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Chapter 1

Introduction

Technological advances in the last decades have led to faster and faster computer systems,
but the demands made on the speed of computer systems are growing just as rapidly. Large
computational problems are becoming so data-intensive that sequential systems, i.e., systems
with only one main processor often have not enough power to solve these problems in the
time required by the user.

This has led to the development of parallel computers, i.e., systems with more than one
main processor. The crucial problem posed by these systems is how to write programs for
them: one can either re-implement existing sequential algorithms so as to adjust them for
multi-processor computers or redesign algorithms for parallel systems from scratch. Both
approaches have one common disadvantage: they are costly and error-prone if done by hand.

Consequently, much effort has been invested in research of how to transform automatically
sequential programs into programs for multi-processor systems. This has led to the emergence
of the research area of automatic parallelization. For several reasons there has been a focus on
nested loops: first, many programs spend the main part of their execution time in loop nests—
this makes loop parallelization worth-while; second, the amount of potential parallelism in
loop nests turns out to be considerable—orders of magnitude of speedup are possible; third,
the regularity of many loop nests facilitates the automatic detection of parallelism and has
aided the development of efficient parallelization techniques.

Basically, there are two different approaches to loop parallelization: an experimental and
a model-based approach. In the experimental approach a set of possible loop transformations
has been developed among which one can/must choose useful ones heuristically if one wants
to parallelize a concrete program; this approach led to first good results.

The other approach is based on a mathematical model. In order to develop a clean
model, it is usually impractical to consider programs immediately as they occur in general
applications. Instead one first considers a subset of “well-behaved” applications, for which
a model can be developed more easily. Then, one tries to relax some of the restrictions
and thereby make the model more complex and general. This has also been done in loop
parallelization.

Mainly, three restrictions have aided the development of a computational model for loop
parallelization. First, in typical programming languages there is a general type of loops,
while loops, and a more restricted type, for loops. The main difference is that in for loops
the number of iterations is known at compile time (or, at the latest, when the loop starts
execution) whereas in while loops it is not. It turned out that while loops—and even arbitrary




for loops—are still too general for the development of a simple mathematical model, but it was
possible to find a model for nested for loops whose bounds are affine expressions in outer loop
indices and structure parameters, i.e., symbolic constants. We call such loops affine loops.

Second, orthogonally to the first point, also the nesting order influences the development
of a simple model: in the restricted case of perfect loop nests only the innermost loop contains
statements different from loops; this is not true for the general case of imperfect loop nests.

Third, there can be arbitrary dependences between the computations spawned by a loop
nest. In order to model these dependences, they should be uniform, i.e., identical for all com-
putations, or at least affine, i.e., affine functions in the loop indices (more precise definitions
are given in Section 3.1.1).

The first mathematical model was developed for perfect nests of affine loops with uniform
dependences: it is called the polytope model [40]. In brief, polytopes are finite convex geo-
metrical objects with plane borders. Mathematically, they are bounded polyhedra, where a
polyhedron is a finite intersection of halfspaces. The exact correspondence between polytopes
and loop nests is explained in the next chapter. The existing generalizations of the polytope
model are described in Section 2.1.

As just noted, the polytope model for the parallelization of loop nests has a more re-
stricted range of application than the experimental approach; on the other hand, it supports
parallelization methods which are fully automatic and—within the choices offered by the
model—provably optimal.

Currently, one can observe a convergence of both approaches; the model the second ap-
proach is based on is being extended such that the techniques of the first approach can be
expressed, and many of the restrictions formerly necessary have been relaxed.

Before work on this thesis began, the parallelization methods of both the model-based
approach and the experimental approach did not support the detection of any parallelism
hidden in a nest of general loops, even if there are only affine dependences. The contribution
of this thesis is a generalization of the polytope model to support the automatic parallelization
of general loop nests, as long as their dependences are affine. We focus on the theoretical
extensions of existing methods.

However, we also address the implementation of the extended methods in our work. For
this purpose, we are developing LooPo, a source-to-source parallelization framework in which
various well-known methods of loop parallelization in the polytope model are implemented.
LooPo’s extension to general loop nests, however, is ongoing work and, therefore, LooPo is
not a focus of this thesis.

Loop nests containing while loops and for loops with arbitrary bounds occur frequently,
e.g., in algorithms for sparse data structures. Thus, they are a major field of application of
our parallelization methods.

Our approach also covers convergent iterative algorithms, frequent in numerical applica-
tions, which are usually while loops. However, these loops have special properties (cf. Sec-
tion 4.2) whose exploitation is not a focus of this thesis; our goal is to develop a parallelization
method that is generally applicable.

The thesis is organized as follows. Chapter 2 gives an overview of related work, terminology
and the parallelization in the polytope model, and presents an example application which is
used throughout this thesis. Chapter 3 presents in more detail the most important stages of
a parallelization in the polytope model and analyzes, for every stage, the extensions that are



necessary to integrate while loops. Chapter 4 offers a classification of loops which determines
for every loop in a source nest how it is modeled and how it is treated during code generation.
The subsequent parts of this thesis are more technical and deal with the irregularities which
are introduced into the extended model due to the limited information available on the bounds
of while loops: Chapter 5 tackles irregularities inside the target domain and Chapters 6 and
7 deal with the detection of the bounds of the target domain, Chapter 6 for dimensions in
space and Chapter 7 for dimensions in time. Chapter 8 describes the current state of our
source-to-source parallelizer LooPo. Finally, Chapter 9 concludes the thesis and discusses
future work.



Chapter 2

Overview

We describe first the state of the art in loop parallelization and present our notation and
some necessary definitions. Then, we specify the input required and the output supplied by
our methods. Subsequently, the model is presented including all necessary extensions and all
steps of the parallelization method are described briefly. Finally, we introduce a loop program
which is used as an example throughout the thesis.

2.1 Related Work

The polytope model enables the parallelization of perfectly nested affine loops. The seminal
work on the polytope model was done by Karp, Miller and Winograd [36] thirty years ago;
it offers a way of scheduling systems of uniform recurrence equations. In 1974, Lamport [39]
applied these ideas to loop nests and gave an algorithm for scheduling the iterations of a
perfect nest of affine loops.

In the last two decades the methods of the polytope model have been extended in var-
ious directions, e.g., more precise dependence analysis techniques have been developed [28]
and more flexible transformations [65] or by-statement transformations [19, 37, 53] (cf. Sec-
tion 2.4.1) have been introduced.

However, a relaxation of the serious restriction of the affinity of the loop bounds was not
considered before work on this thesis began. As we shall see in the mathematical definitions,
such a relaxation transcends the framework of polytopes.

The parallelization of while loops has been investigated for a number of years [8, 59, 62, 64].
The general approach has been to pipeline the successive iterations where possible (e.g.,
[59, 64]). This does not require methods based on the polytope model, and it yields at most
constant speedup.

Other approaches [62, 64] present specific cases in which the parallelization of while loops
is possible, esp. for while loops which are actually disguised for loops. But none of these
approaches offers a way of parallelizing nests with while loops in the general case, even if
there exists potential parallelism.

The common problem of all these attempts is that they try to parallelize every while loop
in a loop nest in isolation. This is, in general, impossible since the semantics of while is
inherently sequential. However, in a nest of while loops considered as a whole one can detect
and exploit parallelism.
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We shall see that our approach subsumes the pipelining methods as well as parallelization
possibilities in the specific cases of [64].

Up to now, our approach has also been used in the methods of J.-F. Collard and P. Feautrier
who concentrate on the data dependence analysis in the extended model [16] and apply
speculative execution [15], i.e., they allow that some statement S in the body of a source
loop nest iterates farther in the target program than in the source program. If the addi-
tional iterations of S produce undesired values the proper final values must be recovered.
This leads to serious problems in code generation. Thus, we choose the more restrictive
conservative execution scheme which forbids additional iterations of S in the target program.

In this thesis we concentrate on the extensions of the polytope model and its methods
and on the generation of target programs in the extended model, and we apply the results of
Collard and Feautrier where we need them.

2.2 Mathematical Definitions and Notations

Our mathematical notation follows Dijkstra [24]. Quantification over a dummy variable z is
written (Q = : R.x : P.z). Q is the quantifier, R is a predicate in x representing the range,
and P is a term that depends on z. Formal logical deductions are given in the form:

formulay
op  { comment explaining the validity of relation op }
formulag

where op is an operator from the set {«<,<,=}. The boolean values true and false are
denoted by # and ff, respectively.

The dimension of a vector Z is denoted by |Z|. The projection to its coordinates k to [ is
written as Z[k..[]. If k>1 then this vector is by convention the unique vector of dimension 0.
Furthermore, <,,, (<) denote the (strict) lexicographic ordering on vectors, and #' denotes
the transpose of Z.

Scalar and matrix product are denoted by juxtaposition. Element (i,7) of matrix A is
denoted by A; ;. rank(A) denotes the row rank of A. A|i,---,j is the matrix that is composed

of rows i to j of matrix A.

Definition 1. A polyhedron is the finite intersection of halfspaces. A polytope is a bounded
polyhedron.
A Z-polyhedron (a Z-polytope) is the intersection of a polyhedron (polytope) and a lattice.
If not stated otherwise we mean Z-polyhedra (Z-polytopes) when we speak of polyhedra

(polytopes).

2.3 Restrictions of the Input Program

As source language we use a subset of an imperative language like Pascal, Modula, C or
Fortran. The syntax used in this thesis is self-explanatory, and we expect the reader to be
familiar with the basic concepts of imperative languages. Thus, we focus immediately on the
restrictions which we impose on general imperative programs:
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e The only data structures considered are arrays. Extensions to records (structures) or
unions (variant records) are straight-forward (but are not treated in this thesis), whereas
aliasing mechanisms or pointers cannot be integrated easily.

e The only control structures are for loops and while loops. Conditionals can be modeled
by while loops with at most one execution of the loop body; they are not treated
explicitly in this thesis. Procedure and function calls can be integrated by considering
them as a simultaneous assignment to those actual parameters which can be modified
by the call, e.g., all reference parameters.

For technical reasons we add another constraint:

e In order to make dataflow analysis efficient or even feasible, the array indices must be
affine functions in loop indices of surrounding loops and in structure parameters.

Please note that we inherit all these restrictions from the basic polytope model—they are
not limitations due to the presence of while loops.

Note further that the basic polytope model also has the limitation that all occuring loops
must be affine loops; the elimination of this restriction is the main contribution of this thesis.

2.4 Basic Model, Extensions and Parallelization

This section briefly presents the general technique of parallelization in the polytope model
and proposes the basic idea of how to integrate while loops. A more detailed description of
each parallelization step is deferred to the next chapter.

2.4.1 Parallelization of for Loops in the Polytope Model

Idea. The polytope model represents the atomic iteration steps of d perfectly nested for
loops as the points of a polytope in Z%: each loop defines the extent of the polytope in one
dimension. The faces of the polytope correspond to the bounds of the loops; they are all
known at compile time. This enables the discovery of maximal parallelism (relative to the
choices available within the model) at compile time.

Technique. The parallelization in the polytope model, described in [40], proceeds as follows
(Figure 2.1, graphical representation for n=3).

First, one represents d perfectly nested source loops into a d-dimensional polytope where
each loop defines the extent of the polytope in one dimension. We call this polytope the
index space and denote it by Z (Z C Zd). Each point of Z represents one iteration step of the
loop nest. The coordinates of the point are given by the values of the loop indices at that
step; the vector of these coordinates is called the index vector.

Next, one applies an affine coordinate transformation 7, the space-time mapping, to the
polytope and obtains another polytope in which some dimensions lie exclusively in space and
the others lie exclusively in time. In other words, the new coordinates represent explicitly
the (virtual) processor location and the time of execution of every computation of the target
program. In Figure 2.1 the space-time mapping is given by p = j, t = i+j. We call the
transformed polytope the target space and denote it by TZ.
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for i :=0 to n do for t:=0 to 2n + 2 do
for j:=0toi+2do parfor p := max(0,t—n) to min(¢, [¢/2] + 1) do
A(i, j) == A(i — 1,7) A(t—p,p) == A(t—p—1,p)
+A®, 5 —1) +A(t—p,p—1)
enddo enddo
enddo enddo

| =
) | -

i —t

Figure 2.1: Parallelization in the model

Finally, one translates this polytope back to a nest of target loops, where each space
dimension corresponds to a parallel loop and each time dimension corresponds to a sequential
loop.

By-statement mapping. The model described up to this point can only handle perfectly
nested loops. This severe restriction can be relaxed by applying all techniques mentioned
so far to every statement in the body separately, instead of applying it to the body of as a
whole. In this extension every statement gets its own index vector, its own source and target
polytope and its own space-time mapping [19, 37]. Thus, the symbols denoting the polytopes
and the transformation are indexed with the name of the statement. An operation of the
program is identified by the pair consisting of the name S of a statement and its index vector
i; we write this (S, ;) The set of all operations is denoted by §2.

Of course the introduction of by-statement space-time mappings complicates the genera-
tion of target code considerably; possible solutions are given in [12, 17, 37, 61].

We use the statement-based extension of the model. If we do not specify a specific state-
ment explicitly, we mean any statement.

2.4.2 Parallelization of while Loops in the Polyhedron Model

A while loop is commonly denoted by while condition do body; in contrast to for loops there
is no explicit loop index. However, since the polytope model is based on such indices, we
must add loop indices to while loops. Therefore, we prefer a while loop notation as in the
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programming language PL/1 which contains an explicit index:
for indez := [b while condition do body

where the lower bound /b is an affine expression in outer loop indices and structure parameters.

while loops without an explicit index can simply be given one with an arbitrary name
and with an arbitrary affine expression /b as lower bound; usually /b is zero in the source
program but, in general, it is not zero in the target program. The index value is incremented
automatically after each iteration (as in for loops).

After adapting the notation of while loops to the model, we now discuss the consequences
for the model. The extent of the index space of a statement in any dimension is given by the
number of iterations of the loop spawning this dimension (Section 2.4.1). However, the upper
bound of a while loop is unknown at compile time. Therefore, the index space is unbounded
at compile time and, thus, not a polytope but a polyhedron. That is the reason why we call
our extended model the polyhedron model.

At run time, a nest with while loops executes only a subset of the infinite index space Z. We
call this subset (which can, in general, not be predicted at compile time) the execution space
and name it X. Note that X need not be convex, and thus need not be a polytope. This
property poses one of the central problems concerning the generation of target programs. We
shall see that the same difficulties also occur for non-affine for loops; more details are given
in Section 4.2 and an appropriate solution is presented in Chapter 5.

For consistency reasons the non-convex set of points enumerated by non-affine for loops
is also called the execution space and named X. The index space of non-affine for loops is
the convex—possibly also infinite—approximation which results from omitting all non-convex
bounds. Thus, index spaces are always convex.

Remark. Note that we assume that the source program terminates.

Ezample 1. Consider the loop nest in Figure 2.2.

wy:  for i := 0 while cond, (i) do

wa: for j := 0 while conds (i, 7) do
S: bOdy(Zaj)
enddo
enddo

Figure 2.2: Two nested while loops

Figure 2.3 shows the index space (a) and a possible execution space (b) of statement S.

Remark. The termination detection of while loops requires some computations at run time.
These computations must be treated as regular statements, i.e., they must have, for example,
their own index and execution spaces. We call these statements loop statements.

Since loop statements are treated as regular statements, the dimensionality of their index
space should be equal to the depth of the loop statement, i.e., the number of surrounding
loops of the statements—as for the statements of the loop body. But this does not make
sense for loop statements whose computed values vary per iteration, as is the case for loop
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Figure 2.3: (a) Index space (b) Possible execution space

statements representing while loops. In this case, the dimensionality of the index space of the
loop statement is the depth plus 1.

Remark. We assume that the for loop bounds are evaluated once before the execution of
the loop as in Fortran, Pascal and Modula, not before every iteration as in C. (In fact, C
for loops are disguised while loops.) Thus, the dimensionality of the index space of the loop
statement of a for loop is equal to the depth of this loop statement.

Remark. Since loop statements guard the execution of the statements in the loop body, we
usually overlay the execution spaces of the loop statements and the statements in the loop
body in graphical representations. In such an overlay representation black dots represent the
computation points of the loop body, whereas dots in the various shades of gray represent the
testing points of loop statements.

In our graphical representations, the priorities of the axes are horizontal over vertical over
depth, if priorities are considered at all. T.e., the horizontal axes is enumerated by the outer
loop, and the other axes follow outside-in according to their priority.

Ezample 2. Figure 2.4 shows the construction of the execution space of statement S of Ex-
ample 1 in overlay representation: (a) to (c) each depicts one possible execution space for
the statements wy, we and S, respectively. (d) shows the overlay of (a) to (c), where lighter
points are obscured by darker points. Consequently, the only visible points are the com-
putation points of S and those testing points whose corresponding condition evaluates to

ff-

2.5 An Example Application

Throughout this thesis we illustrate all parallelization steps by applying them to an algorithm
for calculating the reflexive transitive closure of a finite, directed, acyclic, sparse graph which
is given by its adjacency list. More formally, a graph is represented by a set node of nodes
and, for every node, by the number nrsuc of its successors and the set suc of successor nodes.
rt of n is the adjacency list of node n in the reflexive transitive closure.
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—_—— —_——

' (© ' (d)

Figure 2.4: Execution space in overlay representation

Ezample 3. The graphs in Figure 2.5 are represented in the source program as follows:

n node nrsuc suc rt

o A 0 A

1| B 1 |cC B,C, A, E, D
2| ¢ 2 |AE|C AED

3| D 0 D

4| E 1 |D E, D

The following source algorithm computes the reflexive transitive closure, under the as-
sumption that the resulting adjacency lists rt are initially empty:

for every node n do
add n to rt of n
while there is a node m not yet considered in rt of n do
for every successor ms of m do
add ms to rt of n

Note that this algorithm may produce adjacency lists which contain multiple occurrences
of some nodes. This is a suboptimal representation, but enforcing lists with unique elements
spoils the parallelism; more on that later.
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Figure 2.5: A graph and its reflexive transitive closure

Since the polyhedron model offers no methods for dealing with sets or lists (not yet,
anyway) but excels on arrays, we use arrays in our concrete representation. node and nrsuc
are one-dimensional arrays, suc and rt are two-dimensional. For the computation of the
reflexive transitive closure we need an auxiliary one-dimensional array nzt which, for every
node n, provides a pointer to the next free entry in the list of n’s successors in the reflexive
transitive closure. Initially all undefined array elements contain the value 1; r¢t and nxt
are undefined everywhere; tag must be initialized with ff. The purpose of tag is to mark
nodes which have been visited so as to guarantee termination in graphs containing cycles.
The domain of array node exceeds the number of nodes by 1 in order to accommodate the
undefined element which forces termination of the outer while loop; the domain of arrays rt[n]
is unknown at compile time for every node n. The source program is given in Figure 2.6.

Si: for n := 0 while node[n] # L do

Sa: rt[n,0] :=n
Sa: nzt[n] =1
Sy for d := 0 while rt[n,d] # L do
Ss: if =tag[n, rt[n,d]] then
Se: tagn, rt[n,d]] == tt
St for s := 0 to nrsuc[rt[n,d]] — 1 do
Sg: rt[n, nzt[n]+s] := suc[rt[n, d], s]
enddo
So: nzt[n] := nzt[n] + nrsuclrt[n, d|]
endif
enddo
enddo

Figure 2.6: The source program

Note that some array indices are non-affine expressions in outer loop indices and param-
eters. This requires manual interaction for generating suitable input to dependence anal-



2.5 An Example Application 17

ysis tools and leads to an overly conservative estimation of the existing dependences (Sec-
tion 3.1.5).

Let us now illustrate the index and possible execution spaces of this example.

The index space of statements So and S3 is {n | n >0}, for statements S5, Sg and Sy it is
{(n,d) | n,d > 0}, and for statement Ss it is {(n,d, s) | n,d, s > 0}.

The index spaces of statements Si, Ss and S; are {n | n >0}, {(n,d) | n,d >0} and
{(n,d) | n,d >0}, respectively. (Remember that the dimensionality of index spaces of for
loops is equal to the depth of the loop statement.)

For an illustration of possible execution spaces of statements S, Sy and Sg we refer to
Figure 2.4 again: (a), (b) and (c) represent the execution spaces of statement Si, Sy and Sy,
respectively, where index n corresponds to ¢ and d corresponds to j.

We have proposed a way of integrating while loops into our computational model. In the
following chapters we focus on the individual steps of the loop parallelization methods of the
polytope model and present all necessary extensions to these methods for an extension to the
polyhedron model.



Chapter 3

Important Parallelization Phases

This chapter describes the most important phases of the parallelization in the polytope model
and the necessary extensions for the polyhedron model.

3.1 Dependence Analysis

In our approach, all limitations of parallelism are specified as dependences. Dependent op-
erations must be executed in a predefined order, whereas independent operations may be
executed in parallel. The following sections show that there are various kinds of dependences.
All these kinds of dependences must be represented in a common dependence model which
fits our computational model. This dependence model is the dependence graph defined in
Section 3.1.4.

3.1.1 Data Dependence Analysis in the Polytope Model

Data dependence provides information about the flow of data. In imperative languages, data
dependences boil down to conflicting accesses to memory cells. Bernstein expressed this
already in 1966 in his famous conditions for the existence of dependences [7], which can be
summarized as follows: two operations can only be data dependent if both access the same
memory cell and at least one of the two accesses is a write access.

Unfortunately, data dependence analysis is only well developed for scalar variables and
for arrays whose indices are affine functions in structure parameters and surrounding loop
indices [3, 5, 47].

For a definition of data dependences in the case of scalars and arrays, we first need a
refinement of the lexicographic order on operations.

Definition 2 (Sequential execution order <). For two operations o; = (S1,4;) and 0y =
<527 ZQ)

01 <0y & i;[l..k]<lexi3[1..k] Vv (zz[lk]zzg[lk] A Sy is textually before S5),
where k is the number of loops surrounding both S; and Ss.

Definition 3 (Data dependence). An operation oq is data dependent on an operation oy,
written 01d0s, if

18
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e 01 and o9 refer to the same scalar or array, and, in the latter case, all indices of the
array are identical,

e 01<092, and
e at least one of the two references is a write access.

01 is called the source and oo the sink of the dependence. A data dependence is called
a true dependence, anti dependence or output dependence if only the reference in o1, only
the reference in 0o or both references are write accesses, respectively. The three kinds of
dependences are denoted by %, 6%, 5%, respectively.

If spurious dependences shall be avoided, one more restriction must be added:

e There is no operation oz such that 0;<03<0o which writes to the same scalar or array
cell.

We call a true dependence which satisfies this additional constraint a flow dependence and
denote it by &/.

In nests of affine loops this additional restriction enables us to determine, for every oper-
ation reading some variable, the precise operation that wrote to that variable most recently.
With this information one can convert the source program to single-assignment form, in which
all variables are replaced by sufficiently large array variables such that no array cell is written
more than once.

Thus, this technique of single-assignment conversion avoids anti and output dependences
as well as spurious dependences. Therefore, programs in single-assignment form usually have
more parallelism—at the price of an increase in memory. There are algorithms for computing
flow dependences and for single-assignment conversion in the case of nests of affine loops, e.g.,
[28].

Let us now define some additional technical concepts of dependence analysis. Let i1 and io
be the index vectors of two dependent operations 07 and o, respectively, reduced to common
loop indices. Then, the difference is — iy is called a dependence vector. If the dependence
vector is the zero vector the dependence is called loop-independent, otherwise it is called
loop-carried.

Instead of enumerating every dependence separately, one often tries to use a common
representation which subsumes all dependences caused by the same conflicting accesses. There
are special cases in which this can be done easily: if all dependence vectors are identical we
speak of a uniform dependence—in this case the common dependence vector is also called the
distance vector; if the dependence vectors are affine functions in the index vectors, we speak
of an affine dependence [3, 4, 52]. For affine dependences one sometimes abstracts from the
precise affine function but uses what is called direction vectors instead. A direction vector is
similar to a distance vector but it carries less information: * is a wildcard for any arbitrary
value and + for any positive value, and juxtaposition denotes disjunction [63]. E.g., the
direction vector (0+, x) specifies dependences with dependence vectors (0,A) or (u, A) with
Wy AEZ and p > 0.
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3.1.2 Data Dependence Analysis in the Polyhedron Model

Feautrier’s method for data dependence analysis in the polytope model [28] has been adapted
to loop nests containing while loops by Collard, Barthou and Feautrier [16]. In a loop nest
with while loops one can, in general, no longer find the precise source of a dependence, but
only a set of possible sources. This also has consequences for single-assignment conversion
[11].

We use the techniques of Feautrier and Collard to compute the data dependences but we
do not explore the issue of single-assignment conversion.

3.1.3 Control Dependences

Definition 4 (Control dependence). An operation oy is control dependent on an opera-
tion o1, written 0109, if whether o5 is executed or not is determined by o;.

Ezample 4. In the following program

Sy: if condition then
So: body
endif

S9 is control dependent on 5.

Like conditional statements, while loops introduce control dependences: every operation
in the body of a while loop is control dependent on the computation of the while loop’s
termination condition at its own index vector.

In principle, this dependence is also present in affine loops but, since the loop bounds
are known at compile time, all information necessary for a parallelization can be obtained
without making these dependences explicit. In this case the loop statement itself is usually
not considered in the parallelization: it is given neither a polytope nor a space-time mapping.

In addition to the control dependences just described, while loops have loop-carried de-
pendences: the loop statement itself, i.e., the calculation of the termination condition, is
control dependent on its predecessor. This is due to the fact that a while loop terminates as
soon as its condition evaluates once to ff, and it does not restart whatever the values of the
termination condition at the succeeding points are. We also call these control dependences
while dependences.

The graphical representation of the while dependences in the overlay of the execution
spaces of some nested while loops has the shape of a (possibly multi-dimensional) comb.
Therefore, we also call the execution space an execution comb and refer to the iterations of
one while loop with fixed outer loop indices as a tooth of the execution comb. Figure 3.1
depicts the execution spaces of statement Sy and its surrounding loop statements in overlay
representation.

3.1.4 Dependence Graph

The (full) dependence graph of a loop nest is the directed acyclic graph (Q, E) whose vertex
set ) is the set of all operations of the loop nest and whose edge set E contains all dependences
between the operations represented by the vertices. The dependence graph w.r.t. the index set
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n

Figure 3.1: A possible execution space with control dependences

may be infinite, whereas the dependence graph w.r.t. the execution set is finite (but unknown
at compile time).

Alternatively, some parallelization techniques work on the reduced dependence graph which
is obtained from the full dependence graph by projecting all operations of one statement on
a single node [21, 23]. This graph is always finite since it has one node per statement; on
the other hand, it carries less information than the full dependence graph. To keep as much
information as possible, every edge of the reduced dependence graph is usually labeled by the
distance vector or the direction vector.

3.1.5 The Example

Control dependences. Based on the explanations in Section 3.1.3 we can list all control
dependences of the program in Figure 2.6 on page 16. In Table 3.1 column dist specifies
the distance vector of the dependences. For all three (non-affine) loops we have specified
the zero distance vectors, meaning that the loop body’s execution depends on the result of
the computations in the loop bounds. We have also specified the while dependences for the
two while loops (c19 and c¢14). The dependences ¢1g to o1 represent the control dependences
caused by the if clause.

Data Dependences. A parallelization requires first a data dependence analysis. For this
purpose we use the tool Tiny [63], which takes as input a program and yields as output the
direction vectors of all dependences in the program. With the help of this tool, we have
obtained the dependence information in Table 3.2 (semi-automatically), where column var
contains the name of the array which causes the dependence. The entries of column dir are
the direction vectors.

Let us have a closer look at some dependences. In general, it is undecidable at compile
time whether A[B[i]] is the same variable as A[j] if nothing is known about B[i|. Therefore
Tiny assumes that every access to an indirectly indexed array conflicts with every other access
to the same array, e.g., rt[n, nzt[n]+s| conflicts with every rt[n,d]. But we know the following
program-specific properties.

Lemmab5. In the sequential execution, the loop on d has the following invariant: nzt[n] is
the indez to the first undefined element in rt[n).
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nr  type from to dist nr  type from to dist
C1 ctrl Sl SQ (0) C12 ctrl S4 Sﬁ (
Co ctrl Sl 53 ( ) C13 ctrl 54 57 (
C3 ctrl Sl S4 ( ) Cl14 ctrl S4 Sg (
cqy ctrl Sy S ( ) c15  ctrl Sy So (
Cs ctrl Sl Sﬁ ( ) C16 ctrl S4 S4 (
cg ctrl Sy St (0) ci7  ctrl S Sy (
(0) (
(0) (
(0) (
(1) (
(

Cr ctrl 51 57 C18 ctrl S5 Sﬁ
Ccg ctrl Sl Sg C19 ctrl 55 57
Cg ctrl 51 Sg C20 ctrl S5 Sg
C10 ctrl Sl Sl C21 ctrl 55 Sg
C11 ctrl 54 55

SO oo o000 o
OO O O O = O O O

1
0,0)
Table 3.1: The control dependences

Proof. Induction on the loop index d:

Induction Base: When d = 0, the only defined values are rt[n,0], for n > 0, and nzt[n]
is initialized to 1 for n > 0. Thus, the postulate holds at the beginning of the first
iteration.

Induction Step: At each iteration of the loop on d, nzt[n] is increased by the number of new
values appended to positions nzt[n]+s. Thus, at the end of the iteration, nzt[n] points
again to the first undefined element.

Lemma 6. Another invariant of loop d, for any n, is: 0<d < nzt[n].

Proof. The while condition holds at every step of the while loop on d, thus rt[n,d] # L.
Therefore, with Lemma 5, 0 <d < nzt[n].

As a consequence, memory accesses of rt[n, nzt[n]+s] and rt[n,d] in the same iteration
always refer to different array elements. Thus, we may drop any dependence which is caused
by the update of rt[n, nzt[n]+s] in statement Sg and any read access to rt[n,d] in the same
iteration, i.e., with a direction vector with leading coordinates (0,0), which applies to the
dependences dig and do;. For the same reason, the direction vectors (0,0+) of dependences
di1, dy3, dig, dy7, and do7 can be changed to (0, +).

Note that this optimization is not necessary—neither for finding parallelism, nor for illus-
trating the concepts we are going to introduce. However, it thins the dependence graph out
enough to permit a one-dimensional schedule (Section 3.2.3). Without it, the best schedule
derivable with present techniques of array dependence analysis has two dimensions [29, 30].
It is to be hoped that methods of set dependence analysis, yet to be developed, will make
such manual, problem dependent adjustments obsolete.

The fact, pointed out earlier, that the algorithm does not produce an optimal representa-
tion —the adjacency lists may contain multiple entries—is essential in making the optimiza-
tion work. If we extracted these multiple entries, the number of added nodes in the loop on
s could drop below the increment of nzt[n] in statement S7, which would foil the induction
step in the proof of Lemma 5.
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nr type from to war dir nr type from to war dir
dq flow Sy Sy rt (0) dig anti Sy Ss 1t (0, 0, +)
d2 flow 52 55 rt (0) d19 anti Sg Sg rt (0, -I-, *)
d3 flow SQ Sﬁ rt (0) dgo anti Sg Sg nxt (0, 0 )
d4 flow 52 57 rt (0) d21 flow Sg S4 rt (0, +)
ds flow S5 Ss it (0) doo flow Sy Sy rt (0, -|—)
dg flow 52 Sg rt (0) d23 flow Sg SG rt (0, +)
d7 output SQ Sg rt (0) d24 flow Sg S7 rt (0, +)
dg flow 53 Sg nxt (0) d25 flow Sg Sg rt (0, 0, +)
do flow S3 Sy  nat (0) dog flow Sy Sg rt (0, =+, >l<)
dm output 53 Sg nxt (0) d27 flow Sg Sg rt (0, 0 )
di1 anti Sy Sg rt (0, 0—|—) dsg output Sg Sg 1t (0, +, 0)
di2  anti Ss S¢ tag (0,04) dyg  anti Sg S nat (0,4)
di3 anti Sy Sg it (0, O-I-) dsg anti Sy Sy rt (0, +)
dia anti Se Ss it (0, 0+) ds1 flow Sy Ss  nat (0, +)
dis flow Se S5 tag (0, +) dso flow Sy Sg  nxt (0, +)
dig output S S tag (0,+) d3z output Sy Sg nxt (0,+)
di7 anti S7 Sg it (0, 0+)

3.2 Schedule and Allocation

Table 3.2: The data dependences

3.2.1 Space-Time Mapping in the Polytope Model

The problem of scheduling computations (in time) and allocating them (in space) has received
a lot of attention in the framework of polytopes, from the seminal work of thirty years ago
by Karp, Miller and Winograd [36] to many recent extensions [10, 29, 30, 51, 52].

Definition 7 (Schedule, allocation, space-time matrix). Let ) be a set of operations,
(Q, E) their dependence graph, and r, 7" integer values.

e Function ¢ : Q — Z" is called a schedule if it preserves the data dependences:

Vz,2 2,8 €QA (z,2') EE : t(x) <o t(2'))

The schedule that maps every x € Q) to the first possible time step allowed by the
dependences is called the free schedule.

e Any function a : Q — Z" can be interpreted as an allocation.

Most parallelization methods based on the polytope model require the schedule and allo-

cation to be affine functions for every statement S:

(3 Xg,as : Ag€Z™4 NageZr - (Vi:iels:t((S,i)
(3os,0s :os€Z A BseZr - (Vi:iels:a((S,i))

= Asi+ag))
= 051+ fs))

The matrix Tg formed by Ag and og is called a transformation matrix or space-time matrix:

gs

Ts = (AS

)
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We call the images Ts(Zs) and Ts(Xs) of the index and the execution space of a statement S
the target polyhedron or target index space and the target execution space and denote them
by TZg and TXg, respectively.

Recently, a relaxation to piecewise affine functions for schedule and allocation has been
investigated [10, 29, 30, 51, 52].

For technical reasons we require at some points the invertibility of the space-time matrix
T. If T is not invertible, one proceeds in three steps: first, one constructs an auxiliary
transformation matrix 7 from 7 by eliminating linearly dependent rows and, if necessary,
adding new, linearly independent rows to get an invertible square matrix, second, one uses
T as the transformation matrix, and, third, one re-inserts the eliminated rows [61]. The
rows added in the first step can be viewed as a refinement of the time computed by the
scheduler. (Note that laying out these added dimensions in space would also be correct,
but this might violate some locality which is intended by the allocator; interpreting these
additional dimensions as refined time hampers neither schedule nor allocation.)

This technique allows us to assume—without loss of generality—that all space-time matri-
ces are invertible. When necessary, we shall refer to 7 as the essential transformation matrix.

Note that the re-insertion of linearly dependent rows in the third step can lead to trans-
formation matrices which have more rows than columns, i.e., the target space can have more
dimensions than the source space. The dimensionality of the image of the source space,
however, is the same as the dimensionality of the source space since the essential part of
the transformation comes from the invertible 7—this image is only embedded in a higher-
dimensional space.

There are many algorithms for computing a schedule or an allocation, not only in the case
of uniform dependences [36, 39, 50, 54] but also in the case of affine dependences [20, 22, 29,
30].

We usually use the scheduler of Darte/Vivien [20] which works on the reduced dependence
graph. The quality of the generated schedule falls a bit behind that of Feautrier’s method
[29, 30], but the computation of the schedule is much faster.

For finding allocations we apply Feautrier’s method [31], which is based on the owner
computes rule and tries to minimize communications with a greedy heuristics.

3.2.2 Space-Time Mapping in the Polyhedron Model

The extension of existing space-time mapping methods from affine loop nests to loop nests
containing while loops has been worked out by Collard [13]. In principle, the scheduling
methods of the polytope model are suitable for while loops without any change; the only
addition necessary is a mechanism for handling the imprecise output of the dataflow analysis.

3.2.3 The Example

When we apply the scheduling methods of Darte/Vivien [20] and the allocation method of
Feautrier [31] to our example program we obtain the schedules and allocations of Table 3.3.
The “leak” in the schedule, i.e., the fact that the time steps n+2 and n+3 are missing, is
due to the suboptimal scheduling method of Darte/Vivien; it would not occur in the optimal
schedule.
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Note that our implementation of Feautrier’s allocator allows to vary the number of alloca-
tion dimensions—according to Definition 7 it can be chosen freely. Table 3.3 shows the one-
and the three-dimensional allocation; the two-dimensional allocation is uninteresting since,
in that case, the schedule is linearly dependent on the allocation of every statement.

statement  schedule 1-dim. allocation 3-dim. allocation

Sy n n (n,0,0)
Sa n+1 n (n,0,0)
Ss n+1 n (n,0,0)
S4 n+4d +4 n (n,d—1,0)
S5 n+4d+5 n (n,d—1,0)
Se n+4d + 6 n (n,d—1,0)
S7 n+4d + 6 n (n,d—1,0)
Sg n+4d+7 n (n,d,s)
So n+4d + 8 n (n,d,0)

Table 3.3: The space-time mapping

Note that, in this example, the schedule and the allocation are linearly dependent. There-
fore, as written above, the target space of, e.g., statement Sg w.r.t. the three-dimensional
allocation is four-dimensional, although the index space is only three-dimensional.

3.3 Generation of Target Programs

3.3.1 Generation of Target Loops in the Polytope Model

The result of a space-time mapping of a source polyhedron is again a polyhedron. Since the
result of automatic parallelization ought to be a parallel program, not a geometrical object,
we have to re-describe the target polyhedron by a nest of loops, where dimensions in time
(enumerated by the schedule) become sequential loops and dimensions in space (enumerated
by the allocation) become parallel loops. This process is called the scanning of the target
space.

For this purpose, one first chooses the order of the loops. The target loop nest specifies
asynchronous parallelism if the outer loops are the parallel ones, and synchronous parallelism
if the outer loops are the sequential ones [40]; Banerjee calls this vertical and horizontal
parallelism [5], respectively. Of course, a mixture of both variants is also possible.

Then, one computes loop bounds, such that a bound of an outer loop must not depend
on the indices of inner loops. For this purpose, the inequality system describing the target
polyhedron must be rewritten: for every dimension of the target loop nest we eliminate suc-
cessively, inside out, all occurrences of inner loop variables in the inequality system. This
method is known as Fourier-Motzkin elimination, was developed in about 1827, and is pre-
sented, for example, in [4], pp. 81-94. From the resulting description of the target space the
target loop bounds can be read off immediately [1]. Several extensions to this simple method
of computing target loops have been proposed, e.g., [9, 12, 37, 61]. They do not change the
basic method but only extend its applicability.

When the space-time matrix 7 is not unimodular, i.e., when its inverse is not an integer
matrix, 7Z contains “holes”, i.e., it is not convex even though Z is [6]. More precisely, the
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lattice of TZ is coarser than the lattice of Z. In this case, one has to take care that the target
loops do not enumerate the holes. Luckily, non-unimodular mappings distribute holes evenly
throughout the target space. Therefore, there is always a target loop nest that scans TZ
precisely—whether 7 is unimodular [1] or not [32, 65].

3.3.2 Extensions for the Most General Case of the Polytope Model

Since code generation for the polyhedron model is the focus of this work, we describe first the
most general technique for code generation in the polytope model. S. Wetzel [61] presents
a method for code generation which can be applied to non-unimodular, piecewise affine by-
statement transformations of imperfectly nested loops where, in addition, the space-time
matrices need neither be square nor of full rank. We exploit her results for the extension to
code generation in the polyhedron model.

Section 3.2.1 describes how non-square or singular transformation matrices can be tackled.
The basic observation of [61] is that all remaining extensions (piecewise affinity, by-statement
mapping, imperfect loop nests) can be treated the same way.

As described previously, every statement, together with its enclosing loops, is considered
individually. In addition, if the space-time mapping of a statement is piecewise, its index
space is divided into the subspaces defined by the pieces, and the statement is copied and
assigned to everyone of the resulting subspaces; every resulting pair of a subspace and its
statement is called a program part and can be transformed individually, since it has its own
affine (not piecewise!) mapping, which might be non-unimodular but will be of full rank. This
method yields a set of target spaces, one per program part, which can be scanned individually
with standard methods (e.g., [1, 65]).

The main task remaining is to combine all target program parts. For this purpose, Wetzel
mainly offers two methods: merging at run time and merging at compile time.

The first method consists of finding a convex set S which encloses the union of all target
program parts (e.g., the convex or rectangular hull). Then, the generated loop nest enumerates
S, and the statement of every program part is guarded by a condition expressing the exact
bounds of the target program part.

The second method consists of computing all intersections and overlaps of the target
program parts and yields an imperfect target loop nest, which enumerates successively regions
which contain the same set of overlapping program parts. This avoids conditional statements
in the loop nest.

However, the disadvantage of the second method is, that, in the presence of symbolic
constants, the intersections of the target program parts cannot be computed at compile time.
Since the order of the structure parameters is not known, this method generates one target
program for every possible order of the values of the bounds of the target program parts
containing symbolic constants, thus leading to O(n!) cases, where n is the number of symbolic
constants.

In the presence of while loops, merging at compile time is impossible. Thus we exploit the
first method.

Ezample 5. Let us convert all while loops in our example to for loops with affine bounds. The
resulting program is senseless but it sets the stage for the code generation for the nest with
while loops. The code, obtained by applying the methods of [61], is given in Figure 3.2.
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Si: formn:=0to N do

Sa: rt[n,0] :==n
S3: nzt[n] =1
Sy: ford :=0to D do
S if =tag[n, rt[n,d]] then
Se: tagn, rt[n,d]] := t
S7: for s:=0to S do
Sg: rt[n, nzt[n]+s] = suc[rt[n,d], s]
enddo
So: nzt[n] := nzt[n] + nrsuclrt[n, d|]
endif
enddo
enddo

Figure 3.2: A modified source program

Let us use the one-dimensional allocation and the schedule of Table 3.3. The asynchronous
target program is given in Figure 3.3.

Note first that we drop the loop statements (S7, Sy, and S7), since these statements do
not appear in the polytope model, but for simplicity we do not tighten the schedule.

It is easy to recognize that all statements are guarded by a condition. This is due to the
fact that the program parts of the statements all have different offsets in the time dimension,
but the loop in this dimension must enumerate all possible time steps—the guards ensure
that every statement is only executed in its own target index space.

The modulo operations in the guards, denoted by %, are caused by the non-unimodularity
of the transformation.

The source index space of statement Sg has three dimensions, but the schedule and the
allocation together only enumerate two dimensions. As described previously, we add a row
(0 0 1) to the transformation matrix and view this additional dimension as a refinement of
time. In [61], such loops only surround the relevant statements—the outermost loops only
enumerate all necessary coordinates for the dimensions defined by schedule or allocation.

If every node has a local copy of the graph when our function is called, there is only
one (non-local) communication for our allocation in the original example which comes from
the unit control dependence at level 1. Since this dependence does not exist in the modified
source program (there are no while loops), there is no need for communications or barrier
synchronizations; all processors work independently.

3.3.3 Generation of Target Loops in the Polyhedron Model

This last phase of an automatic parallelization in the polytope model changes seriously if one
allows non-affine loops. We are not aware of any work on this area before ours. According
solutions to the arising problems are presented in the following chapters.
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parfor p:=0to N do
for t; :=p to maz(p+1,p+4D+8) do
if p—l—l =1 then

rt[p,0] :==p
nzt[p] :=1
endif

if (p+5) <t < (p+4D+5) and
(t1—p—>5)%4 = 0 then
if-cond[p, (t1—p—>5)/4] := not tagp, rt[p, (t1 —p—5)/4]]
endif
if (p+6) <t < (p+4D+6) and
(t1—p—6)%4 = 0 and if-cond|[p, (t; —p—6)/4] then
tag[pv ’I“t[p, (tl —p—6)/4]] =1t
endif
if (p+8) <t < (p+4D+8) and
(t1—p—8)%4 = 0 and if_cond|[p, (t; —p—8)/4] then
nzt[p] := nzt[p] + nrsucl[rt[p, (t —p—8)/4]]
endif
if (p+7) <t1 < (p+4D+7) and
(t1—p—7)%4 = 0 and if_cond|[p, (t; —p—T7)/4] then
forto:=0to S do
rt[p, ta+natp]] := sucl[rt[p, (t1 —p—T7)/4], t2]
enddo
endif
enddo
enddo

Figure 3.3: Target code of the modified program

3.3.4 Re-indexation in the Loop Body

For completeness, let us mention the final step of a target code generation: the replacement
of the source loop indices by target indices. The simplest solution is to apply the inverse of
the space-time matrix [40, 61].

Simpler array indices (and thus a better performance) of the target program are achieved
by the method of Collard [12], which completely rearranges the arrays. We do not dwell on
this task any further, since it is independent of whether the source loops are while loops or
for loops.



Chapter 4

Classification of Loops

Before we start on the technical details, let us give an overview of the variety of nested loops
that can occur in imperative programs. Let us first state some basic properties.

4.1 Properties of Loops and Loop Nests

The following facts are either trivial (but worth stating explicitly) or can be found in any
textbook on linear programming, e.g., [44, 55].

e The set of points enumerated by an affine loop nest is the intersection of a (convex)
polytope and a lattice, i.e., a Z-polytope.

e A Z-polytope can be enumerated (scanned) by a loop nest whose bounds are affine
expressions in outer loop indices and structure parameters [1].

e The image of a convex set under an affine transformation is a convex set.

e The image of a Z-polytope (Z-polyhedron) under an affine transformation of full rank
is a Z-polytope (Z-polyhedron), perhaps with a different underlying lattice.

e The set of coordinates enumerated by any loop within a loop nest with fixed outer
indices is the intersection of a one-dimensional convex set along the dimension spanned
by the loop and a lattice, i.e., a one-dimensional Z-polyhedron.

e Therefore, the set of points enumerated by a loop nest is the union of one-dimensional
Z-polyhedra.

e In general, the union of convex sets is not convex and the union of Z-polyhedra is not
a Z-polyhedron.

e The set of points enumerated by a loop nest is the intersection of a (not necessarily
convex) set of points and a lattice.

e In general, the points of the intersection of a non-convex set and a lattice cannot be
scanned by a loop nest.

29
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Figure 4.1: Unscannable target execution comb

These observations have a serious impact on the target code generation: a source loop
nest may have a non-convex execution space, which cannot be enumerated by any loop nest
after an affine transformation is applied.

Ezample 6. Let us apply the transformation

()=00) ()

to the execution comb in Figure 3.1 on page 21. The resulting target execution comb is
presented in Figure 4.1. Let us consider, e.g., the line £ =4. This line contains holes whose
distribution depends on the upper bound of the inner while loop which, in turn, depends on
the index of the outer while loop and is only known at run time. Thus, at compile time, we
cannot generate a loop that enumerates precisely those points of the transformed execution
comb which are located on the line z=4.

Of course, not all target execution spaces have this property. We call a set of points
scannable iff there exists a loop nest which enumerates every point of the set once and no
other point; otherwise the set is called unscannable.

A more detailed and formal treatment of scannability is given in Chapter 5. In the
remainder of the current chapter we only need to be aware of the existence of such a problem.

4.2 Classification

Prevalently, only two types of loops are distinguished in the literature: for loops whose bounds
are known at compile time and while loops whose iteration number, i.e., whose upper bound, is
not known before run time. As we shall see, this distinction is not sufficient for a parallelization
in the polyhedron model, esp. for target code generation.

Therefore, we propose a finer classification of loops and outline the impact of each class
on the parallelization and the necessary code generation methods. The crucial factors in the
classification are when the bounds of the loop can be determined and which form they take.
As in the Chomsky hierarchy of formal languages, the larger the class, the lower the number
we give it.
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In effect, we classify loops individually and treat them individually according to their
class. Note, however, that the class of a loop in a nest may depend on its outer loops.
We introduce five classes:

Class 4: Affine Loops. The bounds of these loops are affine expressions in the indices of
the outer loops and in the structure parameters. These loops can be treated in the polytope
model.

Example:

for i := 0 to n do
for j:=0toi+5do
body(i, j)
enddo
enddo

Class 3: Convex Loops. If the loop, together with the loops enclosing it, enumerates a
convex set, of course intersected by a lattice (the source space), then there must be a loop
nest which enumerates precisely the points of the set’s image (the target space) under the
space-time mapping, i.e., the target space is scannable. But there is no general mathematical
framework (similar to Fourier-Motzkin elimination for Class 4) for identifying this loop nest.

The requirement that the check for convexity must be possible at compile time restricts
the loop bounds to functions in the outer loop indices and structure parameters.

Example:

for i := 0 to n do
for j:=0 to [\/Z-I do
body(i, j)
enddo
enddo

Note that there are a lot of extensions to non-linear analysis, e.g., [2, 43, 49], but they all
focus on dependence analysis. The technique of [43] can (under some conditions) transform
polynomial constraints to an (unbounded) set of piecewise linear constraints. This might
sometimes allow to convert a loop of Class 3 to a loop of Class 4. However, we are not aware
of any mathematical framework which can deal properly with loops of Class 3. Therefore, we
treat loops of Class 3 as loops of Class 2 in this thesis.

Class 2: Arbitrary for Loops. The next larger class of loops contains loops whose number

of iterations is not known at compile time, but is known when the execution of the loop begins.

The bounds are arithmetic expressions in arbitrary variables and parameters. These loops

are usually written as for loops, even though the bounds must be calculated at run time.
Example:

for i := 0 ton do
for j := 0 to A[i] do
body(i, j)
enddo
enddo,
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for some array A.

Note that due to our semantics of for loops an occurrence of index j in the upper bound
of the loop does not make sense, since the bound is evaluated only once.

If a loop of Class 2 is contained in a loop nest, then the image of the nest’s index set is, in
general, unscannable. Therefore, we must scan a superset of the image and prevent the points
which are not in the image from execution. For this purpose, we consider control dependences
with dependence vector 0 from the computation of the loop bound to all statements of the
loop body. These dependences reflect that the maximal number of iterations can and must
be calculated before the operations of the body are executed.

For Classes 3 and 4 such control dependences need not be considered since the transformed
loop bounds capture all required information. However, if the space-time mapped bounds
of convex loops cannot be computed precisely at compile time but only estimated, then
enumerating a superset of the image and taking explicit care of the control dependences
becomes necessary to exclude those points from execution which are not in the image.

Class 1: Static while Loops. In many while loops, the upper bound is also fixed when the
while loop starts execution—however, it is not given explicitly as an arithmetic expression
but as a while condition which does not hold in some iteration. Consequently, there is a while
dependence, i.e., a control dependence from one iteration to the next iteration of the while
loop. Obviously the target loop bounds must be computed at run time.

Example:

for i := 0 to n do
for j := 0 while A[z, j] > 0 do
body(i, 7)
enddo
enddo,

where array A is not modified in the body.

However, a loop of Class 1 has no dependence from the loop body to the variables in its
termination condition. This can be exploited as follows.

We call a while loop robust if its termination condition can be evaluated at an index beyond
the termination index, without leading to undesired side-effects. We call a robust while loop
strict if its termination condition evaluates to ff for all iterations beyond the termination
index.

If a static while loop is robust and strict, arbitrarily many while conditions can be evaluated
simultaneously. Since this method ignores the while dependences, we may call it speculative
ezecution. In fact, this is the ideal case for speculation.

We may also regard such a loop as an unfavorably denoted loop of Class 2. However,
note that there is still no expression bounding the number of iterations of the loop. Thus,
partitioning is necessary (cf. Section 6.2).

If a static while loop is only robust but not strict, one can again evaluate speculatively
as many conditions in parallel as there are processors. Subsequently, one can, in logarithmic
time, find the minimal index for which the termination condition evaluates to #, if any, or
enumerate the next block of conditions. This method finally yields the maximal index of the
while loop, which can then be used as the upper bound of a for loop replacing the while loop.
We do not exploit this option further since it falls outside our model.
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Class 0: Dynamic while Loops. In the most general case of loops, the number of iterations
may be changed by the iterations of the loop body. The difference to loops of Class 1 is a
data dependence from a statement in the loop body to the while condition. This has no
consequences for the code generation.

Example:

for i : =0 ton do
for j := 0 while A[i, ] > 0 do
body(i, j)
enddo
enddo,

where array A is modified in the body.

In the literature, a popular way of parallelizing while loops (Classes 1 and 0) is to divide
the loop body into a hopefully small “control” and a hopefully more complex “rest” part, then
to execute the while loop with the statements of the control part only in order to obtain the
extent of the while loop, and finally to spawn the same number of iterations by a—hopefully
parallel—for loop containing the statements of the rest part in its body [64].

Note that, according to this method, a loop of Class 1 has the property that the control
part only consists of the termination condition.

We claim that the space-time mapping approach unifies and generalizes other approaches
to the parallelization of general while loops [59, 64], and that it yields the same pipelined
solutions—or better ones, since the methods described before do not add any non-existent
data dependences and provided one uses the best available by-statement scheduler [29, 30].

Of course, the suggested classification is not the only possible one. M. Geigl [33] describes
a variety of parameters that influence the possibilities of code generation. Mainly he describes
refinements of our classification, e.g., he presents cases in which code generation can do more
than the approach presented here.

4.3 The Example

Let us classify the loops in our example program of transitive closure on page 14.

The outermost loop is a typical member of Class 1. If we had stored the number of nodes in
some variable, we would get a loop of Class 3 since, together with its (non-existing) enclosing
loops, the resulting for loop enumerates a convex set; if the number of nodes were a symbolic
constant, it would even be a loop of Class 4. Target code enumerating the transformed index
space precisely can be generated, since it is convex regardless of whether the outermost loop
is a for or a while loop. However, if we convert this loop to Class 3 or Class 4, we can omit
the unit and null control dependence vectors, which must be cited in loops of Class 1. This
may result in a better schedule.

The loop on d is of Class 0 since list r¢[n], which determines its termination, becomes
longer as execution proceeds.

The innermost loop is of Class 2 since its number of iterations is fixed when the loop starts,
but is not known at compile time. On the other hand, the number of iterations of this loop
differs for every instance, i.e., for every iteration vector (n,d), and it cannot be guaranteed at
compile time that the set of all points (n,d, s) enumerated is convex, since this set depends
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on the input graph which is not known before run time. Therefore, the innermost loop is not
of Class 3.

In the next three chapters we focus on the code generation for loops of Class 2, 1 and 0.
To ensure readability, the theoretical sections concentrate on the perfectly nested case, or,
more precise, on one statement together with its surrounding loops. The extension of these
ideas to imperfectly nested loops does not introduce theoretical but only technical problems,
solutions to which are discussed in [33]. However, we use the solutions of [33] in this thesis
in order to treat our example program of Section 2.5.



Chapter 5

Scannability

As we have seen in Section 4.1, there are unscannable sets. In Section 5.1 we try to tackle this
problem in more detail and treat it more formally. In Section 5.2 we try to obtain scannable
target execution spaces “by construction”, i.e., we distinguish a class of transformation ma-
trices which guarantee scannable target spaces. Section 5.3 shows a way of dealing with
unscannable sets.

5.1 Scannable Sets

We have seen that the target execution comb of Example 6 on page 30 is unscannable since
the line £ =4 contains holes whose distribution is only known at run time. Thus, in order to
formalize the definition of a scannable set, we must formalize the definition of a hole.

As denoted in Section 4.1, the set of points enumerated by one loop at some level [ inside
a nest with fixed outer loop indices is a one-dimensional Z-polyhedron, i.e., the intersection of
a one-dimensional convex set and a grid. In other words, if the loop at level [ enumerates two

points (z1,---, %) and (z1,---, 21, ;) with z; <z, then it also enumerates all intermediate
points (z1,---,x;—1,2]) with z; <z} <zj on the grid. This leads to the formal definition of a
hole.

Definition 8 (Hole). Let S C Z% be a set of coordinate vectors on a grid with an implicit
order < on the dimensions of the grid (the order in which the coordinates are written down).
Then, a coordinate vector (z1,---,x4) € Z% is a hole w.r.t. level r and order <, for 1<r<d,
iff
(xla"'axd)€5 N (El(xla"'afr‘a*a"'7*)7(5[;1’"'7:57‘3*7"'7*) :
($17"'751?1“7*7"'7*)7(51717"'7351“7*7"'7*) €S :fr<$7"<g§7‘)7

where * stands for an arbitrary value.
A coordinate vector (z1,---,z4) € Z? is a hole w.r.t. order < iff it is a hole w.r.t. some
dimension and w.r.t. order <.

Now, we can formally define scannable sets.

Definition 9 (Scannable set). A set S is scannable w.r.t. a predefined order < on the
dimensions iff S does not contain a hole w.r.t. order <.
A set S is scannable if it is scannable w.r.t. some order <.

35



5.2 Scannable Transformations 36

Figure 5.1: Unscannable comb w.r.t. the depicted order

For an illustration of these definitions we take another, very simple example and compare
it with Example 6 on page 30.

Ezample 7. Let us again use the execution comb in Figure 3.1 on page 21 and apply the

transformation
T\ 0 1 n
y ) \10 d

to it. As in Example 6 on page 30 the line £ =4 contains holes whose distribution is only
known at run time (Figure 5.1).

On the other hand, this transformation only represents loop interchange. Thus, if we scan
first dimension y and then dimension x we can enumerate precisely all points—the source
program does so! Therefore, the comb in Figure 5.1 is scannable, but unscannable w.r.t. the
order in which z is the outer dimension, since, e.g., (2,2) is a hole w.r.t. level 2 for this order.

The target execution comb of Example 6 is unscannable, since the point (4,2) is a hole
w.r.t. levels 1 and 2, regardless of the order of the dimensions.

Note that the scannability of transformed execution spaces is independent of which di-
mensions are in time and which are in space, or even, whether the transformation is a valid
space-time mapping or not.

5.2 Scannable Transformations

After having introduced a formal definition of the sets which we can describe precisely
(scannable sets), we now try to discover whether we can gain scannable target spaces “by
construction”. More precisely, we want to exploit the fact that all source programs enu-
merate sets of points, which therefore are scannable by definition. Thus, we are interested
in identifying the class of transformations which preserves scannability. We also call such
transformations scannable.

Note that the scannability of a transformation can never be a necessary condition for
obtaining a scannable target execution space, since, e.g., convex source execution spaces lead
to scannable target spaces for every transformation. Thus, we are only going to develop a
sufficient condition for the scannability of a transformation.

Let us first introduce the following conventions:

e We refer to the loop immediately surrounding the statement at level [ as loop I.
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e The columns of the space-time matrix 7 are ordered (left to right) according to the
(outside-in) order of the loops in the source loop nest.

e The rows of 7 are ordered (top to bottom) according to the (outside-in) order of the
target loops which we want to generate. Which dimensions are in time and which are
in space is immaterial.

e A column which corresponds to a loop of Class 3 or lower is called a non-affine column;
the predicate naff-col(c) indicates whether column ¢ is non-affine.

Remark. In the polytope model, only rows representing multi-dimensional time have a given
order; the rows representing (virtual) space have no special positions, i.e., the choice of a
synchronous or asynchronous target program does not influence the transformation matrix.
However, in the polyhedron model, the order of the target loops is very important, as we shall
see later on in this chapter. Therefore, we inherit the information of the nesting order of the
target loops as order on the rows of the transformation matrix.

5.2.1 Idea

Let us now motivate the ideas of scannable transformations informally. The central observa-
tion is that, during the iteration of one loop w inside a nest, the indices of its enclosing loops
are constant, and, in general, the extent of loop w depends on all these indices.

Note that there is a potential for optimization that we do not exploit. We only exploit
the information provided by the class the loop belongs to: in affine loops, we do not consider
scannability, since it is a non-issue in Class 4.

Thus, let w be a non-affine loop inside a nest L and ¢y, ..., c,_1 the indices of its enclosing
loops. Further, let 7 be a transformation matrix and w’ a row with 7, #0, i.e., source
dimension w is laid out in target dimension w' (at least partly, if there are multiple rows w’
with Ty 4 #0).

In order to obtain a loop nest L' which scans any possible transformed execution space of
L precisely, we must require that the indices ¢y, ..., ¢, 1 of the surrounding source loops are
derivable again, since these indices influence the extent of w and, thus, the extent of w'.

We name the function yielding these indices f. Note that f must express ci,...,¢, 1 in
the indices rq,...,r,_1 of the target loops which enclose loop w'. Thus, f must not depend
on indices of target loops inside loop w':

Vo irr €Z4 ANV i 1<i<w' —1:ri=rl): f(r) = f(r'))

Intuitively, these rules enforce that the iterations of a while loop at some level, say, w of
the source loop nest are not part of some target loop (then also a while loop) at a level less
than w. In other words, a while loop in the source can only be distributed across deeper levels
of the target loop nest. (Compare also the theory of loop permutations [5].)

5.2.2 Formalization
The ideas of the previous section lead to the following formal definition of scannability:

Definition 10 (Scannable transformations). The transformation of a loop nest L by an
invertible square matrix T of rank d is scannable iff:
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Y w,w' : 1<w,w' <d A naff-col(w) ATy #0: (3 f: fezt - zv1.
Vol cir ' c€ZIA(r=Tc)ANVi:1<i<w —1:r;=rl):

fr)y=(c1,-+ cw-1)" = f(r') )

The existential quantification of f in Definition 10 makes it hard to check the scannability
of a given transformation; therefore, we are interested in a more concrete condition. Not
surprisingly, f is part of the inverse space-time matrix 7~'. The following theorem states
the precise definition of f.

Theorem 11 (Scannability test). The transformation of a loop nest L by an invertible
square matriz T of rank d is scannable iff:

(Y w,w' : 1 <w,w' <d A naff-col(w) ATy w#0:
(Vre:1<r <w/\w’§c§d:7’;ﬂ}:0) Aw<w')

Proof. “=": We prove the two conjuncts successively.

e Left conjunct: By the definition of scannability, there is an f such that:
(Vre:reeZiN(r=Tc): f(r)=(c1, -, cw1)")
It follows that:

Vr:rezd: fr)
= (Cla"'acw—l)T
= C|1,---,w—1

- (T‘lr)‘l’...’w_l
= 77 r)

1,w—1

f is a linear function. We name the matrix that represents it M = 'T*l‘l . €
e

7w=D*d_ Note that M is the upper part of 7~'. By showing that the right part
of M is zero, we prove that some upper right corner of 7! is zero. The definition
of scannability gives us:

Vo i €ZOANV i 1<i<w' —1:ri=rl): f(r) = f(r'")
= { M is the matrix for f }

Vo €ZAEANV i 1<i<w' —1:ri=7l): Mr=M7¢')
= { definition of matrix-vector-product, ignoring equal summands }

Vorrrrezd: (Vi:1<i<w—1:

Ejrw'<j<d: M, rj)=XEj:w' <j<d: M,;r})))

=  { choose ' =0 }

(Vr:reZl: (Vi:1<i<w-1: (2 j:w'<j<d:M;r;) =0))
= { arithmetic }

(Vi,j:1<i<w—1Aw <j<d:M;;=0)
= {M=T7"" }

1ew—1

(Vi,7: 1§i§w—1/\w'§j§d;7’i_’j1=0)
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e Right conjunct: We know that rank(7 ') = d, since 7 is an invertible square
matrix of rank d. Thus:

d

rank(7 ")

rank(M) + rank(T],, ... )

rank(M) +d — (w—1)

< { arithmetic }
w—1 < rank(M)

< { rank(M) <w-—1 (since M has w—1 rows) }
rank(M) = w—1

INIA I

Thus, there must be some number & of non-zero columns that is at least as big as
rank(M). Tt follows that rank(M) < k < w'—1, since all columns from column w’
to the right are zero. This yields, with the derived value for rank(M), w<w'.

“<": Let the column w be a non-affine column, and let w <w' with Ty, # 0. Then, let
r,r’, ¢ be vectors in Z¢ such that r = Tcand (Vi:1<i<w' —1:r; =r). Define

flx) = 7’71‘1 2 We show that this choice for f satisfies the conditions required
e

in the definition of scannability. The right side of the if-and-only-if in Theorem 11

yields:

(Vi,7: 1§z‘<w/\w’§jgd;7';j1=0)
= { (VZ]_SZS’LUI—]_TZ:T’;)/\(r:TC) }
Til T:Tﬁl‘ vl

AT S (’rll;:)"w1

1,--w—1

= C|1,---,w—1 — (Cla . ’Cwil)T

1, w—1
< { definition of f }

fF)y=f@") A flr)= (1, cwm1) "

Theorem 11 provides us with a simple way of checking whether the target space of the
transformation can be scanned precisely by a target loop nest.

Let us check whether Definition 10, and thus Theorem 11, both for scannable transfor-
mations, guarantee scannable target execution spaces, i.e., whether Definition 10 is sufficient
for creating scannable sets. In the proof of the following lemma we denote a line between two
points z and y by line(z,y).

Lemma 12. The target execution space of a loop nest L obtained by a scannable and uni-
modular matriz T contains no holes.

Proof. We prove this lemma by contradiction: assume h = (hy,--+, Ay, %, -+, %) is a hole
w.r.t. level w’ where * stands for an arbitrary value. To simplify the proof, we choose h such
that the level w.r.t. its corresponding source coordinates is minimal.
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(Fw' : 1<w'<d : h as just described)

< { definition of hole }
Fuw' : 1<w'<d : hgTXANEBh ,hT : b ,hT € TXA
h™ = (h1,- - by —1, by, %, %), BT = (hl,---,hw/,l,h;,*,---,*) :
Rt > by > b))

= { the target space is not generated by an affine loop nest }
Fw,w' : 1<w,w' <d : Ty # 0A naff-col(w) AN h & TXA
(3h~,hT : b, bt € TAA
™ = (R, ha 1 hgyy koo k) BT = (R, oo hyy 1, By ey o)
bty > hy > b))

= { Definition 10 with A~ as r and A" and h as r' and proof of Theo-

rem 11 }

Fw,w' : 1<w,w' <d : Ty # 0 A naff-col(w) Nh & TXA
(3h~,ht : b, hT € TAA
™ = (R, ha 1 hyy ke k) BT = (R, e hyy 1, By ke %)
bt > hy > h)A

(T 1h+)‘1,---,w—1 - (T 1h) 1, w—1 - (T 1h )‘1,---,11)—1)
= { T is injective and h_, # h, # h, }
Fw,w' : 1<w,w' <d : Ty # 0 A naff-col(w) N h & TXA
(3h,hT : bkt € TXA
h™ = (hla"'ah’w'—lah;'a*a"'7*)7h+ = (hla"'ah'w’—lah'xla*a"'7*) :
Rt > hyy > hi,)A

(T ' h+) ‘1,---,11)—1 - (T ' h) 1, w—1 - (T 1 h )‘1,---,11)—1 A
AT, ()
= { level of 7~!h is minimal }
Fw,w' : 1<w,w' <d : Ty # 0A naff-col(w) AN h & TXA
3 h™ Bt : b BT € TAA
W= (hy b1y gy 6), B = (B, b1 B, 8)
Bt > by > hi)A

() = T, = )
(), % ), ()

VE: whl<k<d : (T‘lh)‘k = Iby))

= { the source loop at level w cannot skip the index value (7'_1 h)‘ }
Fw,w" : 1<w,w' <d : Ty w # 0 A naff-col(w) N h & TXA ‘
(3h,h* : b, bt € TAA
h™ = (hy,- by —1,hoy ke %), hT = (hl,---,hw/_l,h:;,,*,---,*) :
Bty > hay > hoy)A
T 1hex)

= { simplification }
heg TXANT ‘heX

< { definition of & and predicate calculus }

I

w’?

w’?

w’?
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Remark. Of course, scannability does not imply the validity of the space-time mapping.
Take, e.g., the execution space in Figure 3.1 and the identity as the transformation. That
is, leave the loops as they are, only map one of them—it does not matter which—entirely
to space. This satisfies scannability, since no loops are permuted, but it violates the while
dependences of that while loop mapped to space.

5.2.3 Additional Benefit of Scannable Transformations

Up to now, we have concentrated on the question of whether a set S of points is “precisely”
scannable. As noted above, we intend to enumerate a superset of S and prevent the holes
from execution when dealing with unscannable sets. But we must still find a loop nest, i.e.,
loop bounds—in this case, to enumerate the superset. The following example shows that this
is, in general, a non-trivial task.

Ezample 8. Take the loop nest

for i : =0 ton do
for 7 := 0 while condition(i,j) do
body
enddo
enddo

and try to interchange the loops, i.e.,

- (24)

The bound for the outer target loop will always have to compute the maximal extent of all
n+1 while loop instances; but this requires both indices 7 and j, since we have to evaluate
the conditions condition(i, j) for all indices 7 and j. So, there is no precise outer loop bound
that does not depend on the inner indices.

Thus, there cannot exist a generalization of the Fourier-Motzkin elimination method for
arbitrary loop nests with arbitrary transformations, which yields target loop bounds enumer-
ating (even some superset of) the target execution space and only depending on outer loop
indices and parameters.

This raises the question: is it possible to find (precise) loop bounds for the target execution
space generated by a scannable transformation which do not depend on inner indices? The
answer is given by the following immediate consequence of Definition 10.

Lemma 13. The bounds of the target loops which enumerate the target execution space gen-
erated by a scannable transformation do not depend on loop indices of inner target loops.

Proof. In the source program there exists some (not explicitly given) function g, (c1, -+, cw—1),
which yields the lower (upper) bound b,, of a source loop w for fixed source indices (cq,-- -,
cw—1). We show that the lemma is true for the target loop bound at any level w’. Therefore,
let D be the set of all source dimensions w which are (partly) laid out in target dimension
w'. Thus, for any w':



5.2 Scannable Transformations 42

(Vw :we€D : Ty #0) AT scannable
= { Definition 10 }
NVw:weD:(3f:fezs—zv1:
Vol cirr c€ZA(r=Tc)ANVi:1<i<w —1:r;=rl):
F) = (1w 1) = F() ) V ~maff-col(u))
= { define b, := gy(c1,---,cp—1); insert it as condition and as
consequence }
NVw:weD:Af:fezd -z (Vrr' c:rr',ceZsA(r=Tc)A
gw(er, ycw_1) =bpy AN(Vi:1<i<w'—1:rj=rl):
flr) =(e1,- - cw1) = f(r') Aguler, -+, cw1) = by ) V =naff-col(w))
= { substitute (¢1, -, cu_1) by f(r) and f(r') }
NVw:weD:3f:fezd =z (Vrr c:rr,ceZiA(r=Tc)A
gw(ct, yew_1) =bpy AN(Vi:1<i<w'—1:r;=r]):
F0) = (et 1) A gulf () = (7)) = b )) V —naff-col(w))
= { omit f(r) = (e1,---,cy—1); substitute f by 7'_1‘1 ) (cf. proof
of Theorem 11) }
NVw:weD:(Nrr c:rr ceZN(r=Tc)A
gw(ct, - yew_1) =bpy AN(Vi:1<i<w'—1:r;=r]):

gw(Til‘l ew—1 T) - gw(Til 1,-,w—1 r,) - bw ) v ﬁnaﬂ.—COl(w))

Yoy

Thus, any two points 7,7 which do not differ in outer target loop indices compute the
same border coordinate for the target loop w' with fixed outer indices (ry, - ,ryr_1).

Remark. Note that Lemmas 12 and 13 are implications only. In both cases, the reverse
implication is not true since, e.g., for convex loop nests the target space is always scannable,
regardless of the transformation.

5.2.4 Applicability
5.2.5 Choices of Space-Time Mappings

Our requirements for a precise scan limit the choice of space-time mapping significantly. Let
us discuss what freedom of choice is left:

e I[fonly the outermost loop of the nest is a non-affine loop, then every space-time mapping
produces scannable execution spaces, since the scannability condition is trivially satisfied
(1<r< w is impossible for w = 1).

e In a two-dimensional nest with an inner non-affine loop, the invertible space-time matrix,

. - 0 .
and, equivalently, its inverse, must have the form Z:j p with y€Z and z, z€ Z\{0}.

e For deeper loop nests, there is a wider choice of space-time mappings. It is easy to
show that all lower triangular matrices are scannable; however, this is not a necessary
condition. Assume a nest of three loops of which only the second is a while loop. Then,
the following space-time matrix is scannable:

100 1 0 0
T=|111 T1i=| -1 2 -1
11 2 0 -1 1
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5.2.6 Asynchronous Target Loop Nests and Scannability

Now that we have demonstrated the benefits of scannable transformations, we want to know
whether there always exists a scannable transformation. Since it depends on the position of the
schedule in the space-time matrix, the answer is different for synchronous and asynchronous
programs.

Lemma 14. For asynchronous target loop nests, a scannable space-time mapping can always

be found.

Proof. Let T be the identity matrix of rank d, where d is the depth of the loop nest. T
is both scannable (Definition 10) and a valid allocation since we imposed no requirements
on allocations (Definition 7), and thus, by appending rows for the schedule dimensions, we
obtain a valid space-time matrix.

Note that the identity is not the only allocation which leads to a scannable space-time
mapping—it is just the simplest and most general one for the proof. Another very similar,
scannable and always valid asynchronous space-time matrix can be composed as follows:
the first rows, representing the allocation, are the unit vectors of length d for dimensions
1,---,d—1, and the row(s) for the schedule is/are appended below. If the schedule is one-
dimensional, the resulting square matrix represents a skewing of all loops into the innermost
dimension, which represents time. Of course, one may choose different allocations in practice.

5.3 Unscannable Execution Spaces

5.3.1 Motivation: Why Unscannable Transformations?

One might wonder whether it is necessary to consider unscannable transformations at all.
Unfortunately, the answer is yes—if one is interested in synchronous target loop nests, i.e.,
nests whose outer loop is sequential.

Consider some while loop in the source loop nest but not at the outer level. Because of
the while dependences, every while loop must be partially laid out in time. But time is the
outer target loop, so portions of the while loop must move to an outer level—a violation of
the scannability condition! Thus, only the trivial case of a for loop nest with an enclosing
while loop can have a synchronous target loop nest that satisfies scannability.

5.3.2 Controlling the Scan of an Unscannable Execution Space

To generate target code for an unscannable target execution space we must enumerate a
superset of it. We name this superset 7S and its inverse image under the space-time mapping
S.

For loops of Class 2 the source loop bounds are given as arithmetic expressions which can
be evaluated at any point. Therefore, one can, separately for every point, determine whether
the point belongs to TX or to TS\TX.

In while loops the upper bound is not given explicitly but calculated iteratively instead.
Thus, the information about the termination of a while loop can only be propagated along
the tooth of the while loop. Consequently, at a point in 7S, one cannot decide by local
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information only whether the point belongs to TX or not, but one needs the information
about the termination of its enclosing while loops.

For this purpose we define a predicate for a nest of while loops which is an accurate
recognizer of the points in TX, i.e., which distinguishes the points in 7X from those outside.
In the following chapters, we use this predicate to prevent the execution of holes in the target
polyhedron at run time.

Note that for simplicity we only consider while loops in the loop nest; we do not consider
possible additional for loops in the following discussions since they only introduce additional
dimensions but do not raise any problems.

Definition 15 (Activity recognizer active, and active). Let r be some level of the source
loop nest and w the while loop at that level. active, holds for any point = in Z iff the source
program enumerates z, that is, iff at least the while condition condition, of loop w is evaluated
at point z. Formally:

vV (z1,-+,mq) 2 (21, ,2q9) €T : (Vr:1<r<d: active,(x1, -, Tp,lbpy1,-+,1lbg) =

if z,>1b, — activep(z1, -y xp—1,Ibpy, -, Ibg)A (1)
condition,(x1,- -, x,—1)

| z,=0,Ar>1 — activep_1(1, -+, Ty, by, -+, lbg) A (2)
conditiony_1(x1,-++, Tpr1)

| x,=lbAr=1 — # (3)

| z<lb = f (4)

fi )

active(xy, -+, xq) = (Ar : 1<r<d : active (1, -+, 24))
The cases of the defining equation can be explained as follows. Point (z1, -+ ,zy,lby11, -+ ,lbg)

is active with respect to level r iff

(1) the point represents some non-leading step of a loop, the while condition holds and the
previous step is active with respect to level r (hence the z, — 1), or

(2) the point represents the first step of an inner loop, the while condition holds for the
immediately enclosing loop and the point is active with respect to the level of the
immediately enclosing loop (hence the z,_1), or

(3) the point represents the first step of the entire loop nest.

In all other cases, (%1, - ,&p,lbr11, - ,lbg) is inactive with respect to level r. These include
the case where the while condition of w is violated (covered by alternatives (1) and (2)), and
the case that the point is not even in the index space (alternative (4)). Note, that points for
which the while condition holds at level r but not at level r+1 are active with respect to level
r but not with respect to levels r+1 and deeper.

The recursive definition of predicate active, follows the dependences which are introduced
by the while indices. Since our space-time mapping must respect these dependences, we can
be sure that, during scanning, the activity of any point z in 7Z need not be checked before
the activity of its predecessor has been checked. Therefore, we can compute predicate active,.,
for every point on every tooth of the execution comb, in sequence from the root to the tip
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and store the result until it is needed. Note that active, at point (x1,---,zy, byry1,- -, bg)
is calculated from condition,(z1,- -, %y, lbyi1,- -+, 1lbg) or condition, 1 (z1, -+, Tp_1, lbp, -+,
Ibg), which is usually data dependent on the loop body at (z1,- -,z lbpi1,---,1lbg) or (z1,

oy Tp_1, lbp, -+, Iby), respectively. In this case, the computation of the values of active, is
executed alternately with the computations of the loop body.

Note that active, at point (z1, - - ,zy,lby11, - ,lbg) depends on active, at exactly one other
point (see the definition); active, at point (1, - - ,2p,lbyy1, - - ,lbg) is used for the computation
of active, at point (z1, - -+, ¢, +1, lbey, -+, lbg) and, if r is not the innermost loop level, also
for the computation of active, i at itself.

Since the index space of a while loop nest contains points that do not model a loop step
but only a terminating test, we also require a recognizer, ezecuted, for points of Z, that do
represent the execution of the loop body.

Definition 16 (Recognizer ezecuted, and ezecuted).

(Vr:1<r<d: (Vz:xz€ZI: executed.(r1, -, Tp,lbri1,---,1lbg) &
((lCt?:’UeT-(iL'l, Ty Ty le+17 ) lbd) A COTLd’l:t'l:O’I‘Lr(iEl, o 7x7‘))))
(Vz : z€T : executed(x) & executedg(z1,--+,1q))

At this point, we have the machinery for a formal definition of the execution space:
Definition 17 (Execution space). X = {z €7 : ezxecuted(z)}

Later on, we shall need its extension to all points that are active in some dimension:
Definition 18 (Activity space). X = {z€T : active(z)}

Some hints on the implementation of the introduced predicates executed and active are
given in Chapter 7 which treats the problem of termination detection, since we want to
integrate the solutions for the termination and the scanning problem in one common scheme.

5.4 The Example

Let us consider the space-time mappings of Table 3.3 on page 25.
The essential transformation for statement Sy is the identity matrix of dimensionality 1.
It is trivially scannable. The same is true for the other one-dimensional statements Se and
Ss, since constant offsets do not become part of the essential transformation matrix.
Analogously, the two-dimensional statements Ss to S7 and Sg have identical essential
transformations. Let us first check the scannability of the synchronous transformation matrix:

(1 4 a_1(0 4
7'_<10> T _4<1—1>

Applying Theorem 11 for w = 2 and w’ = 1 shows that this transformation is not scannable,
as is to be expected following the explanations in Section 5.3.1. We postpone the presentation
of the target code for this case to Chapter 7, where the rest of the necessary theory will be
presented.
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Let us now check the scannability of the asynchronous transformation matrix for the
one-dimensional allocation:

1 __ 10 /,1_1 40
T_<1 4> T _4<—1 1>

Theorem 11 is trivially satisfied for w = 1. For w = 2, the only non-zero entry in 7" is in row
w' = 2; since 'T'1T21 = 0 the condition is satisfied, too. Thus: 7 is scannable.

For the three-dimensional statement Sg we get the same result.

Consequently, for every statement, there is an asynchronous loop nest which scans pre-
cisely the target execution space of this statement.

Since we are now sure of its existence, let us try to find an asynchronous loop “nest”
for some one-dimensional statement, say, So. In the asynchronous case the outermost loop
(in this one-dimensional case the only target loop) is a loop in space; we name its index
p. The allocation of S5 yields p = n. Thus, we enumerate the target execution space of
Ss—analogously to the source execution space—with for p := 0 while node[p] # L do Ss.

On the other hand, this raises a big problem: since we do not know at compile time the
extent of the while loop, we must allocate infinitely many processors initially. This problem
of while loops in space is tackled in Chapter 6.

Therefore, we also postpone the presentation of the target code of the example program
under the scannable transformation with the one-dimensional allocation until the end of
Chapter 6.



Chapter 6

Processor Allocation

An important problem of parallelizing general loop nests is the determination of upper bounds
for all target loops. In this chapter we address the problem of bounding the space dimensions
whereas the next chapter deals with the bounds on the time dimensions.

The problem of processor allocation is treated in two phases: first, we establish whether
the processor space can be limited at compile time at all, and second, we make some remarks
on partitioning/tiling techniques.

6.1 Limitation of the Processor Dimensions

Since we allow the upper loop bound to be unknown, the space-time mapping may be defined
on an infinite domain (index space) and, thus, may define an infinite range (target space). It
is easy to ascertain that only a finite number of processors will be required at any point in
time. We can state this fact as a theorem. Since only the while loops contribute to the infinity
of the index space, we do not consider for loops but show only that any nest of while loops
defines, at any time step, a finite set of processors in the target space. Then, we conclude
without further proof that mixed loops also do so.

Theorem 19. Let wvq,...,v, be linearly independent wectors of Z' and oq,...,q,
€N\{0}. Then the intersection of any hyperplane H through the set of points {(c v1,0,...,0),
., (0,...,0,0 v,)} and the polyhedral cone K spanned by the vectors vy,...,v, is finite.

Proof. Our basis of Z" is {v1,...,v,}. Then K = {z | 2 e N' A -T2z <0} = N" is the
polyhedral cone spanned by v1,...,v, [44]. (I is the identity matrix.) Furthermore, H =
{r|zeZ" A (all,,o%)x = 1}. Then:
HNK = {z|2eNA(Di:0<i<r:)=1}
Q;
C {z|zeNANVi:0<i<r:0<z; <)}

Since the superset on the right is finite, so is HNK.

Corollary 20 (Finiteness of time slices). In the polyhedron model, the iteration space T
representing a nest of loops is the cone K, and HNK corresponds to some time slice t '(z)CT
for a fized x €t(Z). Thus, each time slice is finite.

47
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However, this corollary does not specify an upper bound on the number of processors. We
know that the number of processes is given by an affine function of time, i.e., the number
of used processors grows affinely with time. But, for asynchronous loop nests, the time
coordinate is enumerated by the inner loops and, thus, cannot be used in the bounds of the
outer spatial loops. As we have seen in Section 5.4, we would have to allocate infinitely many
processors initially. Collard [14] solves this problem for the case that there is one while loop
at the outermost level.

In a real implementation the unboundedness must be solved at compile time since, in
general, all processors must be allocated before the parallel program starts its execution.
This can be achieved by standard partitioning or folding techniques (cf. Section 6.2).

Remark. The usual practice of allocating processors at the start of a program’s execution
might be taken as an explanation for the absence of a parwhile construct (a parallel while
loop with an upper bound given by an arbitrary boolean expression). But there is also a
theoretical reason: the construct parwhile would have to activate a set of processors in one
time step (like parfor) and would, therefore, have to test all its conditions successively until
the first termination condition evaluates to #; this cannot be done in constant time.

6.2 Partitioning Techniques

Laying out a while loop partly in space only makes sense if we bound the number of processors
required by partitioning the processor space in some way. This has become an active area of
research recently [18, 57, 58].

The idea of partitioning is that a single dimension can also be enumerated by a nest of
loops, not only by a single loop. To apply this idea to a polyhedron P we proceed in several
steps: first, we select the dimensions which shall be partitioned (let us denote the polyhedron
projected on these dimensions by P); second, we define a tile, i.e., a polytope with fixed
shape and size in P; third, we generate nested loops enumerating all points of the tile and
all tiles necessary to cover P; fourth, we replace the original loops enumerating the selected
dimensions of P by the new loop nest.

In our framework we want to partition the dimensions in (virtual) space, computed by
the allocator, and replace them by dimensions in real space, i.e., dimensions enumerating
real processors, and dimensions in time. These dimensions in time are in addition to the
time dimensions enumerating the schedule. In other words, partitioning offers us a trade-off
between space and time. Note that we partition the target space, not the source space as is
typical in literature.

Due to the degrees of freedom left, there are two contrary ways of partitioning which are
known as LSGP (locally sequential, globally parallel) and LPGS (locally parallel, globally
sequential) [38]. In the LSGP method, the points inside a tile are enumerated sequentially by
one processor (locally sequential) and the tiles are distributed among the processors (globally
parallel), i.e., one uses one processor per tile. In the LPGS method, the tile corresponds to
the real set of processors, i.e., every processor is responsible for one point of the tile (locally
parallel), and the tiles are enumerated successively (globally sequential).

Recent literature prefers the LSGP method [18] since, in general, there are many local
communications which become obsolete if neighboring operations are executed on one pro-
cessor. Additionally, there are effective methods for choosing the shape of the tile according



6.2 Partitioning Techniques 49

to the dependences of the polyhedron to be scanned, which results in a further reduction of
communication.

However, in the presence of while loops we cannot choose the LSGP method since we
cannot predict the “global” size and, therefore, the extent of the “globally parallel” dimen-
sions. We must use LPGS partitioning methods; they yield constant bounds for the processor
dimensions and map all unbounded dimensions to time. The only remaining problem for
parallelizing loop nests containing while loops is how to handle the termination of the target
loops in time. This will be discussed in the next chapter.

Remark 21 (Parallel loops). We have just seen that, due to the application of LPGS par-
titioning for asynchronous loop nests, the loops in space are for loops. In Section 6.1 we have
learned that in synchronous loop nests we can bound the space dimensions by expressions
in the indices of surrounding loops in time (Corollary 20). Thus, we can make the following
observation: in the target loop nest, every loop in space is a for loop (thus a parfor), even if
there are while dimensions mapped (partly) to this space dimension.

Remark 22 (Code generation). Note that the partitioning techniques introduce additional
loops in time. Therefore, we must take care that these additional loops respect the schedule
(remember that the execution order of sequential loops is determined by the lexicographic
order of the index vectors): if the additional loops in time are nested inside the loops enumer-
ating the schedule then the schedule’s index determines the execution order—the additional
time dimensions are only a refinement of the schedule. However, if the additional loops in
time are nested outside of the loops enumerating the schedule then the additional loops de-
termine the execution order, i.e., the schedule is not respected any more, which leads to an
incorrect target loop nest!

Since, first, the partitioning method replaces the original spatial loops by the nest of new
loops in space and time, and, second, the new loops in time must be inner loops w.r.t. the
dimensions of the schedule, the original spatial loops must be inner loops w.r.t. the schedule.
In other words, loop nests which are subject to a partitioning must specify synchronous
parallelism.

Note that taking the synchronous program as input for partitioning is a sufficient but not
a necessary condition for respecting the schedule; the application to the example program in
the next section starts with the asynchronous program and yields a correct target program.

Note, in addition, that the code after partitioning as just described is synchronous. How-
ever, the dimensions of the real processors are bounded by expressions describing the real
parallel machine, i.e., these dimensions are bounded by parameters known at compile time.
If these are the only expressions in the bounds of the parallel loops, e.g., if there are no
expressions depending on outer loop indices, then we can easily shift these parallel loops to
the outermost levels (even without Fourier-Motzkin elimination). This shift results in an
asynchronous target program.

Otherwise, it is also possible to obtain an asynchronous target program, by first ignoring
the additional bounds, subsequently performing the shift and finally introducing guards which
prevent those points from execution which are additionally enumerated because of ignoring
the additional bounds. We do not go into more detail here since this is independent of whether
the loops being while loops or for loops; details can be found in [56].
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terminated := [f;
parfor pp := 0 to NrProc—1 do
for tp := 0 while ~terminated step NrProc do
p = tp+pp;
if ~terminated then
if node[p] = L then terminated := t endif
endif
if —terminated then
body(p)
endif
enddo
enddo

Figure 6.1: A single while loop (partly) in space after partitioning

6.3 The Example

Let us first partition the one-dimensional loop (nest) for p := 0 while node[p] # L do body(p)
of Section 5.4.

We use as processor layout a one-dimensional array of NrProc processors. In the par-
titioned program (Figure 6.1) the for loop with index pp enumerates the NrProc (i.e., a
constant number of) “locally parallel” processors, whereas the while loop with index tp, laid
out in time, enumerates the tiles “globally sequentially”. For simplicity we keep the original
index p throughout the body; its value is computed by the first statement of the new loop
body.

Note that the original termination condition is treated as a regular statement and is
therefore located in the body of the loop.

Both, the necessity of partitioning and the fact that termination conditions become regular
statements in the loop body, have an unavoidable consequence: the original loop body must
be guarded. On the other hand, guards in the body of the target loop nest occur anyway if
one deals with by-statement transformations or piecewise affine functions, as we have seen in
Section 3.3.2. For simplicity we decided to guard every separate statement in the loop body
individually with all necessary conditions instead of using a nest of guards—even if some
parts of the guards apply to several statements.

Note that the loop nest in Figure 6.1 is not complete: there is no dimension enumerating
the time ¢; computed by the scheduler. As announced in the previous section, we want to
generate a partitioned version of the asynchronous program. However, if we nest the dimension
of the schedule inside the additional time dimension ¢p which is caused by partitioning, then
we are modifying the schedule. Therefore, we must convince ourselves that this modification
preserves validity: intuitively, the new schedule (ip,t;) enforces that every processor first
terminates the tooth which it is currently working on, before starting a new tooth with a
larger value for ¢p. Since there are no dependences from any tooth to one of its predecessor
teeth, this new schedule is also valid. The formal proof has to establish that the new schedule
(tp,t1) respects every dependence; we omit it here.
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Now we are able to present the target code, which is given in Figure 6.2. The basic
structure is equivalent to the one of Example 5 on page 26. The main difference is that the
guards have an additional conjunct, due to partitioning, and the fact that the termination
condition is evaluated inside the loop. The initializations and the loop header are taken from
Figure 6.1. The only modification is in the computation of predicate terminated, which results
from the fact that the code in Figure 6.2 is an executable function for distributed-memory
machines, on which the old value of terminated must be received and its new value must
be sent explicitly. This is done by the blocking communication primitives SendNode and
ReceiveNode which, similarly to the corresponding PARIX command: take as first argument
the number of a real processor and as second argument the value to be sent or received. (The
flag detector and the conditional ReceiveNode statement at the bottom of the outermost loop
are only necessary due to the blocking communications.)

Of course, the target program of Figure 6.2 can be optimized a lot. For example, we need
not store the value of tag at every point in a separate variable but we could use array tag
itself. However, the goal of this example is to show how the methods described so far can
derive a parallel loop nest from a sequential loop nest containing while loops.
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terminated := [f
parfor pp := 0 to NrProc—1 do
for tp := 0 while not terminated step NrProc do
p:=tp+pp
ubg[p] := o0
for t; := p whilet; < maz(p+1, p+4uby[p]+8) do
if not terminated and p = t1 then
if p>0 then ReceiveNode((p—1)% NrProc, terminated) endif
if not terminated and node[p] = L then
terminated := tt

detector := it

endif

SendNode((p+1)% NrProc, terminated)
endif
if not terminated and p+1 = ¢ then

rt[p,0] :==p

nztlp] =1
endif

if not terminated and (p+4) < t1 < (p+4uby[p]+4) and
(t1—p—4)%4 = 0 then
if rt[p, (t1—p—4)/4] = L then uby[p] := (t1 —p—4)/4 endif
endif
if not terminated and (p+5) < t; < (p+4ubg[p]+5) and
(t1—p—5)%4 = 0 then
if-cond|[p, (t1 —p—"5) /4] := not tag|p, rt[p, (t1 —p—"5)/4]]
endif
if not terminated and (p+6) < t; < (p+4uby[p]+6) and
(t1—p—6)%4 = 0 and if_cond[p, (t; —p—6)/4] then
tag[p, rt[p, (t1—p—06)/4]] :== tt
ube[p, (1 —p—6)/4] := nrsuc[rt[p, (t1 —p—6)/4]]
endif
if not terminated and (p+8) < t1 < (p+4uby[p]+8) and
(t1—p—8)%4 = 0 and if_cond|p, (t; —p—8)/4] then
nzt[p] := nzt[p] + nrsucl[rt[p, (t —p—8)/4]]
endif
if not terminated and (p+7) < t; < (p+4ubg[p]+7) and
(t1—p—7)%4 = 0 and if_cond|[p, (t; —p—T7)/4] then
for t9 := 0 to wbc[p, [ (t1—p—"T7)/4]] — 1 do
rt[p, ta+nztp]] := suclrt[p, (b1 —p—"7)/4], t2]
enddo
endif
enddo
enddo
if detector then ReceiveNode((p—1)% NrProc, terminated) endif
enddo

Figure 6.2: Target program for the scannable transformation with one-dimensional allocation



Chapter 7

Termination Detection

So far, we have described methods for preventing holes inside a scanned target space from
execution and we bound loops in space by partitioning. The remaining open question is:
how do we bound the loops in time? As in the previous chapters we assume that the source
program terminates; still, esp. for unscannable target execution spaces, it is a difficult problem
to find bounds for the loops in time.

Ezample 9. Take again the loop nest

for i := 0 to n do
for 7 := 0 while condition(i, ) do
body
enddo
enddo

and as space-time mapping

()= (%)

where p is space and t is time. (We assume that this transformation respects the dependences
of the body; the while dependence is respected.) With this mapping there is no elegant way
of expressing the termination condition of the outermost loop. As stated in Example 8 on
page 41, we have to evaluate the conditions condition(i, j) for all i and j, i.e., we need both
indices. A possible termination condition would be

(Vp:0<p<n: 3t : 0<t'<t : —condition(p,t"))).
These quantifications are potentially costly because, in general, their ranges grow with time.

The common idea behind all options discussed in the succeeding sections is: we terminate
the execution as soon as we recognize that there is no more activity in the scanned space. Each
of the following sections proposes a different way for determining this fact by interpreting and
detecting “no activity”, depending on the target language and the target architecture.

7.1 Termination Detection for Special Languages

Some data-parallel languages provide support for detecting distributed termination. A good
example is the construct whilesomewhere in Hyper-C [35]. This parallel loop construct takes

53
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executed(x1, - ,xq) =

r:=level(x1, -+ ,2q) ;

if execy[x1,--+,Tr1, 2z, —1] A mcondition,(xy,- -, x,) then
decr(counter)

endif ;

execy[ry, -, x| i = execy[x1, -+, Tp1, Ty —1] A condition, (1, -, x,) ;

for k := 147 to d do
execk|xy, -+, k| 1= execk[T1, -+, T ] A conditiong (1, -+, Tk) ;
if execy[x1,---,zk] then incr(counter) endif

enddo ;

barrier ;

terminated := (counter = 0) ;

barrier ;

return (exzecg[x1, -+, 4])

Figure 7.1: Formalization of the counter scheme

as parameter a boolean function b which is evaluated at every processor; the loop bounded by
whilesomewhere terminates iff all processors evaluate function b to ff. For synchronous target
loop nests with only one dimension in time, this construct can be used directly to bound the
loop in time.

The idea is as follows. The execution of a loop nest containing while loops terminates when
all processors are inactive according to Definition 15. So, the loop in time can be bounded
by “whilesomewhere active”. This solves the termination detection problem.

In the following sections we present two termination detection algorithms, both for shared
and one of them for distributed memory systems, in the case that the target language used
does not support termination detection directly. Note that there are a lot of general termi-
nation detection algorithms, but these are not of interest to us since we are in the fortunate
position that we know a lot about the structure of the program parts for which we want to
detect termination.

We want to find a predicate terminated which can be used as a termination condition
of the while loops in time. Thus, the goal of the next sections is to find (implementable)
definitions for this predicate.

7.2 Termination Detection in Shared Memory

7.2.1 Idea

The execution of a while loop nest terminates when the outermost while loop has terminated
and all instances of inner while loops have terminated, too—in other words, when all teeth
have terminated. To implement this, we use a shared global counter that is incremented
at the root and decremented at the tip of every tooth in any dimension. Thus, the whole
program terminates if and only if there are no active teeth left, i.e., the counter has been
reset to 0.
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Algorithm ezecuted_generator
Input:

e The d while loop conditions.

e The d loop counters (z1,---,zq) (become the arguments to ezecuted).
Output: Code implementing function executed.

generate( function ezecuted(z,---,xq) : boolean )
for r:=d downto 0
if r>1 then
generate( if xy > lby then )
generate( if execr[z1,- -, 2, 2r—1] and not conditiony(z1,- -, xr)
then decr(count) endif )
generate( ezecy[z1,---,xr] := execy[x1,- -, Tr_1,2r—1] and
conditiony(z1,- -+ ,xr) )
end if
fork :=r+1tod
generate( ezecy[r1,---, 7] := ezecy [r1,---,7) ] and
conditiony (z1,---,7y) )
generate(if execy [x1,---,z}] then incr(count) endif )
end for
if r>1 then generate ( else ) else generate ( endif )

end for

generate( barrier )

generate( terminated := (count = 0) )
generate( barrier )

generate( return (exzecg[z1, -+, 24]) )

Figure 7.2: Algorithm ezecuted_generator for automatic generation of the code for ezecuted

7.2.2 Formalization

A formalization of this idea can be added to an imperative specification of executed such
that the calculation of terminated is hidden as a side effect of the masking function executed
in the target program (ezec, is an r-dimensional persistent array that stores the value of
executed, (21, -+, Ty, lbpy1,- -+, Ibg)). Function ezecuted is called with the source coordinates
of each scanned point in the target index space.

The specification of function executed is presented in Figure 7.1, where functions incr(counter)
and decr(counter) atomically increment and decrement counter, respectively. conditiong() and
executedy() must be initialized to #. The level of a point is defined as d minus the number of
trailing Ib coordinates.

If we expand the definition of level and unroll the loop on k at compile time, we obtain
the code generation scheme for ezecuted in Figure 7.2. The code generated for ezecuted in the
case of two nested while loops is given in Figure 7.3.

Various instances of ezecuted interact as follows. At every time step ¢, function executed is
called on every processor p of 7S, i.e., on the entire hyperplane ¢, intersected with 7S, to check
whether the transformed body at the coordinates (¢, p) must be executed or not. Essentially,
this check boils down to the evaluation of the while conditions. The combination of all these



7.2 Termination Detection in Shared Memory 56

evaluations determines whether, at time ¢, the program terminates or not, i.e., whether the
value of count is zero. Of course, it is mandatory that every processor has the same view of
the state of global termination at every logical time ¢ (otherwise, it could perhaps stop too
early and block the entire computation). For this reason, we must ensure that all updates of
the counters (esp. all increments) in the various instances of ezecuted have completed before
any processor reads the value of count. In addition, we must ensure that no processor can
start its next iteration, and possibly modify the counter, before all other processors have read
count. Both cases can only be guaranteed by barrier synchronization.

function ezecuted(wy,ws) : boolean
if wo > Iby then
if execy|wy, wy—1] and not P(wy,ws) then decr(count) endif ;
execo[wy, we| 1= execy|wy, wy—1] and Po(wy, ws) ;
else if wy > [by then
if exzeci[wy—1] and not Pj(wy) then decr(count) endif ;
execy [wy] := execy (w1 —1] and Py (wy) ;
execo[wy, wo| 1= execi[wy] and Pay(wy,ws) ;
if execo[wy,ws] then incr(count) endif
else /* wy, = lbl,’wg == le >k/
execy [wy] := Py (wy) ;
if ezecy[wq] then incr(count) endif ;
execy[wy, we| := execi[wi] and Po(wi,ws) ;
if execa|wy,ws] then incr(count) endif
endif ;
barrier ;
terminated := (count = 0) ;
barrier ;
return (ezece[wy, we))

Figure 7.3: Function executed for two nested while loops

7.2.3 Correctness

Let us verify that a target loop program whose time loops are bounded with terminated does
not terminate too early.

Lemma 23. The implementation of terminated via the counters is correct.

Proof. We prove this fact informally. The following properties ensure that, at a given time
step t, terminated is not set to # if some while loop iteration has not terminated in the exe-
cution domain:

e For every tooth in every dimension, count is incremented once (at its root) and decre-
mented once (at its tip)—in this order. During execution every tooth contributes 1 to
the global value of count, whereas before the start and after termination there is no
contribution to count.
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e Barrier synchronization ensures that all updates of count occur before the processors
read the value of count. Note that the order in which increments and decrements take
place does not affect the final value.

e If there is at least one processor evaluating some executed,(x1,---,24) (1<r<d) to i
at time ¢ then the tooth 7 at level r and through the point (x1, -, =, lbyy1, -+, lbg)
has started but not yet finished execution. Thus, at this point in time, 7 is contributing
1 to count.

e Since 7 contributes 1 to count and since there cannot have been more decrements than
increments, count must be strictly positive, thus preventing termination.

7.2.4 Optimization

The straight-forward implementation of the counter scheme in Figure 7.2 has an essential
drawback: there is only one shared counter which can be updated by any iteration, i.e., this
counter is a bottleneck.

A better implementation would use multiple counters, each of which is only responsible
for one r-dimensional subspace, thus avoiding many conflicts. As soon as such a counter
becomes zero, the counter responsible for the next outer dimension is decremented. E.g., if
we substitute r by d we get the scheme described before; if we substitute r by 1 we use one
counter per tooth.

Note that in the latter case there may still be conflicting accesses of the counters: if all
teeth terminate at the same time, then the teeth started by some tooth 7 cause the counter
of 7 to be decremented, which terminates 7, and so on. All in all, we can have linearly many
conflicting accesses of counters.

Another optimization is necessary for bounding the size of array ezec, for which we gave
no bound so far. J.-F. Collard [12] presents a way of determining a bound for arrays by
calculating the life time of the array elements and then introducing reassignments.

7.2.5 The Example

Let us now apply the counter scheme in the development of a synchronous and, thus, un-
scannable target loop nest for our example program. For simplicity, Figures 7.4 to 7.6 show
the target loop nest and some auxiliary functions before partitioning.

The target loop nest is presented in Figure 7.4, where (¢ 7 e; : e2) denotes a conditional
expression whose value is e; if condition ¢ evaluates to # and ey otherwise. Note that, due
to the imperfect nesting, we must use a separate predicate terminated (and, thus, a separate
counter) for every source while dimension. In addition, we store the maximum value of all
upper bounds of a loop at level [ in maz_index;. For while loops the value of this variable
is not valid before the corresponding while loop terminates, i.e., maz_index; contains a valid
value when terminated; is tt.

Let us now consider the guards in more detail. In principle there are rather simple
guards for non-loop statements and more complex guards for loop statements. We discuss
the structure of the functions ezecuted for the two cases by taking one example for each case;
the guards for the other statements are very similar.

For a guard of a non-loop statement, we choose arbitrarily predicate ezecuted of statement
S5 (Figure 7.5). The then branch of ezecuted_S5 checks for violations of the constraints of



7.2 Termination Detection in Shared Memory 58

for t1 := 0 whiletl < (not terminated; 7 t1 : (not terminateds 7 t1 :
maz(4 * maz_inders+3+maz_index;, maz_index;))) do
parfor pl := min(t1—1,0) to ¢t1 do
if ezecuted_S1(t1,pl) then
skip
endif
if ezecuted_S2(t1,pl) then
rt[t1—1,0] :==t1—1
endif
if executed_S3(t1,pl) then
nat[tl—1] :=1
endif
if ezecuted_S4(t1,pl) then
skip
endif
if executed_S5(t1,pl) then
if-cond[pl, (t1—pl—>5)/4] := (not Tag[pl, rt[pl, (t1—pl1—>5)/4]])
endif
if executed_S6(t1,pl) and if-cond[pl, (t1—pl—6)/4] then
tag[pl, rt[pl, (t1—pl—6)/4]] := &
endif
if executed_S7(t1,pl) and if-cond[pl, (t1—pl—6)/4] then
skip
endif
if executed_S9(t1,pl) and if-cond[pl, (t1—pl—8)/4] then
nzt[pl] := nzt[pl]+
nrsuc[rt[pl, (t1—pl—8)/4]]
endif
for t2 := 0 to maz_for_0.0_0 do
if executed_S8(t1,pl,t2) and if-cond[pl, (t1—pl—7)/4] then
rt[pl, t2+nzt[pl]] := suc[rt[pl, (t1—p1—7)/4],12]
endif
enddo
enddo
enddo

Figure 7.4: The synchronous target program

the target index space, whereas the else branch checks for the remaining index points whether
the current point belongs to the target execution space.

As a representative of function ezecuted of a loop statement we select ezecuted_S4 (Fig-
ure 7.6). Function ezecuted_S4 first computes the new value of ezecuted at the current
point. Then, it actualizes the counters and the variables maz_index storing the maximal
loop bounds of a dimension. Between the synchronizations via the barrier, terminated is
computed and the value of ezecuted is returned. For implementation reasons, the value of
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function ezecuted_S5(t1,pl) : boolean

if t1<5 or p1<0 or pl >t1—5 or (t1—p1—>5)%4 then
return (ff)

else
return (ezecz[pl, (t1—pl—5)/4])

endif

Figure 7.5: executed_S5

function ezecuted_S4(t1,pl) : boolean
if t1>4 and p1 >0 and p1<t1—4 and (t1—p1—4)%4 = 0 then
if ((1—pl—4)/4 =0 then
execo[pl, (t1—pl—4)/4] := (rt[pl, (t1—pl—4)/4] # L) and execy[pl]
else
execo[pl, (t1—pl—4)/4] := (rt[pl, (t1 —pl—4)/4] # L) and ezecs[pl, ((t1—pl—4)/4) — 1]
endif
if execs[pl, (t1—pl—4)/4] then
skip /+ would be incr(counts) if there were an inner while loop */
elseif ((t1—pl—4)/4 > 07 ezeca[pl, (t1—pl—4)/4 — 1] : ezeci[pl]) then

decr(counts)
maz_indexy = max(maz_indexs, (t1—pl—4)/4)
endif
else
local_indez_violation_flag := tt
endif
barrier

if county = 0 then
terminateds 1= tt
endif
barrier
if local_index_violation_flag then

return (ff)

else
return (ezece[pl, (t1—pl—4)/4])
endif

Figure 7.6: executed_S4

executed at points outside of the index space is not stored in the array ezec but in a local
flag local_indez_violation_flag. Note that the computed value of executed is stored in array
exec, which allows us to access this value without re-calling function ezecuted; this avoids the
undesired re-computation of the side effects in ezecuted.
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1
dimensions

Figure 7.7: A three-dimensional comb

7.3 Termination Detection with Distributed Memory

In this section we present a solution of the termination problem that requires only local
communication.

7.3.1 Idea

The basic idea of our solution is as follows: if (carefully selected) teeth along dimension r
of the execution space inform their (still executing) neighbors in dimensions 1,---,r—1 of
their termination, the maximal coordinates of every dimension of the execution space are
communicated.

If we ensure that no tooth terminates before it has been informed of the termination of its
neighbors, points that are involved in these communications are partially maximal until the
point (z1, --,x4) in S is reached whose coordinates are all maximal, i.e., have the property
(Vz' :2’eX : (Vr: 1<r<d : z,<z,)). When scanning this point, we can terminate all
target loops.

The propagation of the maxima, up to level r, proceeds by valueless signals. Signal
sigp(z1,- -, Ty, Ibpyr, - - -, Ibg) starts at point (z1, - ,z,,lbp11, - - ,lbg) at level r and is sent to
the neighboring tooth in direction k, where k is some outer level with respect to r, i.e., k <r.

The main problem is how to establish whether a tooth can terminate immediately when
the corresponding while condition is violated or whether it has to wait for some signal first.

Ezample 10. Consider the three-dimensional comb of Figure 7.7.

Our scheme is more easily understood in the synchronous model.

In the figure, the teeth of X are represented by solid lines. Some teeth are extended by
dotted lines, indicating that they are waiting for at least one signal. Points (of §) on dotted
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lines do not execute the loop body, they only wait for signals. Signals are represented by
dashed arrows.

Our aim is to identify the point M whose coordinates are maximal in every dimension.
The first coordinate of M is quite easy to determine: it is the value at which the outermost
loop terminates.

The second coordinate of M is the maximum of the lengths of all teeth pointing up (in
the figure). To determine it, every vertical tooth tells its right neighbor the maximum of its
own height and the maximal height left of it. This is the meaning of sig?. If a vertical tooth
is ready to terminate but did not yet receive sig? from its left neighbor, it must wait (except
for the leftmost tooth) until this signal is received. (In the figure, the tooth at the right must
wait.) Then it itself sends sig? on to its right neighbor and terminates. The following formal
property holds for all teeth in dimension 2:

sig%(xl,a:Q,lbg) = (Va2 (o), 25, ) eX Az <1 @ 25, <m))

The determination of the maximal depth of teeth in each vertical plane (z; constant)
proceeds analogously. Signals sigs are sent from every (perhaps extended, since waiting)
tooth 7 along dimension 3 to its upper neighbor of that plane, indicating that the current
depth (the length of 7) is maximal for all teeth in dimension 3 to the left and including 7, for
fixed z1. Formally:

S’ig%(ﬂjl,ng,ng) = (Vb2 1 (21,75, 25) EX Axh<zo : 25 <x3)

To combine the maxima of all vertical planes, the maximal point of each plane sends a
signal sigi to its right neighbor. Again, it is important that this right neighbor must not
terminate before the signal is received. Which teeth must wait? The maximal depth in every
vertical plane is reached at the end of the (perhaps extended) vertical tooth that forms the
base of this plane. This height was propagated to the right neighbor by sig?. At that height,
the maximal depth will also be propagated. Therefore, the tooth, rooted at that point (e.g.,
P in the figure) which received sig? and which points into dimension 3 (the thick tooth in the
figure), must wait until sig} is received. Again, formally:

- 3 ro ro / / /
sigi (z1, 2, x3) = (VY 27,29, 23 1 (27,25, 25) EX Ny <z : £5<x2 A x3<13)

The formal properties implied by the signals form a pattern that we call the partial
maximality (of a point). M is partially maximal with respect to all dimensions and is,
therefore, the maximal point.

7.3.2 Formalization

In the following, we define partial maximality recursively for an arbitrary number of dimen-
sions. Then we construct a mechanism that sends signals from partially maximal points to
the appropriate destinations.

To include the host of the processor array, we introduce a little hack. We imagine one
more dimension, 0, which has extent 2. The polyhedron is located at position 0, and the host
at position 1. Then we introduce signals that travel from position 0 to position 1. They are
meant to communicate the termination of the target loops to the host.
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Definition 24 (Partial maximality m}). m}(z1, -, 2y, Ibyy1,- -, Ibg) iff for fixed indices
at levels 1 to k—1 and for points (zf,---,2}) below (z{,---, 2}, lb. -, b)) at level k
(z}, < mp), point (z1, - ,&p,lbpy1, - -,lbg) is maximal in all dimensions k+1,---,r. Formally:

Vr: O<r<d: (VY (z1, - ,z): ($1,“‘,l'r,lbr+1,"',lbd)E.)?:
(VEk:0<k<r:mp(z, -, zp, bpy1, -, lbg) =

(ka,’x;n : (xl,,xkfl,x;g,,x;,lb;’-+17alb,d)€X/\x;c§xk .
x;c+1 Sxk+17"'7x;"gx7'))))
If my(x1, -, @, Ibyg1,- -+, 1lbg), we call point (z1, -, zp,lbp11, - - ,lbg) partially maximal with

respect to dimensions k+1 to r.

Note that, for k=0, the right-hand side of Definition 24 simplifies to:

Vi, -z (x'l,---,x;,,lb;,ﬂ,---,lbfi)e)? sy <z A Aal <)
For our communication scheme of m by signals, we need an additional predicate, wj (z1,
o Ty, lbpyq, - -+, Ibg), which indicates that the tooth that is rooted at (z1, -+ ,2r1,lby,- -, lbg)
and extends along dimension r must wait until signal sigj, arrives at some point (1, --,z,_1,
zhlbyy1, -+, Ibg) with 2. > z,. These additional points at which a tooth waits but executes
nothing make the difference between & and X. The lemmata that follow are valid for all
points in S.

Definition 25 (sig and w).

(V(z1,---,za) + (z1,--,24) €L : Vk,r: 0<k<r<d: sigi(z1, -, zp, lbpy1,---,lbg) =
—ezecuted, (T, Tp, Ibpi1, -+, bg)A
(Vs :1<s<r: —wh(zy, - &y, bpg1,-- -, lbg) V sigh(z, -, xs—1, -+ @p, Ibpyq, -+, 1bg))A
(r>k+1= sigy (71, ,Tr1, by, -, 1bg)) )

For all other points sig is initialized with ff:
V (21, 2q) : (@1, 2q)€Z—-T : Vk,r: 0<k<r<d :
SiQZ(xla"'axrale-l-la"'7lbd) :.[f))

(VY (z1,--,2q) : (21, ,2q) €L 2 (YVE,r: 0<k<r<d: wp(zi, -, zp, lbpy1,- -, lbg) =
if k=0 = ff (1)
|:| r=k+1AE>0ANzp1=1lbp1 — xrpF#lbg (2)
[ r>k+1AE>0ANzp1=1bpy — sigz_l(xl,---,xk—l,---,azr,l,lbr,---,lbd) (3)
[ r>k+1AE>0Az>1b, = wipl(z, e, =1, by, -0, Ibg) A (4)

asigy(z1, -, xp—1, - zp1, 2p — 1, lbpyq, - -+, Ibg)

i)

These equations can be explained as follows.
sig states that any point of a tooth that need not be executed and that does not have to
wait for any signal sends signal sig;, if either the tooth and the signal lie in a two-dimensional

plane (recursion base) or the root (z1, - ,2y—1,lby, -+, 1bg) of the tooth has already sent the
signal into the same direction (recursion).
wi (21, Ty g1, - -+, Ibg) states whether the point (x1,---, ., lbyj1,- -, Ibg) at level r

has to wait for some signal from direction k:



7.3 Termination Detection with Distributed Memory 63

(1) No point has to wait for signals from the host.

(2) In every two-dimensional subspace (dimensions k£ and r = k+1), every tooth, i.e., at
least the first point of it (with xpy1 = lbgy1), has to wait for a signal from the tooth
immediately preceding it—if any, i.e., if xy # lby.

(3) In every at least three-dimensional subspace (dimensions k to r > k+1), every tooth
parallel to dimension r, i.e., at least the first point of it, has to wait for some signal
from direction k iff its root at level r—1 has received a signal from the same direction k.

(4) Any point of a tooth that is not the first point has to wait for a signal iff its predecessor
on the tooth had to wait and did not receive the signal it was waiting for.
7.3.3 Signals and their Significance for Local Maximality

The main result of this subsection is that signals sig correctly propagate property m of local
maximality. We state this in two separate lemmata.

Lemma 26 (Local maximum). A point of some tooth along dimension r that need not be
executed with respect to r and need not wait for a signal is mazimal with respect to dimension
r. Formally:

vV 1,y (w1, ey Ibpaq, o, Ibg) ES 0 —executedy (z1, -+ Ty Ibpgq, oo, Ibg) A
(Vs :1<s<r: (—~wi(zi, -, zp, bpg1,-- -, lbg) V
sigi(z1, -, xs—1, - zp, lbpyr, -+, 1bg))) =
(Val : (z1, s zp1, 2y by, -, Ibg) €S ¢ 2 <xp))

Proof. We prove the inverse implication: (H = C) < (-C = —-H).

(Vo (z1, e 1, 2 by, Ihg) €S 2 oxh <xp)
< { predicate calculus }
(3 x; : (1‘1, s ,x,«_l,x;, bpyq,- -+, lbd) €S : :E;n >$7-)
= { if point (21, -+, 2r—1,2h, Ibyry1,---,lbg) is scanned, it must be exe-
cuting or waiting }
(3 2 (21, po1, 2zl ey, -+, Ibg) €S ¢ executed,(z1, -+, Tp_1, T, Ibpy1, -, lbg) V
(3 s:1<s<r: (wh(zy, -, zr_1, 20, bpyy, -+, lbg) A
—|S’L'g15n($1, Y Pl UEEE 71“;'7 i, lbd)))
= { predicate calculus }
(Y (z1,- -, 2p) : (1, Xy, bpgr, -+, Ibg) €S @ —executed, (1, -+, Ty, bpy1, -+, 1bg) A
(Vs :1<s<r : —whi(xy, -, Ty, lbpy1, -+, lbg) V sigh(z1, -+, zs— 1, xp, Ibpiq, -+, 1bg)))
In the following lemma, SUBJ.(z1,---,%k—1) is the subspace of S in dimensions & to r

(1<k<r<d) and at fixed coordinates (z1, - ,zx_1)-

Lemma 27 (sig implements m).

Vk,r:0<k<r<d: (V(x1,---,2r) : (1, Ty, bpyy,- -+, lbg) ES :
1G5 (1, -+ Tpy Wbp g1y - -+, 1bg) = mp (1, -, Ty lbryq, -, 1bg)))
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Proof. By induction on the dimension of B (x1, -, Tk_1).

e Induction base (r = k+1):
For Sigllz+1(l"1, Ty Tk, lbka T lbd) = m£+1

guish two cases, since xy does not exist.

(x1,++,Tp, by, -, Ibg) we must distin-

— First case: k=0

sigé(xl, le, ey, lbd)

< { definition of sig with k=0, r =1 }
—ezecutedy (x1, by, -+, 1bg)

= { Lemma 26 withk=0,r=1}
(V) (2], by, -+, lbg) €S : 2 <mxq)

& { definition of m{ }

m[l](xla lb27 Tty lbd)
— Second case: k>0
We prove sigh ™' (z1,- -+, 2p1, g, -+, 1bg) = my (x4, @1, Wby, - -, Ibg) by in-

duction on xy.

* Induction base (zj = lbg):

sigi ™ (- - g, Igy -+, Ibg)

< { definition of sig with xy = by and simplification for r = k+1 }
—ezecutedy 1 (L1, Tp1, bg, -+, lbg) AN(Vs: 1<s<k+1:

—wh T (@1, e, B, - 1ha) V
sig’s€+1((p1, e 75Es_17 R S lbk-i—?a Ty lbd))
= { Lemma 26 }
(v x;chl S CITERE 7$k?$;<:+17 lbit2, -+, 1bg) ES x;chl <Tp+1)
< { lb is the smallest z; introduction of a new dummy with empty
range }
(v x%,x}cﬂ (g, ,xk,l,xk,xgcﬂ, Wpso, -, lbg) €S N x) <y -

m71c+1 <ZTpy1)
< { definition of m }
mi"'l(xl, HR 4y P I lbk, ey, lbd)
* Induction step (zy—1 — zk, where x> lby):
sigﬁ“(wl, HRIRN £ 75 I lbk, ey lbd)
& { definition of sig with xp > b and simplification for r = k+1 }
—ezecutedy 1 (L1, Tp1, bg, -+, lbg) AN(Vs:1<s<k+1:

(_'wlsc-'_l(xla oy T, lbka ) lbd)\/
Siglsc+1(x17 T 7x5_17 oy T, lbk+27 ) lbd)))
< { duplicate of

k1, o ktl
~wi TV osigit (1, e m— 1 B, gy, o, ba) )
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—ezecutedy 1 (T, Tpt, lbg, -+, lbg) AN(Vs: 1<s<k+1:

(‘|’U)§+1(£L‘1,---,:Ekfl,lbk,---,lbd)\/
sigh T (w1, ms— 1, Tpgr, brga, -+, 1ba))) A
i T (e gy, Dy - b))V
sigi ™ (w1, ap 1,2k —1, Tpr, Dgya, o, Ibg)
= { Lemma 26 }
(Vxpy g o (@1, @y Ty gy pya, -+, 10g) €S =z <pyq) A
—~wi T (e gy, gy - b))V
sigi ™ (x1, - ap 1,2k —1, Tp1, Dgyay -, Ibg)
= { by structural induction on the definition of w }
(V&L‘;CJFI : (xl,"',xk,m;c+1,lbk+2,"',lbd)es : QL‘;CJFISQL‘]CJA) VAN (QL‘k = Ib V
(3 Tkttt Togt <aiar o sigh T (@1, 23— 1, Tprt, s+ 10g)))
< { zk # Iby (induction step) }
(Vxp, g o (@1, @y Ty g g2, -+, 10g) €S = xp <pyq) A
(3 Tpr1 ¢ Tep1 <z @ sigh T (@1, we— L Tpgt, o, -+, 1ba))
= { induction hypothesis for sigﬁ“(ml, oo =1, Ty 1, Ipga, -+, Ibg) }
(Vxpy g o (@1, @y Ty gy pyo, -+, 10g) €S = xp <pyq) A
(3Tt * Tos1 <Thsr @ mp (@1, =L Tg 1, g2y 1ba))
& { Tpi1 <Tpy1; definition of m) }
(Vg o (@1, @y Ty gy pya, -+, 10g) €S =z <pyq) A
mp (@, wp—1, Thy, gy, -, 1)
< { definition of m }
(Vg o (w1, @y Ty pyo, -+ 10g) €S =z <wpyr) AV 2y, 2hy ) -
(L1, T, Ty Ty g, Iy, -+ b)) €S A ), <wp—1: x) <xpyq)
< { combination of two quantification ranges }
(V:t:j,c,anf,ﬁrl : (xl,---,xk,l,x;c,xfcﬂ,lbkﬁ,---,lbd)ES A

Ty <zp x;€+1§xk+1)
< { definition of m }
k+1
mk+ (wla oty L1, lbka Ty lbd)

e Induction step (kK — k—1, where r—k > 1):

sigy_1(z1,--, Ty, Ibpyr, -+ -, Ibg)
< { definition of sig with r > k+1 }
—ezecuted, (1, Tpy bpiq, -+, 0bg) A (Vs : 1<s<r:
(T, Ty Wby, -, Ibg) Vosigh (T, - - ms— 1, - Ty, Ibpgg, -+, Ibg)) A
sigh 1 (21, Ty, by, -+, Ibg)
= { Lemma 26 }
(Val : (1, Tr—1, % Ibpgr, -+, ) ES ¢z <zp) A
sigh 1 (21, Ty, by, -+, Ibg)
= { induction hypothesis for sig}~}

(Val : (z1, -, Tp1, 2y Wby, -, Ibg) €S ¢ 2h <)) A
my 1 (1, Ty, ey - Ibg)

< { definition of m }



7.3 Termination Detection with Distributed Memory 66

(Val (1, Tr1, @ by, -, Ibg) ES ¢z <) A
(V$;€71,"',$;,1 : (xla"'7xk727x;6717"'7:5;"717”)7'7"'7lbd)68 A xkflgxkfl :
T <Tp N ANzh_ <xpq)
= { combination of two quantification ranges }
(Vah, -zl (21, B2, Ty, Ty Wpgn, o+, Ibg) €S A ) <zp_y -
T <zp AN--- ANz <wzp)
< { definition of m }
My (T1, Ty Wbpgr, -+, 1ba)

Our aim has been to identify the point of & with maximal coordinates in all dimensions.
The scanning of this point indicates the termination of the entire target loop nest. We have
constructed a signaling scheme in which this point sends signal sigd to the host.

Remark 28 (Optimization).
e A tooth in direction r must send at least one signal, into direction r—1.

e One simple optimization can be made immediately: signals need not be sent to points
z along a tooth that has terminated, i.e., points that neither are active nor wait for a
signal. Thus, sig)(z1,---,Zp, byy1,- -, bg) implies that, for any &’ with &' <k, sigj, (21,
o Ty, Ibpy, -+, Ibg) need not be sent. In Example 10 we have already omitted these
signals, but they are of course part of Definition 25. Thus every terminating tooth has
to send at most one signal.

¢ In summary, every tooth must send exactly one signal when it terminates.

7.3.4 Target Code Generation for Distributed Memory Machines

In the remainder of this section we derive code for the target program. In a straight-forward
implementation we could augment the source program by an implementation of the predicates
and the signals, developed in the previous sections, and apply the space-time mapping to this
augmented source program.

However, since the transformation of the signaling scheme is problem-independent we
decided to derive a skeleton for the transformed signaling scheme which can be filled with
the problem-specific body statements and transformations. This strategy also unburdens the
target generator of a parallelizing compiler significantly, which accelerates the target code
generation.

Thus, we present an augmentation of the target loop body such that the irregular shape
of the transformed execution space is dealt with properly. Our augmentation implements the
signaling scheme presented above. We prove that, while the target loops enumerate 7S, the
augmented body reduces the execution of the loop nest to precisely the points of TX.

7.3.4.1 General Technique

First we present the target code which is abstract in the sense that it is neither optimized for
memory usage (it is single-assignment!) nor adapted to the execution model (synchronous or
asynchronous) of the target machine. These adaptations are given in Section 7.3.4.3.
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The target code must specify communications (send and receive primitives) explicitly.
We use three primitives that are executable on the PARIX' operating system [45], one for
transmitting and two for receiving. The reception mode depends on the type of message
transmitted.

Our signaling scheme contains two types of messages.

e One type is responsible for the propagation of information along one tooth. An example
is the value of the predicate active. The receipt of a message of this type is necessary
for the execution of the loop body at the respective point.

e The other type of messages is for signals sig. These signals must be “probed” [42], since
execution of a loop iteration may proceed without their receipt.

Let us briefly describe the three primitives:

e asend(dir, list_of vals) is a PARIX command that transmits a list of values into a speci-
fied direction in (d—1)-dimensional space. Communication is asynchronous to prevent
deadlocks.

e receive(dir, list_of vals) is a PARIX command that performs a blocking receive of a list
of values from a specified direction.

e creceive(dir, list_of vals) is a command defined by us that performs a non-blocking receive
of a list of values from a specified direction. Martin [42] defines the value of a probe
Y on some communication action Y as a boolean value that indicates whether the
corresponding communication action is pending. In our context, Y is a receive command
from some direction and, thus, Y holds iff the corresponding asend command did already
take place. With this construct, we define creceive(dir, list_of vals) as follows:

if receive(dir, list_of vals) then receive(dir, list_of vals) endif.

Note: receive(dir, list_of vals) corresponds roughly to the PARIX command
Select(ReceiveOption(dir)) [45].

We are now able to present the single-assignment target program. For readability we
only describe the case of a perfect loop nest; the technical modifications for the general case
can be found in [33]. Also for simplicity, we implement termination by the PARIX command
AbortServer which is executed only by the iteration that is maximal for all dimensions (i.e.,
partially maximal with respect to dimensions 1 to d, as defined in Definition 24). Thus, the
while loops in the target program need no upper bound.

The skeleton of the target loop nest is displayed in Figure 7.8 and refined in the subsequent
Figures 7.9 and 7.10. This code is for asynchronous parallel execution on machines with
distributed memory. The necessary changes for synchronous execution and/or shared memory
are discussed in Section 7.3.4.3.

Note that the loops in the figure represent the worst case of a nest with only while loops,
which are therefore sequential (remember that there is no parallel while loop). However, this
is not typical, since the parallel loops (which hopefully do exist) can be written as (parallel)
for loops (Remark 21 on page 49). Thus, some of the while loops in the scheme are replaced
by parfor loops.

'PARIXT™ is an operating system for parallel computers with distributed memory by the PARSYTEC com-
pany based on the SPMD programming model [46].
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k‘l(lbl) =0
prg-active, (lby) = tt
for y, := by while #t do
for y, := lbg while it do
by (1)
by (x1,- -+, 24)
if prg-activey(xy1,---,x4) and conditiong(x1, -+, x4) then
b(z1,- -, Tq)
endif
bII)OSt (1'1)
by (21, 3g)
enddo
enddo
Figure 7.8: The target loop nest
The augmentation of the loop body for every level r, i.e., b.(x1,--+,z,), consists of two
parts:
e The prefix b2™(zy,---,z,), executed before the transformed source loop body, is dis-

played in Figure 7.9. It receives all necessary data and calculates the output values of
all variables that are introduced by our signaling scheme.

e The postfix bP%t(z1,---, 1), executed after the source loop (at least for asynchronous
execution, see Remark 29), is displayed in Figure 7.10. Tt is responsible for sending all
necessary information.

Let us now discuss the code in detail:

Variables:

. chan,% represents the channel for the signals that travel along dimension k. chanP
represents the channel for the data, i.e., prg-active,, k;, and prg-wy,, 1 <k <r, that
are propagated along every tooth.

e k, is the direction in which the tooth must send a signal before it terminates. It
corresponds to the lower index k of sigp(x1,---,z,). The optimization outlined in
Remark 28 ensures that there is a unique & for each tooth.

e siguval, corresponds to sigj in Definition 25 (more precisely, it guarantees the first
two conjuncts of Definition 25, cf. Lemma 35).
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(Vr:1<r<d: bz, -, 2,) :

if p41=1b,11 and --- and z4=1b, then
/* receive signals */
N creceive(chany, [reved; (zy, - - -, 2,)])
creceive(chand 1, [reved._q(z1, -+, z,)])
/* receive data */
B receive(chan?, [prg-active, (z1,- -, 2,), kr(z1,- -, 2,),

prg—w’i(ml, U 7x7‘)7 Tt ,prg-w£,1($1, Tt 7$T)])
/* calculate output values for all signals */

Q
—_— | —— e N e e

prg-wi(z1, -, x,+1) := prg-wi(z1,-- -, x,) and not rcved]
prg-wh_i(x1,- -+, zp+1) := prg-wl._,(x1,---,z,) and not reved;_,
p’rg_u/lq»l(wl? Ty lb?‘+1) = chedi(wlv e 7$T)

D: : i1 + only for r<d
pTg-’LUr_l(fEl, IR lbr+1) = ched;_l(xla T 7$r)
prg-wi (@, T, Ihpyr) i= (20 # Iby)

E: ko, eoym 1) = hy(m,e )
if prg-active,(z1,---,z,) and condition,(x1,---,x,) then

sigualy(z1, -+, x,) = ff
prg-active,(z1,- -, x,+1) 1=

prg-active, (1, -, Tp, Ibpi1) 1= U « only for r<d
F . kr+1($1,---,$r,lbr+1) =T
else
G: prg—wr(xl, e 7x7’) = p’l"g-w7£(.’L'1, e a$r+1) or --- or prg—wﬁi,l(fbl, e a$r+1)
sigvaly(z1,- -+, xy) = not prg-w (1, -+, ;)
prg-active, (z1,- -+, z,+1) = ff
prg-active, . (z1,- -, Tp, bry1) == ff )
if sigval.(z1,---,x,) then
Frii(@, o mp, Ibegr) == kp(z1, -+, 20) « only for r<d
H: else
kT+1($17 Ty lbr+1) =T
endif )
endif
endif

Figure 7.9: The prefix of the transformed loop body
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(Vr:1<r<d: bz, -+, z,):

if 2,41 =1Ib,41 and --- and x4=1[by then
if ky(z1,--+,2,) =0 and sigval,(z1,---,z,) then
I: Abort Server() < only for r=d
endif
/* send data */
J: asend(chanP, [prg-active, (z1,- -+, z,+1), kp(z1,- - -, 20 +1),

prg—w’{(ml, T 7$T+]~)7 T 7prg—w;—1($17 T 75171""']-)])
/* send signals */
if k(z1,---,2,) # 0 and sigval,(z1,---,z,) then
asend(chan,%r, [tt])
endif
endif

Figure 7.10: The postfix of the transformed loop body

e prg-active,(z) is the counterpart of the predicate active in the source loop nest,
i.e., for every point z of Z, the value of prg-active,(z) at the end of the program
is equal to the value of active,(z). We say prg-active implements predicate active
and prove this fact in Lemma 33. The value of prg-active(z) is undefined if 7Tz is
not scanned by the target loop nest.

e Analogously, prg-wj, is the counterpart of wj, in Definition 25.
Ezecution:

e The outermost if clause prevents the body from receiving, calculating and sending
signals and messages that are not specified by our signaling scheme of Definition 25,
i.e., signals at depth r'>r.

e Part A probes signals that are expected and receives those that are actually being
sent. Thus, rcvedy(z1,- -+, ,) is equal to sigy(z1, -, xp—1, -+, z,).

e Part B propagates all necessary information along the tooth in direction r.
e Part C implements alternative (4) of Definition 25.

e All but the last line of part D implements alternative (3); the last line implements
alternative (2).

e Line F copies the value of k for the next iteration.

e The if clause after line F tests whether the current iteration must be executed
with respect to level r (Definition 16). The value of prg-active,, sigval, and, if they
exist, prg-active., and k,; depend on the outcome of the test.

e sig; has three conjuncts (Definition 25). The first corresponds to the then or the
else branch of said if clause, the second to the calculation at line G. The third
conjunct is satisfied by an appropriate setting of k, in parts F and H.
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e prg-active implements active (Definition 15), as proved in Lemma 33.

e Part I applies only for r =d. Tt tests for sigd (i.e., sigvaly and kg=0) and, if so,
terminates the entire program (compare Lemma 27 and Definition 24).

e Part J sends the data that are received by Part B on to the next point of the
tooth.

e Part K sends sigy, if it has to be sent, i.e., if sigval holds. (At present, we ignore
signals in direction 0, but one could probably use this information to develop
smarter loop bounds.)

Remark 29. In the synchronous model, we obtain the same semantics if the postfixes are
made prefixes instead. This is an optimization if each processor has a co-processor for the
transmission of messages so that computation and message handling can proceed in parallel, as
is the case for the transputer [34]. For asynchronous machines, there is no similar optimization
since only the receipt of messages can guarantee that the sender has updated all transformed
source variables.

7.3.4.2 Correctness Proof

In this section, we prove that the target program executes the transformed source loop body
for all points whose inverse image is in the execution space.

For the following proofs, we need a formal definition of 7S, the set of target points that
are scanned by the target program. Note that the target while loops have no upper bounds:
they enumerate an infinite set. Our way of terminating the target program is by calling the
PARIX command AbortServer at some point. This call terminates the whole program. Thus,
points of TZ are scanned until the AbortServer command is issued at some point. This leads
to the following definition:

Definition 30 (prg-scanned, S and T7S). The image of a point € Z is scanned by the target
program if all points with a schedule not larger than #(x) do not call the AbortServer command,
where the call of AbortServer is guarded by the condition k,(z') =0 A sigval, (z') (Figure 7.10,
Part I). Formally:

(Vz : x€l : prg-scanned(z) =
(V' 2’ e At(2)) <t(x) : (k. (2') =0 A sigvaly(z'))))
S ={z€T: prg-scanned(z)}
TS ={Tx€TL : prg-scanned(z)}

To be able to reason about target points whose transformed loop body is executed, we need
also a formal definition of those points. The target program executes the transformed loop
body iff the point is scanned and prg-activey(z1,- -, z4) A conditiong(z1,- - -, zq) (Figure 7.8).
Thus, we define a predicate prg-ezec accordingly and prove (Theorem 41) that the transformed

loop body is executed exactly for those points that belong to the execution space, i.e., that
prg-ezec(y) is equal to ezecuted(T 'y) for all points y € TZL.

Definition 31 (prg-ezec).

(Vax : x€T : prg-exec(x) = prg-scanned(x) A prg-activey(z) A conditiong(x))
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This definition makes sense only if prg-active is never reassigned. The following auxiliary
lemma to that effect is proved informally.

Lemma 32. Every variable prg-active,(x1,---,z,), 1 <r <d and (z1, -+, Zp, bpy1,- -, 1lbg)
€T, is assigned at most once during the execution of the transformed code.

Proof. Every prg-active,(x1,---,x,) occurs exactly once as left hand side of an assignment.
Three disjoint cases cover every point (z1, -+ ,&p,lby11, -+ ,lbg) of T:

1. if (r=1Az,=Ib,), it is assigned by the initialization statement prg-active,(lb) = #;

2. if (1<r<dAxz,=Ib), it is assigned by prg-active, ,(z1, -+, xr, Ib,41) := it in the then
branch of BY™ (21, -+, Zr—1);
3. if z, > b, it is assigned either by prg-active.(zq, ---, z,+1) := tt or by prg-active,(x1,
-+, xp+1) := ff in the then branch or the else branch of b¥™(z1,- - -, x,), respectively.
Since no point is scanned more than once, we conclude that prg-active,(z1,- -, z,) is assigned
at most once for any (1, --,2;).

In the succeeding lemmata we prove properties of the target program. Thus, we need to
refer to values of program variables. In our single-assignment setting, we are only interested
in the values at the end of the execution of the target program. This allows us to compute the
values of some variables from the values of other variables by straight-forward code inspection.

First, we prove that predicate active is implemented correctly.

Lemma 33. prg-active, implements active, for all points of T where the value of prg-active,
is defined, i.e., whose image is scanned by the target program. Formally:

(Vr (1, ymg) : 1<r<dAT(z1, - ,2q)€TS :
prg-active, (1, -+, ;) = active, (1, -, Tp, lbpi1,- -+, 1bg))

Proof. Induction over the nesting depth r, and then induction over the index range of the r
loop.

e Induction base (r = 1):

— Induction base (z1 = lby):

r1 = lb1
= { definition of prg-active (Figure 7.8) and active }
prg-active; (z1) = tt = activey (z1, by, - -, Ibg)

— Induction step (z1—1 — z1, where z1>1by):

prg-active; (1)
< { definition of prg-active,(x1) in the if clause of by(z1—1): }
prg-active; (x1—1) A condition;(z1—1)
< { induction hypothesis for z;—1 }
activey (x1—1, by, - -+, lbg) A conditiony(z1—1)
< { definition of active, for r =1 and z; >1by }
activey (x1, by, -+ -, Ibg)
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e Induction step (r—1 — r, where r>1):

— Induction base (z, =1b,):

prg-active, (1, -+, Tr_1, lby)
< { definition of prg-active,(x1) in the if clause of b,_1(x1,- -+, zr—1): }
prg-active, _;(x1, -+, Zr—1) A condition,_1(x1, -, Tr_1)

< { induction hypothesis for r — 1 }

active, 1 (x1,+ Ty, by, -+, lbg) N condition,_1(z1, -, 1)
& { definition of active, for r>1 and z,=1b, }

activey (L1, Ty, lbpy1, -+, 1bg)

— Induction step ((z1,---,z,—1) = (21, -+, z,), where z, > 1b,):
analogously to 1 —1 — x1.

Next, we prove that predicate sig (Definition 25) is also implemented correctly. We proceed
in several steps:

1. The following definition, Definition 34, gives the predicate that corresponds to sig in
the target program a name: prg-sig.

2. Two auxiliary lemmata lead up to Corollary 37, which expresses prg-sig analogously to
the definition of sig.

3. This correspondence is helpful for the proof of Lemma 38, which states that prg-sig
implies sig.

According to Figure 7.10, Part K, a signal is sent if (k,(z) # 0) A sigval,(z). The direction
of this signal is &, (x). This leads to the following definition:

Definition 34 (prg-sigy). In the target program, a signal is sent into direction k iff the di-
rection given by k,(x) equals k and sigval,.(z) holds. Formally:

Vr:1<r<d: (Vv (xl, , Tp) (:El,--- Tpy lbpy1, -, lbg) ETS + (VEk : 0<k<r :
pTg—Sig;(ﬂZl, o ) = ( (3317 ) 7‘) = k) A Sigvalr(xla e 7337‘))))

where k,(z) is defined in parts E, F' and H the target program.

Lemma35. If a point T (z1,---,xq) is scanned by the target program, the value of sigval,
(second conjunct of Definition 34) is analogous to the first two conjuncts of the definition of
sig (Definition 25). Formally:

(V (21, ,2q) : T(z1, -, 29)€ETS : (Vr : 0<r<d : sigval.(z1, -+,2,) =
—ezecuted, (1, Ty, bpy1,- -+, lbg) A
(VS P l<s<r: _'p’l"g-’IUZ(ml,"',iL'r)\/p’l"g-S?:gZ(iEl,"',£E5—1,"',£L‘r)) ))

Proof. Following the program, we distinguish two cases.

e Case 1 (prg-active,(z1,---,z,) A condition,(z1,- -, T,)):
In this case, executed.(x1,- -, %p,lbpi1,-+,Ibg) holds:
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executed, (L1, -+, Tp, lbpy1,- -+, 1bg)
< { Definition 16 }
activey (L1, Tp, lbpy1, -+, lbg) A condition,(x1,- -+, )
<  { Lemma 33 }
prg-active,(x1,---,xy) A condition,(z1,-- -, x,)
< { condition of the first case }
it
Thus,
—ezecuted, (T1, Tp, bpi1,--+,lbg) A

(Vs :1<s<r: -prg-wi(z1,---,x.) V prg-sigs(z1,- -, xs—1, -+, 2))
< { executed (1, -+, Tp, lbpy1,- -, Ibg), ff is null of A }

I
< { definition of sigval by the program in this case }
sigval,.
e Case 2 (—(prg-active,(x1,---,z,) A condition, (1, -, xy))):
Analogously, in this case, we obtain —ezecuted, (%1, -+, Zy, lbyy1,- -, lbg). Then:
sigval, (z1,- -+, zy)

< { definition of sigval in this case and definitions in Parts C' and G of
the program }
(g (1, ) A reved; (1, 2)) VeV
(19 (1, 00) A rcved, (1, 52))
< { de Morgan, twice }
(mprg-wi(x1, -, zp) V reved) (1, -+, 2p)) A=+ A
(P11 (@1, ) V rEved (21, 2))
< { formalization }
(Vs :1<s<r: =prg-wi(zy,---,z) V rcvedy(zy,- -, %))
< { definition of rcved }
(Vs :1<s<r: -prg-wi(z1,---,x) V prg-sigs(z1, -, xs—1,- -+, z,))
& { —ezxecutedy(z1,- -, Xp, lbpy1, -+, Ibg), & is unit of A }
—ezecuted, (1, -+, Tp, bpi1,- -+, lbg)\
(Vs :1<s<r: -prg-wi(zy,---,2.) V prg-sigs(z1,---,x5s—1,--+, 1))

Lemma 36. If point T (x1,---,24) is scanned by the target program, the validity of ky(z1,
«o,xy) =k (first conjunct of Definition 34) implies prg—singl(azl, < Typ_1), in analogy to
the third conjunct of the definition of sig (Definition 25). Formally:

Vr:1<r<d: (V(z1,---,2q) : T(x1,---,29) €ETS : Vk : 0<k<r :
k(21,0 @) =k = (r=k+1 V prg-sigy (21, +,2r-1)))))
Proof.
kr(xh T 7x7') =k
< { definition of k, in the program }
kr(xh Ty Tr—1, lbr) =k
= { definition of k, in the program: in Figure 7.8, in Part F’ and in the
else branch of part H k, is set to 7 — 1; in the then branch of Part
H (where sigval holds) it is set to ky—1(z1, -+, 2r—1) }
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(r=1=k)V (sigval,_(z1, -+, Tr—1) Nkr_1(z1,- -+, 2,_1)=k)
< { Definition 34 }
(r=k+1)Vv prg—sz’gz_l(xl, S Tp1)

Corollary 37. If a point T (x1,---,xq) is scanned by the target program, the conjunction of
sigval, and ky(z1,---,z,) = k (and, by Definition 34, the value of prg-sigy(z1,---,x,)) is
analogous to all three conjuncts of the definition of sig (Definition 25). Formally:

Vr:1<r<d: (VY (z1, - -,2q) : T(x1,--,29) €ETS : VEk : 0<k<d:
prg-sigp(x1,- -+, x,) = nezecuted, (1, -+, Tq)A
(Vs :1<s<r: —prg-wiy(zry,---,2) V prg-sigh(xi, -, zs—1, -, 2,)) A
(r=k+1vVv prg—sigz_l(xl, e e—1)) )

Proof.

prg-sigy(v1,- -, )
< { Definition 34 }
sigval, (1, -+, Tr) Nkp(z1,- -, 20) =k
= { Lemma 35 and Lemma 36 }
(mezecuted, (x1,-+-,zq) N(Vs: 1<s<r : —prg-wi(zi, -, zy)V
prg-sigs(z1, -, xs—1, -, 2))) A
(r=k+1V prg—sigz_l(fpl, e Tpq))

Lemma 38 (prg-sig implements sig).

(Vr:1<r<d: (V(z1,---,2q) : T(x1,---,2q) €ETS : Vk : 0<k<r :
pryg-sigy(z1,- - xr) = sigp(z1,- -+, 74))))

Proof. Induction on the “distance” N = (37 : 1<i<d : z;) of point z from the origin

e Induction base (N = 0):

prg-sigy (1, -+, xr)
= { Definition 34 (prg-sig) }

(kr (21, -, 2) = k) A sigual,(z1, -, ;)
= { predicate calculus }

sigual, (z1,- -+, Ty)
= { Lemma 35 }
—ezecuted, (1, Tp, bpi1,- -, lbg) A

(Vs :1<s<r: -prg-wh(zy,---,2.) V prg-sigs(z1,---,xs—1,--+, 1))
= { N =0 implies (z1,--,z,) = (0,---,0) and prg-sigi(z1, -, x5 —
]-7"'7331“):ff:Sigg(xla'"7$s_17"'7$Talbr+17"'albd) }

—ezecuted, (1, Ty, bpi1,- -, lbg) A
(Vs :1<s<r: -prg-wi(z1, -, zp) V sigh(x1, -, 25— 1, xp, lbpy1,- -+, lbg))
< { Definition 25 (sig) }
sigp(x1, - sy, lbpyr, -+, 1bg)

e Induction step (N—1 — N, where N >0):
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prg-sigy(z1,- -, Tr)
= { Definition 34 (prg-sig), predicate calculus and Lemma 35, as for the
induction base }
—ezecuted, (1, Tp, Ibpi1,- -, lbg)\
(Vs :1<s<r : —prg-wh(zy, -, z.) V prg-sigh(x1, -+, xs— 1, -+, z;))

= { induction hypothesis for (z1,---,zs—1,---,2,) }
—ezecuted, (1, Tp, bpi1,- -+, lbg) A
(Vs :1<s<r: -prg-wy(zi, -, zp) V sigy(x1, - 25— 1, xp, lbpy1, -+, Ibg))
< { Definition 25 (sig) }
sigp(x1, -y @py lbpyr, -+, 1bg)

Armed with these lemmata, we can show that the target program executes the body at
all points with an inverse image in X.

Remember that the schedule for a nest of while loops is an affine function in the loop
indices with positive coefficients. Also, our correctness proof is restricted to such schedules.
If we have a mixed nest of for and while loops and the schedule contains a negative coefficient
for some for loop indices, we must first re-index the for loop and the corresponding indices in
the body to revert the enumeration of the for loop. Then, our methods can be applied.

Lemma 39. All transformed points with inverse image in X are scanned if the schedule is
an affine function with positive coefficients, i.e., for any dimension t in time,

(Vi :1<i<d : T1;20)=> (Vz : 2z€X : TzeTS).
Proof. Our aim is to apply Definition 30. First, we find a point Z € X with ¢(z) <. t(Z):

reX
= { Definition 17 and Definition 16 }
activeg(x) A conditiong(x)
< { Definition 15 for (z1,---,2,+1,--+,24), where 1 <r <d is a while
dimension }
activep(z1, -+, xpr+1,- -, xq)
= { Definition 18 }
(£L‘1,--- yTp+1,--- ,:Ed)e.j('\

We name this point Z; 0 <., t(Z)—t(z), since r is a while loop.

Now we can prove the lemma. Let z be any point in X and Z a corresponding point in X
as just defined. Applying Definition 30, we show that all points that are enumerated by time
slices up to and including ¢(p) do not abort the program:

it
& { trivial quantification }

(V' 2 €T At(2)) i t(z) 1 t(2") <ient())
= { property t(z) <. t(Z) of T and transitivity of <., and <, }

(V2" 2 €T At(2)) i t() 1 t(2) <1ex t(T))
< { tis an affine function, say, row ¢ in T }

(V' : 2" €T At(2)) < t(2) :

(At 1<t<d: (81 :1<i<d: Tyz) < (i :1<i<d : T;Z;)))

= { (Vt,i:1<t,i<d: T;;>0) by assumption, arithmetic }
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(V' €T At(2) < t(z) : (Fi 2 1<i<d : z:<T;))
< { negation of Definition 24 }

(V' : o' €T At(2') <iext(z) : ~mi(z'))
= { contrapositive of Lemma 27 }

(V' @ 2’ €T At(2") <iext(z) @ —sigh(x'))
= { Lemma 38 and Definition 34 }

(V' 2’ €T At(2)) <iext(z) : —(ka(z") =0) A sigvaly(z'))
= { Definition 30 }

prg-scanned(z)
& { Definition 30 }

TzeTS

Lemma 40. prg-active ensures that all legal points are executed, i.e., that Tx € TL is executed
iff €T s executed and Tz is scanned by the target program. Formally:

(Vz : z€T : prg-exec(x) < prg-scanned(x) N executed(z)).
Proof.

prg-ezec(x)
< { Definition 31 (prg-ezec) }

prg-scanned(z) A prg-activey(z1,---,xq) A conditiong(z1,- -+, xq)
< { Lemma 33 }

prg-scanned(z) A activeg(x1,- -+, 2q) A conditiong(1,- -+, Tq)
< { Definition 16 (ezecuted) }

prg-scanned(z) A executed(zy,- -, xq)

Theorem 41. For affine schedules with positive coefficients, the loop body b is executed at
yETL iff it is executed at T~ yE€TI. Formally, for any dimension t in time:

(Vi:1<i<d: T1;>0)= (Vy: yeTT : prg-ezec(T 'y) & executed(T'y))
Proof.
“=7: part “=" of Lemma, 40.
e
e y is scanned (Lemma 39);

e every scanned point whose inverse image is in X is executed (part “<” of Lemma 40).

7.3.4.3 Possible Adaptations of the Code to the Target Architecture

Memory reduction for distributed memory systems. For a real implementation, we
first introduce re-assignments by a simple modification of the skeleton in Figures 7.8 to 7.10
(we assume an injective allocation):

e all variables that are indexed with (z1, - -,x,) become local scalars, e.g., prg-active,(z1,
.-+, x,) becomes prg-active,;
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e all variables that are indexed with (zi, ---, z,+1) become local renamed scalars, e.g.,
prg-active,(x1, - - -, z,+1) becomes prg-active_out,;

e all variables that are indexed with (x1, -+, z,, lby41) become local scalars, e.g.,
prg-active, (x1, -+, &y, lbpy1) becomes prg-active,,; (note the different index).

Note, that the upper bound d on r is known at compile time.

Adaptation for asynchronous systems. As we mentioned already, the signaling scheme
is most easily described for synchronous machines. In this case, the given target code is
complete and correct.

In the asynchronous case, we can always find a space-time mapping that is scannable (Sec-
tion 5.2.6). Still, for whatever reasons, one has the option of an unscannable transformation
also for the asynchronous model, but with a slightly modified version of the target code just
presented.

The modifications result from the fact that, in the asynchronous case, there is no global
clock, i.e., the time component of every space-time mapped iteration cannot be interpreted
globally. Thus, sending any message from an iteration on processor P at time ¢ to another
iteration on processor P’ with execution time ¢ makes no sense—¢' might be in the past with
respect to the clock of processor P.

We can avoid this problem as follows: instead of the conditional sending of valueless sig-
nals, send unconditionally messages carrying the value of the condition, and use the blocking
receive for the receipt of these messages. The modified part K is

if kp(21,--+,2,) # 0 then
asend(chanir, [sigval,(x1,-- -, 2,)])
endif

Note, however, the increase in the number of messages.

Adaptation for shared memory systems. Section 7.2 contains a termination detection
scheme for shared memory systems via counters for shared memory. Alternatively, the sig-
naling scheme for distributed memory just derived can also be adapted to shared memory
systems: of course, parts B and J are superfluous. However, the exchange of the signals in
parts A and K must be transformed to shared memory access.

Let us briefly compare the signaling scheme adapted to shared memory and the counter
scheme with the extreme optimization of using one counter per tooth (i.e., r =1 in Sec-
tion 7.2.4). The optimized counter scheme still has to deal with conflicting accesses to the
counters which leads to an increase in execution time; this kind of bottleneck does not exist
in the adapted signaling scheme (at least not, if we neglect possible conflicts on the memory
bus of the shared memory system). On the other hand, the signaling scheme may increase
the execution time due to the necessary prolongation of the teeth. For both schemes, the
order of magnitude of the increase of the execution time is the same: linear in the extent of
the loops.
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7.3.5 The Example

The manual application of the signaling scheme to our example program is error-prone and,
as of yet, we have no implementation of it. Thus, we do not present the target code here, but
offer only some remarks for the implementation of the signaling scheme.

We have presented our scheme for perfect loop nests. For an imperfect nest there are
two options: either one uses a separate instance of the signaling scheme for every statement
or one uses a single instance of the scheme for the whole loop nest. In the first option, our
scheme can be applied without change; however, it would result in more communications than
necessary. Therefore, we propose to implement the second option.

If we want to use only one instance of the signaling scheme for the whole program, we
must distinguish between loop statements and regular statements: the signaling scheme is
implemented for the loop statements only, i.e., every loop statement at any level » computes
the values of its predicate active,, which are passed on to all statements (regular and loop
statements) in the body of the loop. Thus, the main modification is that the recursive
definition of activey is not unrolled at a single iteration point (as in Figure 7.8), but is
evaluated recursively, with different iteration points computing the parts of activey at the
different recursion levels r caused by alternative (2) of Definition 15.



Chapter 8

LooPo

This chapter presents an overview and the current state of our source-to-source parallelizer
LooPo (Loop Parallelization in the Polyhedron Model). Since LooPo is not yet complete, we
cannot offer the reader any performance measures of the developed target programs on real
parallel machines at this time.

LooPo is a prototype system whose purpose is to assist us in the research on and eval-
uation of space-time mapping methods for loop parallelization. To that end, it implements
the complete path from executable source code to executable target code, with switches for
choosing alternative methods. At present, we provide several inequation solving methods,
several dependence analyzers, schedulers, allocators and several methods of code generation.

LooPo is in the public domain and uses only freely available software to ensure easy
distribution. It runs on Sun workstations under SunOS 4.1.x and Solaris 2.x, and on PCs
under Linux.

LooPo can be used as a platform for experimenting with any step of the parallelization
process in the model; anybody interested in one special aspect of the parallelization can
plug his own module to LooPo and gets a complete source-to-source compiler. The central
data structures of the interface (restricting the applicability) are—according to the method—
polyhedra and piecewise affine functions.

However, the most important aspect of LooPo is that it integrates while loops. More
details on this aspect are given in Section 8.3.

8.1 The Structure of LooPo

LooPo traverses a sequence of steps which transform the source program to an executable
parallel target program. There are modules for scanning and parsing, (in)equality solving,
dependence analysis, scheduling, allocation and target code generation. A front end provides
the user with a graphical interface by which he/she can control LooPo. There is also a
graphical tool for displaying index spaces and iteration dependence graphs of loop nests.

Subsequently, we give a very brief overview of the system since it is not at the center of
this thesis. See our Web pages on LooPo for more details [41]. Also a list of all people working
in the LooPo team can be found there—all implementation has been done via programming
projects and master’s theses of students at the University of Passau.

80
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8.1.1 The Front End

The front end enables the user to invoke modules by mouse clicks (Figure 8.1). In order
to optimize LooPo’s results and suit the needs of the user, most modules provide an option
window where specific features can be altered (Figure 8.2).

File Options

Loop Parallelization in the Polytope Model
Project: omefclstaffigrieblAoopodibisrc/OWHidiss.src|

{temporary directory: /tmpAoopo25250

Dependence 3 Scheduler E Allocator E Targetloops E TargeiCode E Filter 3 Display 3

Source Program Target Program
.. CONSTANT n:

. r: lLocPo program

for t1 := 0 to 2*n+2 do
parfor pl :- max(0.tl-n) to

for- 3 = B 4 B o
for 3 10 Dito 142 do

Al 9 5 ; oo iminittii2y /0, 813 de
Ali-1,3] + o Alti-nl il e
Ali q=1]: | Altlepl=1.pl] *
end Altl-pd picld]=

/determing the complete loop bounds ...done
izaving the transformation matrices ...done
lconstructing the parsetree for the synchronous runtime solution ..
. done

arget generator completed

Target outpub called,

Figure 8.1: LooPo’s main window

8.1.2 The Input to LooPo

LooPo accepts (imperfect) loop nests in C and Fortran notation (among others) and declara-
tions of functions, procedures and symbolic constants. LooPo also takes explicit specifications
of dependences, schedules and allocations by the user, if so desired. By stating explicit depen-
dences, one can experiment with the space-time mapping of non-executable programs, i.e.,
programs with incomplete loop bodies.

8.1.3 The Inequation Solvers

There are several methods for parametric linear programming, which is the central mathe-
matical problem of the polyhedron model. We considered the following methods for use in
LooPo:

1. Fourier-Motzkin. This is the standard doubly exponential method of polytope projec-
tion (Section 3.3.1).
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Global options:

dil same dimension for all schedules

Scheduling method:

. Lamport | - affine

Method:

4 Feautrier ¥ by statement

-~ by iteration

.. Darte Vivien

Dependence Conversion:
% standard method

-+ dependence cones

Wi show results

Scheduling Method:
@il avoid distribution of statements
_i only positive coefficients
0l shift schedules

Dismiss l

Figure 8.2: LooPo’ options window for the scheduler

2. PIP. This is Feautrier’s system for parametric integer programming [27]. It proceeds
indirectly by transforming the original system of inequations into a dual system and
solving that. In principle it is an extension of the well-known simplex algorithm so as
to deal with parameters.

3. Weispfenning. There is another direct method which is only singly exponential [60]. Tt
performs better than Fourier-Motzkin on problems with more than four variables.

4. Omega. The Omega library [48] by Pugh solves linear programs on the basis of Pres-
burger formulas (affine constraints, the usual logical connectives, and existential and
universal quantifiers), with efficient heuristics for this special application field.

The current implementation of LooPo uses mainly PIP; the dependence module offers a
choice of PIP or Fourier-Motzkin. Omega will be integrated as an alternative for PIP and
Fourier-Motzkin in all modules.

8.1.4 The Dependence Analyzers

At present, LooPo features two tools for dependence analysis:
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1. Banerjee. The dependence analysis method described by Banerjee [4] makes no distinc-
tion between flow, anti and output dependences. Furthermore, spurious dependences
are not eliminated.

2. Feautrier. The method of Feautrier [28] allows potentially more parallelism, since it
only considers true dependences (no anti and output dependences)—thus, enforcing a
conversion to single-assignment form—and eliminates all spurious dependences, i.e., it
computes only the flow dependences—however for affine loops only.

8.1.5 The Schedulers

Presently, LooPo provides three different automatic schedulers:

1. Lamport. The hyperplane method by Lamport [5, 39] can handle perfectly nested for
loops with uniform dependences. It yields a one-dimensional affine schedule for the
complete loop body and, as allocation, a projection onto the source axes such that the
space-time mapping formed by the combination of schedule and allocation is unimodu-
lar.

2. Feautrier. The Feautrier scheduler [29, 30] determines an optimal (concave) schedule for
imperfectly nested for loops with affine dependences, at the cost of a longer computation
time based on the necessity of dealing with parametric integer linear programming [27].
The resulting schedule for every statement can be multi-dimensional and piecewise
affine.

For a comparison with Lamport’s method, one can call the Feautrier scheduler by itera-
tion (in the case of a perfectly nested input program), which enforces the same schedule
for all statements in the loop body.

3. Darte/Vivien. Darte and Vivien proposed a fast scheduler with reasonably good re-
sults [20], which can schedule arbitrary loop programs with uniform and non-uniform
dependences. It uses a less precise dependence description (direction vectors) than the
Feautrier scheduler. Therefore, the quality of its schedules is somewhere between that
of Lamport’s and Feautrier’s schedules.

8.1.6 The Allocators

Presently, LooPo provides two different allocators:

1. Feautrier. Feautrier’s method [31] determines the placement of operations on virtual
processors. It is based on the “owner computes rule” and tries to “cut” dependences by
mapping the depending operations to the same processor, starting with dependences in
the highest dimensions (greedy heuristic).

2. Dion/Robert. The method of Dion and Robert [25] uses the reduced dependence graph,
where the dependences are either given by the direction vectors or the dependence cone.
In addition to the allocation for the computation an allocation of the data, i.e., a data
distribution is generated.



8.2 First Experiences 84

The allocators do not inspect the schedule, and may therefore generate an allocation in
which some dimensions are linearly dependent on the schedule.

In addition, we are currently adding a module for partitioning to LooPo. This module
maps the virtual processors to a fixed number of real processors.

8.1.7 The Display Module

LooPo also features a graphical displayer which depicts the source index space and the depen-
dences therein in up to three dimensions. In the current implementation all statements must
have the same index space; this excludes imperfectly nested loops. A dependence filter pro-
vides a graphical interface to enable the user to select a subset of statements and dependences
which satisfy these restrictions.

The displayed polytope can be rotated or even transformed by an arbitrary affine matrix
to show the target space.

8.1.8 The Target Generator

The target generator consists of two modules: one derives the target loop nest(s), the other
adds communications for synchronization and communication.

8.1.8.1 The Target Loops

The loops of the transformed source program are constructed from the index spaces, the
dependences, the schedule and the allocation. Note that transformations can be individual
for every statement in the source program. The target loops are represented as a parse tree
which does not contain any synchronization or communication statements.

The construction of the parse tree proceeds in two phases. First the program parts are
constructed and transformed individually, and then the results are combined to a single
target program, as described in Section 3.3.2. Aside from the two options of synchronous or
asynchronous code, three merging strategies are available [61]:

1. the parts are simply combined with a parallel operator, i.e., there are several separate
loop nests which are assumed to be executed in parallel,

2. merging at run time as described in Section 3.3.2,

3. merging at compile time.

8.1.8.2 Synchronization and Communication

The parse tree representing the target loops is then translated to one of a variety of possible
output languages, e.g., some parallel C or Fortran dialect or PARIX-C. Synchronization and
communication is added if the user so desires [26]. The target program (with communication)
is executable on any PARIX machine.

8.2 First Experiences

Our first tests showed that there are two main restrictions limiting the applicability of LooPo
in practice. The first is the lack of conditional statements in the current version of LooPo.
This will be fixed soon.
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The other limitation is more deeply connected with the use of the polytope model for space-
time mapping. The polytope model offers very precise analysis and scheduling techniques.
However, these techniques are based on integer linear programming which is a computationally
complex problem. We have had to learn that the (in)equation solvers are the most problematic
component of the parallelizer: not only do they consume most of the compilation time but
they even frequently fail to compute a solution in real applications.

8.3 LooPo and while Loops

One of the main reasons for starting the project LooPo was our need for a parallelizing
source-to-source compiler whose internal structure we know very well, in order to be able to
implement parallelization techniques for while loops. The extension to loops of Class 2, 1 and
0 will be part of version 2 of LooPo which we hope to complete by the end of 1996.
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Conclusions

The contribution of this thesis is an extension of the applicability of parallelization methods.
We started with the polytope model, which is a very useful mathematical framework for
automatic parallelization, but which is restricted to for loops with affine bounds. We succeeded
in generalizing the methods for the polytope model and developed, in several stages, the
polyhedron model as a mathematical framework for the parallelization of loop nests containing
while loops.

First, we decided to use an index for while loops, in analogy to for loops, and dropped the
requirement that index spaces must be bounded, which did not affect the space-time mapping
techniques. Then, we realized that the execution spaces at run time are, in general, not convex,
leading to target execution spaces which cannot be scanned precisely. We distinguished
space-time mappings that do not raise this problem and suggested, for the other space-time
mappings, a scheme which prevents the execution of holes in the target execution space.
Finally we bounded the dimensions in space by partitioning and the dimensions in time,
depending on the target machine, by various termination detection schemes.

With all these schemes at our disposal, we can drop the requirement of affinity on loops
altogether.

However, there is, of course, an important difference in efficiency: first, while loops al-
ways lead to a loop-carried dependence, thus reducing parallelism. Second, and probably
worse, these dependences come from the necessity of transferring information between differ-
ent points of the index space, which leads to many communications. Third, the treatment
of unscannable spaces, necessary for arbitrary for loops as well as for while loops, results in
a constant slowdown due to the necessity of evaluating guards at every scanned target index
point.

On the other hand, we have seen that the parallelism in nested while loops may offer
the potential for a speed-up of orders of magnitude: if there are only while dependences,
one dimension in time is sufficient, i.e., we can reach linear time. Of course, additional
dependences in the loop body may reduce the parallelism further.

Note that maximal parallelism does not imply maximal efficiency of the parallel program;
this observation, also valid for for loops, is still more important for while loops because of
their increased communication volume. Therefore, partitioning is an important subject in
parallelizing nested while loops.

Besides extending the applicability of existing parallelization methods, we also have sug-
gested a classification of loops. Table 9.1 gives an idea of the impact of each class on code
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Transformation
Class scannable unscannable Comments
guard bound | guard bound

4 none  arith | none arith | polytope model

3 none  arith | none arith | no general mathematical methods
2 none  arith | arith arith

1 none iter iter  scheme | special cases exist

0 none iter iter  scheme

Table 9.1: The impact of classes of loops and scannability to code generation

generation, for both scannable and unscannable transformations. In each case, the complexity
of the code generation is determined by the nature of the guards, if any, and the form of the
loop bounds.

For the guards we distinguish:

e none local guards are not necessary,
e arith the guard is an arithmetic expression,
e iter the guard must be computed iteratively.

For the bounds we distinguish:

e arith  the loop bound is an arithmetic expression, similarly to the source program,
e iter the loop bound must be computed iteratively, similarly to the source program,
e scheme termination detection must be performed by a special scheme.

Note that we have discussed a simple speculative scheme in the case of robust and strict
conditions in loops of Class 1, which does not appear in the table. Note further, that guards
may be introduced due to merging program parts at run time, due to partitioning or due
to the fact that loop statements of while loops become regular statements inside the loop
body—even if the entry in the table is “none”.

Our work does not deal with speculation in the general case. One reason is that we
wanted to avoid very low-level problems for code generation on the technical side, as, e.g.,
handling arithmetic exceptions in speculatively executed iterations, as well as the exploitation
of algorithm-specific properties on the abstract side, such as convergence properties and nu-
merical stability, because we are interested in a machine-independent general-purpose method
for parallelizing loop nests containing while loops.

The other reason is that, of course, also in the speculative approach, target loops must be
generated. We expect that our methods can at least be a basis for that purpose. One minor
difference to the presented code generation schemes is that, for speculative execution, some
of the local guards can be dropped; this means that holes are assigned useful work (even if
that work is not part of the source program, e.g., additional iterations of an approximation
algorithm). The major problem will probably be to find adequate termination conditions for
speculative execution.

If such problems do not occur, as, e.g., in robust and strict loops of Class 1, one might
drop (or at least replace) some carefully selected control dependences in order to increase
parallelism and use our scheme again.

Combining the speculative and the conservative approach in one common framework is
interesting future work.
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Of course, there still remains a lot of (technical) work to be done. In this thesis, we
restricted the technical discussions to perfect nests of only while loops in the intent of a clean
presentation. Our main concern was to show that a general loop nest can be parallelized at
all, and at which costs; we have reached this goal since one can (e.g., with the help of guards)
transform any loop program to a perfect nest of while loops. However, in practice the central
goal is the efficiency of the parallel program. Thus, we must not transform a program to a
perfect nest of while loops but we must exploit any possibility for optimization offered by each
individual loop.

Furthermore, current partitioning techniques are optimized for nests of affine loops. Since
these techniques cannot be used for while loops, we can offer only a suboptimal solution at
present. The importance of partitioning in the presence of while loops certainly justifies the
search for optimal partitioning techniques for loop nests containing while loops.

The central remaining limitation of the polyhedron model is the restriction to arrays
as the only data structure, which is inherited from the polytope model. Efforts to relax this
restriction are currently being undertaken. Progress in this area would eliminate the necessity
of manual interaction during program analysis. This would allow us to run our methods on
a wide range of applications completely automatically.

We expect that one major field of application is the parallelization of algorithms for
sparse data structures, since sparsity usually leads to irregularity. As seen in our example
of computing the reflexive transitive closure of a sparse graph, this kind of algorithm can be
parallelized without speculation, i.e., our methods can be applied without change.
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