
Introducing Non-linear Parameters to the Polyhedron Model

Armin Größlinger
Fakulẗat für Mathematik und Informatik

Universiẗat Passau

Martin Griebl
Fakulẗat für Mathematik und Informatik

Universiẗat Passau

Christian Lengauer
Fakulẗat für Mathematik und Informatik

Universiẗat Passau

Abstract

A mathematical model based on polyhedra (the so-called “polyhedron model”) serves
as a foundation for model based loop program transformation like automatic parallelization.
One of the restrictions present in the current polyhedron model is the requirement that the
coefficients of variables must be numeric constants. This has been hindering some recent
developments which require parametric coefficients of variables. We show how such non-
linear parameters can be introduced in the polyhedron model, using quantifier elimination in
the real numbers as our main mathematical tool. We describe two approaches of obtaining
algorithms for the generalized model. First, we point out how existing algorithms can be
implemented for the generalized model. Quantifier elimination is employed in this approach
to simplify arising case distinctions. We give Fourier-Motzkin elimination and the Simplex
algorithm as examples of this approach. Second, we show how quantifier elimination can be
used to solve some problems directly, e.g., by computing lexicographic maxima. We also
demonstrate how to apply our methods to the frequently appearing case of tiling an index
space with parametric tile size, and we present some performance results of the generalized
algorithms we have implemented.

1 Introduction

In model based loop program transformation one frequently uses polyhedra to describe programs
and transformations of them. In this mathematical model, one deals usually with linear inequality
systems, in which the parameters may appear linearly in the additive term, but the coefficients of
variables must be constants. One of the great advantages of the polyhedron model is that some
important algorithms, like Fourier-Motzkin elimination, deliver results which do not contain case
distinctions. This is due to the fact that the coefficients of the variables are fixed numbers and, since
all the case distinctions in the Fourier-Motzkin algorithm are about signs of these coefficients (or
coefficients derived from them), the conditions of the case distinctions can be evaluated statically
(i.e., at compile time) when performing Fourier-Motzkin elimination.

Some problems cannot be expressed in the polyhedron model as just described. For example, it
is not possible to specify the tiling of an index space with arbitrary tile shapes and parametric tile

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3t=

i=
o= 0 1 2 0 1 2 0 1 2 0 1

Figure 1: A tiled iteration domain

sizes. The reason is illustrated in Section 1.1. To describe such a parametric tiling (and other
problems which require parameters as coefficients of variables), we have to use a generalized
version of the polyhedron model in which the coefficients of variables may depend on parameters.

1.1 Parametric Tiling Example

As an example of a problem expressed in the generalized model, take a very simple one-dimensional
tiling. Consider the index set defined by the following inequality system in the variablei for n ≥ 0:

0 ≤ i ≤ n (1)

We desire a tiling of this index set into tiles of sizep (for p ≥ 1), i.e.,p adjacent points of the index
set shall be contained in the same tile. This can be described by the following inequality system:

0 ≤ o ≤ p− 1
i = p · t+ o

(2)

where variablet denotes the number of a tile and variableo is the offset of a point within its tile
(in this case, from the left end of the tile). Figure 1 illustrates the tiled index set forn = 10 and
p = 3. Obviously,p is a non-linear parameter in the inequality system formed by systems (1) and
(2) since it appears as coefficient of variablet. To get an enumeration (using Fourier-Motzkin) of
the tiled index space with a loop for the tile numberst, and inside that loop another loop for the
coordinatei, we have to eliminate the variables in the ordero, i, t. We first solvei = p · t+ o for
o and eliminateo by substituting into the two inequalities. After that we solve the system fori:

0 ≤ i

p · t ≤ i

i ≤ n

i ≤ p · t+ p− 1

We eliminatei from this system by comparing lower bounds against upper bounds. This yields
(after dropping two superfluous inequalities to simplify the calculation):

1− p ≤ p · t
p · t ≤ n

To solve the system fort, we have to divide by coefficientp. In general, this would require a case
distinction on the sign ofp, since forp < 0 the relation symbols must be changed when dividing
by p, and if p = 0 we cannot solve fort at all. A näıve implementation of Fourier-Motzkin
would produce the following two-fold case distinction (since there are two inequalities withp as
coefficient oft): •

p<0

nnnnnnnnnnnnnnn

p=0
p>0

PPPPPPPPPPPPPPP

•
p<0

¦¦
¦¦

¦¦
¦

p=0

p>0

99
99

99
9 •

p<0

¦¦
¦¦

¦¦
¦

p=0

p>0

99
99

99
9 •

p<0

¦¦
¦¦

¦¦
¦

p=0

p>0

99
99

99
9

An implementation of an algorithm for the generalized polyhedron model should avoid such su-
perfluous cases. The method we choose to solve this problem is quantifier elimination. Quantifier
elimination allows one to check logical formulas like∀p (p ≥ 1 → p > 0). The formulap ≥ 1
is the precondition onp stated above andp > 0 is one of the possible cases in the above case
distinction. Given the formula∀p (p ≥ 1 → p > 0), quantifier elimination establishes that the
formula is true, i.e., for everyp (from the real numbers)p ≥ 1 impliesp > 0. In other words: the
preconditionp ≥ 1 ensures thatp > 0 is the only possible case in the above case distinction.

1.2 The Generalized Model

In the classical polyhedron model for loop parallelization, we deal with inequality systems with
variablesx1, . . . , xn and linear parametersp1, . . . , pm of the form

n∑

i=1

cixi +
m∑

i=1

dipi + e ≥ 0

wherec1, . . . , cn, p1, . . . , pm, e ∈ Q. The previous section shows that parametric tiling of an index
space cannot be described in this model. Therefore, we extend it to a generalized model which
uses inequalities of the form:

n∑

i=1

cixi + d ≥ 0

But now, in contrast to the classical model, the coefficientsc1, . . . , cn, d are not fixed rational
numbers, but may be symbolic constants; we call them parameters. Since the operations performed
on the coefficients by the algorithms used in the polyhedron model include addition, subtraction,
multiplication, and division, it is necessary to choose a field as the domain for the coefficients. We
use fractions whose numerators and denominators are polynomials in the parameters. Formally,
the domain of the coefficientsc1, . . . , cn is denoted byQ(p1, . . . , pm), which is defined as

Q(p1, . . . , pm) := {a
b
| a, b ∈ Q[p1, . . . , pm], b 6= 0}

whereQ[p1, . . . , pm] denotes the ring of (multivariate) polynomials with indeterminatesp1, . . . , pm

overQ.

1.3 Tree Representation of Case Distinctions

In general, results delivered by algorithms which handle input inequality systems with non-linear
parameters cannot be represented without case distinctions. The example ofp·x−1 ≥ 0 illustrates
this. If we assume nothing about the parameterp, solvingp ·x− 1 ≥ 0 for x yields three different
solutions:

• x ≥ 1
p if p > 0,

• false if p = 0,

• x ≤ 1
p if p < 0.

We represent this case distinction as a decision tree. A leaf node of such a tree carries a result
for a specific case, and an inner noden repesents some conditional. Each of the subtrees ofn is
applicable under a certain condition. We use the following definition for the decision tree data
type:

data Tree α = Leaf α
| SCond Polynomial (Tree α) (Tree α) (Tree α)
| EqCond Polynomial (Tree α) (Tree α)
| GeCond Polynomial (Tree α) (Tree α)
| FCond QfFormula (Tree α) (Tree α)

The most important inner node types are:

• Leaf x represents a result with valuex .

• SCond f t− t0 t+ represents a case distinction on the sign of the polynomialf ∈
Q[p1, . . . , pm]. t− is applicable forf < 0, t0 for f = 0, andt+ for f > 0. The specialized
constructorsEqCond andGeCond are used when a binary case distinction is required for
f = 0 againstf 6= 0, andf ≥ 0 againstf < 0, respectively.

• FCond ϕ t> t⊥ represents a case distinction on an arbitrary quantifier-free logical for-
mulaϕ. t> applies ifϕ holds, andt⊥ applies whenϕ does not hold.

The result of solvingp · x− 1 ≥ 0 for x would be represented as

SCond p (Leaf x ≤ 1
p
) (Leaf false) (Leaf x ≥ 1

p
).

2 Obtaining Generalized Algorithms via Program Transformation

In this section we explore ways to derive algorithms for the generalized polyhedron model from
existing algorithms for the classical polyhedron model. We give an informal description of pro-
gram transformation rules which generalize an existing algorithm. Then we look at necessary
simplifications in the resulting decision trees.

2.1 New Algorithms by Program Transformation

Some algorithms (e.g., Fourier-Motzkin elimination and the Simplex algorithm) contain case dis-
tinctions on the signs of intermediate values (computed from the input values, i.e., the coefficients
of the input inequalities). The general structure of such a case distinction is

case signum f of
Negative → t−
Zero → t0
Positive → t+

wheref is an expression derived from the input values of the algorithm by arithmetic operations.
We restrict our consideration to the case that addition, subtraction, multiplication, and division in
the real numbers are used, since this is essential for using real quantifier elimination to simplify
the resulting decision trees (Section 2.2). If the input inequalities contain non-linear parameters,
f is not a rational number but a rational function in the parameters, i.e.,f = f1

f2
for f1, f2 ∈

Q[p1, . . . , pm], f2 6= 0. It is generally impossible to decide which signf has (since it depends
on the values of the parameters, in general), so we modify the algorithm such that the above case
distinction in the algorithm’scodeis replaced by a case distinction in the resultingdata structure.
We rewrite the above code to

SCond (f1 · f2) t− t0 t+

Note thatsgn(f) = sgn(f1

f2
) = sgn(f1 · f2).

In addition to this transformation of case distinctions, we have to make some other changes in the
algorithm:

• We have to replace expressionse which construct final results byLeaf e.

• If some functionf :: α→ β is applied to an expressione which changes its type fromα to
Tree α during the generalization, we have to mapf over the whole treee, i.e., applyf to
every leaf ofe, by using some suitable combinator. The choice of the combinator depends
on whetherf has to be generalized to have the new typeα→ Tree β, or not [Gr̈o03].

We do not formally apply this informally defined set of transformation rules to existing implemen-
tations of algorithms, since implementing the transformation system seems more difficult than im-
plementing generalized versions of existing algorithms following the ideas of this transformation
system. In addition, it may be desirable to deviate from strictly applying the transformation rules.
In Fourier-Motzkin elimination, for example, we optimize the sets of lower and upper bounds by
checking whether for two boundsb1 andb2 one of the relationsb1 ≤ b2 or b1 ≥ b2 holds and
remove the irrelevant bound. In the generalized Fourier-Motzkin elimination, this may depend on
parameters, so the transformation system would generate a case distinction. But usually we do not
want a case distinction in this case since, if neitherb1 ≤ b2 nor b1 ≥ b2 holds, we simply keep
both boundsb1 andb2 in the set of lower or upper bounds.

We have implemented a generalized Fourier-Motzkin elimination and the Simplex algorithm; see
Section 5 for some practical applications of them.

2.2 Tree Simplification

The main challenge arising from the transformation system given in the last section is to simplify
the decision trees constructed by generalized algorithms.

We use a top-down simplification procedure. The simplification starts at the root node of the de-
cision tree with acontextC which contains all the assumptions on the parameters, e.g.,C =
{p1 ≥ 0, p2 > 4}. We illustrate the simplification procedure by looking at the noden =
SCond f t− t0 t+. When the simplifier reaches this node, it checks whether the context implies
one of the conditionsf < 0, f = 0, or f > 0. If the context implies one of these conditions, the
noden is replaced by the respective subtree ofn and the simplification continues on that subtree.
If the context implies none of these conditions, the noden is retained and the simplifier is applied
recursively to the three subtreest−, t0, t+. For each of the subtrees the context is modified to con-
tain the condition which makes the respective subtree applicable. For example, the simplification
on the subtreet− is performed with respect to the new contextC ∪ {f < 0}, sincet− is only
applicable forf < 0. The full simplification procedure we have implemented [Grö03] handles
special cases like detecting thatSCond can be replaced byEqCond or GeCond , etc.

Checking whether the contextC implies a certain condition is done by deciding, for example, the
logical formula∀p1 · · · ∀pm (

∧
C → f < 0). Here

∧
C denotes the conjunction of all formulas

in C. “Deciding” means here to determine whether the formula holds in the real numbers, or not.
We use quantifier elimination tools to do so (cf. Section 5).

3 Quantifier Elimination Based Algorithms

In addition to generalizing existing algorithms to non-linear parameters, we have also explored
ways to solve some common problems in the generalized polyhedron model using new algorithms.
We discovered that quantifier elimination is a mathematical tool which can be used for that.

As an example, we consider the lexicographic minimum of a polyhedron. To be able to apply
quantifier elimination to a problem, we have to express the problem as a first-order logical formula
with the operators+,−, ·, and the usual equality and ordering relations of the real numbers. Since
this logical language does not contain a notion of lexicographic ordering, we have to define the
lexicographic less-than relation¹ based on the standard ordering< on the real numbers:

a1 ¹ b1 := a1 ≤ b1

(a1, ā) ¹ (b1, b̄) := a1 < b1 ∨
(
a1 = b1 ∧ ā ¹ b̄

)

A given polyhedron (which may depend on possibly non-linear parameters) can be described by
a finite set of inequalitiesS in the variablesx1, . . . , xn. Without loss of generality, we assume
that the inequalities inS are denominator-free (this can always be achieved by multiplying every
inequality with the square of the common denominator of its coefficients). The conjunction

∧
S

of the inequalities inS describes the polyhedron (in dependence of the parameters). To find a
formula describing the lexicographic minimality of a finite point(x1, . . . , xn), we translate the
following propertyL into a logical formula:

The point(x1, . . . , xn) is the lexicographic minimum of the given polyhedron if it

lies inside the polyhedron and it is lexicographically less than or equal to every other
point (y1, . . . , yn) which also lies inside the polyhedron.

To express this property, we defineϕ :=
∧
S andψ := ϕ[x1 := y1, . . . , xn := yn] for some

new variablesy1, . . . , yn (i.e.,ψ is the same asϕ with yi instead ofxi). Then propertyL can be
expressed by the formulaµ:

µ := ϕ ∧ ∀y1 . . .∀yn

(
ψ → (x1, . . . , xn) ¹ (y1, . . . , yn)

)

The existence of a lexicographic minimum(x1, . . . , xn) is expressed by the formula:

∃x1 · · · ∃xn (µ)

Some quantifier elimination tools can “solve” this problem by finding conditions under which
values forx1, . . . , xn exist such thatµ becomes true, and calculating such values for the variables
x1, . . . , xn. That is, the answer given by the quantifier elimination procedure is a set

{(γi, [x1 := ti,1, . . . , xn := ti,n]) | 1 ≤ i ≤ l} (3)

for somel ∈ N, whereγi is a quantifier-free logical formula in the parameters andti,1, . . . , ti,n
are expressions (i.e., terms) in the parameters describing the lexicographic minimum under the
conditionγi. This procedure is called “quantifier elimination with answer,” in contrast to plain
quantifier elimination which is used for decision tree simplification.

Example Consider the system

q ≤ x2 ≤ p · x1

in the variablesx1, x2 and the parametersp, q. For this system the formulaµ is:

µ := (q ≤ x2 ∧ x2 ≤ p · x1) ∧
∀y1∀y2

(
q ≤ y2 ∧ y2 ≤ p · y1 → x1 < y1 ∨ (x1 = y1 ∧ x2 ≤ y2)

)

The quantifier elimination’s answer to the question∃x1∃x2 (µ) is:

{(p > 0, [x1 :=
q

p
, x2 := q])}

This means that, in the casep > 0, there is a finite lexicographic minimum, namely at(q
p , q).

Otherwise (i.e., forp ≤ 0) there is no finite lexicographic minimum, since the polyhedron is either
empty or unbounded.

The case distinction contained in an answer like in system (3) can easily be transformed into a
decision tree using theFCond constructor.

4 Special cases

Quantifier elimination can be the dominating factor for the overall computation time when ap-
plying a generalized algorithm. Therefore, it is desirable to find special cases where no need for
quantifier elimination arises. We present here briefly one special case which can be exploited when
generating loop nests which describe the tiling of an index space.

4.1 K · L decomposition

Lemma 1 LetA · x̄ + a ≥ 0 be an inequality system in the variablesx̄ = x1, . . . , xn and the
parametersp1, . . . , pm. When the coefficient matrixA can be written as a productA = K · L,
whereK is a constant matrix andL is a lower triangular matrix (possibly containing parameters)
such that the assumptions on the parameters imply that the diagonal entries ofL are positive, then
Fourier-Motzkin elimination ofA · x̄+ a ≥ 0 does not lead to any case distinctions.

The proof is left out due to space restrictions and can be obtained from the authors.

4.2 Tiling

For our experiments in Section 5 we use an index space tiling problem as example. To describe
the tiling of an index space, we need the following information [AI91]:

• an index space described by an inequality systemS · (x1 · · ·xn)T + s ≥ 0 in the variables
x1, . . . , xn,

• a tile shape described by an inequality systemT · (o1 · · · on)T + t ≥ 0 in the variables
o1, . . . , on, and

• vectorsl1, . . . , ln which describe the translation between the base tile and other tiles; matrix
A = (l1 · · · ln) is called alattice.

The tiling is described by:

S ·



x1
...
xn


 + s ≥ 0, T ·



o1
...
on


 + t ≥ 0,



x1
...
xn


 = A ·



t1
...
tn


 +



o1
...
on


 (4)

where(t1, . . . , tn) are the coordinates of a tile in the tile space. In the classical polyhedron model,
the lattice cannot contain parameters, since these would appear non-linearly in System (4). In our
generalized model this is no problem. To obtain a tiling where the tiles are parallelepipeds (i.e.,
opposite sides are parallel) and the size depends on parameters, we choose linearly independent
vectorsv1, . . . , vn ∈ Qn which span the (unscaled) tile and use a lattice defined by

A = K ·



p1
...
pn


 (5)

whereK = (v1 · · · vn). The tile shape is defined by:

K−1 ·



o1
...
on


 ≥ 0, −K−1 ·



o1
...
on


 +K−1



p1 − 1

...
pn − 1


 ≥ 0 (6)

Looking at the definition ofA in Equality (5), it is easy to see thatA satisfies the preconditions of
Lemma 1. From that, one can deduce that tiling never leads to case distinctions.

5 Experiments

For our experiments we use a tiling example with

S =




1 0
0 1
−1 −1


 s =




0
0
n


 K =

(
1 1
0 1

)
A = K ·

(
p1

p1

)

wheren is a (linear) parameter which determines the size of the index space, andp1, p2 are non-
linear parameters which determine the size of the tiles. Figure 2 shows the index space, all non-
empty tiles, and, as a representative, all index points inside the tile at(0, 0) for n = 24, p1 = 7,
p2 = 4. We have solved the following problems:

5 20

5

20

10 15 25

10

15

25

-5
x1

x2

Figure 2: Tiling example

(1) Find an enumeration of the tiled index space for which the loops fort1 andt2 are outside
and the loops forx1 andx2 are inside.

(2) Enumerate the communication partners (receiving tiles) for a given sending tile in the given
index space for a dependence(x1, x2) 7→ (x1 + 2, x2 + 1).

Problem (1) requires the projection of the six-dimensional input system1 onto the dimensions
(t1, t2, x1, x2). Problem (2) starts with a12-dimensional input system (six dimensions for the
sender and six for the receiver) and requires the calculation of a projection to the four dimensions
(t1, t2, t′1, t

′
2), where the receiver coordinates(t′1, t

′
2) are enumerated in dependence of the sender

coordinates(t1, t2); explicit bounds for the sender coordinates need not be computed.

We ran the experiments on an AMD AthlonTM 1700+ processor (1467 MHz) with 512 MB RAM.
We have implemented our generalized Fourier-Motzkin and Simplex algorithms in Haskell and
used the Glasgow Haskell Compiler (GHC) version 6.2.1. As quantifier elimination tools we use

1Because of the two equalities in the system, the polyhedron defined by the (in)equalities is just four-dimensional.
Our Fourier-Motzkin and Simplex implementations take advantage of these equalities to simplify the computation.

theREDLOG package [DS97] of the commercial computer algebra systemREDUCE [Red] (version
3.7), the freely available toolQEPCAD [Qep], (version B 1.21) and our own implementation of a
simple version of cylindrical algebraic decomposition (CAD) [ACM98].REDUCE andQEPCAD

are invoked as external tools by our implementation, i.e., there is some startup cost to pay for every
invocation of them. The startup time forQEPCAD is approximately 50ms, since every call starts
QEPCAD as an external process.REDUCE is only started once (as an external process) and the
communication with it takes place over pipes. The overhead for communicating withREDUCE is
therefore only approximately 1.5ms for every call. The CAD algorithm integrated in our system
is not capable of performing a complete quantifier elimination, but it suffices to decide the logical
formulas emerging during decision tree simplification. Due to its integration in our system, there
is no startup time when our CAD procedure is used.

(1)
tot. time non-QE time QE calls

REDLOG 0.5s

0.1s
35QEPCAD 1.7s

our CAD 0.6s
Lemma 1 0.1s 8

(2)
tot. time non-QE time QE calls

REDLOG 2.6s

1.9s
277QEPCAD 14.3s

our CAD 7.0s
Lemma 1 2.0s 63

Table 1: Running times of our Fourier-Motzkin experiments

Tables 1 and 2 show the total running time, the time spent in the algorithm (i.e., not in calls to
a quantifier elimination tool), and the number of calls to the quantifier elimination procedure of
the different algorithms (Fourier-Motzkin, Simplex-based Lexmax, Quantifier elimination based
Lexmax) for the two problems.

The first three rows of Table 1 show a comparison ofREDLOG, QEPCAD, and our CAD imple-
mentation. In general (not only in the two examples shown here),REDLOG is the fastest quantifier
elimination tool most of the time; only in cases which generate simple case distinctions (i.e., with
polynomials of low degree) our CAD implementation was a bit faster due to the missig startup
costs with our CAD procedure. If we take the startup costs forQEPCAD into account, we can
estimate thatQEPCAD’s performance is comparable toREDLOG’s, but for technical reasons we
have not implemented a low-overhead connection toQEPCAD.

The “Lemma 1” row of Table 1 shows the results when Lemma 1 is used to eliminate quantifier
elimination calls for decision tree simplification (the eight calls to the quantifier elimination are to
suppress superfluous bounds during Fourier-Motzkin;REDLOG has been used to solve these eight
problems).

Lexmax QE-Lexmax

(1)

total time 1.2s 2min 25s
non-QE time 0.3s –
QE calls 409 1
pivoting steps 22 –

(2)

total time 3.2s
non-QE time 1.3s heap
QE calls 858 overflow
pivoting steps 34

Table 2: Running times of our Simplex experiments

The Simplex algorithm constructs case distinctions with more complicated polynomials than Fourier-
Motzkin. This leads to problems withREDLOG’s quantifier elimination procedure, since it cannot
handle polynomials of arbitrary degrees in the input formulas. Therefore, our implementation tries
REDLOG first and, ifREDLOG fails, the problem is solved withQEPCAD.

Table 2 compares an algorithm to find the lexicographic maximum (“Lexmax”) based on our
generalized Simplex algorithm (together with the just described heuristics for the choice of the
quantifier elimination tool) to quantifier elimination with answer (“QE-Lexmax”) as described in
Section 3. Unfortunately, we could not find a way to formulate the problem such that quantifier
elimination with answer performed comparably with the generalized Simplex algorithm.

6 Conclusion

We have outlined that quantifier elimination facilitates an extension of the classical polyhedron
model to a generalized model with non-linear parameters. We have pursued two different ap-
proaches to develop algorithms for the generalized model. First, we can take an existing algorithm
for the classical polyhedron model and derive an algorithm for the generalized polyhedron model
from it by program transformation. In general, the results computed by such generalized algo-
rithms are big case distinctions. Quantifier elimination can be used to reduce considerably the
number of branches in the decision trees representing these case distinctions. Second, quantifier
elimination can be used to directly solve some problems like finding lexicographic minima, since
these problems can be described by first-order logical formulas.

The experiments on the use of quantifier elimination with answer to solve some problems directly
(and some other problems [Grö03]) suggest that, in general, better performance is obtained by
generalizing an existing specialized algorithm (like the Simplex algorithm or Fourier-Motzkin
elimination) than by using quantifier elimination with answer.

In some special cases it is not necessary to use quantifier elimination to simplify the decision trees
constructed by generalized algorithms. The case we have presented is when the coefficient matrix
of an inequality system can be written as the product of two matrices with certain properties,
Fourier-Motzkin elimination can be perfomed without making case distinctions. This is the case,
for example, when Fourier-Motzkin elimination is applied to an inequality system describing the

tiling of an index space with parallelepipeds as tiles which are scaled by parametric factors in each
dimension.

The applicability of the techniques we have presented rests on the assumption that the coeffi-
cients of the input inequality systems are (fractions of) polynomials in the parameters and that the
arithmetic operations performed by the algorithms are addition, subtraction, multiplication, and
division. This is necessary to guarantee that the conditions arising during simplification of the
case distinctions constructed by the generalized algorithms can be decided using real quantifier
elimination. As a consequence, we cannot solve “integral” problems, e.g., it is not possible to use
the generalized Simplex algorithm to implement a (generalized) branch-and-bound algorithm to
find integral optima, sinceb·c andd·e operations are not available inQ(p1, . . . , pm) and would
lead, during decision tree simplification, to formulas for which no decision procedure exists. The
question of whetherb·c andd·e can be introduced in the generalized model, or not, is a subject for
further research.

Acknowledgements This work is supported by the BFHZ and the DAAD through exchange
projects.

References

[ACM98] Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Algebraic De-
compositions I: The Basic Algorithm. In Bob F. Caviness and Jeremy R. Johnson,
editors,Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 136–
151. Springer-Verlag, 1998.

[AI91] Corinne Ancourt and François Irigoin. Scanning Polyhedra with DO Loops.Third ACM
SIGPLAN Symposium on Priciples & Practice of Parallel Programming, 26(7):39–50,
July 1991.

[DS97] Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets computer
logic. ACM SIGSAM Bulletin, 31:2–9, June 1997.

[Grö03] Armin Gr̈oßlinger. Extending the Polyhedron Model to Inequality Systems with
Non-linear Parameters using Quantifier Elimination. Diploma thesis, Universität
Passau, September 2003.http://www.infosun.fmi.uni-passau.de/cl/
arbeiten/groesslinger.ps.gz .

[Qep] http://www.cs.usna.edu/˜qepcad/B/QEPCAD.html .

[Red] http://www.zib.de/Symbolik/reduce/ .

