
Empir Software Eng
DOI 10.1007/s10664-012-9208-x

Do background colors improve program comprehension
in the #ifdef hell?

Janet Feigenspan · Christian Kästner · Sven Apel ·
Jörg Liebig · Michael Schulze · Raimund Dachselt ·
Maria Papendieck · Thomas Leich · Gunter Saake

© Springer Science+Business Media, LLC 2012
Editor: Ahmed E. Hassan

Abstract Software-product-line engineering aims at the development of variable and
reusable software systems. In practice, software product lines are often implemented
with preprocessors. Preprocessor directives are easy to use, and many mature tools

J. Feigenspan (B) · R. Dachselt · M. Papendieck · G. Saake
School of Computer Science, University of Magdeburg,
Magdeburg, Germany
e-mail: feigensp@ovgu.de

R. Dachselt
e-mail: dachselt@ovgu.de

M. Papendieck
e-mail: maria.papendieck@st.ovgu.de

G. Saake
e-mail: saake@ovgu.de

C. Kästner
Philipps University Marburg, Marburg, Germany
e-mail: christian.kaestner@uni-marburg.de

S. Apel · J. Liebig
University of Passau, Passau, Germany

S. Apel
e-mail: apel@uni-passau.de

J. Liebig
e-mail: joliebig@fim.uni-passau.de

M. Schulze
pure-systems, Magdeburg, Germany
e-mail: michael.schulze@pure-systems.com

T. Leich
Metop Research Institute, Magdeburg, Germany
e-mail: thomas.leich@metop.de



Empir Software Eng

are available for practitioners. However, preprocessor directives have been heavily
criticized in academia and even referred to as “#ifdef hell”, because they introduce
threats to program comprehension and correctness. There are many voices that
suggest to use other implementation techniques instead, but these voices ignore the
fact that a transition from preprocessors to other languages and tools is tedious,
erroneous, and expensive in practice. Instead, we and others propose to increase the
readability of preprocessor directives by using background colors to highlight source
code annotated with ifdef directives. In three controlled experiments with over 70
subjects in total, we evaluate whether and how background colors improve program
comprehension in preprocessor-based implementations. Our results demonstrate
that background colors have the potential to improve program comprehension, in-
dependently of size and programming language of the underlying product. Addition-
ally, we found that subjects generally favor background colors. We integrate these
and other findings in a tool called FeatureCommander, which facilitates program
comprehension in practice and which can serve as a basis for further research.

Keywords Empirical software engineering · Software visualization ·
Program comprehension · Software product lines · Preprocessors ·
FeatureCommander

1 Introduction

Software-product-line engineering provides an efficient means to develop variable
and reusable software (Clements and Northrop 2001; Pohl et al. 2005). Different
program variants—variants for short—of a software product line (SPL) can be
generated from a common code base by including or excluding features. A feature is a
user-visible characteristic of a software system (Clements and Northrop 2001).
Variable source code that implements a feature is called feature code, in contrast to base
code, which implements the common base shared by all variants of the product line.

There are many technologies for the implementation of SPLs, from conditional
compilation (Pohl et al. 2005), to components and frameworks (Clements and
Northrop 2001), to programming-language mechanisms such as subjects (Harrison
and Ossher 1993), aspects (Kiczales et al. 1997), mixin layers (Smaragdakis and
Batory 1998), and to combinations thereof (Apel et al. 2008). Although, in acad-
emia, most researchers focus on programming-language mechanisms, in practice,
companies implement SPLs mostly with conditional compilation using preprocessor
directives. There are many examples of industrial SPLs developed with preprocessors
such as HP’s product line Owen for printer firmware (Pearse and Oman 1997)
(honored as best practice in the Software Engineering Institute’s Software Product
Line Hall of Fame). Preprocessors are used to annotate feature code with #ifdef and
#endif (or similar) directives, which are removed before compilation (including the
annotated code, when certain compiler flags are not set).

Preprocessors are popular in industry, because they are simple to use, are flexible
and expressive, can be used uniformly for different languages, and are already inte-
grated as part of many languages or environments (e.g., C, C++, Fortran, and Java
Micro Edition) (Favre 1997; Muthig and Patzke 2003). However, in academia, many
researchers consider preprocessors “harmful” or even as “#ifdef hell” (Lohmann



Empir Software Eng

et al. 2006; Spencer and Collyer 1992), because the flexibility and expressiveness can
lead to complex and obfuscated code that is inherently difficult to understand and
can lead to high maintenance costs (Favre 1997; Krone and Snelting 1994; Pohl et al.
2005).1

Hence, preprocessor usage potentially threatens program comprehension. It is
imperative to consider comprehensibility of source code, because understanding is
a crucial part in maintenance: Maintenance programmers spend most of their time
with understanding code (Standish 1984; Tiarks 2011; von Mayrhauser et al. 1997).
Furthermore, most of the costs for developing a software product are caused by its
maintenance (Boehm 1981). Hence, by ensuring easy-to-understand source code, we
can reduce software development costs.

To increase program comprehension in practice, one could encourage practition-
ers to use different implementation approaches that modularize feature code, but
introducing novel languages or concepts in industry is a difficult process, especially
when large amounts of legacy code are involved. Therefore, we target a different
question: Is there a way to improve readability of existing preprocessors to improve
program comprehension?

We propose to use background colors to highlight feature code: In a source-code
editor, feature code is displayed with a background color that distinguishes feature
code from code of other features and base code.

So far, little is known about the influence of background colors on program
comprehension used in source-code editors. To evaluate whether and how high-
lighting feature code with background colors improves program comprehension in
preprocessor-based software, we conducted three controlled experiments with a total
number of 77 subjects. In the first experiment, we evaluated whether background
colors can improve program comprehension in a preprocessor-based SPL with
about 5,000 lines of code and 4 features. We found that colors can speed up the
comprehension process in terms of locating feature code up to 43%. In a second
experiment, we evaluated whether and how subjects use background colors when
given a choice between background colors and ifdef directives. We found that subjects
preferred background colors. Based on the encouraging results of both experiments,
we evaluated in a third experiment whether background-color usage scales to a large
SPL with over 99,000 lines of code and 340 features. Here, we also found a speed up
of comprehension time in terms of locating feature code of up to 55% when using
background colors.

The results of our experiments are promising and provide first insights into
the requirements of source-code editors that explicitly support the development of
variable software with preprocessors. Based on the results of our experiments, we
developed a tool called FeatureCommander (Section 9), which provides scalable,
customizable usage of background colors. With FeatureCommander, we provide a
good basis for other research groups to analyze how the readability of ifdef directives
can be improved. Furthermore, we give practitioners a tool that improves program
comprehension in preprocessor-based software, which can save time and costs of
software maintenance.

The results of the first experiment have been briefly mentioned in a workshop
paper motivating empirical research to the SPL community (Feigenspan et al.

1We discuss problems arising from preprocessor usage in Section 2.



Empir Software Eng

2009). The focus of this paper was not on the experiment, but on the necessity
of empirical research. Furthermore, the results of the third experiment have been
published before with focus on tooling (Feigenspan et al. 2011b). Additionally,
we have published a tool demo of FeatureCommander (Feigenspan et al. 2011a),
focusing on its functionality, but not on empirical evaluation (see Section 10.1 for
more details). In this article, we put the focus on details of the experiments and
put the results in a broader perspective: Our team, consisting of tool developers,
software-engineering researchers, and psychologists, collected empirical evidence
on the influence of background colors on program comprehension in the context
preprocessor-based SPLs for over two years.

The remainder of the paper is structured as follows: In Section 2, we give an
overview of problems caused by the use of ifdef directives and present possible solu-
tions. We give an overview of program comprehension and the logic of experiments
in Section 3. In Section 4, we describe the common framework of our experiments. In
Sections 5–7, we give a detailed description of the three experiments we conducted.
We put the results of all three experiments in a broader perspective in Section 8. In
Section 9, we present a summary of the results and the prototype implementation of
FeatureCommander. We present prior and related work in Section 10 and conclude
in Section 11.

2 Welcome to the #ifdef Hell

To implement variable source code, practitioners often use ifdef directives, as il-
lustrated in Fig. 1 with an excerpt of Berkeley DB.2 Identifying code fragments
annotated with ifdef directives can be problematic, especially when

(1) ifdef directives are fine grained,
(2) ifdef directives are scattered,
(3) ifdef directives are nested, and/or
(4) long code fragments are annotated,

which often occurs in preprocessor-based software (Liebig et al. 2010, 2011).
First, ifdef directives can be ‘hidden’ somewhere within a single statement at a

fine grain. For example, a programmer may annotate a variable or a bracket. Such
annotations are difficult to locate, because they can hardly be distinguished from
‘normal’ source code. Another problem is that fine-grained annotations can lead to
syntactic errors after preprocessing, because a closing bracket may be annotated,
but not the corresponding opening one. Tracking these errors at source-code level is
difficult, because both brackets are visible in the source code.

Second, ifdef directives are typically scattered across the code base. In Fig. 2, we
illustrate this problem with a source-code excerpt from the Apache Tomcat web
server, showing session management. Implementing an optional session-expiration
mechanism involves the addition of code and ifdef directives in many locations. The
red background color illustrates the scattering of feature Session expiration over
the complete implementation of session management, which makes implementing

2http://www.oracle.com/technetwork/database/berkeleydb

http://www.oracle.com/technetwork/database/berkeleydb


Empir Software Eng

Fig. 1 Code excerpt of Berkeley DB

and tracing this feature a tedious and error-prone task. A developer must take into
account all affected modules when keeping track of the Session-expiration feature.

Third, ifdef directives can be nested. For example, in Fig. 1, Lines 13 to 15 are
defined within another ifdef directive, starting in Line 5. It might not be difficult to
keep track of a nesting level of two (as in this case), which is typical for most projects.
However, in practice, nesting levels of up to 24 may occur (Liebig et al. 2010).

Fig. 2 Apache Tomcat source code illustrating scattering of session-expiration source code.
This figure is from a tutorial on AspectJ: http://kerstens.org/mik/publications/aspectj-tutorial-
oopsla2004.ppt

http://www.kerstens.org/mik/publications/aspectj-tutorial-oopsla2004.ppt
http://www.kerstens.org/mik/publications/aspectj-tutorial-oopsla2004.ppt


Empir Software Eng

Fourth, long code fragments can be annotated, as indicated in Fig. 1: Line 16 states
that over 100 additional lines of code occur, after which the according #endif of the
#ifndef in Line 5 occurs. To keep track of this fragment of feature code, a developer
typically has to scroll and, thus, keep in mind which code fragments belong to the
according feature and which do not. A surrounding annotation might not be visible
from the source-code excerpt shown in an editor.

How can we overcome these problems?

2.1 Stairway to Heaven?

To escape the “#ifdef hell”, several approaches have been developed that aim at
improving the readability of preprocessors, for example, by hiding selected feature
code such as in the Version Editor (Atkins et al. 2002), CViMe (Singh et al. 2006),
or C-CLR (Singh et al. 2007) or by annotating features with colors such as in
Spotlight (Coppit et al. 2007) (with vertical bars next to the code editor), NetBeans
(one background color for all features), or CIDE (a previous tool of our’s, see
Section 10.1) (Kästner et al 2008).

In Fig. 3, we illustrate how background colors can be used to annotate source code.
All source-code lines that are annotated are displayed with a background color. Code
of feature HAVE_QUEUE (Lines 5 to 16) is annotated with yellow background
color. The according else directive (Line 8) has the same color, because the according
annotated code is also relevant for this feature. Code of feature DIAGNOSTIC
(Lines 12 to 14) is annotated with orange. In this example, we see how we deal with
nested code: We display the background color of the inner feature DIAGNOSTIC,
which is orange. In an early prototype, we blended the colors of all features that
are nested. However, this would introduce more colors than necessary and make
distinguishing code of different features more difficult. Additionally, with a deeper
nesting level it becomes difficult to recognize all involved features, because the
blended colors would result in a shade of gray.

Fig. 3 Excerpt of Berkeley DB with background colors to highlight feature code. Lines 5 to 16 are
yellow, Lines 12 to 14 orange



Empir Software Eng

With background colors, we use a highlighting technique that supports users in
finding relevant information (Fisher and Tan 1989; Tamborello and Byrne 2007).
Highlighting emphasizes objects that users might look for, such as menu entries
or certain code fragments. It can be realized with different mechanisms, such as
blinking or moving an object. In past work, colors have been shown to be effective
for classifying objects into separate categories and can increase the accuracy in
comprehension tasks (Chevalier et al. 2010; Fisher and Tan 1989; Ware 2000).

The benefit of colors compared to text-based annotations is twofold: First, the
background colors clearly differ from source code, which helps distinguish feature
code from base code. Second, humans process colors preattentively3 and, thus,
considerably faster than text (Goldstein 2002). This allows a programmer to identify
feature code at first sight and distinguish code of different features. As a conse-
quence, a programmer should be able to get an overview of a software system
considerably faster.

Based on the comparison of the code fragments in Figs. 1 and 3, one could
intuitively argue that one approach is better than the other or that both should be
combined. For example, one could argue that colors are distracting (Fisher and Tan
1989) or do not scale for large SPLs, or colors do improve program comprehension
due to preattentive perception (Goldstein 2002). So, we can discuss both benefits
and drawbacks of colors, and the effect of background colors is not as obvious as
it may appear at first sight. However, since program comprehension is an internal
cognitive process, we can only assess it empirically (Koenemann and Robertson
1991)—plausibility arguments are not sufficient. Hence, to answer whether back-
ground colors improve the readability of preprocessor directives, we need to conduct
controlled experiments. In this paper, we evaluate in three controlled experiments,
whether

– background colors improve program comprehension at all (Experiment 1),
– subjects use background colors when given the choice (Experiment 2), and
– the use of background colors scales to large product lines (Experiment 3).

3 Measuring Program Comprehension

To evaluate how background colors influence program comprehension, we have to
take care of two things: First, we have to measure program comprehension and,
second, we have to control confounding variables for program comprehension. In
this section, we explain how we can take care of both. Readers familiar with empirical
work may skip this section. It is aimed to support researchers and practitioners of the
SPL community who might not be familiar with empirical research.

3.1 Program Comprehension Measures

Program comprehension is an internal cognitive process, which means that it can-
not be observed directly (Koenemann and Robertson 1991). To understand the
complexity of program comprehension, we give a short introduction. Typically,

3Preattentive perception is the fast recognition of a limited set of visual properties (Goldstein 2002).



Empir Software Eng

models of program comprehension describe top-down, bottom-up, and integrated
comprehension. Top-down comprehension is used when a programmer is familiar
with a program’s domain (e.g., operating systems). Beacons (i.e., familiar code
fragments or identifiers) help to form an understanding of source code (Brooks
1978). Using top-down comprehension, a developer forms a general hypothesis of
a program’s purpose and refines this hypothesis by analyzing source code in more
and more detail. Examples of top-down models are described by Brooks (1978),
Shaft and Vessey (1995), and Soloway and Ehrlich (1984). If a developer has no
domain knowledge, she uses a bottom-up approach, which means she analyzes
the source code statement by statement. She groups source-code fragments into
semantic chunks and—by combining these chunks—generates hypotheses about a
program’s purpose. Examples of bottom-up models can be found in Pennington
(1987) and Shneiderman and Mayer (1979). Typically, a developer uses top-down
comprehension where possible and switches to bottom-up comprehension where
necessary. This behavior is described by integrated models, for example, by von
Mayrhauser et al. (1997) and von Mayrhauser and Vans (1995).

Program comprehension is a rather complex process for which we have to find a
reliable measure to assess it. Several methods to measure program comprehension
have been proposed in the literature, for example, think-aloud protocols (Someren
et al. 1994) or tasks that can be solved only if a programmer understands a program.
Typical kinds of such tasks include static tasks (e.g., examine the structure of source
code), dynamic tasks (e.g., examine the control flow), and maintenance tasks (e.g.,
fix a bug), as summarized by Dunsmore and Roper (2000). Furthermore, we need
to choose a concrete measure for a task, such as response time or correctness of a
solution (Dunsmore and Roper 2000).

In our experiments, we use static and maintenance tasks and analyze response
times and correctness of solutions. We use static tasks, because locating feature code
is one major part of comprehending source code annotated with ifdef directives.
For example, in Fig. 2, we can see that source code of feature Session expiration
is scattered over the complete software system. Hence, locating all occurrences of
this feature is one important step in comprehending this feature (e.g., when we are
searching for a bug that we know is related to feature Session expiration). We decided
to use maintenance tasks, because, if subjects could offer a solution for a bug, then
program comprehension must have taken place. Additionally, a lot of experiments
described in the literature use tasks, as well, so we can relate our results to other
experiments (e.g., Boysen 1977; Hanenberg 2010; Prechelt et al. 2002).

3.2 Rationale of Experiments

When conducting experiments, confounding variables need to be controlled. Con-
founding variables influence program comprehension in addition to the intended
variables (in our case, the kind of annotation, either background colors or ifdef
directives). Examples are the programming experience of subjects or the underlying
programming language. Both may bias the results and can lead to a false outcome.

Confounding variables threaten the validity of results if not handled correctly.
Two kinds of validity are typically considered: Internal (the degree to which we
have controlled confounding variables) and external validity (the generalizability
of results). In our experimental settings, we maximize internal validity, so that we



Empir Software Eng

can draw sound conclusions from our results. For example, we keep the influence
of confounding parameters on program comprehension constant (e.g., programming
experience, domain knowledge). As a consequence, we can attribute the measured
differences regarding program comprehension to the different kinds of annotation.
However, at the same time, this focus on internal validity limits external validity.
For example, in the first experiment, we measure the influence of annotations for
specif ic tasks in a specif ic program with only four features in a specif ic domain with
students. To be able to generalize the results to other tasks, domains, programs at
different scales in different programming languages, or professional programmers,
further investigations are necessary. Our experiments and tool FeatureCommander
can be the basis for such follow-up experiments.

Another reason for focusing on internal validity and not conducting more ex-
periments with high external validity is the feasibility (Hanenberg 2010; Tichy
1998). Preparing and designing experiments requires considerable effort: We have
to identify and control confounding variables, design the experimental material and
tasks, for which we needed several months and a master’s thesis (Feigenspan 2009),
only for the first experiment. We had to find appropriate subjects (i.e., who are
familiar with SPL and preprocessor directives). In our case, we were rather lucky,
because one co-author offers an advanced programming-paradigm lecture at his
university, from which we could recruit our subjects.

Hence, replicating experiments with slightly modified settings requires often too
much effort for one research group. Instead, it is reasonable and necessary to publish
results even with a narrow scope, because it makes other research groups aware
of interesting topics. It is necessary to motivate other research groups to conduct
experiments on the same topic, because they may have the resources or suitable
subjects or ideas to extend the results obtained in one experiment.

To enable researchers to replicate experiments and to check how well threats
to validity have been controlled, the experimental design, conduct, analysis, and
interpretation have to be presented in sufficient detail. Some redundancy is neces-
sary, especially when describing three experiments. In the next sections, we give an
overview of all three experiments and present our them in a proper detail. Material
of all three experiments is available online.4

4 Family of Experiments

In this paper, we present three controlled experiments that analyze whether and
how background colors can improve the readability of preprocessor directives. Each
experiment focuses on a different aspect of background-color usage. By putting the
results of all three experiments together, we aim at providing a deeper understanding
of the effect of background colors on program comprehension in preprocessor-based
SPLs. For a better overview, we describe each experiment using the goal-question-
metric approach in Table 1 (Basili 1992).

The focus of the first and third experiment lies on program comprehension,
whereas the focus of the second experiment lies on the behavior of subjects, i.e., how

4http://fosd.net/experiments

http://fosd.net/experiments


Empir Software Eng

Table 1 Description of all three experiments using the goal-question-metric approach. We empha-
sized differences of experiments

GQM Experiment 1 Experiment 2 Experiment 3

Analyze Background colors Background colors Background colors
Purpose Evaluation Evaluation Evaluation
With respect to Program Use of opportunity Program

comprehension to switch comprehension
Point of view Developer Developer Developer
Context Medium preprocessor- Medium preprocessor- Large preprocessor-

based SPLs based SPLs based SPLs

subjects use the opportunity to switch between background colors and preprocessor
directives. The context of the first and second experiment is on medium-sized SPLs,
whereas the last experiment uses a large SPL. In all other criteria of the goal-
question-metric approach, the experiments are the same. Due to this small delta
between the experiments, we can thoroughly investigate the effect of background
colors on the readability of preprocessor-based software.

Combining the results of all three experiments lets us draw conclusions about
the scalability of background-color usage. Since in the first experiment we showed
improvements of program comprehension using a medium-sized SPL, and in the
third experiment we also showed an improvement, but using a large SPL, we showed
a scalable use of background colors. Although we have no results for a small SPL,
we argue that we would observe an improvement in program comprehension, too,
because the limits to human perception are stressed even less.

To avoid threats to validity of our results by introducing learning or maturation
effects, we recruited different subjects for the first two experiments. In the third
experiment, one subject participated who also took part in the second experiment.
However, since we had different research hypotheses and different material, we
argue that no learning or maturation effects could have occurred.

In the next sections, we present each experiment in detail. The detail is the greatest
for the first experiment, because we need to introduce the material, setting, and tasks.
In the subsequent experiments (Sections 6 and 7), we focus more on the differences
of the experiments to the first experiment. Nevertheless, the description may seem
redundant. However, we aim at providing as much detail as possible to enable other
researchers to replicate any of the three experiments. To put the results of all three
experiments in a broader perspective, we explain our conclusions based on all three
experiments in Section 8.

5 Experiment 1: Can Colors Improve Program Comprehension?

In this section, we present the design of our first experiment. In a nutshell, we evalu-
ated whether background colors improve program comprehension in preprocessor-
based SPLs compared to ifdef directives, by means of a medium-sized5 Java-based
SPL with four optional features. We found that, for locating feature code, back-

5Size is between 900 and 40,000 lines of code (von Mayrhauser and Vans 1993).



Empir Software Eng

ground colors significantly speed up the comprehension process, but also that unsuit-
able background colors can slow down program comprehension. In the next sections,
we describe our experiment, including design, conduct, analysis, and interpretation
in detail. For all three experiments, we use the guidelines presented by Kitchenham
et al. to present empirical studies (Kitchenham et al. 2008).

5.1 Experiment Planning

5.1.1 Objective

The objective of this experiment is to evaluate the effect of background colors on
program comprehension in preprocessor-based SPLs. We expect that colors indeed
improve program comprehension because of two reasons: First, background colors
clearly differ from source code, which allows a human to easily locate feature code
(which is annotated with a background color) and tell it apart from base code
(which has no background color). Second, humans process colors preattentively,
which means that they do not have to turn their attention to the perceptions
process (Goldstein 2002). Hence, the perception process is very fast, so that humans
can spot a color at first sight. However, if the number of colors gets too large,
humans have to turn their attention to identify them. So, at least for an SPL with a
small number of features, we expect that background colors allow subjects to locate
feature code faster, compared to conventional ifdef directives. Hence, we restrict our
evaluation to a medium-sized SPL with only a few features.

We distinguish static tasks, in which subjects should locate feature code, and main-
tenance tasks, in which subjects should identify a bug. Since in maintenance tasks,
subjects should spend most of their time with closely examining code fragments, we
do not expect a strong improvement by colors.

Additionally, both annotations provide the same amount of information, that is,
information about feature code and to which feature it belongs. Hence, we do not
expect a difference in correctness of answers, but only in response time. Thus, we
state the following research hypotheses for medium-sized SPLs:

RH1: In static tasks, colors speed up program comprehension compared to ifdef
directives.

RH2: In maintenance tasks, there are no differences in response time between
colors and ifdef directives.

RH3: There are no differences in the number of correctly solved tasks between
colors and ifdef directives.

Another hypothesis is based on an observed mismatch between actual and perceived
performance (Daly et al. 1995) and empirical evidence that subjects like the idea of
combining colors and source code (Rambally 1986). In a study, Daly et al. (1995)
found that subjects estimated their performance worse than it actually was, when
they worked with a source-code version they did not like. We expect that subjects
like the color idea and that this influences their estimation of performance. Hence,
our fourth research hypothesis is:

RH4: Subjects estimate better performance with background colors than with ifdef
directives.

Next, we present the material we used to evaluate our research hypotheses.



Empir Software Eng

5.1.2 Experimental Material

For the first experiment, we decided to use source code that is implemented in Java,
because we had the opportunity to work with a large group of subjects experienced
with Java. Furthermore, variability is also required in Java and sometimes condi-
tional compilation is used for product-line development, especially in the domain
of embedded and mobile devices, using the Java Micro Edition—a Java version
developed for embedded devices (Riggs et al. 2003).

As material, we used the medium-sized SPL MobileMedia for manipulating multi-
media data on mobile devices, which was developed by Figueiredo et al. (2008). It
is implemented in Java with the Java ME preprocessor Antenna, which provides
ifdef directives like the C preprocessor, but requires that ifdef directives are stated
in comments, so that they do not interfere with the Java syntax in existing editors.
MobileMedia is well designed, code reviewed, and provides a suitable complexity for
our study with about 5,000 lines of code in 28 classes and four optional features (SMS-
Feature, CopyPhoto, Favourites, CountViews).6 On three occurrences, two features
(i.e., SMSFeature and CopyPhoto) share code, which is included for compilation if at
least one of both features is selected. MobileMedia is neither too small, so subjects
could understand it after the first task, nor too large, so subjects spend their time
sifting through source code that is irrelevant for a task. Additionally, this size (i.e.,
four features) ensures preattentive color perception, which is necessary to test our
hypotheses.

From the original source code annotated with ifdef directives (referred to as
ifdef version), we created a version that uses background colors (referred to as
color version) instead of ifdef directives. The decision not to combine background
colors and ifdef directives may seem puzzling at first. However, to the best of our
knowledge, there is no prior empirical work regarding the effect of colors on program
comprehension in the context of preprocessor-based SPLs on which we can base
our experiment. Thus, to not confound the effect of text and background colors,
we explicitly compare the two extremes of pure textual annotations versus pure
graphical annotations with background colors.7 In our third experiment, we combine
both kinds of annotation.

For code fragments that were shared by the features SMSFeature and CopyPhoto
(see Fig. 3 for an example of shared/nested code), we selected a separate color. We
selected the following bright and clearly distinguishable colors as background colors:

– SMSFeature: red (rgb: 255-127-127)
– CopyPhoto: blue (rgb: 127-127-255)
– Favourites: yellow (rgb: 255-255-127)
– CountViews: orange (rgb: 255-191-127)
– SMSFeature & CopyPhoto: violet (rgb: 170-85-170)

6MobileMedia was developed in eight releases, from which we took the fifth, because it offered the
best balance between size and complexity for our experiment. We omitted 9 exception classes and
2 small features for different screen resolutions, because they are irrelevant for understanding the
source code and fixing the bugs.
7In the source code, there is no #else combination of ifdef directives, so it was always clear from the
background colors that feature code concerned selected features.



Empir Software Eng

The color selection is not optimized for avoiding visual fatigue or for color
blindness. Instead, we selected the colors such that they are clearly distinguishable.
At the time we designed this experiment, we did not consider guidelines for choosing
color palettes (e.g., Levkowitz and Herman 1992; Rice 1991; Wijffelaars et al. 2008).
However, for the third experiment, we took existing guidelines into account (cf.
Section 7.1.2). Nevertheless, since we are exploring whether background colors
can improve program comprehension in preprocessor-based SPLs at all, and the
chosen colors are clearly distinguishable, the color selection is suitable to test our
hypotheses.

To exclude the influence of tool support (such as navigation support, outline
views, code folding, etc., with which some subjects may be more familiar than others),
we created an HTML page for each source-code file with the default Eclipse syntax
highlighting and presented it in a browser (Mozilla Firefox). Furthermore, searching
functionality could be provided for both textual annotations and colors with proper
tool support, but we decided to forbid search to exclude this influence of tool
support as well. Again, we ensure a high degree of internal validity this way. To
present the tasks to subjects and collect their answers, we used a web-based survey
system.

To evaluate our last hypothesis, whether subjects prefer the color version over
the ifdef version (RH4), we gave subjects a paper-based questionnaire at the end of
the experiment, in which they should evaluate their motivation to solve the task and
whether their performance would have increased with the other version of the source
code, both on a five-point Likert scale (Likert 1932). Additionally, we encouraged
subjects to leave remarks (e.g., about the experimental setting), in this and the other
experiments, as well.

5.1.3 Subjects

We recruited 52 students from the University of Passau in Germany who were
enrolled in the 2009 graduate course Modern Programming Paradigms (German:
Moderne Programmierparadigmen). We chose this course, because students were
introduced to SPLs and according implementation methods (including an assignment
on preprocessor-based implementations). This way, we did not have to train the
subjects specifically for this experiment, but they learned the necessary information
in the lecture. Students were required to participate in our experiment to finish
the course, which could have influenced their motivation. However, for all tasks,
we found a medium to high motivation (determined by the questionnaire). Subjects
could enter a raffle for a gift card (30 Euros). In this and the other two experiments,
as well, all subjects were aware that they participated in an experiment, that their
performance does not affect their grade for the course, and that they could leave
any time.

Since programming experience is a major confounding parameter for program
comprehension, we measured and controlled it. To this end, we administered a
programming-experience questionnaire six weeks before the experiment, in which
a low value (minimum: 5) indicates no experience, a high value (over 60—the scale
is open-ended) high programming experience (see Feigenspan (2009) for details on
the questionnaire). We used the value of the questionnaire to create homogeneous
groups regarding programming experience (for the remaining experiment as well).
To ensure genuine answers, we anonymized our subjects, such that the answers in the



Empir Software Eng

questionnaire (or the experiment) cannot be traced back to the identity of subjects.
Additionally, we asked with which domains subjects were familiar and whether
subjects were color blind. One color blind subject worked with the ifdef version of the
source code. For our analysis, we had to exclude nine subjects who did not complete
the programming-experience questionnaire or did not complete it genuinely (which
was obvious from the answers). Hence, our sample consisted of 43 subjects.

5.1.4 Tasks

For assessing program comprehension, we designed two static tasks (S1, S2) and
four maintenance tasks (M1–M4).

In static tasks, subjects should locate feature code. In the first static task (S1),
subjects should, for each feature, locate all files containing feature code and mark the
results on a sheet of paper (referred to as grid template). It showed the relationship of
code to features in a matrix, such that the columns contained the file names, and the
rows the feature names. For the color version, the feature names of the grid template
had the same background color as in the source code, whereas for the ifdef version,
the grid template had no background colors. In the second static task (S2), subjects
should locate shared code (i.e. code that concerned more than one feature, e.g.,
SMSFeature & CopyPhoto). Locating feature code is a typical task for a developer,
when she is familiarizing herself with an SPL. Furthermore, a developer is often
looking for feature code when solving a bug, because bugs can often be narrowed
down to certain features or feature combinations. Especially, combinations of
features are of interest in the implementation of SPLs, since they can represent
feature interactions that are especially difficult to get right (Kästner 2010).

For all maintenance tasks, we carefully introduced different bugs into the source
code, which were all located in annotated code fragments. In a pre-test with 7
students, we selected bugs that were neither too easy nor too difficult to find. Four
bugs matched our criteria, which we ordered by increasing difficulty according to
the results of our pre-test. For each bug, subjects received a bug description similar
to the ones users would enter in a bug-tracking system. The description also named
the feature in which the bug occurs. This assured that we evaluate the influence of
background colors, because subjects focus on feature code and, thus, background
colors, instead of spending their time in non-annotated code fragments. For each
task, subjects should locate the bug (name class and method), explain why it occurs,
and suggest a solution. Using this information, we judged whether the cause of a bug
was located correctly.

As an example, we present the bug description of the first maintenance task:

M1: If pictures in an album should be sorted by views, they are displayed unsorted
anyway. Feature, in which the bug occurs: CountViews.

The bug was located in the class PhotoListController and caused by an empty
method body of bubbleSort.

In addition to the six tasks, we designed a warming-up task to let subjects famil-
iarize with the experimental setting (subjects should count the number of features of
MobileMedia). The result of this task was not analyzed.



Empir Software Eng

5.1.5 Design

To evaluate our research hypotheses, we used a between-subjects design, which
means we split our sample in two groups and compared the performance between
both groups, the ifdef group (21 subjects) and the color group (22 subjects). The ifdef
group worked with the ifdef version, the color group worked with the color version
of the source code. To assure that both groups are comparable, we matched both
groups according to the value of the programming experience questionnaire, age,
and gender. One subject was color blind and assigned to the ifdef group.

5.1.6 Conduct

The experiment took place in June 2009 in Passau during a regular lecture session
in a room with about 50 computer working stations. All computers had Linux as
operating system and 19” TFT screens. We started with an introduction, in which
we recapitulated relevant terms regarding preprocessors and background colors as
annotation. After all questions were answered, each subject was seated at a computer
and started to work on the tasks on her own. Each task had the same structure: First,
the task was introduced and it was explained what we expected from the subject.
Second, when subjects were clear on the instructions, they displayed the next page
with the concrete task. Only the latter part was measured as response time.

The experiment (and the remaining two, as well) lasted about two hours, including
the introduction. Subjects worked by themselves during that time, including the
decision to move on the next task. If subjects completed all tasks, they could leave
quietly without disturbing the others. After the two hours were over, subjects were
not allowed to finish the tasks. Three experimenters regularly checked that subjects
worked as planned without using additional tools such as the search function of the
browser. A few weeks after the experiment, subjects were told the correct answers
of the tasks in a lecture, as well as some information about the purpose and results
of the experiment.

5.1.7 Deviations

Despite all careful planning, deviations occurred, which is common for every experi-
ment. Hence, it is important to describe deviations, so that the reader can take them
into account when interpreting our results. Additionally, other researchers who plan
to replicate the experiment are prepared and can avoid these deviations.

For one subject of the color group we had no grid template, so she worked with
a grid template of the ifdef group instead (in which the features had no background
colors). Furthermore, some subjects arrived late and were seated in another room to
not disturb the others. In order not to jeopardize their anonymity, we decided not to
track them. Our sample is large enough to compensate for these deviations.

In addition, for estimating performance with the other version at the end of the
experiment, we forgot to include the last task, because we had one task less in the
pre-test. As soon as we noticed that, we asked subjects to evaluate the seventh task
on the sheet of paper. Unfortunately, some of the subjects had already left the room
at that time, so we only have the opinion for that task of 13 subjects of the ifdef group,
and 16 subjects of the color group. We discuss the influence of all deviations on our
results in Section 5.4.



Empir Software Eng

Fig. 4 Experiment1: response
times for static (S1–S2) and
maintenance tasks (M1–M4).
Colored/gray boxes refer
to the color group. Numbers
on the right denote mean ±
standard deviation

°°° °

°

° °

°

°

M4−color

M4−ifdef

M3−color

M3−ifdef

M2−color

M2−ifdef

M1−color

M1−ifdef

S2−color

S2−ifdef

S1−color

S1−ifdef

0 10 20 30 40 50
min

12.3±5.9

7.1±3.5

6.2±2.3

4.7±1.9

7.2±5.4

6.9±3.4

5.9±4.7

5.7±3.2

6.6±2.9

7.8±5.3

14.7±8.8

23.4±9.6

5.2 Analysis

In this section, we present the analysis of our data. It is necessary to strictly separate
data analysis from interpretation (which follows in Section 5.3), so that a reader
can draw her own conclusions of our data and other researchers replicating our
experiments can compare their data with ours.

5.2.1 Descriptive Statistics

The descriptive statistics of response times and correct solutions can be found in
Figs. 48 and 5. The differences in response time are the largest for the first task (ifdef:
12 min, color: 7 min) and last task (ifdef: 15 min, color: 23 min). Furthermore, the last
task took the most time to complete.

Regarding correct solutions, we can see in Fig. 5 that most errors occurred for
static tasks. Moreover, the difficulty of the maintenance tasks seems to increase for
the last tasks.

For the estimation of performance with the other version (cf. Section 5.1.6),
subjects who worked with the ifdef version thought that they would have performed
equivalently or better with the color version (medians for each task vary from 3 to 5),
and subjects who worked with the color version thought they would have performed
worse with the ifdef version (medians are 2 for each task).

5.2.2 Hypotheses Testing

To evaluate our research hypotheses, we applied a number of statistical tests. They
indicate whether an observed difference is significant or more likely to be caused

8Figure 4 uses a box plot to describe data (Anderson and Finn 1996). It plots the median as thick
line and the quartiles as thin line, so that 50% of all measurements are inside the box. Values that
strongly deviate from the median are outliers and drawn as separate dots.



Empir Software Eng

7

12

12

14

19

21

19

21

12

19

12

15

14

10

9

8

2

1

2

1

9

3

9

7

0% 20% 40% 60% 80% 100%

ifdef
color
ifdef

color
ifdef

color
ifdef

color
ifdef

color
ifdef

color

S
1

S
2

M
1

M
2

M
3

M
4

Correct Incorrect

Fig. 5 Experiment1: frequencies of correct solutions

randomly (Anderson and Finn 1996). Based on a probability value or signif icance
level (p value), hypotheses are rejected (> 0.05, i.e., observed difference occurred
randomly) or accepted (≤ 0.05, i.e., observed difference is statistically significant).

To test RH1 and RH2 (response times for static/maintenance tasks), we conducted
a Mann–Whitney–U test (Anderson and Finn 1996), because the response times are
not normally distributed (as revealed a Shapiro–Wilk test (Shapiro and Wilk 1965)).
Since the correctness of a solution can have an influence on response time (e.g.,
a subject may deliberately enter a wrong solution just to be faster, Yellott 1971),
we omitted response times for wrong answers. Our sample is large enough to com-
pensate the missing cases. The observed differences for both static tasks regarding
response time are significant, such that subjects who worked with the color version
were faster (S1 & S2: p < 0.001). Hence, we can accept our first research hypothesis.
To have a better impression of the size of the effect, we also computed the effect sizes
for both tasks. Since we used a non-parametric test, we computed Cliff’s delta (Cliff
1993). For S1, Cliff’s Delta is −0.61, indicating a large effect. For S2, the value is
−0.39, which indicates a medium effect.

For three of the four maintenance tasks, we found no significant differences in
response time. For the last maintenance task (M4), subjects with the color version
were significantly slower than subjects with the ifdef version (M4: p < 0.04). Thus,
we reject our second research hypothesis. Cliff’s Delta for the last maintenance task
is 0.49, indicating a large effect.

For the number of correctly solved tasks (RH3), we conducted a χ2 test (An-
derson and Finn 1996), which checks whether the observed frequencies significantly
differ from expected frequencies under the assumption that the null hypothesis is
valid (i.e., that no differences between number of correct answers exist). We found
no significant differences in the correctness for any task. Hence, we can accept our
third research hypothesis.

For the estimation of performance with the other version (RH4), we conducted a
Mann–Whitney–U test (because the data are ordinally scaled) and found significant



Empir Software Eng

differences for all tasks in favor of the color version (p < .013 for M4, p < 0.001 for
all other tasks). Hence, we can accept our last research hypothesis.

5.3 Interpretation

RH1 Response Time for Static Tasks Regarding static tasks, we can accept that
colors speed up program comprehension in preprocessor-based SPLs, compared to
ifdef directives, because the observed differences in response time for both static
tasks are significant. In S1, the speed up is 43%, in S2 it is 25%. The effect sizes
indicate a large (S1) and medium (S2) effect, showing that not only the size of
our sample lead to a significant difference. We can explain this difference with
the preattentive color perception, compared to attentive text perception (Goldstein
2002). Subjects of the color group have to look only for a color, not read text to solve
these tasks. However, the benefit in S2 is smaller than in S1. We suspect two reasons
responsible for the difference between S1 and S2: First, when subjects searched for
shared code in S2, they had already familiarized themselves with the source code in
the warming-up task and in S1. Second, in S1, subjects that worked with the color
version could simply check whether a background color was present in a class at all
and then mark it in the grid template accordingly. However, in S2, they additionally
had to discriminate different background colors, not only recognize the presence of
a background color. Both reasons could lead to the decrease in the performance
benefit for S2. In summary, when a developer needs to get an overview of an SPL,
background colors can speed up the familiarization.

RH2 Response Time for Maintenance Tasks For the first three maintenance tasks,
there is no significant difference in response times. However, for the last maintenance
task, subjects of the color group were significantly slower (35%) than subjects of
the ifdef group. Cliff’s Delta shows a large effect, indicating the importance of this
difference. Hence, we cannot accept our second research hypothesis.

To understand what could have caused the slow-down, we take a closer look at
how the last maintenance task differs from the other three maintenance tasks. There-
fore, we examine the location of the bug of M4: class SmsSenderController.
Since the entire class belongs to the feature SMSFeature, it is entirely annotated
with a red background in the color version. This is in contrast to the other bugs,
where only small parts of a class were annotated, none of them with red. When
looking through the comments subjects were encouraged to leave, we found that
some subjects criticized the annotation with red in this task.

We conclude that colors can also negatively affect program comprehension if not
chosen carefully (i.e., if they are too bright and saturated). Consequently, we have
to carefully consider which colors to use, because an unsuitable color (e.g., saturated
red) can make the source code difficult to read or cause visual fatigue, which can
negatively affect program comprehension.

RH3 Correctness of Solutions Although subjects of the color group performed
slightly better in most tasks and solved more tasks correctly (cf. Fig. 4), this difference
is not significant. Since both kinds of annotation provide information about feature
code and the feature to which it belongs, subjects are enabled to correctly solve



Empir Software Eng

our tasks, independently of the kind of annotation. The kind of annotation only
influences the response time.

RH4 Estimation of Performance Almost all subjects who worked with the ifdef ver-
sion estimated that they would have performed better with the color version, whereas
subjects who worked with the color version thought they would have performed
worse with the ifdef version. This counts even in the last task, in which subjects of
the color group were significantly slower than subjects of the ifdef group. Hence, we
found a strong effect regarding subjects’ estimation that is in contrast to subjects’
actual performance. When looking through the comments of subjects, we found that
some subjects of the color group were happy to get to work with it, whereas some
subjects of the ifdef group wished they had worked with the color version. This could
explain the difference in estimating the performance, because some subjects liked
the color version better, which they reflected to their performance.

5.4 Threats to Validity

5.4.1 Internal Validity

Some threats to internal validity are caused by the deviations that occurred (cf.
Section 5.1.6). However, to assure anonymity of our subjects, we did not retrace the
deviations to the subjects. Our sample is large enough to compensate the deviations.
They may have intensified or weakened the differences we observed, but they were
too small compared to our large sample to significantly bias our results.

A further threat to internal validity is caused by our programming-experience
questionnaire. Since no commonly accepted questionnaire to measure programming
experience exists, we designed our own. Hence, we cannot be sure how well we have
measured programming experience. However, we constructed the questionnaire with
the help of programming experts and a literature review (cf. Feigenspan (2009) for
more details), so we can assume that we measured programming experience well
enough for our purpose.

Another threat might be the different reading times of the subjects. To diminish
this threat, we split the task description in two parts, such that we first explained the
general settings of the task and what we expect from them, and when subjects were
clear on these instructions, they could display the actual task. Only the time of the
actual task is measured as response time. Additionally, the description of the actual
tasks were kept as short as possible, such that subjects knew what to do, but had
not to read too much text. Hence, we argue that the reading time of subjects did not
significantly influence the outcome.

5.4.2 External Validity

In this experiment, we maximized internal validity to feasibly and soundly measure
the effect of different annotations on program comprehension in pre-processor-
based SPLs. Thus, we deliberately accepted reduced external validity as tradeoff
for increased internal validity (cf. Section 3.2). In the experiments to follow, we
generalize our experimental settings based on sound results to increase external
validity.



Empir Software Eng

One important issue is the selection of colors. We selected the colors, because they
are clearly distinguishable for subjects. If we chose other colors (e.g., less saturated),
we could have received different results (e.g., no significant differences for the last
maintenance task). However, we wanted to make sure that colors are easily perceived
and distinguished by subjects. In our third experiment (Section 7), we use different
color settings to generalize our results regarding the use of colors and find optimal
colors for highlighting feature code.

Another important aspect of our experiment, which influences external validity,
is whether colors scale for a large number of features. Since we had an SPL with only
four features, we cannot generalize our results to larger SPLs. To address this threat,
we conducted the third experiment, which we explain in Section 7. Next, we evaluate
whether subjects prefer colors over ifdef directives when given the choice.

6 Experiment 2: Do Subjects Use Colors?

The results of our first experiment indicate that subjects like the color idea, but
that carelessly chosen colors are disturbing (as some subjects noted) and can slow
them down. This indicates that different kinds of annotations might be suitable
for different tasks, and we should offer developers the opportunity to switch be-
tween them as needed for the task at hand. Hence, instead of evaluating whether
background colors affect program comprehension, we evaluated whether developers
would use the option to switch between background colors and ifdef directives. Our
results indicate that subjects prefer background colors, even if they slow them down.
We had the chance to perform this experiment twice, first in 2010, then we replicated
it with different subjects with similar background in 2011. Hence, we have two
instances of our second experiment. Since both instances differ only in few details,
we describe them together, and present information about the replication in angle
brackets, 〈like this〉.

6.1 Experiment Planning

The setting of both instances of our second experiment is very similar to our first
experiment. Hence, we concentrate on the differences.

6.1.1 Objective and Material

The goals of the follow-up experiment are different than of the first experiment:
Rather than examining the effect of background colors on program comprehension
in preprocessor-based SPLs, we evaluate whether and how subjects use the chance to
switch between ifdef directives and colors as annotations. Based on the insights from
the first experiment, we state the following hypothesis:

RH5: For locating feature code, subjects use colors, while for closely examining
feature code, subjects use ifdef directives.

We used the same source code and background colors as for our first experiment.
To present the source code, we implemented a tool similar to the browser setting. In
addition, we provided two buttons to enable subjects to switch easily between color



Empir Software Eng

version and ifdef version. Our tool logged each button click with a time stamp, such
that we can analyze the behavior of subjects.

6.1.2 Subjects and Tasks

We asked students who were enrolled in the 2009 〈2010〉 course about product-
line implementation at the University of Magdeburg, Germany to participate, which
was one of multiple alternative prerequisites to pass the course. The course was
very similar to that of our first experiment (cf. Section 5.1.3), so the background
of students was comparable. Additionally, two graduate students who attended that
course in the fall term 2008 volunteered to participate as well. Altogether, our sample
consisted of 10 〈10〉 subjects. One week before the experiment, we administered the
same programming experience questionnaire as in the first experiment. None of the
subjects was color blind, and 1 〈0〉 was female.

We used the same tasks as for our first experiment, including the warming-up task
(W0). However, we changed the order of the tasks to M1, M3, S1, M4, M2, S2. We
alternated static and maintenance tasks, such that we could observe whether subjects
actually switch between both representations in line with our hypothesis.

6.1.3 Conduct

We booked a room with 16 seats. All computers had Windows XP as operating sys-
tem and 17” TFT screens. The experiment took place in January 2010 〈January 2011〉
in Magdeburg instead of a regular lecture session. We gave the same introduction as
for the first experiment, with the addition that we showed how subjects could switch
between ifdef directives and background colors. We did not provide any information
on which annotation style is most suitable for which task, so that we could observe
the behavior of subjects unbiased. Since we had a smaller sample, two experimenters
〈one experimenter〉 sufficed to conduct the experiment.

Having learned from our first experiment, we made sure that the same deviations
did not occur. There are no other deviations to report.

6.2 Analysis

We show only the information necessary to evaluate our hypothesis. Figure 6 shows
how subjects switched between the annotation styles in each task (light gray: ifdefs;
dark gray: colors). Each row denotes the performance of a subject. For example, if we
look at the first row, we can see that for W0 (warming-up task), the subject switched
between annotation styles (light and dark gray alternate). For all remaining tasks,
the subject used background colors only.

The lengths of the bars indicate the time subjects spend with a task. For example,
the first subject needed considerable more time to solve M1 than to solve M2.

An interesting result can be seen in M4, the task, in which the target code was
annotated with a red background color and subjects of the color group performed
significantly worse in our first experiment. Although subjects of our first experiment
complained about the background color, most subjects of our follow-up experiment
used mainly the color version; only 3 of 10 〈4 of 10〉 subjects spent more time with the
ifdef version.



Empir Software Eng

W0 M1 M3 S1 M4 M2 S2

W0 M1 M3 S1 M4 M2 S2

Legend: : ifdef; : color; : 5 minutes

Fig. 6 Experiment 2: timeline how subjects switched between textual and colored annotations.
Top: first instance 2010; bottom: second instance 2011

In this figure, we included the warming-up task W0 (counting the number of
features), because it allows an interesting observation: We can see that all subjects
switched between the annotation styles in this task. As the experiment went on,
subjects tend to stick with the color version. Hence, we have to reject our research
hypothesis.

6.3 Interpretation and Threats to Validity

The results contradict our hypothesis. Based on the result of the first experiment
and on the comments of some subjects that the background color in M4 was
disturbing, we assumed that subjects would switch to ifdef directives when working
on maintenance tasks, especially M4, in which the entire class was annotated with
red background color. However, most subjects used the color version.

We believe that most subjects did not even notice the disturbing background
color. When we observed our subjects during the experiment, we found that some of
them, currently working with the color version, moved close to the screen and stared
at source code with red background color. Hence, we could observe that subjects
behaved like the background color was disturbing, but did not notice this consciously;
they did not think of switching to ifdefs. We could have made our subjects aware
of the unpleasant background color. However, this would have biased our results,
because our objective was to evaluate whether and how subjects used the opportunity
to switch between ifdef directives and colors.

This leads us to the conclusion that subjects did not necessarily recognize the
disturbing effect of the background color. As a consequence, they were slowed
down, such that they were as fast as the subjects of our first experiment who also
had the color version (Mann–Whitney–U test revealed no significant differences
between subjects of this experiment and the color group of the first experiment).
This result illustrates the importance of choosing suitable background colors, because



Empir Software Eng

developers may not always be aware that their screen arrangement is unsuitable.
Furthermore, since we did not tell our subjects when to use ifdef directive and when
to use background colors (we only showed them how they could switch), our result
indicates that developers need to be trained in using a tool that uses background
colors to highlight source code. We come back to the discussion of how to design
proper tool support in Section 9.

The same threats to validity as for the first experiment occur here (except for the
ones caused by the deviations of the first experiment).

7 Experiment 3: Do Colors Scale?

A question that immediately arose, even before the first experiment, is whether
background-color usage scales to large software systems. Obvious objections are that
in real-world SPLs with several hundred of features, there would be considerably
more colors than a developer can distinguish and that the nesting depth of ifdef
directives would be too high to be visualized by blending colors. Hence, in a third
experiment, we concentrate on the scalability issue. In a nutshell, we could confirm
the results of our first experiment for a large SPL with over 99,000 lines of code
and 346 features implemented in C, in that we could show an improvement of
program comprehension for locating feature code when using background colors.
In this section, we present the details of this experiment.

7.1 Experiment Planning

7.1.1 Objective

In this experiment, we evaluate whether background colors improve comprehensi-
bility in large SPLs. To evaluate this issue, we have to understand human limitations
on perception. First, preattentive perception is limited to only few items (e.g., few
different colors, Goldstein 2002). When there are too many distinctive items, the
perception process is slowed down considerably, because more cognitive resources
are required (e.g., to count the number of items). Second, human working memory
capacity is limited to about 7 ± 2 items (Miller 1956). When there are more items to
be kept in mind, they have to be memorized otherwise (e.g., by writing them down).
Third, human ability to distinguish colors without direct comparison (i.e., when they
are not shown directly next to each other) is limited to only few colors (Rice 1991).

These limitations make a one-to-one mapping of colors to features not feasible
in large SPLs with several hundred of features. Therefore, we suggest an as-needed
mapping, such that only a limited subset of colors is used at any time, which facilitates
human perception. Our as-needed mapping is based on previous investigations of
occurrences ifdef directives in source code. First, for most parts of the source code,
only two to three features appear on one screen (Kästner 2010). Second, most bugs
can be narrowed down to certain features or feature combinations (Kästner 2010).
Hence, a developer can focus on few features most of the time, such that she avoids
limitations to her perception.

Thus, we propose a customizable as-needed mapping, which we show in Fig. 7 (we
present an extension of this tool in Fig. 11). We provide a default setting, in which
two shades of gray are assigned to features. Code of features located nearby in the



Empir Software Eng

Fig. 7 Experiment 3: Screenshot of tool infrastructure of the color version

source-code file has a different shade of gray, such that a developer can distinguish
them, but not recognize the features. Additionally, a developer can assign colors to
features she is currently working with. Since she is working only with a few features
at a time, her perception limits are not exceeded. Hence, our research hypotheses is:

RH6: Background colors improve program comprehension in large SPLs.

Large means, that the source code consists of at least 40,000 lines of code (von
Mayrhauser and Vans 1995) and considerably more than 7 ± 2 features, such that
humans cannot distinguish colors without direct comparison, if we used a one-to-one
mapping of colors to features.

Regarding the opinion of our subjects, we assume that they like background-color
usage in large software projects, because they were positively perceived in our first
and second experiment. Hence, our last research hypothesis is

RH7: Subjects prefer background colors over ifdef directives in large SPLs.

7.1.2 Experimental Material

To evaluate our hypotheses, we replace our medium-sized SPL MobileMedia (5,000
lines of code, 4 features) by Xenomai,9 a large real-time extension for Linux
implemented in C. It consists of 99,010 lines of code including 24,709 lines of feature
code and 346 different features. Xenomai can be configured for different platforms
and provides numerous features, such as real-time communication and scheduling.

9http://www.xenomai.org

http://www.xenomai.org


Empir Software Eng

Table 2 Overview of complexity of different systems

System LOC NOFC LOF (%) AND SD TD ND

Apache 212 159 1 113 44 426 (20.9) 1.17 5.57 1.74 5
FreeBSD 5 902 461 16 135 841 360 (14.3) 1.13 10.48 2.51 24
Linux 5 985 066 9 093 642 304 (10.7) 1.09 4.66 1.68 6
Solaris 8 238 178 10 290 1 630 809 (19.8) 1.12 16.17 2.72 8
SQLite 94 463 273 48 845 (51.7) 1.29 7.59 1.67 5
Sylpheed 99 786 150 13 607 (13.6) 1.06 6.31 1.38 6
Xenomai 99 010 346 24 709 (25.0) 1.21 6.07 1.44 5

LOC: Lines of code; NOFC; Number of features; LOF: Lines of feature code; AND: Average nesting
depth; ND: maximum nesting depth; SD: Occurrences of features in different ifdef expressions;
TD: tangling degree of expressions in ifdef directive

There are a number of projects using Xenomai for real-time behavior, for example
RT-FireWire,10 USB for Real-Time,11 and SCALE-RT Real-time Simulation
Software.12

To ensure the comparability of Xenomai with other real-world systems, we
compared it with Apache, FreeBSD, Linux, Solaris, SQLite, and Sylpheed. To this
end, we used cppstats,13 which computes several metrics to analyze the complexity
of ifdef directives. In Table 2, we give an overview of the metrics (Liebig et al. 2010).
We can see that the systems have different sizes (LOC) and different number of
features (NOFC), some in the same range (e.g., SQLite), some larger (e.g., Linux)
than Xenomai. Regarding the usage of ifdef directives, Xenomai has the second
highest percentage of annotated code (LOF): A fourth of the code is annotated. It has
a comparable average nesting depth (AND). The scattering degree (SD) indicates
how often a feature occurs in different ifdef expressions, whereas the tangling degree
(TD) indicates the number of different features in an ifdef expression. In both
metrics, Xenomai shows similar values as Apache, Linux, SQLite, and Sylpheed. The
same counts for the maximum nesting depth (ND).

We did not base this experiment on Java as the other experiments, because it
was rather difficult to find a large-scale SPL implemented in Java. The largest we
are aware of is ArgoUML, which consists of more than 100,000 lines of code, but
has only 8 features (Couto et al. 2011). We could have developed our own SPL in
Java, but this would have been very time consuming and could have easily lead to
a biased program (in that we design the SPL such that it confirms our hypotheses).
Since there are numerous SPLs implemented in C (Liebig et al. 2010), we decided to
use an existing large-scale SPL, even though it was in a different language.

To present the source code to our subjects, we implemented our own tool
infrastructure including a source-code viewer using standard syntax highlighting and
background colors. In Fig. 7, we show a screenshot to give a better impression. We
provided a file-browsing component, a list of all features as tree structure derived
from Xenomai’s build system, and a menu to load predefined color assignments. The

10http://rtfirewire.dynamized.com
11http://developer.berlios.de/projects/usb4rt
12http://www.linux-real-time.com
13http://fosd.de/cppstats

http://rtfirewire.dynamized.com
http://developer.berlios.de/projects/usb4rt
http://www.linux-real-time.com
http://fosd.de/cppstats


Empir Software Eng

file-browsing component had horizontal bars for each folder and file, which indicates
whether and how much feature code a folder or file contains.

In this SPL, else and elif directives occurred.14 We decided to assign the same color
to each else and elif directive as to the according ifdef directive for two reasons. First,
the code is still relevant for the same feature, because the selection of a feature has
an effect on all accordingly annotated code fragments. This way, we can visualize that
the same feature influences the annotated code fragments. Second, we did not want
to introduce more colors than necessary because of the limits of human perception.
Annotating each else and elif directive in a different color would exceed the limit of
human perception faster. In Section 9, we present additional concepts to visualize
nested ifdef directives as well as else and elif directives, which we did not evaluate in
this experiment.

To ensure an optimal color selection for each task and to prevent subjects from
having to search their own preferred color assignment, we defined a set of colors
for each task. We ensured an optimal color selection by having consistent color
assignments across tasks (i.e., a feature that occurred in more tasks has the same
or similar color in all tasks) and by having colors that subjects can distinguish within
a task without direct comparison (Rice 1991). We chose more transparent colors
than in the first two experiments and additionally allowed subjects to adjust the
intensity of background colors with a slider. In this experiment, we displayed the ifdef
directives in the color version (instead of removing them as in the first experiment),
because in the previous experiments, we showed a benefit of pure background colors.
Furthermore, to scale background-color usage to large systems, we do not have a
one-to-one mapping of colors to features, so we need the textual information to tell
to which feature a colored code fragment belongs. Additionally, we do not blend
colors of nested ifdef directives, because we did not want to introduce more colors
than necessary. Instead, we always display the color of the innermost feature and use
vertical bars next to the source-code editor to visualize the nesting of ifdef directives.

In addition to the color version, we designed another version, in which we removed
everything associated to colors (ifdef version). Since the source code was large, we
provided search functionalities for both versions.

In a second window, we presented the tasks to subjects and provided text fields
for their answers. Furthermore, to support subjects in keeping track of time and
preventing them from getting stuck on a task, a pop up appeared every 15 min to
notify subjects about the time that had passed.

As in the previous experiments, we gave subjects paper-based questionnaires to
collect their opinion (i.e., estimation of difficulty, motivation, and performance with
the other version, cf. Section 5.1.2).

7.1.3 Subjects

Our sample consisted of 9 master’s and 5 PhD students from the University of
Magdeburg, Germany. The master’s students were participants of the 2010 course
Embedded Networks, in which they completed several assignments regarding oper-
ating systems and networks, such as the implementation of clock synchronization of
different computers. They were offered to omit one implementation assignment as

14Code of an else directive is selected when code of an according ifdef directive is not selected.



Empir Software Eng

reward for participating in the experiment. The PhD students were experienced in
the operating and embedded-systems domain and invited via e-mail. They partici-
pated without reward.

We measured programming experience with the questionnaire described in
Section 5.1.3. All subjects were male; none was color blind. As in the first experiment,
we created two comparable groups regarding programming experience according to
the value of the questionnaire. Additionally, we matched both groups according to
the familiarity with Xenomai, because some subjects had some experience with the
source code of Xenomai.

7.1.4 Tasks

To measure program comprehension, we designed a number of tasks. We focused
on static tasks, because we found in our first experiment a benefit of background
colors for static tasks, but not for maintenance tasks. However, we included a few
maintenance tasks to control whether our findings still hold.

Altogether, we had 10 tasks: 2 warming-up tasks (W1, W2; not included in the
analysis), 6 static tasks (S1–S6), and 2 maintenance tasks (M1, M2). We had three
different types of static tasks, two tasks per type:

1: Identifying all files in which a certain feature was implemented (S1, S4).
2: Locating nested ifdef directives, which is important for reasoning about feature

interactions, cf. Section 5.1.4 (S2, S5).
3: Identifying all features that occur in a certain file (S3, S6).

As example, we present the first static task (S1):

S1: In which files does feature CONFIG_XENO_OPT_STATS occur?

For maintenance tasks, we proceeded as for the first experiment. That is, we
introduced bugs into the source code and gave subjects a typical bug description that
included the feature selections in which the bug occurred. We consulted an expert in
C and Xenomai to make sure that the bugs were typical for C programs. As example,
we present the first maintenance task:

M1: If the PEAK parallel port dongle driver (XENO_DRIVERS_CAN_SJA1000_
PEAK_DNG) should be unloaded, a segmentation fault is thrown.
The problem occurs, when features CONFIG_XENO_DRIVERS_CAN and
CONFIG_XENO_DRIVERS_CAN_SJA1000 and CONFIG_XENO_DRIVERS_
CAN_SJA1000_PEAK_DNG are selected.

In the code, we omitted the check whether a variable was null. Instead
of if (ckfn && (err = ckfn(block)) != 0), the code said if ((err =
ckfn(block)) != 0). If that variable would be accessed when it is null, a segmen-
tation fault would be thrown.

7.1.5 Design

Since our sample was rather small, we used a within-subjects design with two phases
(i.e., we let each subject complete tasks with both tool versions). Group A worked
with the color version in the first phase and switched to the ifdef version in the second
phase, whereas group B worked with the ifdef version in the first phase and switched



Empir Software Eng

to the color version in the second phase. In each phase, both groups worked with the
same tasks in the following order: W1, S1, S2, S3, M1 in the first phase, and W2, S4,
S5, S6, M2 in the second phase.15 Hence, group A solved tasks W1, S1, S2, S3, and
M1 with the color version and W2, S4, S5, S6, and M2 with the ifdef version (vice
versa for group B). Corresponding tasks of both phases (i.e., W1/W2, S1/S4, S2/S5,
S3/S6, M1/M2) were designed to be comparable (e.g., the same number of features
had to be entered as solution). This allows us to compare the results within phases
(between groups), and between phases (within groups).

7.1.6 Conduct

The experiment took place in June 2010 instead of a regular lecture session in a
room with sufficient working stations (Windows XP) with 17” TFT displays. We
gave an introduction, in which we explained the procedure of the experiment and
how to use the tool. After the introduction, subjects started to work on their own.
When a subject finished the last task of a phase, we gave him the usual paper-
based questionnaire to assess his opinion. Three experimenters checked that subjects
worked as planned. No deviations occurred.

7.2 Analysis

7.2.1 Descriptive Statistics

Like we did in the first experiment, we examined response times and correctness of
tasks. In Fig. 8, we show the response times of our subjects. We can see that for the
first two static tasks (S1 and S2), group A (color version) is faster than group B: In S1,
group A needed only 3 min, compared to 6.6 min of group B (speed up by 55%). In
S2, group A needed 5.3 min, and group B 10.3 min (speed up by 49%). Furthermore,
maintenance tasks needed considerable more time (note the different scale in the
lower part of Fig. 8).

In Fig. 9, we show the correctness of answers. We omitted maintenance tasks in
Fig. 9, because we could not regard any of the answers as correct, although most
subjects narrowed the problem down to the correct file and method. We discuss this
issue in Section 7.4. In S1, the difference is the largest, such that subjects of group B
(without colors) performed better than subjects of group A.

In Fig. 10, we present the opinion of subjects, which we asked after each phase.
In the first phase, subjects of group A thought they would have performed worse
with the ifdef version (medians for each task range from 2 to 3), whereas subjects of
group B thought they would have performed better with the color version (medians
for each task vary from 3 to 5). In the second phase, this estimation was reversed
for each group in consistence with our expectation, such that subjects of group A
thought they would have performed better with the color version (medians of 4 in
each task), and vice versa for group B (medians of 2 in each task). For difficulty,
we see that in four static tasks (S1: locating files of a feature; S2, S5: locating nested
#ifdefs; S3: locating all features in a file) and one maintenance task, the median is
the same. For the remaining tasks, the median differs by 1. Regarding motivation,

15The tasks are available at the project’s website.



Empir Software Eng

Fig. 8 Experiment 3: response
time of subjects in minutes.
Highlighted boxes indicate
groups that worked
with the color version

°

°

° °S6−B

S6−A

S5−B

S5−A

S4−B

S4−A

S3−B

S3−A

S2−B

S2−A

S1−B

S1−A

0 5 10 15 20 25
min

3±0.8

6.6±2

5.3±2.5

10.3±4.2

4.1±2

3.3±0.7

4.5±1.9

4±1.1

6.5±3.1

4.6±1.8

4.1±1.5

3.6±1.4

M2−B
M2−A

M1−B
M1−A

0 10 20 30 40 50 60
min

13.3±5.2
16.5±5.8

24.5±19.3
26.6±5.3

we can see that subjects rated their motivation more heterogeneously. The median
shows at least a mediocre level of motivation. For the first maintenance task (M1),
the motivation for group A (with colors) was very high, compared to group B with a
mediocre motivation.

In addition, we asked what version subjects prefer: 12 subjects like the color
version better and 13 said the color version is more suitable when working with
preprocessor-based SPLs . One subject did not answer any of both questions.

Fig. 9 Experiment 3: frequencies of correct solutions



Empir Software Eng

˚

˚

M2−B
M2−A
S6−B
S6−A
S5−B
S5−A
S4−B
S4−A
M1−B
M1−A
S3−B
S3−A
S2−B
S2−A
S1−B
S1−A

Difficulty

very difficult difficult medium easy very easy

˚˚

˚

M2−B
M2−A
S6−B
S6−A
S5−B
S5−A
S4−B
S4−A
M1−B
M1−A
S3−B
S3−A
S2−B
S2−A
S1−B
S1−A

Motivation

very unmotiv. unmotiv. medium motivated very motiv.

˚˚

˚
˚

˚˚

˚

M2−B
M2−A
S6−B
S6−A
S5−B
S5−A
S4−B
S4−A
M1−B
M1−A
S3−B
S3−A
S2−B
S2−A
S1−B
S1−A

Performance with other version

clearly worse worse the same better clearly better

Fig. 10 Experiment 3: box plots of subjects’ opinion

7.2.2 Hypotheses Testing

To evaluate our research hypotheses, we proceed as for the first experiment. We start
with comparing the response times of subjects in static maintenance tasks (RH6),
for which we make several comparisons: between groups, which means group A vs.
group B, as well as within groups, which means group A (first phase) vs. group A
(second phase) and group B (first phase) vs. group B (second phase). Since we make
3 comparisons on the same data, we need to adjust the significance level, for example,
with a Bonferoni correction (Anderson and Finn 1996). In our case, we have to
divide the significance level by three (because of 3 comparisons), which leads to a
significance level of 0.017 to observe a significant difference (instead of 0.05).

We start with group A vs. group B. We applied t tests for independent samples,
since the response times are normally distributed (Anderson and Finn 1996). In this
experiment, we included incorrect answers, because our sample was too small to
delete them. We discuss this in Section 7.4.1. We only observed significant differences
for tasks S1 (p value: 0.001) and S2 (p value: 0.017). Hence, only for the first
two tasks, subjects that worked with the color version (group A) were faster. In
the second phase, we did not observe a benefit of background colors for program
comprehension. As effect size, we computed Cohen’s d, because the t test is a



Empir Software Eng

parametric test (Cohen 1969). For S1, the value is −2.29 and for S2, the value is
−1.46, both indicating a large effect.

Next, we compare the response times of corresponding tasks between both phases
(within groups), that is, S1 vs. S4, S2 vs. S5, S3 vs. S6, and M1 vs. M2. For group
A, we did not find any significant differences. However, for group B, we observed
a significant speed up for S4 (compared to S1; p value: 0.007) and S5 (compared
to S2; p value: 0.011). Hence, when adding background colors, the performance of
according subjects increased for two tasks. The effect size for both tasks indicates
a large effect (S1/S4: 1.56, S2/S5: 1.79). On the other hand, removing background
colors does not seem to affect performance, because subjects of group A were not
significantly slower in the second phase. Hence, the results regarding response time
speak both in favor of and against our research hypothesis.

Regarding correctness of answers, we conduct a χ2 test. To meet its require-
ments16 despite our small sample size, we summarize the number of correct and in-
correct answers for the static tasks of each phase. Hence, we compare the frequencies
of correct and incorrect answers of tasks S1 + S2 + S3 and S4 + S5 + S6. The χ2 test
indicates no significant differences in the number of correct answers for static tasks
(p values: 1.000 and 0.747, respectively). Since for maintenance tasks none of the
subjects provided a correct solution, we do not need to test for significant differences
here.

Finally, we compare the opinion of subjects (RH7). A Mann–Whitney–U test
reveals that the difference regarding estimation of performance with the other
version is significant for all tasks but M1, the first maintenance task.17 For difficulty,
subjects of group B rated S4 and S5 significantly easier than subjects of group A. This
is also reflected in the performance, such that subjects of group B are faster in these
tasks (S4 vs. S1, S5 vs. S2). For motivation, we observe a significant difference only
for the first maintenance tasks, such that subjects of group A were more motivated
to solve this task compared to group B.

7.3 Interpretation

RH6 Background Colors Improve Program Comprehension in Large SPLs Our
data can be interpreted both in favor of and against this hypothesis. When comparing
the response times between groups, we observed significant differences only in the
first phase for two static tasks, such that subjects working with the color version were
up to 55% faster. In the second phase, we did not observe any significant differences
between groups. However, we observed that when we add colors in the second
phase, the comprehension process of according subjects (group B) got faster by up to
55%, which indicates a large effect according to Cohen’s d. For maintenance tasks,
we did not observe a significant difference in response time. Hence, we found that
background colors improve program comprehension in preprocessor-based SPLs in
two static tasks.

For the third kind of static tasks (i.e., locating all features in a file), we did not
observe significant differences. A possible reason is that in these tasks, the number

16Expected frequencies for single tasks are too small due to the small number of observations.
17We cannot provide p values in this case, because due to our small sample, we had to look up
whether observed differences are significant in a table of the U distribution (Giventer 2008).



Empir Software Eng

of relevant features was 12, which means that subjects had to work with 12 different
colors. Although we selected colors to be clearly distinguishable without direct
comparison, 12 might be too much and exceed the limits of human perception (cf.
Section 7.1.1). Additionally, the working memory capacity of 7 ± 2 is exceeded with
12 features. For the other tasks, only 1 (S1, S4) or 2 (S2, S5) features had to be kept
in mind. However, since we only combined 12 features with the third kind of static
tasks, we can only theorize why this result occurred.

Furthermore, none of our subjects solved a maintenance task correctly. The most
likely explanation is that these tasks were too difficult given the short time of the
experiment. We discuss this problem in more detail in Section 7.4.

To sum up, background colors can help to familiarize with a large SPL, especially
to get an overview of the files of a feature or of nested ifdef directives. When
we add background colors in the second phase, the performance of according
subjects increases. When we remove colors, it has no effect on the performance of
according subjects. Our observations align with the results of the first experiment
that background colors can improve program comprehension in static tasks.

RH7 Subjects Prefer Background Colors Over ifdef directives in Large SPLs We
can accept this research hypothesis, because we found a preference for background
colors. Subjects who worked with the color version estimate they would perform
worse without colors, even when we observed no difference in performance. We
found the same effect in our first experiment. Additionally, all subjects rate colors as
more suitable when working with preprocessor-based SPLs, and all but one subject
preferred colors over no colors (except one subject who answered neither of both
questions). This is also in line with the first experiment, in which background colors
were rated positively.

Hence, in large SPLs, background colors have a potentially positive impact on
program comprehension in preprocessor-based SPLs in terms of locating feature
code. This means that we can circumvent human limitations regarding (preattentive)
color perception and working memory capacity. Instead of a one-to-one mapping,
we used an as-needed mapping based on observations about the occurrences of ifdef
directives in source code, which scales to large SPLs with over 300 features.

7.4 Threats to Validity

7.4.1 Internal Validity

One problem is that we could not rate any solution for maintenance task as correct.
However, subjects often named the correct file and method, which indicates that if
subjects had more time, they might have succeeded eventually. We believe that the
realistic nature of the maintenance task (ensured by an expert on C and Xenomai)
was too difficult for the time constraint and subjects’ expertise, despite pre-tests.
Furthermore, our primary focus were static tasks.

Another threat is caused by our small sample. To deal with it, we used a within-
subjects design and applied variants of standard significant tests that were developed
for small sample sizes.

Additionally, we did not correct the response times for wrong answers. The size
of our sample does not allow us to omit wrong answers. Another possibility is



Empir Software Eng

to compute an efficiency measure as combination of correctness of answers and
response time (e.g., Otero and Dolado 2004). However, it is not clear whether the
use of such a measure may lead to falsely accept or reject a hypothesis, because
there are several ways to define a measure. To the best of our knowledge, there is no
agreed and evaluated efficiency measure. Since we found no indication in our data
that subjects entered a wrong answer deliberately (i.e., wrong answers often missed
only one or two features and the response times did not deviate very much toward
zero from the mean), we argue that results regarding response time and correctness
are still valid.

7.4.2 External Validity

Our sample consisted mostly of master’s students who were rather unexperienced
with large SPLs. However, we also included some PhD students who had several
years of programming experience in the domain of operating and embedded systems.
Hence, our results can carefully be interpreted for experienced programmers, as well.

8 Summary of the Experiments

All three experiments analyzed how background colors influence the readability of
preprocessor-based SPLs. The focus of the first experiment was on program com-
prehension in small preprocessor-based SPLs, the focus of the second experiment on
the behavior of subjects using medium-sized preprocessor-based SPLs, and the focus
of the third experiment was on program comprehension in large preprocessor-based
SPLs. In Table 3, we summarize the results of our three experiments to give a better
overview.

Interpreting the results of all three experiments together yields the following
conclusions:

1. Carefully chosen colors improve program comprehension in preprocessor-based
SPLs in terms of locating feature code, independently of size and programming
language of the underlying SPL.

2. Colors with a high saturation can slow down the comprehension process in terms
of bug fixing.

3. Subjects like and prefer the color idea.

First, we could show that carefully chosen background colors lead to a perfor-
mance increase of subjects for static tasks. This generalizes to medium-sized and
large SPLs. Additionally, we observed a performance speed up with both Java and C.

Table 3 Summary of main findings for all three experiments

Experiment Source code LOC Features Result

1 MobileMedia 5 000 4 Colors speed up static tasks; no effect
or slow down for maintenance tasks

2 MobileMedia 5 000 4 Subjects are unaware of the potentially
negative effect of colors

3 Xenomai 99 010 346 The positive effects found in experiment 1
scale for large SPLs



Empir Software Eng

Although we showed the positive effect only for two different sizes and two different
programming languages, we expect similar positive effects also with medium-sized
SPLs and other programming languages.

Second, we found that highly saturated background colors can slow down the
comprehension process when subjects are fixing bugs. We believe that visual fatigue
causes this slow down. However, when given the choice, subjects do not seem to be
aware that a background color is disturbing and slowing them down. Nevertheless,
for locating feature code, we did only find positive (or no) effects of background
colors. Hence, depending on the task, the saturation of colors may play an important
role. Thus, we suggest that source-code editors using background colors provide the
option to adjust the saturation of background colors.

Third, the majority of our subjects favored background colors. This is encouraging,
because a new concept that is not accepted by the ones who are supposed to use it
will hardly be used in practice. Hence, the acceptance of background colors is an
important positive result.

However, we have to be careful with our conclusions. We cannot state that
background colors are always helpful in every situation in which preprocessors are
used to implement variability. Instead, we have to keep in mind the context of our
experiments. We used mostly students for our experiments with considerably less
experience than experts having spent years and years on developing and maintaining
preprocessor-based SPLs. Furthermore, we only used two different SPLs. Our results
only apply to similar SPLs, although we have evidence that many open-source
systems, such as FreeBSD, Linux, Solaris, SQLite, and Sylpheed have similar char-
acteristics. If the nature of an SPL is different, we can only theorize how background
colors affect the comprehension of preprocessor directives. Hence, future experi-
ments with different experimental contexts are necessary to build a more complete
understanding of the effect of background colors on program comprehension in
preprocessor-based SPLs.

To sum up, all results encourage us to use background colors more often in
source-code editors. Hence, we developed a prototype FeatureCommander, which
we present next.

9 Toward Better Tool Support

Our experiments were based on a relatively simple concept of background colors,
much like our browser setting in the first experiment (cf. Section 5.1.2). Specifically,
we based our work on CIDE (Kästner et al 2008), a tool that uses background
colors to visualize feature code. With our experiments, we gained useful insights into
tool requirements for preprocessor-based product-line development. Based on these
insights, including comments and suggestions from subjects about functionalities,
and by consulting other similar tools (e.g., Spotlight) and literature on software
visualization (e.g., Diehl 2007), we implemented a tool called FeatureCommander.18

18http://fosd.de/fc. On the website, there is also a video demonstrating the use of FeatureComman-
der. This video shows all functionality of FeatureCommander, not the reduced set we used in the
third experiment. FeatureCommander with the reduced set is also available at the website.

http://fosd.de/fc


Empir Software Eng

Fig. 11 Screenshot of FeatureCommander. The numbers designate concepts we explain in detail
in the text

FeatureCommander is a prototype for preprocessor-based SPL development.
It offers multiple visualizations that support program comprehension in large
preprocessor-based SPLs. The basic characteristic of FeatureCommander is the
consistent usage of colors throughout all visualizations. In Fig. 11, we show a
screenshot of FeatureCommander displaying source code from our third experiment.
We refer to the numbers in Fig. 11 when explaining the according concepts in the next
paragraphs.

To assign colors to feature, we provide two different options: First, users can assign
colors to features by dragging a color from a color palette (1) and dropping it on
a feature in any of the visualizations.19 For efficiency, users can also automatically
assign a palette of colors to multiple features (2). The automatic color assignment
chooses colors such that they are as different as possible in the hue value of the HSV
color model. Furthermore, color assignments can be saved (3) and loaded (4), so that
a developer can easily resume her work. This way, we support an as-needed mapping
of colors to features. When no color is assigned to a feature, it is represented by a
shade of gray in all visualizations.

Similar to other IDEs (Kästner et al. 2009b; Stengel et al. 2011), we provide
different views: source-code view, explorer view, and feature-model view. In the
source-code view (5), the background color of source-code fragments indicates to
which features fragments are related; according ifdef directives are also shown. To
compromise between code readability and feature recognition, users can adjust the
opacity of the background color (6). This way, we address that too highly saturated
colors negatively affect program comprehension. If a code fragment is assigned to
multiple features, we show only the background color of the innermost feature (7).

19To recognize feature code, FeatureCommander uses a file that describes where an ifdef directive
starts and where it ends.



Empir Software Eng

The other features are visualized in the sidebars on either side of the code view,
which visualize features as bars, ordered by the nesting hierarchy (8, 9). The right
sidebar gives an overview of the whole document (8), the left sidebar shows the
hierarchy of features of the currently displayed source code (9). Both sidebars are
interactive, such that clicking them immediately shows the according code fragment.
We implemented both sidebars, because it further supports a user in locating a code
fragment (although we did not evaluate the impact on program comprehension).

In the explorer view (10), users can navigate the file structure and open files.
We provide two tree representations of the project: One ordered according to the
file structure, the other ordered by features (11). In the background of each tree
node, we display the percentage of each feature that occurs in the represented file or
folder, either with default alternating shades of gray (12) or with the assigned color
(13). Thus, users get an overview of the distribution of features without having to
open files.

In the feature-model view (14), the feature model is shown as a simple tree.
Features that are currently not of interest can be collapsed.

With FeatureCommander, we give researchers a tool that implements several con-
cepts that improve program comprehension in large-scale preprocessor-based SPLs.
Hence, we created a base, from which further research on concepts and their effect
on program comprehension can emerge. Additionally, we provide practitioners with
a tool that has shown that it can improve program comprehension in preprocessor-
based SPLs in terms of locating feature code, and, consequently, can reduce the cost
of software maintenance.

10 Previous and Related Work

10.1 Previous Work

In prior work, we described the first experiment (Feigenspan 2009; Feigenspan et al.
2009). It was conducted as part of the first author’s master’s thesis (Feigenspan 2009).
We subsequently briefly summarized the results in a workshop paper, motivating
the necessity of empirical research and explaining the path we took toward this
paper (Feigenspan et al. 2009). The primary intent was not to present the experiment
nor its results, but to analyze the feasibility of program-comprehension experiments
in the context of feature-oriented software development (Apel and Kästner 2009).
The present work is the first time we present the experiment as well as its results and
their implications in detail.

We published our third experiment with focus on our tool FeatureCommander
and the implementation of concepts to support a developer in her comprehension
process (Feigenspan et al. 2011b). We also published a tool demo of FeatureCom-
mander, in which we only focus on the tool, not on the evaluation (Feigenspan et al.
2011a).

Our first experiment was based on the background-color concept implemented in
CIDE (Feigenspan et al. 2010; Kästner et al 2008). CIDE was developed to support
a programmer in decomposing legacy applications into features. Besides background
colors, it provides code folding of feature code (i.e., it hides source code of selected
features) and different views on source code. Furthermore, it enforces disciplined



Empir Software Eng

annotations, leading always to syntactically correct code when feature code is
removed to create a variant. For example, an opening bracket can only be annotated
with a corresponding closing one. Furthermore, we provide FeatureIDE (Kästner
et al. 2009b), a tool that also supports the development of SPLs. In contrast to
FeatureCommander, FeatureIDE supports more SPL-implementation techniques in
addition to preprocessor directives and aims at the complete development process of
SPLs (i.e., from the design phase to the maintenance phase).

Another tool of our’s is View Inf inity, which also aims at improving program
comprehension in preprocessor-based SPLs (Stengel et al. 2011). In addition to
background colors, ViewInfinity provides semantic zooming from the feature-model
level over the file structure to the source-code level. An empirical evaluation focused
on how experienced SPL developers use and like the semantic-zooming concept, not
on background-color usage on source-code level.

In a parallel line of work independent of colors, visualization, and tooling, we
explored the discipline and granularity of ifdef directives in 40 medium- to large-
scale software systems (Liebig et al. 2010, 2011). We found that developers use ifdef
directives to a large extent, and that most directives are disciplined and occur in the
source code at a fine grain. This supports our argument that ifdef directives can cause
problems and that their readability can be improved with background colors.

10.2 Related Work

In literature, the C preprocessor is often heavily criticized. Numerous studies discuss
the negative effect of preprocessor usage on code quality and maintainability (e.g.,
Adams et al. 2008; Ernst et al. 2002; Favre 1995, 1997; Krone and Snelting 1994;
Spencer and Collyer 1992). However, researchers have also explored different
strategies to deal with these problems.

One group of approaches attempts to extract structures from the source code
(e.g., nesting, dependencies, and include hierarchies) and visualize them in a separate
view (Krone and Snelting 1994; Pearse and Oman 1997; Spencer and Collyer 1992).
We follow this line of work and use similarly simple structures, but we focus on
supporting developers directly in working with the annotated source code and
integrate a visual representation of annotations with the underlying source code.

The model editors fmp2rsm (Czarnecki and Antkiewicz 2005) and FeatureMap-
per (Heidenreich et al. 2008) allow a user to annotate model elements to generate
different model variants. Both tools can represent annotations with colors. The
tool Spotlight (Coppit et al. 2007) uses vertical bars in the source-code editor to
represent annotations, which are more subtle than background colors. Spotlight
aims at improving the traceability of scattered concerns, which are represented by
different colors. SeeSoft (Eick et al. 1992) represents files as rectangles and source-
code lines as colored pixel lines. The color is an indicator of the age of the according
source-code line. In contrast to our work, the influence of visualizations of these tools
on program comprehension has not been assessed empirically.

In addition to visualizations, also views on configurations have been explored,
which show only part of the feature code and hence reduce complexity (Atkins et al.
2002; Chu-Carroll et al. 2003; Hofer et al. 2010; Kästner et al 2008; Singh et al. 2007).
A view on a variant or a view on a feature displays only feature code of selected
features and hides all remaining code. Some tools even hide annotations completely,



Empir Software Eng

such that a developer only works on one variant and may not even be aware of
other variants or features (Atkins et al. 2002). In an analysis of the change history
of a large telephone switching software system, Atkins et al. showed a productivity
increase of 40%, when developers work with views provided by the Version Editor.
However, hiding feature code may not always be feasible: For example, when code
of a hidden feature shares code with a feature in which a developer fixes a bug, she
might introduce bugs into the hidden feature code without knowing it (Ribeiro et al.
2010). In this case, a developer needs the context of the complete SPL to fix a feature-
specific bug. Hence, views on source code and background colors complement each
other for different tasks.

Furthermore, a severe problem for many approaches is precise fact extraction
from unpreprocessed C code, especially if one wants to reason not only about
the preprocessor directives, but also about their combination of C code. Many
researchers have attempted analysis and rewrite systems for unpreprocessed C code
(Aversano et al. 2002; Baxter and Mehlich 2001; Garrido and Johnson 2005; Hu
et al. 2000; Livadas and Small 1994; Overbey and Johnson 2009; Tartler et al. 2011;
Vidacs et al. 2004). For example, Ernst et al. (2002) identify problematic patterns and
quantify them in a large code base, Tartler et al. (2011) search for code blocks that
are dead in all feature configurations, and Hu et al. (2000) use control flow graphs
to analyze the inclusion structure of files. However, all these approaches aim not
directly at improving program comprehension by developers, but form underlying
mechanisms and can be used to build tools.

Whereas we focused solely on conditional compilation, also lexical macros can
pose significant stress on program comprehension. Several researchers have inves-
tigated analysis and visualizations strategies that can explain macro expansion and
add debugging tasks. For example, Spinellis (2003) provide an automated approach
to rewrite macro expansions. Kullbach and Riediger (2001) present folding to hide
or show preprocessor-annotated code as needed. These mechanisms are complemen-
tary to our approach.

To overcome preprocessor understanding problems in general, many researchers
recommend to abandon preprocessor usage in favor of more disciplined implementa-
tion approaches, such as feature-oriented programming (Prehofer 1997) and aspect-
oriented programming (Kiczales et al. 1997), or syntactic preprocessors such as
ASTEC (McCloskey and Brewer 2005). Several researchers have even investigated
automated refactorings (Adams et al. 2009; Kästner et al. 2009a). But preprocessors
are still prevalent in practice and the vast amount of legacy code will not disappear
soon. Hence there is still significant need for tools like ours that support developers
when forced to deal with legacy code.

Finally, the idea of using colors to support a developer is not new. Early empirical
work was published in 1986 (Rambally 1986). In this experiment, Rambally found
that annotating source-code fragments with colors according to their functional-
ity improves program comprehension, compared to control-structure color-coding
scheme (e.g., loops, and if-then-else statements), and no colors at all. Furthermore,
color usage for various tasks is evaluated by several research groups, for example,
highlighting source code for error reporting (Oberg and Notkin 1992) or merg-
ing (Yang 1994). In 1988, the ANSI/HFS 100-1988 standard20 was published, which

20http://www.hfes.org/web/Standards/standards.html.

http://www.hfes.org/web/Standards/standards.html


Empir Software Eng

included recommendations about the contrast of background colors and foreground
colors. Today, syntax highlighting (i.e., coloring of syntactic elements) is an integral
part of most IDEs (e.g., Eclipse). However, to the best of our knowledge, the
use of background colors in preprocessor-based software has not been evaluated
empirically.

11 Conclusion

Preprocessors are frequently used in practice to implement software product lines.
However, they introduce threats to program comprehension and are even referred to
as “#ifdef hell”. To improve readability of preprocessor-based software, we proposed
to use background colors, such that source code annotated with ifdef directives is
highlighted and can be easily perceived at first sight.

In three controlled experiments, we revealed both benefits and drawbacks of
background-color usage with regard to supporting program comprehension in
preprocessor-based SPLs. The results clearly showed that background colors have
the potential to improve program comprehension. We could show that background
colors positively influence program comprehension in terms of locating feature code,
independently of size and language of the underlying projects. Additionally, we
found in all experiments that subjects favor background colors. This is an important
result, because the attitude of developers toward the tool they are working with can
significantly affect their performance (Mook 1996), for example, because they may
stick longer with a task (and not get frustrated by the tool). This effect is exploited
in many tools, which typically have numerous customizing options, so that users can
adjust the tool according to their preferences.

However, we also found that colors have to be chosen with great care. Other-
wise, they could slow developers down. Our results indicate that bright, saturated
colors, such as we used in our first setting, are distracting and cause visual fatigue.
Consequently, developers need more time when working with colors, for example,
because of a need to rest the eyes. Hence, developers should be able to customize
color settings according to their needs (e.g., like we provided in the second and third
experiment). For example, when a developer has located a code fragment that she
suspects to cause a problem, she can turn colors off or adjust the saturation to a low
degree.

Based on the results of our experiments, we implemented the prototype Fea-
tureCommander, in which we realized scalable background-color usage. Developers
can efficiently adjust color settings to their needs, for example by adjusting opacity.
Thus, customizable background-color concepts as implemented in FeatureComman-
der can increase the efficiency of maintenance developers and reduce the cost of
software development.

Acknowledgements We are grateful to Mathias Frisch for helpful discussions and to Jana
Schumann, Veit Köppen, and Thomas Thüm for their support with the experiments. Also thanks
to all the reviewers of this article. Feigenspan’s and Saake’s work is supported by BMBF project
ViERforES (01IM10002B), Kästner’s work partly by ERC (#203099), and Apel’s work is supported
by the German Research Foundation (DFG—AP 206/2, AP 206/4, and LE 912/13). Schulze’s work
is part of the project SAFE. SAFE is funded by BMBF (project ID: 01IS11019) and DGCIS and is in
the framework of the ITEA2, EUREKA cluster program �! 3674. Dachselt’s work is funded by the



Empir Software Eng

“Stifterverband für die Deutsche Wissenschaft” from funds of the Claussen-Simon-Endowment. The
first experiment was conducted as part of Feigenspan’s master’s thesis while she visited the Metop
Research Center.

References

Adams B et al (2008) Aspect mining in the presence of the C preprocessor. In: Proc. AOSD workshop
on linking aspect technology and evolution. ACM Press, pp 1–6

Adams B et al (2009) Can we refactor conditional compilation into aspects? In: Proc. Int’l conf.
aspect-oriented software development (AOSD). ACM Press, pp 243–254

Anderson T, Finn J (1996) The new statistical analysis of data. Springer
Apel S, Kästner C (2009) An overview of feature-oriented software development. J Obj Techn

8(4):1–36
Apel S et al (2008) Aspectual feature modules. IEEE Trans Softw Eng 34(2):162–180
Atkins D et al (2002) Using version control data to evaluate the impact of software tools: a case study

of the version editor. IEEE Trans Softw Eng 28(7):625–637
Aversano L et al (2002) Handling preprocessor-conditioned declarations. In: Proc. IEEE int’l work-

shop on source code analysis and manipulation. IEEE CS, pp 83–92
Basili VR (1992) Software modeling and measurement: the goal/question/metric paradigm. Tech.

Rep. CS-TR-2956 (UMIACS-TR-92-96)
Baxter ID, Mehlich M (2001) Preprocessor conditional removal by simple partial evaluation.

In: Proc. working conf. reverse engineering (WCRE). IEEE CS, pp 281–290
Boehm B (1981) Software engineering economics. Prentice Hall
Boysen J (1977) Factors affecting computer program comprehension. PhD thesis, Iowa State

University
Brooks R (1978) Using a behavioral theory of program comprehension in software engineering.

In: Proc. int’l conf. software engineering (ICSE). IEEE CS, pp 196–201
Chevalier F et al (2010) Using text animated transitions to support navigation in document histories.

In: Proc. conf. human factors in computing systems (CHI). ACM Press, pp 683–692
Chu-Carroll M et al (2003) Visual separation of concerns through multidimensional program storage.

In: Proc. int’l conf. aspect-oriented software development (AOSD). ACM Press, pp 188–197
Clements P, Northrop L (2001) Software product lines: practice and patterns. Addison-Wesley,

Reading, MA
Cliff N (1993) Dominance statistics: ordinal analyses to answer ordinal questions. Psychol Bull

114(3):494–509
Cohen J (1969) Statistical power analysis for the behavioral sciences. Academic Press
Coppit D et al (2007) Spotlight: a prototype tool for software plans. In: Proc. int’l conf. software

engineering (ICSE). IEEE CS, pp 754–757
Couto MV et al (2011) Extracting software product lines: a case study using conditional compilation.

In: Proc. Europ. conf. software maintenance and reengineering (CSMR), pp 191–200
Czarnecki K, Antkiewicz M (2005) Mapping features to models: a template approach based on

superimposed variants. In: Proc. int’l conf. generative programming and component engineering
(GPCE). Springer, pp 422–437

Daly J et al (1995) The effect of inheritance on the maintainability of object-oriented software: an
empirical study. In: Proc. int’l conf. software maintenance (ICSM). IEEE CS, pp 20–29

Diehl S (2007) Software visualization: visualizing the structure, behaviour, and evolution of software.
Springer

Dunsmore A, Roper M (2000) A comparative evaluation of program comprehension measures.
Tech. Rep. EFoCS 35-2000, Department of Computer Science, University of Strathclyde

Eick S et al (1992) SeeSoft—a tool for visualizing line oriented software statistics. IEEE Trans Softw
Eng 18(11):957–968

Ernst M et al (2002) An empirical analysis of C preprocessor use. IEEE Trans Softw Eng
28(12):1146–1170

Favre J-M (1995) The CPP paradox. In: Proc. European workshop on software maintenance
Favre J-M (1997) Understanding-in-the-large. In: Proc. int’l workshop on program comprehension

(IWPC). IEEE CS, p 29



Empir Software Eng

Feigenspan J (2009) Empirical comparison of FOSD approaches regarding program
comprehension—a feasibility study. Master’s thesis, University of Magdeburg

Feigenspan J et al (2009) How to compare program comprehension in FOSD empirically - an
experience report. In: Proc. int’l workshop on feature-oriented software development (FOSD).
ACM Press, pp 55–62

Feigenspan J et al (2010) Visual support for understanding product lines. In: Proc. int’l conf. program
comprehension (ICPC). IEEE CS, Demo Paper, pp 34–35

Feigenspan J et al (2011a) FeatureCommander: colorful #ifdef world. In: Software product line
conference (SPLC), paper 3. ACM Press, pp 1–2

Feigenspan J et al (2011b) Using background colors to support program comprehension in software
product lines. In: Proc. int’l conf. evaluation and assessment in software engineering (EASE).
Institution of Engineering and Technology, pp 66–75

Figueiredo E et al (2008) Evolving software product lines with aspects: an empirical study on design
stability. In: Proc. int’l conf. software engineering (ICSE). ACM Press, pp 261–270

Fisher D, Tan K (1989) Visual displays: the highlighting paradox. Human Factors 31(1):17–30
Garrido A, Johnson RE (2005) Analyzing multiple configurations of a C program. In: Proc. int’l conf.

software maintenance (ICSM). IEEE CS, pp 379–388
Giventer L (2008) Statistical analysis for public administration, 2nd edn. Jones and Bartlett

Publishing
Goldstein B (2002) Sensation and perception, 5th edn. Cengage Learning Services
Hanenberg S (2010) An experiment about static and dynamic type sytems. In: Proc. int’l conf. object-

oriented programming, systems, languages and applications (OOPSLA). ACM Press, pp 22–35
Harrison W, Ossher H (1993) Subject-oriented programming: a critique of pure objects. In: Proc.

int’l conf. object-oriented programming, systems, languages and applications (OOPSLA). IEEE
CS, pp 411–428

Heidenreich F et al (2008) FeatureMapper: mapping features to models. In: Comp. int’l conf.
software engineering (ICSE). ACM Press, Demo Paper, pp 943–944

Hofer W et al (2010) Toolchain-independent variant management with the Leviathan filesystem. In:
Proc. int’l workshop on feature-oriented software development (FOSD). ACM Press, pp 18–24

Hu Y et al (2000) C/C++ conditional compilation analysis using symbolic execution. In: Proc. int’l
conf. software maintenance (ICSM). IEEE CS, pp 196–206

Kästner C (2010) Virtual separation of concerns: preprocessors 2.0. PhD thesis, University of
Magdeburg

Kästner C et al (2008) Granularity in software product lines. In: Proc. int’l conf. software engineering
(ICSE). ACM Press, pp 311–320

Kästner C et al (2009a) A model of refactoring physically and virtually separated features. In: Proc.
int’l conf. generative programming and component engineering (GPCE). ACM Press, pp 157–
166

Kästner C et al (2009b) FeatureIDE: tool framework for feature-oriented software development.
In: Proc. int’l conf. software engineering (ICSE). IEEE CS, Demo Paper, pp 611–614

Kiczales G et al (1997) Aspect-oriented programming. In: Proc. Europ. conf. object-oriented pro-
gramming (ECOOP). Springer, pp 220–242

Kitchenham B et al (2008) Evaluating guidelines for reporting empirical software engineering stud-
ies. Empir Software Eng 13(1):97–121

Koenemann J, Robertson S (1991) Expert problem solving strategies for program comprehension.
In: Proc. conf. human factors in computing systems (CHI). ACM Press, pp 125–130

Krone M, Snelting G (1994) On the inference of configuration structures from source code. In: Proc.
int’l conf. software engineering (ICSE). IEEE CS, pp 49–57

Kullbach B, Riediger V (2001) Folding: an approach to enable program understanding of pre-
processed languages. In: Proc. working conf. reverse engineering (WCRE). IEEE CS, pp 3–12

Levkowitz H, Herman GT (1992) Color scales for image data. IEEE Comput Graph Appl 12(1):
72–80

Liebig J et al (2010) An analysis of the variability in forty preprocessor-based software product lines.
In: Proc. int’l conf. software engineering (ICSE). ACM Press, pp 105–114

Liebig J et al (2011) Analyzing the discipline of preprocessor annotations in 30 million lines of C
code. In: Proc. int’l conf. aspect-oriented software development (AOSD). ACM Press, pp 191–
202

Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22(140):1–55
Livadas P, Small D (1994) Understanding code containing preprocessor constructs. In: Proc. int’l

workshop program comprehension (IWPC). IEEE CS, pp 89–97



Empir Software Eng

Lohmann D et al (2006) A quantitative analysis of aspects in the eCos kernel. In: Proc. Europ. conf.
computer systems (EuroSys). ACM Press, pp 191–204

McCloskey B, Brewer E (2005) ASTEC: a new approach to refactoring C. In: Proc. Europ.
software engineering conf./foundations of software engineering (ESEC/FSE). ACM Press,
pp 21–30

Miller G (1956) The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychol Rev 63(2):81–97

Mook D (1996) Motivation: the organization of action, 2nd edn. W.W. Norton & Co
Muthig D, Patzke T (2003) Generic implementation of product line components. In: Int’l conf.

NetObjectDays. Springer, pp 313–329
Oberg B, Notkin D (1992) Error reporting with graduated color. IEEE Softw 9(6):33–38
Otero M, Dolado J (2004) Evaluation of the comprehension of the dynamic modeling in UML. J Inf

Softw Technol 46(1):35–53
Overbey JL, Johnson RE (2009) Software language engineering. In: Generating rewritable abstract

syntax trees, pp 114–133.
Pearse T, Oman P (1997) Experiences developing and maintaining software in a multi-platform

environment. In: Proc. int’l conf. software maintenance (ICSM). IEEE CS, pp 270–277
Pennington N (1987) Stimulus structures and mental representations in expert comprehension of

computer programs. Cogn Psychol 19(3):295–341
Pohl K et al (2005) Software product line engineering: foundations, principles, and techniques.

Springer
Prechelt L et al (2002) Two controlled experiments assessing the usefulness of design pattern docu-

mentation in program maintenance. IEEE Trans Softw Eng 28(6):595–606
Prehofer C (1997) Feature-oriented programming: a fresh look at objects. In: Europ. conf. on object-

oriented programming (ECOOP). Springer, pp 419–443
Rambally G (1986) The influence of color on program readability and comprehensibility.

In: Proc. technical symposium on computer science education (SIGCSE). ACM Press,
pp 173–181

Ribeiro M et al (2010) Emergent feature modularization. In: Proceedings of the ACM international
conference companion on object oriented programming systems languages and applications
companion (SPLASH). ACM Press, pp 11–18

Rice J (1991) Display color coding: 10 rules of thumb. IEEE Softw 8(1):86–88
Riggs R et al (2003) Programming wireless devices with the java 2 platform, micro edition. Sun

Microsystems, Inc
Shaft T, Vessey I (1995) The relevance of application domain knowledge: the case of computer

program comprehension. Inf Syst Res 6(3):286–299
Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika

52(3/4):591–611
Shneiderman B, Mayer R (1979) Syntactic/semantic interactions in programmer behavior: a model

and experimental results. Int J Parallel Prog 8(3):219–238
Singh N et al (2006) CViMe: viewing conditionally compiled C/C++ sources through java.

In: Companion to the 21st ACM SIGPLAN symposium on object-oriented programming sys-
tems, languages, and applications. ACM Press, pp 730–731

Singh N et al (2007) C-CLR: a tool for navigating highly configurable system software. In: Proc.
workshop aspects, components, and patterns for infrastr. software. ACM Press

Smaragdakis Y, Batory D (1998) Implementing layered designs with mixin layers. In: Proc. Europ.
conf. object-oriented programming (ECOOP). Springer, pp 550–570

Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge. IEEE Trans Softw Eng
10(5):595–609

Someren M et al (1994) The think aloud method: a practical guide to modelling cognitive processes.
Academic Press

Spencer H, Collyer G (1992) #ifdef considered harmful or portability experience with C news.
In: Proc. USENIX conf. USENIX Association, pp 185–198

Spinellis D (2003) Global analysis and transformations in preprocessed languages. IEEE Trans Softw
Eng 29(11):1019–1030

Standish T (1984) An essay on software reuse. IEEE Trans Softw Eng SE–10(5):494–497
Stengel M et al (2011) View infinity: a zoomable interface for feature-oriented software develop-

ment. In: Proc. int’l conf. software engineering (ICSE). ACM Press, pp 1031–1033
Tamborello F, Byrne M (2007) Adaptive but non-optimal visual search with highlighted displays.

Cogn Syst Res 8(3):182–191



Empir Software Eng

Tartler R et al (2011) Feature consistency in compile-time configurable system software. In: Proc.
Europ. conf. computer systems conference (EuroSys). ACM Press, pp 47–60

Tiarks R (2011) What programmers really do: an observational study’. In: Proc. workshop software
reengineering (WSR), pp 36–37

Tichy WF (1998) Should computer scientists experiment more? Computer 31(5):32–40
Vidacs L et al (2004) Columbus schema for C/C++ preprocessing. In: Proc. Europ. conf. software

maintenance and reengineering (CSMR). IEEE CS, pp 75–84
von Mayrhauser A, Vans A (1993) From program comprehension to tool requirements for an

industrial environment. In: Proc. int’l workshop program comprehension (IWPC). IEEE CS,
pp 78–86

von Mayrhauser A et al (1997) Program understanding behaviour during enhancement of large-scale
software. J Softw Maint: Res Pract 9(5):299–327

von Mayrhauser A, Vans M (1995) Program comprehension during software maintenance and
evolution. Computer 28(8):44–55

Ware C (2000) Information visualization: perception for design. Morgan Kaufmann
Wijffelaars M et al (2008) Generating color palettes using intuitive parameters. Comput Graph

Forum 27(3):743–750
Yang W (1994) How to merge program texts. J Syst Softw 27(2):129–135
Yellott J (1971) Correction for fast guessing and the speed accuracy trade-off in choice reaction time.

J Math Psych 8(2):159–199

Janet Feigenspan is a PhD student at the University of Magdeburg, Germany. She received her
master’s degree in Computer Science in 2009, and her master’s degree in Psychology in 2005, both
from the University of Magdeburg. For her computer-science master’s thesis, she received the
award from the Metop Research Institute for best thesis and the award from the “Industrie und
Handelskammer Magdeburg”. Her research focuses on program comprehension in the context of
feature-oriented software development.



Empir Software Eng

Christian Kästner is a PostDoc at the Programming Languages group of Klaus Ostermann at the
Philipps University Marburg, Germany. He received his Ph.D. in Computer Science in 2010 from
the University of Magdeburg, Germany. For his dissertation on virtual separation of concerns, he
received the prestigious GI-Dissertation Award for the best computer-science dissertation 2010.
His research focuses on correctness and understanding of systems with variability, including work
on implementation mechanisms, tools, variability-aware analysis, type systems, feature interactions,
empirical evaluations, and refactoring.

Sven Apel is the leader of the Software Product-Line Group funded by the esteemed Emmy Noether
Programme of the German Research Foundation (DFG). The group resides at the University of
Passau, Germany. Dr. Apel received his Ph. D. in Computer Science in 2007 from the University
of Magdeburg, Germany. His research interests include novel programming paradigms, software
engineering and product lines, and formal and empirical methods. He is the author or coauthor of
over a hundred peer-reviewed scientific publications. Sven Apel is a member of the IFIP Working
Group 2.11 (Program Generation), and serves regularly in program committees of highly ranked
international conferences. His work received awards by the Ernst Denert Foundation and the Karin
Witte Foundation.



Empir Software Eng

Jörg Liebig received his Master’s degree in Computer Systems in Engineering from the University
Magdeburg, Germany, in 2008. After that, he joined the programming group of the department of
informatics and mathematics at the University of Passau. His research interests include software
product lines, variability management tools, analysis and transformation of software systems.

Michael Schulze is technology project leader of the pure-systems GmbH. He received his diploma
degree in computer science from the University of Magdeburg, Germany in 2002. After some years
in the industry he went back to the University of Magdeburg to work on his PhD that he received
in 2011. His research was focused on embedded and operating systems, adaptable event-based
communication middleware, and on mechanisms and concepts for resource constraint devices. At
pure-systems he leads national and international technology projects and works also as consultant
mainly in the area of product-line development.



Empir Software Eng

Raimund Dachselt is a professor for User Interface & Software Engineering at the University of
Magdeburg, Germany. In 2004, he finished his PhD thesis on the component-based development of
interactive 3D applications and Information Rich Virtual Environments at TU Dresden, Germany.
Currently, his research focuses on the field of novel visualization and interaction techniques for
future user interfaces combining multiple input modalities and interactive displays.

Maria Papendieck is a master’s student with the major Computational Visualistics at the University
of Magdeburg. She received her bachelor’s degree in Computational Visualistics from the University
of Magdeburg in 2011. During her work as student assistent for the department of User Interface and
Software Engineering, she was responsible for the implementation of FeatureCommander.



Empir Software Eng

Thomas Leich is currently working toward the Ph.D. degree in Computer Science at the University
of Magdeburg, Germany. He is head of the Department of Applied Informatics and member of the
management at the METOP Research Institute, Magdeburg, Germany. His research interests are
tailor-made and embedded data management and software product lines.

Gunter Saake received the diploma and a PhD in Computer Science from the Technical University
of Braunschweig, F.R.G. in 1985 and 1988, respectively. From 1988 to 1989, he was a visiting scientist
at the IBM Heidelberg Scientific Center, where he joined the Advanced Information Management
project and worked on language features and algorithms for sorting and duplicate elimination in
nested relational database structures. In January 1993, he received the Habilitation degree (venia
legendi) for Computer Science from the Technical University of Braunschweig. Since May 1994,
Gunter Saake is a fulltime professor for the area “Databases and Information Systems” at the Otto-
von-Guericke University, Magdeburg. His research interests include database integration, tailor-
made data management, object-oriented information systems and information fusion.


	Do background colors improve program comprehension in the #ifdef hell?
	Abstract
	Introduction
	Welcome to the #ifdef Hell
	Stairway to Heaven?

	MeasuringProgramComprehension
	Program Comprehension Measures
	Rationale of Experiments

	Family of Experiments
	Experiment 1: Can Colors Improve Program Comprehension?
	Experiment Planning
	Objective
	Experimental Material
	Subjects
	Tasks
	Design
	Conduct
	Deviations

	Analysis
	Descriptive Statistics
	Hypotheses Testing

	Interpretation
	Threats to Validity
	Internal Validity
	External Validity


	Experiment 2: Do Subjects Use Colors?
	Experiment Planning
	Objective and Material
	Subjects and Tasks
	Conduct

	Analysis
	Interpretation and Threats to Validity

	Experiment 3: Do Colors Scale?
	Experiment Planning
	Objective
	Experimental Material
	Subjects
	Tasks
	Design
	Conduct

	Analysis
	Descriptive Statistics
	Hypotheses Testing

	Interpretation
	Threats to Validity
	Internal Validity
	External Validity


	Summary of the Experiments
	Toward Better Tool Support
	Previous and Related Work
	Previous Work
	Related Work

	Conclusion
	References



