Perspective

vanced AOP and 98% represents collaborations. We noted thatthe impact of AOP
decreases as the program size increases, i.e., in small-sized and medium-sized programs
we found 3% of the code base associated with advanced AOP and in large-sized pro-
gram only 0.2%. Furthermore, we observed that, despite the marginal use, advanced
AOP mechanisms reduced code replication by on average 4%. Also here we found that
the bene�t of code reduction decreases as the program size increases, i.e., 7% in small-
sized and medium-sized programs and 0.3% in large-sized programs. We summarize our
suspicions regarding this phenomenon in the following sections.

9.2 Contributions and Perspective

impact of
AFMs and AR

The contribution of this dissertation is twofold. First, we evaluated, compared, and
combined FOP and AOP to overcome their individual limitations. This resulted in the
notions of AFM and AR. However, our work on AFMs and AR contributes not only a
design method, language and tool support but also helps in understanding the relation-
ship of aspects and feature modules. FOP and AOP are not competing programming
paradigms, but merely decompose software in di�erent ways so that their combination
leads to a better program design. Our programming guidelines assist not only program-
mers but sensitize them to the issues discussed in the dissertation. The tools we provide
enable other researchers to make their own investigations in AFMs and AR. Finally, our
case study demonstrated the practical applicability of AFMs and AR and it pointed to
a further fundamental question: What is the current practiceof AOP and how many
aspects implement collaborations?

advanced
AOP is rarely
used

Answering this question is the second contribution of this dissertation. Especially, that
advanced AOP is rarely used and that its impact even decreases at larger scales are
interesting observations. While we expected the fraction ofadvanced AOP to be around
5%, we did not expect that the fraction decreases as the program size increases. We
have several intuitive explanations that roughly boil downto the sheer complexity that
either prevents the programmer to discover aspects or makesimplementation problems
so complicated that they cannot be modularized well using advanced AOP.

clone
detection

An interesting, related branch of research might provide more satisfying answers. Work
on clone detection suggests that 5% � 15% of the code base of a program is associated
with code clones [Bak95, LPM+ 97, BYM+ 98], which are in fact a kind of homogeneous
crosscutting concerns. It is known that clones are hard to discover and to avoid and that
tool support is necessary. Using clone detection tools we could explore whether there
are use cases of aspects additionally to the ones found by hand. So the upper limit for
the percentage of code clones could be similar to the upper limit for the percentage of
advanced AOP (5% � 15%).
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advanced
clones

However, the clone detection community considers also parameterized clones and clones
that are equal in parts, which we calladvanced clones. Possibly, advanced clones can-
not be modularized using AOP mechanisms, i.e., homogeneousadvice and inter-type
declarations. This may be because a part or even only a pattern is equal in all clones
and AOP does not provide appropriate language mechanisms toexpress the common-
alities and variabilities of the clones. Thus, the 5% � 15% estimation might be too
optimistic. Personally, the author estimates that approximately 5% of a program code
base is associated with advanced AOP.

9.3 Suggestions for Further Work

According to the two main clusters of contributions of this dissertation, we see two
clusters of suggestions for further work: (1) FOP and AOP, (2) aspects vs. collaborations.

Further Work on FOP and AOP

quanti�cation
and functional
aspects

Regarding the symbiosis of FOP and AOP, we suggest to explore further their relation-
ship at the design and the language level. It is interesting to know how the global quan-
ti�cation of aspects a�ects or even hinders the incrementaldevelopment style of FOP.
Although touched in this dissertation (cf. Sec. 5.6 and 6.4), we omitted an in-depth
investigation. In a ongoing branch of work we address this issue [ALS05, AL06, KAS06].

What is
essential?

Another interesting issue is how to strip down the integrated approach of FOP and
AOP to provide a minimal set of abstractions and language mechanisms. The question
is: What is essential and how can we develop a consistent design method, language, and
tool suite? Several researchers made already �rst steps into this direction [LHBC05,
LHBL06, Hut06]

features and
genericity

A further interesting line of research arises from the implementation of AFMs with
FeatureC++. Similar to C++, FeatureC++ provides a template mechanism for generic
programming. This poses the question of when to use genericsand when to use feature
modules to make a program customizable. The background is that both techniques
support the implementation of customizable and reusable code. We observed that the
combination of generics and feature modules improves customizability and reusability in
SPLs since they act at di�erent scales [AKL06]. While featuremodules are the building
blocks of an SPL, generics enable feature modules to be adapted to speci�c needs. We call
the combinationgeneric feature modulesand it is implemented in FeatureC++ [AKL06].
It would be interesting to explore the impact of genericity on non-standard FOP/AOP
mechanisms like AFMs and AR.
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refactoringWhile this dissertation targets the principal di�erences and commonalities of FOP and
AOP in software development, others explored their bene�t on refactoring. It will
be interesting to revisit work on aspect-oriented refactoring (AOR) [HMK05, CB05,
MF05, CC04, ZJ04, GJ05, CK03, LST+ 06, BCP+ 05] and feature-oriented refactoring
(FOR) [LHBL06, TBD06, LH06, LHB06, XMEH04] by taking the results and experi-
ences of this dissertation into account.

Further Work on Aspects vs. Collaborations

automatic
clone
detection

The most remarkable result of this dissertation is probablythat, in the analyzed AspectJ
programs, only 2% of the code base is associated with advanced AOP and 98% with
collaborations. Moreover, the impact of AOP decreases as the program size increases.
We suggest that clone detection tools may help to �nd out whether this proportion
should be expected generally or whether either programmersor AOP languages today
are simply not capable of exploiting the advantages of AOP. Consequently, it is promising
to evaluate several clone detection methods and tools and their use for quantifying the
impact of AOP compared to collaborations and OOP. Taking theexistence of advanced
clones into account, we conjecture that approximately 5% ofthe code base may be
associated with advanced AOP and 95% with collaborations. Due to the multiplicity
and diversity of clone detection approaches, this attempt is a non-trivial endeavor and
part of further work.

empirical and
comparative
studies

Finally, it is interesting to compare di�erent collaboration abstraction mechanisms and
programming languages and to reimplement aspect-orientedprograms by replacing as-
pects that implement collaborations. The AspectJ programsanalyzed here qualify as a
starting point. Empirical studies on the aspect-oriented and collaboration-based vari-
ants can quantify their performance with respect to understandability, maintainability,
reusability, and customizability, etc. A point that is not stressed in this dissertation is the
impact of the cognitive distance between programmer and program that depends clearly
on the used programming paradigm and its mechanisms. Further empirical studies will
have to shed light on this issue.
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