
P

UNIVERSIT aT P A SS A U

F akult• at f • ur Mathematik und Informatik

a

Dissertation

The Mec hanical P arallelization of Lo op Nests

Con taining while Lo ops

Author:

Martin Griebl

Advisor:

Pr of. Christian L engauer Ph. D.

Octob er 15, 1996

Ac kno wledgmen ts

Nob o dy can write a thesis without help form others, and it is usually imp ossible to express

one's gratitude for this immense amoun t of help. The least I can do is to dev ote the �rst

pages of m y thesis to all these w onderful p eople, and thank them all for their precious supp ort

and individual help.

I w an t to men tion some p eople explicitly , ev en kno wing that m y list m ust b e inclomplete.

First of all, I w an t to thank Professor Christian Lengauer who has b een an excellen t

advisor to me. Thank y ou for m y p osition, for y our lib eralit y concerning w orking mo des, for

uncoun tably man y fruitful discussions with y ou (o�cial and priv ate), for y our indefatigabilit y

in impro ving m y English, for m ultiple detailed pro of readings of this thesis, for alw a ys ha ving

time for m y problems, ...; short, thank y ou for ha ving b een a real \Doktorv ater", whic h, to

me, is more than an advisor.

In addition, I am grateful to Professor P aul F eautrier: thank y ou that y ou ha v e accepted

to review this thesis, and to ok the time to giv e me detailed commen ts on m y draft of this

thesis.

I also w an t to thank Professor P . Kleinsc hmidt, Professor F.-J. Branden burg and Professor

W. Hahn for ha ving agreed to b eing m y examiners and for their helpfulness. F urthermore, I

w ould lik e to thank Professor N. Sc h w artz who alw a ys helps at the formal asp ects on the w a y

to a Ph. D.

Ho w ev er, there are also helpful p ersons outside of m y dissertation committee. First of

all, I w an t to thank m y F renc h colleague and friend Jean-F ran� cois Collard. Thank y ou for

y our co op eration already at the b eginning of this thesis, when w e did not y et kno w eac h

other. Because of y our op en-minded w a y , w e succeeded in w orking together instead of b eing

comp etitors. This led to man y fruitful discussions and a deep friendship. Thanks a lot for

that.

F urthermore, I w ould lik e to thank the mem b ers of the Lehrstuhl f • ur Programmierung for

the go o d w orking climate and for some helpful hin ts, and esp. Christoph Herrmann for his

excellen t pro of reading. In addition, there is another mem b er of the group I w an t to men tion

sp eci�cally: Ulrik e Lec hner. I w ould call her \the go o d soul of our group". Thank y ou for

sharing the o�ce and some w ork, and for the w onderful climate in our o�ce, not only due to

y our o w ers.

A-pro-p os climate: one of the most agreeable teams I ha v e ev er b een part of is the Lo oP o

team. The studen ts in this team ha v e b een a con tin uous source of energy and encouragemen t

to me. Numerous discussions help ed me understand the problems in the v arious facets of

lo op parallelization. I am grateful to Andreas Disc hinger, P eter F ab er, Rob ert G • unz, Harald

Keimer, Radk o Kubias, W olfgang Meisl, F rank Sc h uler, Martina Sc h umergrub er, Sabine W et-

zel, Christian Wieninger and Alexander W • ust. A sp eci�c thank is due to Nils Ellmenreic h:

thank y ou, for b eing a co-leader of Lo oP o, and still more for y our un b ounded helpfulness and

for y our friendship.

Righ t, there is one name missing in the Lo oP o team: Max Geigl. Y ou can b e sure that I

ha v e not forgotten y ou, M• ax; I just w an t to thank y ou separately . Through ho w man y long

driv es did y ou ha v e to listen to and discuss with me ab out co de generation sc hemes or more

strange things lik e m ulti-dimensional com bs? Thank y ou for nev er jumping o� the car, and

also for accepting that other p eople around us called us crazy b ecause of our \v acuum cleaner

stories". More seriously , thank y ou for alw a ys ha ving time for me, in short, thank y ou for

b eing a really go o d friend.

F rom the univ ersit y , I w an t to thank in addition our secretaries, Johanna Bucur and

Ulrik e P eik er who k ept administrativ e w ork as far a w a y from me as p ossible. Similarly , m y

friend and colleague Andreas St • ubinger and our studen t mem b ers of the sta�, Sv en Anders,

Holger Bisc hof, and Bernhard Lehner skilled me from a lot of system administration and

implemen tation w ork|thanks to all of y ou.

Ho w ev er, there is not only the professional supp ort necessary for success. Almost more

imp ortan tly , one needs an en vironmen t that radiates safet y and that pro vides one with new

energy . This en vironmen t has alw a ys b een m y family . Thanks a lot for that. Unfortunately ,

precisely the same p eople ha v e to stand aside when w ork requires more time. I w an t to thank

m y paren ts and m y wife for understanding and accepting this. Thank y ou, Gabi, for �gh ting

hard to understand what I am w orking on, and for trying to help me. Thanks for guarding

me from all those things whic h I had no energy for|y ou could not ha v e done more.

Con ten ts

1 In tro duction 6

2 Ov erview 9

2.1 Related W ork . 9

2.2 Mathematical De�nitions and Notations . 10

2.3 Restrictions of the Input Program . 10

2.4 Basic Mo del, Extensions and P arallelization 11

2.4.1 P arallelization of fo r Lo ops in the P olytop e Mo del 11

2.4.2 P arallelization of while Lo ops in the P olyhedron Mo del 12

2.5 An Example Application . 14

3 Imp ortan t P arallelization Phases 18

3.1 Dep endence Analysis . 18

3.1.1 Data Dep endence Analysis in the P olytop e Mo del 18

3.1.2 Data Dep endence Analysis in the P olyhedron Mo del 20

3.1.3 Con trol Dep endences . 20

3.1.4 Dep endence Graph . 20

3.1.5 The Example . 21

3.2 Sc hedule and Allo cation . 23

3.2.1 Space-Time Mapping in the P olytop e Mo del 23

3.2.2 Space-Time Mapping in the P olyhedron Mo del 24

3.2.3 The Example . 24

3.3 Generation of T arget Programs . 25

3.3.1 Generation of T arget Lo ops in the P olytop e Mo del 25

3.3.2 Extensions for the Most General Case of the P olytop e Mo del 26

3.3.3 Generation of T arget Lo ops in the P olyhedron Mo del 27

3.3.4 Re-indexation in the Lo op Bo dy . 28

4 Classi�cation of Lo ops 29

4.1 Prop erties of Lo ops and Lo op Nests . 29

4.2 Classi�cation . 30

4.3 The Example . 33

5 Scannabilit y 35

5.1 Scannable Sets . 35

5.2 Scannable T ransformations . 36

5.2.1 Idea . 37

3

CONTENTS 4

5.2.2 F ormalization . 37

5.2.3 Additional Bene�t of Scannable T ransformations 41

5.2.4 Applicabilit y . 42

5.2.5 Choices of Space-Time Mappings . 42

5.2.6 Async hronous T arget Lo op Nests and Scannabilit y 43

5.3 Unscannable Execution Spaces . 43

5.3.1 Motiv ation: Wh y Unscannable T ransformations? 43

5.3.2 Con trolling the Scan of an Unscannable Execution Space 43

5.4 The Example . 45

6 Pro cessor Allo cation 47

6.1 Limitation of the Pro cessor Dimensions . 47

6.2 P artitioning T ec hniques . 48

6.3 The Example . 50

7 T ermination Detection 53

7.1 T ermination Detection for Sp ecial Languages 53

7.2 T ermination Detection in Shared Memory . 54

7.2.1 Idea . 54

7.2.2 F ormalization . 55

7.2.3 Correctness . 56

7.2.4 Optimization . 57

7.2.5 The Example . 57

7.3 T ermination Detection with Distributed Memory 60

7.3.1 Idea . 60

7.3.2 F ormalization . 61

7.3.3 Signals and their Signi�cance for Lo cal Maximalit y 63

7.3.4 T arget Co de Generation for Distributed Memory Mac hines 66

7.3.4.1 General T ec hnique . 66

7.3.4.2 Correctness Pro of . 71

7.3.4.3 P ossible Adaptations of the Co de to the T arget Arc hitecture 77

7.3.5 The Example . 79

8 Lo oP o 80

8.1 The Structure of Lo oP o . 80

8.1.1 The F ron t End . 81

8.1.2 The Input to Lo oP o . 81

8.1.3 The Inequation Solv ers . 81

8.1.4 The Dep endence Analyzers . 82

8.1.5 The Sc hedulers . 83

8.1.6 The Allo cators . 83

8.1.7 The Displa y Mo dule . 84

8.1.8 The T arget Generator . 84

8.1.8.1 The T arget Lo ops . 84

8.1.8.2 Sync hronization and Comm unication 84

8.2 First Exp eriences . 84

8.3 Lo oP o and while Lo ops . 85

CONTENTS 5

9 Conclusions 86

Chapter 1

In tro duction

T ec hnological adv ances in the last decades ha v e led to faster and faster computer systems,

but the demands made on the sp eed of computer systems are gro wing just as rapidly . Large

computational problems are b ecoming so data-in tensiv e that sequen tial systems, i.e., systems

with only one main pro cessor often ha v e not enough p o w er to solv e these problems in the

time required b y the user.

This has led to the dev elopmen t of parallel computers, i.e., systems with more than one

main pro cessor. The crucial problem p osed b y these systems is ho w to write programs for

them: one can either re-implemen t existing sequen tial algorithms so as to adjust them for

m ulti-pro cessor computers or redesign algorithms for parallel systems from scratc h. Both

approac hes ha v e one common disadv an tage: they are costly and error-prone if done b y hand.

Consequen tly , m uc h e�ort has b een in v ested in researc h of ho w to transform automatically

sequen tial programs in to programs for m ulti-pro cessor systems. This has led to the emergence

of the researc h area of automatic parallelization . F or sev eral reasons there has b een a fo cus on

nested lo ops: �rst, man y programs sp end the main part of their execution time in lo op nests|

this mak es lo op parallelization w orth-while; second, the amoun t of p oten tial parallelism in

lo op nests turns out to b e considerable|orders of magnitude of sp eedup are p ossible; third,

the regularit y of man y lo op nests facilitates the automatic detection of parallelism and has

aided the dev elopmen t of e�cien t parallelization tec hniques.

Basically , there are t w o di�eren t approac hes to lo op parallelization: an exp erimen tal and

a mo del-based approac h . In the exp erimen tal approac h a set of p ossible lo op transformations

has b een dev elop ed among whic h one can/m ust c ho ose useful ones heuristically if one w an ts

to parallelize a concrete program; this approac h led to �rst go o d results.

The other approac h is based on a mathematical mo del. In order to dev elop a clean

mo del, it is usually impractical to consider programs immediately as they o ccur in general

applications. Instead one �rst considers a subset of \w ell-b eha v ed" applications, for whic h

a mo del can b e dev elop ed more easily . Then, one tries to relax some of the restrictions

and thereb y mak e the mo del more complex and general. This has also b een done in lo op

parallelization.

Mainly , three restrictions ha v e aided the dev elopmen t of a computational mo del for lo op

parallelization. First, in t ypical programming languages there is a general t yp e of lo ops,

while lo ops , and a more restricted t yp e, fo r lo ops . The main di�erence is that in fo r lo ops

the n um b er of iterations is kno wn at compile time (or, at the latest, when the lo op starts

execution) whereas in while lo ops it is not. It turned out that while lo ops|and ev en arbitrary

6

7

fo r lo ops|are still to o general for the dev elopmen t of a simple mathematical mo del, but it w as

p ossible to �nd a mo del for nested fo r lo ops whose b ounds are a�ne expressions in outer lo op

indices and structure parameters , i.e., sym b olic constan ts. W e call suc h lo ops a�ne lo ops .

Second, orthogonally to the �rst p oin t, also the nesting order inuences the dev elopmen t

of a simple mo del: in the restricted case of p erfect lo op nests only the innermost lo op con tains

statemen ts di�eren t from lo ops; this is not true for the general case of imp erfect lo op nests .

Third, there can b e arbitrary dep endences b et w een the computations spa wned b y a lo op

nest. In order to mo del these dep endences, they should b e uniform , i.e., iden tical for all com-

putations, or at least a�ne , i.e., a�ne functions in the lo op indices (more precise de�nitions

are giv en in Section 3.1.1).

The �rst mathematical mo del w as dev elop ed for p erfect nests of a�ne lo ops with uniform

dep endences: it is called the p olytop e mo del [40]. In brief, p olytop es are �nite con v ex geo-

metrical ob jects with plane b orders. Mathematically , they are b ounded p olyhedra , where a

p olyhedron is a �nite in tersection of halfspaces. The exact corresp ondence b et w een p olytop es

and lo op nests is explained in the next c hapter. The existing generalizations of the p olytop e

mo del are describ ed in Section 2.1.

As just noted, the p olytop e mo del for the parallelization of lo op nests has a more re-

stricted range of application than the exp erimen tal approac h; on the other hand, it supp orts

parallelization metho ds whic h are fully automatic and|within the c hoices o�ered b y the

mo del|pro v ably optimal.

Curren tly , one can observ e a con v ergence of b oth approac hes; the mo del the second ap-

proac h is based on is b eing extended suc h that the tec hniques of the �rst approac h can b e

expressed, and man y of the restrictions formerly necessary ha v e b een relaxed.

Before w ork on this thesis b egan, the parallelization metho ds of b oth the mo del-based

approac h and the exp erimen tal approac h did not supp ort the detection of an y parallelism

hidden in a nest of general lo ops, ev en if there are only a�ne dep endences. The con tribution

of this thesis is a generalization of the p olytop e mo del to supp ort the automatic parallelization

of general lo op nests, as long as their dep endences are a�ne. W e fo cus on the theoretical

extensions of existing metho ds.

Ho w ev er, w e also address the implemen tation of the extended metho ds in our w ork. F or

this purp ose, w e are dev eloping Lo oP o , a source-to-source parallelization framew ork in whic h

v arious w ell-kno wn metho ds of lo op parallelization in the p olytop e mo del are implemen ted.

Lo oP o's extension to general lo op nests, ho w ev er, is ongoing w ork and, therefore, Lo oP o is

not a fo cus of this thesis.

Lo op nests con taining while lo ops and fo r lo ops with arbitrary b ounds o ccur frequen tly ,

e.g., in algorithms for sparse data structures. Th us, they are a ma jor �eld of application of

our parallelization metho ds.

Our approac h also co v ers con v ergen t iterativ e algorithms, frequen t in n umerical applica-

tions, whic h are usually while lo ops. Ho w ev er, these lo ops ha v e sp ecial prop erties (cf. Sec-

tion 4.2) whose exploitation is not a fo cus of this thesis; our goal is to dev elop a parallelization

metho d that is generally applicable.

The thesis is organized as follo ws. Chapter 2 giv es an o v erview of related w ork, terminology

and the parallelization in the p olytop e mo del, and presen ts an example application whic h is

used throughout this thesis. Chapter 3 presen ts in more detail the most imp ortan t stages of

a parallelization in the p olytop e mo del and analyzes, for ev ery stage, the extensions that are

8

necessary to in tegrate while lo ops. Chapter 4 o�ers a classi�cation of lo ops whic h determines

for ev ery lo op in a source nest ho w it is mo deled and ho w it is treated during co de generation.

The subsequen t parts of this thesis are more tec hnical and deal with the irregularities whic h

are in tro duced in to the extended mo del due to the limited information a v ailable on the b ounds

of while lo ops: Chapter 5 tac kles irregularities inside the target domain and Chapters 6 and

7 deal with the detection of the b ounds of the target domain, Chapter 6 for dimensions in

space and Chapter 7 for dimensions in time. Chapter 8 describ es the curren t state of our

source-to-source parallelizer Lo oP o. Finally , Chapter 9 concludes the thesis and discusses

future w ork.

Chapter 2

Ov erview

W e describ e �rst the state of the art in lo op parallelization and presen t our notation and

some necessary de�nitions. Then, w e sp ecify the input required and the output supplied b y

our metho ds. Subsequen tly , the mo del is presen ted including all necessary extensions and all

steps of the parallelization metho d are describ ed briey . Finally , w e in tro duce a lo op program

whic h is used as an example throughout the thesis.

2.1 Related W ork

The p olytop e mo del enables the parallelization of p erfectly nested a�ne lo ops. The seminal

w ork on the p olytop e mo del w as done b y Karp, Miller and Winograd [36] thirt y y ears ago;

it o�ers a w a y of sc heduling systems of uniform recurrence equations. In 1974, Lamp ort [39]

applied these ideas to lo op nests and ga v e an algorithm for sc heduling the iterations of a

p erfect nest of a�ne lo ops.

In the last t w o decades the metho ds of the p olytop e mo del ha v e b een extended in v ar-

ious directions, e.g., more precise dep endence analysis tec hniques ha v e b een dev elop ed [28]

and more exible transformations [65] or b y-statemen t transformations [19 , 37 , 53] (cf. Sec-

tion 2.4.1) ha v e b een in tro duced.

Ho w ev er, a relaxation of the serious restriction of the a�nit y of the lo op b ounds w as not

considered b efore w ork on this thesis b egan. As w e shall see in the mathematical de�nitions,

suc h a relaxation transcends the framew ork of p olytop es.

The parallelization of while lo ops has b een in v estigated for a n um b er of y ears [8, 59 , 62 , 64].

The general approac h has b een to pip eline the successiv e iterations where p ossible (e.g.,

[59 , 64]). This do es not require metho ds based on the p olytop e mo del, and it yields at most

constan t sp eedup.

Other approac hes [62 , 64] presen t sp e ci�c c ases in whic h the parallelization of while lo ops

is p ossible, esp. for while lo ops whic h are actually disguised fo r lo ops. But none of these

approac hes o�ers a w a y of parallelizing nests with while lo ops in the gener al c ase , ev en if

there exists p oten tial parallelism.

The common problem of all these attempts is that they try to parallelize ev ery while lo op

in a lo op nest in isolation. This is, in general, imp ossible since the seman tics of while is

inheren tly sequen tial. Ho w ev er, in a nest of while lo ops considered as a whole one can detect

and exploit parallelism.

9

2.2 Mathematical De�nitions and Notations 10

W e shall see that our approac h subsumes the pip elining metho ds as w ell as parallelization

p ossibilities in the sp eci�c cases of [64].

Up to no w, our approac h has also b een used in the metho ds of J.-F. Collard and P . F eautrier

who concen trate on the data dep endence analysis in the extended mo del [16] and apply

sp eculativ e execution [15], i.e., they allo w that some statemen t S in the b o dy of a source

lo op nest iterates farther in the target program than in the source program. If the addi-

tional iterations of S pro duce undesired v alues the prop er �nal v alues m ust b e reco v ered.

This leads to serious problems in co de generation. Th us, w e c ho ose the more restrictiv e

conserv ativ e execution sc heme whic h forbids additional iterations of S in the target program.

In this thesis w e concen trate on the extensions of the p olytop e mo del and its metho ds

and on the generation of target programs in the extended mo del, and w e apply the results of

Collard and F eautrier where w e need them.

2.2 Mathematical De�nitions and Notations

Our mathematical notation follo ws Dijkstra [24]. Quan ti�cation o v er a dumm y v ariable x is

written (Q x : R :x : P :x). Q is the quan ti�er, R is a predicate in x represen ting the range,

and P is a term that dep ends on x . F ormal logical deductions are giv en in the form:

formula

1

op f commen t explaining the v alidit y of relation op g

formula

2

where op is an op erator from the set f(; , ;)g . The b o olean v alues true and false are

denoted b y t t and f f , resp ectiv ely .

The dimension of a v ector ~ x is denoted b y j ~ x j . The pro jection to its co ordinates k to l is

written as ~ x [k ::l] . If k > l then this v ector is b y con v en tion the unique v ector of dimension 0.

F urthermore, �

lex

(<

lex

) denote the (strict) lexicographic ordering on v ectors, and ~ x

>

denotes

the transp ose of ~ x .

Scalar and matrix pro duct are denoted b y juxtap osition. Elemen t (i; j) of matrix A is

denoted b y A

i;j

. rank(A) denotes the ro w rank of A . A

�

�

i; ��� ;j

is the matrix that is comp osed

of ro ws i to j of matrix A .

De�nition 1. A p olyhedron is the �nite in tersection of halfspaces. A p olytop e is a b ounded

p olyhedron.

A Z -p olyhedron (a Z -p olytop e) is the in tersection of a p olyhedron (p olytop e) and a lattice .

If not stated otherwise w e mean Z -p olyhedra (Z -p olytop es) when w e sp eak of p olyhedra

(p olytop es).

2.3 Restrictions of the Input Program

As source language w e use a subset of an imp erativ e language lik e P ascal, Mo dula, C or

F ortran. The syn tax used in this thesis is self-explanatory , and w e exp ect the reader to b e

familiar with the basic concepts of imp erativ e languages. Th us, w e fo cus immediately on the

restrictions whic h w e imp ose on general imp erativ e programs:

2.4 Basic Mo del, Extensions and P arallelization 11

� The only data structures considered are arra ys. Extensions to records (structures) or

unions (v arian t records) are straigh t-forw ard (but are not treated in this thesis), whereas

aliasing mec hanisms or p oin ters cannot b e in tegrated easily .

� The only con trol structures are fo r lo ops and while lo ops. Conditionals can b e mo deled

b y while lo ops with at most one execution of the lo op b o dy; they are not treated

explicitly in this thesis. Pro cedure and function calls can b e in tegrated b y considering

them as a sim ultaneous assignmen t to those actual parameters whic h can b e mo di�ed

b y the call, e.g., all reference parameters.

F or tec hnical reasons w e add another constrain t:

� In order to mak e datao w analysis e�cien t or ev en feasible, the arra y indices m ust b e

a�ne functions in lo op indices of surrounding lo ops and in structure parameters.

Please note that w e inherit all these restrictions from the basic p olytop e mo del|they are

not limitations due to the presence of while lo ops.

Note further that the basic p olytop e mo del also has the limitation that all o ccuring lo ops

m ust b e a�ne lo ops; the elimination of this restriction is the main con tribution of this thesis.

2.4 Basic Mo del, Extensions and P arallelization

This section briey presen ts the general tec hnique of parallelization in the p olytop e mo del

and prop oses the basic idea of ho w to in tegrate while lo ops. A more detailed description of

eac h parallelization step is deferred to the next c hapter.

2.4.1 P arallelization of fo r Lo ops in the P olytop e Mo del

Idea. The p olytop e mo del represen ts the atomic iteration steps of d p erfectly nested fo r

lo ops as the p oin ts of a p olytop e in Z

d

; eac h lo op de�nes the exten t of the p olytop e in one

dimension. The faces of the p olytop e corresp ond to the b ounds of the lo ops; they are all

kno wn at compile time. This enables the disco v ery of maximal parallelism (relativ e to the

c hoices a v ailable within the mo del) at compile time.

T ec hnique. The parallelization in the p olytop e mo del, describ ed in [40], pro ceeds as follo ws

(Figure 2.1, graphical represen tation for n = 3).

First, one represen ts d p erfectly nested source lo ops in to a d -dimensional p olytop e where

eac h lo op de�nes the exten t of the p olytop e in one dimension. W e call this p olytop e the

index space and denote it b y I (I � Z

d

). Eac h p oin t of I represen ts one iteration step of the

lo op nest. The co ordinates of the p oin t are giv en b y the v alues of the lo op indices at that

step; the v ector of these co ordinates is called the index v ector .

Next, one applies an a�ne co ordinate transformation T , the space-time mapping , to the

p olytop e and obtains another p olytop e in whic h some dimensions lie exclusiv ely in space and

the others lie exclusiv ely in time. In other w ords, the new co ordinates represen t explicitly

the (virtual) pro cessor lo cation and the time of execution of ev ery computation of the target

program. In Figure 2.1 the space-time mapping is giv en b y p = j , t = i + j . W e call the

transformed p olytop e the target space and denote it b y T I .

2.4 Basic Mo del, Extensions and P arallelization 12

fo r i := 0 to n do

fo r j := 0 to i + 2 do

A (i; j) := A (i � 1 ; j)

+ A (i; j � 1)

enddo

enddo

fo r t := 0 to 2 n + 2 do

pa rfo r p := max(0 ; t � n) to min (t; b t= 2 c + 1) do

A (t � p; p) := A (t � p � 1 ; p)

+ A (t � p; p � 1)

end do

enddo

i

j
p

t

Figure 2.1: P arallelization in the mo del

Finally , one translates this p olytop e bac k to a nest of target lo ops, where eac h space

dimension corresp onds to a parallel lo op and eac h time dimension corresp onds to a sequen tial

lo op.

By-statemen t mapping. The mo del describ ed up to this p oin t can only handle p erfectly

nested lo ops. This sev ere restriction can b e relaxed b y applying all tec hniques men tioned

so far to ev ery statemen t in the b o dy separately , instead of applying it to the b o dy of as a

whole. In this extension ev ery statemen t gets its o wn index v ector, its o wn source and target

p olytop e and its o wn space-time mapping [19 , 37]. Th us, the sym b ols denoting the p olytop es

and the transformation are indexed with the name of the statemen t. An op eration of the

program is iden ti�ed b y the pair consisting of the name S of a statemen t and its index v ector

~

i ; w e write this h S;

~

i i . The set of all op erations is denoted b y
.

Of course the in tro duction of b y-statemen t space-time mappings complicates the genera-

tion of target co de considerably; p ossible solutions are giv en in [12 , 17 , 37 , 61].

W e use the statemen t-based extension of the mo del. If w e do not sp ecify a sp eci�c state-

men t explicitly , w e mean an y statemen t.

2.4.2 P arallelization of while Lo ops in the P olyhedron Mo del

A while lo op is commonly denoted b y while c ondition do b o dy ; in con trast to fo r lo ops there

is no explicit lo op index. Ho w ev er, since the p olytop e mo del is based on suc h indices, w e

m ust add lo op indices to while lo ops. Therefore, w e prefer a while lo op notation as in the

2.4 Basic Mo del, Extensions and P arallelization 13

programming language PL/1 whic h con tains an explicit index:

fo r index := lb while c ondition do b o dy

where the lo w er b ound lb is an a�ne expression in outer lo op indices and structure parameters.

while lo ops without an explicit index can simply b e giv en one with an arbitrary name

and with an arbitrary a�ne expression lb as lo w er b ound; usually lb is zero in the source

program but, in general, it is not zero in the target program. The index v alue is incremen ted

automatically after eac h iteration (as in fo r lo ops).

After adapting the notation of while lo ops to the mo del, w e no w discuss the consequences

for the mo del. The exten t of the index space of a statemen t in an y dimension is giv en b y the

n um b er of iterations of the lo op spa wning this dimension (Section 2.4.1). Ho w ev er, the upp er

b ound of a while lo op is unkno wn at compile time. Therefore, the index space is un b ounded

at compile time and, th us, not a p olytop e but a p olyhedron. That is the reason wh y w e call

our extended mo del the p olyhedron mo del .

A t run time, a nest with while lo ops executes only a subset of the in�nite index space I . W e

call this subset (whic h can, in general, not b e predicted at compile time) the execution space

and name it X . Note that X need not b e con v ex, and th us need not b e a p olytop e. This

prop ert y p oses one of the cen tral problems concerning the generation of target programs. W e

shall see that the same di�culties also o ccur for non-a�ne fo r lo ops; more details are giv en

in Section 4.2 and an appropriate solution is presen ted in Chapter 5.

F or consistency reasons the non-con v ex set of p oin ts en umerated b y non-a�ne fo r lo ops

is also called the execution space and named X . The index space of non-a�ne fo r lo ops is

the con v ex|p ossibly also in�nite|appro ximation whic h results from omitting all non-con v ex

b ounds. Th us, index spaces are alw a ys con v ex.

Remark. Note that w e assume that the source program terminates.

Example 1. Consider the lo op nest in Figure 2.2.

w

1

: fo r i := 0 while cond

1

(i) do

w

2

: fo r j := 0 while cond

2

(i; j) do

S : b o dy (i; j)

end do

end do

Figure 2.2: Tw o nested while lo ops

Figure 2.3 sho ws the index space (a) and a p ossible execution space (b) of statemen t S .

Remark. The termination detection of while lo ops requires some computations at run time.

These computations m ust b e treated as regular statemen ts, i.e., they m ust ha v e, for example,

their o wn index and execution spaces. W e call these statemen ts lo op statemen ts .

Since lo op statemen ts are treated as regular statemen ts, the dimensionalit y of their index

space should b e equal to the depth of the lo op statemen t, i.e., the n um b er of surrounding

lo ops of the statemen ts|as for the statemen ts of the lo op b o dy . But this do es not mak e

sense for lo op statemen ts whose computed v alues v ary p er iteration, as is the case for lo op

2.5 An Example Application 14

j

i

j

i

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

Figure 2.3: (a) Index space (b) P ossible execution space

statemen ts represen ting while lo ops. In this case, the dimensionalit y of the index space of the

lo op statemen t is the depth plus 1.

Remark. W e assume that the fo r lo op b ounds are ev aluated once b efore the execution of

the lo op as in F ortran, P ascal and Mo dula, not b efore ev ery iteration as in C. (In fact, C

fo r lo ops are disguised while lo ops.) Th us, the dimensionalit y of the index space of the lo op

statemen t of a fo r lo op is equal to the depth of this lo op statemen t.

Remark. Since lo op statemen ts guard the execution of the statemen ts in the lo op b o dy , w e

usually o v erla y the execution spaces of the lo op statemen ts and the statemen ts in the lo op

b o dy in graphical represen tations. In suc h an o v erla y represen tation blac k dots represen t the

computation p oin ts of the lo op b o dy , whereas dots in the v arious shades of gra y represen t the

testing p oin ts of lo op statemen ts.

In our graphical represen tations, the priorities of the axes are horizon tal o v er v ertical o v er

depth, if priorities are considered at all. I.e., the horizon tal axes is en umerated b y the outer

lo op, and the other axes follo w outside-in according to their priorit y .

Example 2. Figure 2.4 sho ws the construction of the execution space of statemen t S of Ex-

ample 1 in o v erla y represen tation: (a) to (c) eac h depicts one p ossible execution space for

the statemen ts w

1

, w

2

and S , resp ectiv ely . (d) sho ws the o v erla y of (a) to (c), where ligh ter

p oin ts are obscured b y dark er p oin ts. Consequen tly , the only visible p oin ts are the com-

putation p oin ts of S and those testing p oin ts whose corresp onding condition ev aluates to

f f .

2.5 An Example Application

Throughout this thesis w e illustrate all parallelization steps b y applying them to an algorithm

for calculating the reexiv e transitiv e closure of a �nite, directed, acyclic, sparse graph whic h

is giv en b y its adjacency list. More formally , a graph is represen ted b y a set no de of no des

and, for ev ery no de, b y the n um b er nrsuc of its successors and the set suc of successor no des.

rt of n is the adjacency list of no de n in the reexiv e transitiv e closure.

2.5 An Example Application 15

i

j j

i i

jj

i

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

(b)(a)

(c) (d)

Figure 2.4: Execution space in o v erla y represen tation

Example 3. The graphs in Figure 2.5 are represen ted in the source program as follo ws:

n no de nrsuc suc rt

0 A 0 A

1 B 1 C B, C, A, E, D

2 C 2 A, E C, A, E, D

3 D 0 D

4 E 1 D E, D

The follo wing source algorithm computes the reexiv e transitiv e closure, under the as-

sumption that the resulting adjacency lists rt are initially empt y:

for ev ery no de n do

add n to rt of n

while there is a no de m not y et considered in rt of n do

for ev ery successor ms of m do

add ms to rt of n

Note that this algorithm ma y pro duce adjacency lists whic h con tain m ultiple o ccurrences

of some no des. This is a sub optimal represen tation, but enforcing lists with unique elemen ts

sp oils the parallelism; more on that later.

2.5 An Example Application 16

C

ED

B

A

C

ED

B

A

Figure 2.5: A graph and its reexiv e transitiv e closure

Since the p olyhedron mo del o�ers no metho ds for dealing with sets or lists (not y et,

an yw a y) but excels on arra ys, w e use arra ys in our concrete represen tation. no de and nrsuc

are one-dimensional arra ys, suc and rt are t w o-dimensional. F or the computation of the

reexiv e transitiv e closure w e need an auxiliary one-dimensional arra y nxt whic h, for ev ery

no de n , pro vides a p oin ter to the next free en try in the list of n 's successors in the reexiv e

transitiv e closure. Initially all unde�ned arra y elemen ts con tain the v alue ? ; rt and nxt

are unde�ned ev erywhere; tag m ust b e initialized with f f . The purp ose of tag is to mark

no des whic h ha v e b een visited so as to guaran tee termination in graphs con taining cycles.

The domain of arra y no de exceeds the n um b er of no des b y 1 in order to accommo date the

unde�ned elemen t whic h forces termination of the outer while lo op; the domain of arra ys rt [n]

is unkno wn at compile time for ev ery no de n . The source program is giv en in Figure 2.6.

S

1

: fo r n := 0 while no de [n] 6= ? do

S

2

: rt [n; 0] := n

S

3

: nxt [n] := 1

S

4

: fo r d := 0 while rt [n; d] 6= ? do

S

5

: if : tag [n; rt [n; d]] then

S

6

: tag [n; rt [n; d]] := t t

S

7

: fo r s := 0 to nrsuc [rt [n; d]] � 1 do

S

8

: rt [n; nxt [n] + s] := suc [rt [n; d] ; s]

end do

S

9

: nxt [n] := nxt [n] + nrsuc [rt [n; d]]

endif

enddo

enddo

Figure 2.6: The source program

Note that some arra y indices are non-a�ne expressions in outer lo op indices and param-

eters. This requires man ual in teraction for generating suitable input to dep endence anal-

2.5 An Example Application 17

ysis to ols and leads to an o v erly conserv ativ e estimation of the existing dep endences (Sec-

tion 3.1.5).

Let us no w illustrate the index and p ossible execution spaces of this example.

The index space of statemen ts S

2

and S

3

is f n j n � 0 g , for statemen ts S

5

, S

6

and S

9

it is

f (n; d) j n; d � 0 g , and for statemen t S

8

it is f (n; d; s) j n; d; s � 0 g .

The index spaces of statemen ts S

1

, S

4

and S

7

are f n j n � 0 g , f (n; d) j n; d � 0 g and

f (n; d) j n; d � 0 g , resp ectiv ely . (Remem b er that the dimensionalit y of index spaces of fo r

lo ops is equal to the depth of the lo op statemen t.)

F or an illustration of p ossible execution spaces of statemen ts S

1

, S

4

and S

9

w e refer to

Figure 2.4 again: (a), (b) and (c) represen t the execution spaces of statemen t S

1

, S

4

and S

9

,

resp ectiv ely , where index n corresp onds to i and d corresp onds to j .

W e ha v e prop osed a w a y of in tegrating while lo ops in to our computational mo del. In the

follo wing c hapters w e fo cus on the individual steps of the lo op parallelization metho ds of the

p olytop e mo del and presen t all necessary extensions to these metho ds for an extension to the

p olyhedron mo del.

Chapter 3

Imp ortan t P arallelization Phases

This c hapter describ es the most imp ortan t phases of the parallelization in the p olytop e mo del

and the necessary extensions for the p olyhedron mo del.

3.1 Dep endence Analysis

In our approac h, all limitations of parallelism are sp eci�ed as dep endences . Dep enden t op-

erations m ust b e executed in a prede�ned order, whereas indep enden t op erations ma y b e

executed in parallel. The follo wing sections sho w that there are v arious kinds of dep endences.

All these kinds of dep endences m ust b e represen ted in a common dep endence mo del whic h

�ts our computational mo del. This dep endence mo del is the dep endence graph de�ned in

Section 3.1.4.

3.1.1 Data Dep endence Analysis in the P olytop e Mo del

Data dep endence pro vides information ab out the o w of data. In imp erativ e languages, data

dep endences b oil do wn to conicting accesses to memory cells. Bernstein expressed this

already in 1966 in his famous conditions for the existence of dep endences [7], whic h can b e

summarized as follo ws: t w o op erations can only b e data dep enden t if b oth access the same

memory cell and at least one of the t w o accesses is a write access.

Unfortunately , data dep endence analysis is only w ell dev elop ed for scalar v ariables and

for arra ys whose indices are a�ne functions in structure parameters and surrounding lo op

indices [3 , 5, 47].

F or a de�nition of data dep endences in the case of scalars and arra ys, w e �rst need a

re�nemen t of the lexicographic order on op erations.

De�nition 2 (Sequen tial execution order �). F or t w o op erations o

1

= h S

1

;

~

i

1

i and o

2

=

h S

2

;

~

i

2

i

o

1

� o

2

,

~

i

1

[1 ::k] <

lex

~

i

2

[1 ::k] _ (

~

i

1

[1 ::k] =

~

i

2

[1 ::k] ^ S

1

is textually b efore S

2

) ;

where k is the n um b er of lo ops surrounding b oth S

1

and S

2

.

De�nition 3 (Data dep endence). An op eration o

2

is data dep enden t on an op eration o

1

,

written o

1

� o

2

, if

18

3.1 Dep endence Analysis 19

� o

1

and o

2

refer to the same scalar or arra y , and, in the latter case, all indices of the

arra y are iden tical,

� o

1

� o

2

, and

� at least one of the t w o references is a write access.

o

1

is called the source and o

2

the sink of the dep endence. A data dep endence is called

a true dep endence , an ti dep endence or output dep endence if only the reference in o

1

, only

the reference in o

2

or b oth references are write accesses, resp ectiv ely . The three kinds of

dep endences are denoted b y �

t

; �

a

; �

o

, resp ectiv ely .

If spurious dep endences shall b e a v oided, one more restriction m ust b e added:

� There is no op eration o

3

suc h that o

1

� o

3

� o

2

whic h writes to the same scalar or arra y

cell.

W e call a true dep endence whic h satis�es this additional constrain t a o w dep endence and

denote it b y �

f

.

In nests of a�ne lo ops this additional restriction enables us to determine, for ev ery op er-

ation reading some v ariable, the precise op eration that wrote to that v ariable most recen tly .

With this information one can con v ert the source program to single-assignmen t form , in whic h

all v ariables are replaced b y su�cien tly large arra y v ariables suc h that no arra y cell is written

more than once.

Th us, this tec hnique of single-assignmen t con v ersion a v oids an ti and output dep endences

as w ell as spurious dep endences. Therefore, programs in single-assignmen t form usually ha v e

more parallelism|at the price of an increase in memory . There are algorithms for computing

o w dep endences and for single-assignmen t con v ersion in the case of nests of a�ne lo ops, e.g.,

[28].

Let us no w de�ne some additional tec hnical concepts of dep endence analysis. Let

~

i

1

and

~

i

2

b e the index v ectors of t w o dep enden t op erations o

1

and o

2

, resp ectiv ely , reduced to common

lo op indices. Then, the di�erence

~

i

2

�

~

i

1

is called a dep endence v ector . If the dep endence

v ector is the zero v ector the dep endence is called lo op-indep enden t , otherwise it is called

lo op-carried .

Instead of en umerating ev ery dep endence separately , one often tries to use a common

represen tation whic h subsumes all dep endences caused b y the same conicting accesses. There

are sp ecial cases in whic h this can b e done easily: if all dep endence v ectors are iden tical w e

sp eak of a uniform dep endence |in this case the common dep endence v ector is also called the

distance v ector ; if the dep endence v ectors are a�ne functions in the index v ectors, w e sp eak

of an a�ne dep endence [3 , 4, 52]. F or a�ne dep endences one sometimes abstracts from the

precise a�ne function but uses what is called direction v ectors instead. A direction v ector is

similar to a distance v ector but it carries less information: � is a wildcard for an y arbitrary

v alue and + for an y p ositiv e v alue, and juxtap osition denotes disjunction [63]. E.g., the

direction v ector (0+ ; �) sp eci�es dep endences with dep endence v ectors (0 ; �) or (�; �) with

�; � 2 Z and � > 0.

3.1 Dep endence Analysis 20

3.1.2 Data Dep endence Analysis in the P olyhedron Mo del

F eautrier's metho d for data dep endence analysis in the p olytop e mo del [28] has b een adapted

to lo op nests con taining while lo ops b y Collard, Barthou and F eautrier [16]. In a lo op nest

with while lo ops one can, in general, no longer �nd the precise source of a dep endence, but

only a set of p ossible sources. This also has consequences for single-assignmen t con v ersion

[11].

W e use the tec hniques of F eautrier and Collard to compute the data dep endences but w e

do not explore the issue of single-assignmen t con v ersion.

3.1.3 Con trol Dep endences

De�nition 4 (Con trol dep endence). An op eration o

2

is con trol dep enden t on an op era-

tion o

1

, written o

1

�

c

o

2

, if whether o

2

is executed or not is determined b y o

1

.

Example 4. In the follo wing program

S

1

: if c ondition then

S

2

: b o dy

endif

S

2

is con trol dep enden t on S

1

.

Lik e conditional statemen ts, while lo ops in tro duce con trol dep endences: ev ery op eration

in the b o dy of a while lo op is con trol dep enden t on the computation of the while lo op's

termination condition at its o wn index v ector.

In principle, this dep endence is also presen t in a�ne lo ops but, since the lo op b ounds

are kno wn at compile time, all information necessary for a parallelization can b e obtained

without making these dep endences explicit. In this case the lo op statemen t itself is usually

not considered in the parallelization: it is giv en neither a p olytop e nor a space-time mapping.

In addition to the con trol dep endences just describ ed, while lo ops ha v e lo op-carried de-

p endences: the lo op statemen t itself, i.e., the calculation of the termination condition, is

con trol dep enden t on its predecessor. This is due to the fact that a while lo op terminates as

so on as its condition ev aluates once to f f , and it do es not restart whatev er the v alues of the

termination condition at the succeeding p oin ts are. W e also call these con trol dep endences

while dep endences .

The graphical represen tation of the while dep endences in the o v erla y of the execution

spaces of some nested while lo ops has the shap e of a (p ossibly m ulti-dimensional) com b.

Therefore, w e also call the execution space an execution com b and refer to the iterations of

one while lo op with �xed outer lo op indices as a to oth of the execution com b. Figure 3.1

depicts the execution spaces of statemen t S

9

and its surrounding lo op statemen ts in o v erla y

represen tation.

3.1.4 Dep endence Graph

The (full) dep endence graph of a lo op nest is the directed acyclic graph (
 ; E) whose v ertex

set
 is the set of all op erations of the lo op nest and whose edge set E con tains all dep endences

b et w een the op erations represen ted b y the v ertices. The dep endence graph w.r.t. the index set

3.1 Dep endence Analysis 21

n

d

Figure 3.1: A p ossible execution space with con trol dep endences

ma y b e in�nite, whereas the dep endence graph w.r.t. the execution set is �nite (but unkno wn

at compile time).

Alternativ ely , some parallelization tec hniques w ork on the reduced dep endence graph whic h

is obtained from the full dep endence graph b y pro jecting all op erations of one statemen t on

a single no de [21 , 23]. This graph is alw a ys �nite since it has one no de p er statemen t; on

the other hand, it carries less information than the full dep endence graph. T o k eep as m uc h

information as p ossible, ev ery edge of the reduced dep endence graph is usually lab eled b y the

distance v ector or the direction v ector.

3.1.5 The Example

Con trol dep endences. Based on the explanations in Section 3.1.3 w e can list all con trol

dep endences of the program in Figure 2.6 on page 16. In T able 3.1 column dist sp eci�es

the distance v ector of the dep endences. F or all three (non-a�ne) lo ops w e ha v e sp eci�ed

the zero distance v ectors, meaning that the lo op b o dy's execution dep ends on the result of

the computations in the lo op b ounds. W e ha v e also sp eci�ed the while dep endences for the

t w o while lo ops (c

10

and c

16

). The dep endences c

18

to c

21

represen t the con trol dep endences

caused b y the if clause.

Data Dep endences. A parallelization requires �rst a data dep endence analysis. F or this

purp ose w e use the to ol Tin y [63], whic h tak es as input a program and yields as output the

direction v ectors of all dep endences in the program. With the help of this to ol, w e ha v e

obtained the dep endence information in T able 3.2 (semi-automatically), where column var

con tains the name of the arra y whic h causes the dep endence. The en tries of column dir are

the direction v ectors.

Let us ha v e a closer lo ok at some dep endences. In general, it is undecidable at compile

time whether A [B [

~

i]] is the same v ariable as A [

~

j] if nothing is kno wn ab out B [

~

i]. Therefore

Tin y assumes that ev ery access to an indirectly indexed arra y conicts with ev ery other access

to the same arra y , e.g., rt [n; nxt [n] + s] conicts with ev ery rt [n; d]. But w e kno w the follo wing

program-sp eci�c prop erties.

Lemma 5. In the se quential exe cution, the lo op on d has the fol lowing invariant: nxt [n] is

the index to the �rst unde�ne d element in rt [n] .

3.1 Dep endence Analysis 22

nr typ e fr om to dist

c

1

ctrl S

1

S

2

(0)

c

2

ctrl S

1

S

3

(0)

c

3

ctrl S

1

S

4

(0)

c

4

ctrl S

1

S

5

(0)

c

5

ctrl S

1

S

6

(0)

c

6

ctrl S

1

S

6

(0)

c

7

ctrl S

1

S

7

(0)

c

8

ctrl S

1

S

8

(0)

c

9

ctrl S

1

S

9

(0)

c

10

ctrl S

1

S

1

(1)

c

11

ctrl S

4

S

5

(0 ; 0)

nr typ e fr om to dist

c

12

ctrl S

4

S

6

(0 ; 0)

c

13

ctrl S

4

S

7

(0 ; 0)

c

14

ctrl S

4

S

8

(0 ; 0)

c

15

ctrl S

4

S

9

(0 ; 0)

c

16

ctrl S

4

S

4

(0 ; 1)

c

17

ctrl S

7

S

8

(0 ; 0 ; 0)

c

18

ctrl S

5

S

6

(0 ; 0)

c

19

ctrl S

5

S

7

(0 ; 0)

c

20

ctrl S

5

S

8

(0 ; 0)

c

21

ctrl S

5

S

9

(0 ; 0)

T able 3.1: The con trol dep endences

Pr o of. Induction on the lo op index d :

Induction Base: When d = 0, the only de�ned v alues are rt [n; 0], for n � 0, and nxt [n]

is initialized to 1 for n � 0. Th us, the p ostulate holds at the b eginning of the �rst

iteration.

Induction Step: A t eac h iteration of the lo op on d , nxt [n] is increased b y the n um b er of new

v alues app ended to p ositions nxt [n] + s . Th us, at the end of the iteration, nxt [n] p oin ts

again to the �rst unde�ned elemen t.

Lemma 6. A nother invariant of lo op d , for any n , is: 0 � d < nxt [n] .

Pr o of. The while condition holds at ev ery step of the while lo op on d , th us rt [n; d] 6= ? .

Therefore, with Lemma 5, 0 � d < nxt [n].

As a consequence, memory accesses of rt [n; nxt [n] + s] and rt [n; d] in the same iteration

alw a ys refer to di�eren t arra y elemen ts. Th us, w e ma y drop an y dep endence whic h is caused

b y the up date of rt [n; nxt [n] + s] in statemen t S

8

and an y read access to rt [n; d] in the same

iteration, i.e., with a direction v ector with leading co ordinates (0 ; 0), whic h applies to the

dep endences d

18

and d

25

. F or the same reason, the direction v ectors (0 ; 0+) of dep endences

d

11

, d

13

, d

14

, d

17

, and d

27

can b e c hanged to (0 ; +).

Note that this optimization is not necessary|neither for �nding parallelism, nor for illus-

trating the concepts w e are going to in tro duce. Ho w ev er, it thins the dep endence graph out

enough to p ermit a one-dimensional sc hedule (Section 3.2.3). Without it, the b est sc hedule

deriv able with presen t tec hniques of arra y dep endence analysis has t w o dimensions [29 , 30].

It is to b e hop ed that metho ds of set dep endence analysis, y et to b e dev elop ed, will mak e

suc h man ual, problem dep enden t adjustmen ts obsolete.

The fact, p oin ted out earlier, that the algorithm do es not pro duce an optimal represen ta-

tion |the adjacency lists ma y con tain m ultiple en tries|is essen tial in making the optimiza-

tion w ork. If w e extracted these m ultiple en tries, the n um b er of added no des in the lo op on

s could drop b elo w the incremen t of nxt [n] in statemen t S

7

, whic h w ould foil the induction

step in the pro of of Lemma 5.

3.2 Sc hedule and Allo cation 23

nr typ e fr om to var dir

d

1

o w S

2

S

4

rt (0)

d

2

o w S

2

S

5

rt (0)

d

3

o w S

2

S

6

rt (0)

d

4

o w S

2

S

7

rt (0)

d

5

o w S

2

S

8

rt (0)

d

6

o w S

2

S

9

rt (0)

d

7

output S

2

S

8

rt (0)

d

8

o w S

3

S

8

nxt (0)

d

9

o w S

3

S

9

nxt (0)

d

10

output S

3

S

9

nxt (0)

d

11

an ti S

4

S

8

rt (0 ; 0+)

d

12

an ti S

5

S

6

tag (0 ; 0+)

d

13

an ti S

5

S

8

rt (0 ; 0+)

d

14

an ti S

6

S

8

rt (0 ; 0+)

d

15

o w S

6

S

5

tag (0 ; +)

d

16

output S

6

S

6

tag (0 ; +)

d

17

an ti S

7

S

8

rt (0 ; 0+)

nr typ e fr om to var dir

d

18

an ti S

8

S

8

rt (0 ; 0 ; +)

d

19

an ti S

8

S

8

rt (0 ; + ; �)

d

20

an ti S

8

S

9

nxt (0 ; 0+)

d

21

o w S

8

S

4

rt (0 ; +)

d

22

o w S

8

S

5

rt (0 ; +)

d

23

o w S

8

S

6

rt (0 ; +)

d

24

o w S

8

S

7

rt (0 ; +)

d

25

o w S

8

S

8

rt (0 ; 0 ; +)

d

26

o w S

8

S

8

rt (0 ; + ; �)

d

27

o w S

8

S

9

rt (0 ; 0+)

d

28

output S

8

S

8

rt (0 ; + ; 0)

d

29

an ti S

9

S

9

nxt (0 ; +)

d

30

an ti S

9

S

8

rt (0 ; +)

d

31

o w S

9

S

8

nxt (0 ; +)

d

32

o w S

9

S

9

nxt (0 ; +)

d

33

output S

9

S

9

nxt (0 ; +)

T able 3.2: The data dep endences

3.2 Sc hedule and Allo cation

3.2.1 Space-Time Mapping in the P olytop e Mo del

The problem of sc heduling computations (in time) and allo cating them (in space) has receiv ed

a lot of atten tion in the framew ork of p olytop es, from the seminal w ork of thirt y y ears ago

b y Karp, Miller and Winograd [36] to man y recen t extensions [10 , 29, 30 , 51, 52].

De�nition 7 (Sc hedule, allo cation, space-time matrix). Let
 b e a set of op erations,

(
 ; E) their dep endence graph, and r ; r

0

in teger v alues.

� F unction t :
 ! Z

r

is called a sc hedule if it preserv es the data dep endences:

(8 x; x

0

: x; x

0

2
 ^ (x; x

0

) 2 E : t (x) <

lex

t (x

0

))

The sc hedule that maps ev ery x 2
 to the �rst p ossible time step allo w ed b y the

dep endences is called the free sc hedule .

� An y function a :
 ! Z

r

0

can b e in terpreted as an allo cation .

Most parallelization metho ds based on the p olytop e mo del require the sc hedule and allo-

cation to b e a�ne functions for ev ery statemen t S :

(9 �

S

; �

S

: �

S

2 Z

r � d

^ �

S

2 Z

r

: (8 i : i 2 I

S

: t (h S; i i) = �

S

i + �

S

))

(9 �

S

; �

S

: �

S

2 Z

r

0

� d

^ �

S

2 Z

r

0

: (8 i : i 2 I

S

: a (h S; i i) = �

S

i + �

S

))

The matrix T

S

formed b y �

S

and �

S

is called a transformation matrix or space-time matrix :

T

S

=

�

S

�

S

!

3.2 Sc hedule and Allo cation 24

W e call the images T

S

(I

S

) and T

S

(X

S

) of the index and the execution space of a statemen t S

the target p olyhedron or target index space and the target execution space and denote them

b y T I

S

and T X

S

, resp ectiv ely .

Recen tly , a relaxation to piecewise a�ne functions for sc hedule and allo cation has b een

in v estigated [10 , 29 , 30 , 51 , 52].

F or tec hnical reasons w e require at some p oin ts the in v ertibilit y of the space-time matrix

T . If T is not in v ertible, one pro ceeds in three steps: �rst, one constructs an auxiliary

transformation matrix T from T b y eliminating linearly dep enden t ro ws and, if necessary ,

adding new, linearly indep enden t ro ws to get an in v ertible square matrix, second, one uses

T as the transformation matrix, and, third, one re-inserts the eliminated ro ws [61]. The

ro ws added in the �rst step can b e view ed as a re�nemen t of the time computed b y the

sc heduler. (Note that la ying out these added dimensions in space w ould also b e correct,

but this migh t violate some lo calit y whic h is in tended b y the allo cator; in terpreting these

additional dimensions as re�ned time hamp ers neither sc hedule nor allo cation.)

This tec hnique allo ws us to assume|without loss of generalit y|that all space-time matri-

ces are in v ertible. When necessary , w e shall refer to T as the essen tial transformation matrix .

Note that the re-insertion of linearly dep enden t ro ws in the third step can lead to trans-

formation matrices whic h ha v e more ro ws than columns, i.e., the target space can ha v e more

dimensions than the source space. The dimensionalit y of the image of the source space,

ho w ev er, is the same as the dimensionalit y of the source space since the essen tial part of

the transformation comes from the in v ertible T |this image is only em b edded in a higher-

dimensional space.

There are man y algorithms for computing a sc hedule or an allo cation, not only in the case

of uniform dep endences [36 , 39 , 50 , 54] but also in the case of a�ne dep endences [20 , 22 , 29 ,

30].

W e usually use the sc heduler of Darte/Vivien [20] whic h w orks on the reduced dep endence

graph. The qualit y of the generated sc hedule falls a bit b ehind that of F eautrier's metho d

[29 , 30], but the computation of the sc hedule is m uc h faster.

F or �nding allo cations w e apply F eautrier's metho d [31], whic h is based on the o wner

computes rule and tries to minimize comm unications with a greedy heuristics.

3.2.2 Space-Time Mapping in the P olyhedron Mo del

The extension of existing space-time mapping metho ds from a�ne lo op nests to lo op nests

con taining while lo ops has b een w ork ed out b y Collard [13]. In principle, the sc heduling

metho ds of the p olytop e mo del are suitable for while lo ops without an y c hange; the only

addition necessary is a mec hanism for handling the imprecise output of the datao w analysis.

3.2.3 The Example

When w e apply the sc heduling metho ds of Darte/Vivien [20] and the allo cation metho d of

F eautrier [31] to our example program w e obtain the sc hedules and allo cations of T able 3.3.

The \leak" in the sc hedule, i.e., the fact that the time steps n + 2 and n + 3 are missing, is

due to the sub optimal sc heduling metho d of Darte/Vivien; it w ould not o ccur in the optimal

sc hedule.

3.3 Generation of T arget Programs 25

Note that our implemen tation of F eautrier's allo cator allo ws to v ary the n um b er of allo ca-

tion dimensions|according to De�nition 7 it can b e c hosen freely . T able 3.3 sho ws the one-

and the three-dimensional allo cation; the t w o-dimensional allo cation is unin teresting since,

in that case, the sc hedule is linearly dep enden t on the allo cation of ev ery statemen t.

statemen t sc hedule 1-dim. allo cation 3-dim. allo cation

S

1

n n (n; 0 ; 0)

S

2

n + 1 n (n; 0 ; 0)

S

3

n + 1 n (n; 0 ; 0)

S

4

n + 4 d + 4 n (n; d � 1 ; 0)

S

5

n + 4 d + 5 n (n; d � 1 ; 0)

S

6

n + 4 d + 6 n (n; d � 1 ; 0)

S

7

n + 4 d + 6 n (n; d � 1 ; 0)

S

8

n + 4 d + 7 n (n; d; s)

S

9

n + 4 d + 8 n (n; d; 0)

T able 3.3: The space-time mapping

Note that, in this example, the sc hedule and the allo cation are linearly dep enden t. There-

fore, as written ab o v e, the target space of, e.g., statemen t S

8

w.r.t. the three-dimensional

allo cation is four-dimensional, although the index space is only three-dimensional.

3.3 Generation of T arget Programs

3.3.1 Generation of T arget Lo ops in the P olytop e Mo del

The result of a space-time mapping of a source p olyhedron is again a p olyhedron. Since the

result of automatic parallelization ough t to b e a parallel program, not a geometrical ob ject,

w e ha v e to re-describ e the target p olyhedron b y a nest of lo ops, where dimensions in time

(en umerated b y the sc hedule) b ecome sequen tial lo ops and dimensions in space (en umerated

b y the allo cation) b ecome parallel lo ops. This pro cess is called the scanning of the target

space.

F or this purp ose, one �rst c ho oses the order of the lo ops. The target lo op nest sp eci�es

async hronous parallelism if the outer lo ops are the parallel ones, and sync hronous parallelism

if the outer lo ops are the sequen tial ones [40]; Banerjee calls this v ertical and horizon tal

parallelism [5], resp ectiv ely . Of course, a mixture of b oth v arian ts is also p ossible.

Then, one computes lo op b ounds, suc h that a b ound of an outer lo op m ust not dep end

on the indices of inner lo ops. F or this purp ose, the inequalit y system describing the target

p olyhedron m ust b e rewritten: for ev ery dimension of the target lo op nest w e eliminate suc-

cessiv ely , inside out, all o ccurrences of inner lo op v ariables in the inequalit y system. This

metho d is kno wn as F ourier-Motzkin elimination , w as dev elop ed in ab out 1827, and is pre-

sen ted, for example, in [4], pp. 81{94. F rom the resulting description of the target space the

target lo op b ounds can b e read o� immediately [1]. Sev eral extensions to this simple metho d

of computing target lo ops ha v e b een prop osed, e.g., [9 , 12 , 37 , 61]. They do not c hange the

basic metho d but only extend its applicabilit y .

When the space-time matrix T is not unimo dular , i.e., when its in v erse is not an in teger

matrix, T I con tains \holes", i.e., it is not con v ex ev en though I is [6]. More precisely , the

3.3 Generation of T arget Programs 26

lattice of T I is coarser than the lattice of I . In this case, one has to tak e care that the target

lo ops do not en umerate the holes. Luc kily , non-unimo dular mappings distribute holes ev enly

throughout the target space. Therefore, there is alw a ys a target lo op nest that scans T I

precisely|whether T is unimo dular [1] or not [32 , 65].

3.3.2 Extensions for the Most General Case of the P olytop e Mo del

Since co de generation for the p olyhedron mo del is the fo cus of this w ork, w e describ e �rst the

most general tec hnique for co de generation in the p olytop e mo del. S. W etzel [61] presen ts

a metho d for co de generation whic h can b e applied to non-unimo dular, piecewise a�ne b y-

statemen t transformations of imp erfectly nested lo ops where, in addition, the space-time

matrices need neither b e square nor of full rank. W e exploit her results for the extension to

co de generation in the p olyhedron mo del.

Section 3.2.1 describ es ho w non-square or singular transformation matrices can b e tac kled.

The basic observ ation of [61] is that all remaining extensions (piecewise a�nit y , b y-statemen t

mapping, imp erfect lo op nests) can b e treated the same w a y .

As describ ed previously , ev ery statemen t, together with its enclosing lo ops, is considered

individually . In addition, if the space-time mapping of a statemen t is piecewise, its index

space is divided in to the subspaces de�ned b y the pieces, and the statemen t is copied and

assigned to ev ery one of the resulting subspaces; ev ery resulting pair of a subspace and its

statemen t is called a program part and can b e transformed individually , since it has its o wn

a�ne (not piecewise!) mapping, whic h migh t b e non-unimo dular but will b e of full rank. This

metho d yields a set of target spaces, one p er program part, whic h can b e scanned individually

with standard metho ds (e.g., [1, 65]).

The main task remaining is to com bine all target program parts. F or this purp ose, W etzel

mainly o�ers t w o metho ds: merging at run time and merging at compile time.

The �rst metho d consists of �nding a con v ex set S whic h encloses the union of all target

program parts (e.g., the con v ex or rectangular h ull). Then, the generated lo op nest en umerates

S , and the statemen t of ev ery program part is guarded b y a condition expressing the exact

b ounds of the target program part.

The second metho d consists of computing all in tersections and o v erlaps of the target

program parts and yields an imp erfect target lo op nest, whic h en umerates successiv ely regions

whic h con tain the same set of o v erlapping program parts. This a v oids conditional statemen ts

in the lo op nest.

Ho w ev er, the disadv an tage of the second metho d is, that, in the presence of sym b olic

constan ts, the in tersections of the target program parts cannot b e computed at compile time.

Since the order of the structure parameters is not kno wn, this metho d generates one target

program for ev ery p ossible order of the v alues of the b ounds of the target program parts

con taining sym b olic constan ts, th us leading to O (n !) cases, where n is the n um b er of sym b olic

constan ts.

In the presence of while lo ops, merging at compile time is imp ossible. Th us w e exploit the

�rst metho d.

Example 5. Let us con v ert all while lo ops in our example to fo r lo ops with a�ne b ounds. The

resulting program is senseless but it sets the stage for the co de generation for the nest with

while lo ops. The co de, obtained b y applying the metho ds of [61], is giv en in Figure 3.2.

3.3 Generation of T arget Programs 27

S

1

: fo r n := 0 to N do

S

2

: rt [n; 0] := n

S

3

: nxt [n] := 1

S

4

: fo r d := 0 to D do

S

5

: if : tag [n; rt [n; d]] then

S

6

: tag [n; rt [n; d]] := t t

S

7

: fo r s := 0 to S do

S

8

: rt [n; nxt [n] + s] := suc [rt [n; d] ; s]

enddo

S

9

: nxt [n] := nxt [n] + nrsuc [rt [n; d]]

endif

enddo

enddo

Figure 3.2: A mo di�ed source program

Let us use the one-dimensional allo cation and the sc hedule of T able 3.3. The async hronous

target program is giv en in Figure 3.3.

Note �rst that w e drop the lo op statemen ts (S

1

, S

4

, and S

7

), since these statemen ts do

not app ear in the p olytop e mo del, but for simplicit y w e do not tigh ten the sc hedule.

It is easy to recognize that all statemen ts are guarded b y a condition. This is due to the

fact that the program parts of the statemen ts all ha v e di�eren t o�sets in the time dimension,

but the lo op in this dimension m ust en umerate all p ossible time steps|the guards ensure

that ev ery statemen t is only executed in its o wn target index space.

The mo dulo op erations in the guards, denoted b y %, are caused b y the non-unimo dularit y

of the transformation.

The source index space of statemen t S

8

has three dimensions, but the sc hedule and the

allo cation together only en umerate t w o dimensions. As describ ed previously , w e add a ro w

(0 0 1) to the transformation matrix and view this additional dimension as a re�nemen t of

time. In [61], suc h lo ops only surround the relev an t statemen ts|the outermost lo ops only

en umerate all necessary co ordinates for the dimensions de�ned b y sc hedule or allo cation.

If ev ery no de has a lo cal cop y of the graph when our function is called, there is only

one (non-lo cal) comm unication for our allo cation in the original example whic h comes from

the unit con trol dep endence at lev el 1. Since this dep endence do es not exist in the mo di�ed

source program (there are no while lo ops), there is no need for comm unications or barrier

sync hronizations; all pro cessors w ork indep enden tly .

3.3.3 Generation of T arget Lo ops in the P olyhedron Mo del

This last phase of an automatic parallelization in the p olytop e mo del c hanges seriously if one

allo ws non-a�ne lo ops. W e are not a w are of an y w ork on this area b efore ours. According

solutions to the arising problems are presen ted in the follo wing c hapters.

3.3 Generation of T arget Programs 28

pa rfo r p := 0 to N do

fo r t

1

:= p to max (p + 1 ; p + 4 D + 8) do

if p + 1 = t

1

then

rt [p; 0] := p

nxt [p] := 1

end if

if (p + 5) � t

1

� (p + 4 D + 5) and

(t

1

� p � 5)%4 = 0 then

if c ond [p; (t

1

� p � 5) = 4] := not tag [p; rt [p; (t

1

� p � 5) = 4]]

end if

if (p + 6) � t

1

� (p + 4 D + 6) and

(t

1

� p � 6)%4 = 0 and if c ond [p; (t

1

� p � 6) = 4] then

tag [p; rt [p; (t

1

� p � 6) = 4]] := t t

end if

if (p + 8) � t

1

� (p + 4 D + 8) and

(t

1

� p � 8)%4 = 0 and if c ond [p; (t

1

� p � 8) = 4] then

nxt [p] := nxt [p] + nrsuc [rt [p; (t

1

� p � 8) = 4]]

end if

if (p + 7) � t

1

� (p + 4 D + 7) and

(t

1

� p � 7)%4 = 0 and if c ond [p; (t

1

� p � 7) = 4] then

fo r t

2

:= 0 to S do

rt [p; t

2

+ nxt [p]] := suc [rt [p; (t

1

� p � 7) = 4] ; t

2

]

end do

end if

enddo

enddo

Figure 3.3: T arget co de of the mo di�ed program

3.3.4 Re-indexation in the Lo op Bo dy

F or completeness, let us men tion the �nal step of a target co de generation: the replacemen t

of the source lo op indices b y target indices. The simplest solution is to apply the in v erse of

the space-time matrix [40 , 61].

Simpler arra y indices (and th us a b etter p erformance) of the target program are ac hiev ed

b y the metho d of Collard [12], whic h completely rearranges the arra ys. W e do not dw ell on

this task an y further, since it is indep enden t of whether the source lo ops are while lo ops or

fo r lo ops.

Chapter 4

Classi�cation of Lo ops

Before w e start on the tec hnical details, let us giv e an o v erview of the v ariet y of nested lo ops

that can o ccur in imp erativ e programs. Let us �rst state some basic prop erties.

4.1 Prop erties of Lo ops and Lo op Nests

The follo wing facts are either trivial (but w orth stating explicitly) or can b e found in an y

textb o ok on linear programming, e.g., [44 , 55].

� The set of p oin ts en umerated b y an a�ne lo op nest is the in tersection of a (con v ex)

p olytop e and a lattice , i.e., a Z -p olytop e.

� A Z -p olytop e can b e en umerated (scanned) b y a lo op nest whose b ounds are a�ne

expressions in outer lo op indices and structure parameters [1].

� The image of a con v ex set under an a�ne transformation is a con v ex set.

� The image of a Z -p olytop e (Z -p olyhedron) under an a�ne transformation of full rank

is a Z -p olytop e (Z -p olyhedron), p erhaps with a di�eren t underlying lattice .

� The set of co ordinates en umerated b y an y lo op within a lo op nest with �xed outer

indices is the in tersection of a one-dimensional con v ex set along the dimension spanned

b y the lo op and a lattice , i.e., a one-dimensional Z -p olyhedron.

� Therefore, the set of p oin ts en umerated b y a lo op nest is the union of one-dimensional

Z -p olyhedra.

� In general, the union of con v ex sets is not con v ex and the union of Z -p olyhedra is not

a Z -p olyhedron.

� The set of p oin ts en umerated b y a lo op nest is the in tersection of a (not necessarily

con v ex) set of p oin ts and a lattice.

� In general, the p oin ts of the in tersection of a non-con v ex set and a lattice cannot b e

scanned b y a lo op nest.

29

4.2 Classi�cation 30

x

y

0

0 4

Figure 4.1: Unscannable target execution com b

These observ ations ha v e a serious impact on the target co de generation: a source lo op

nest ma y ha v e a non-con v ex execution space, whic h cannot b e en umerated b y an y lo op nest

after an a�ne transformation is applied.

Example 6. Let us apply the transformation

x

y

!

=

1 1

0 1

!

n

d

!

to the execution com b in Figure 3.1 on page 21. The resulting target execution com b is

presen ted in Figure 4.1. Let us consider, e.g., the line x = 4. This line con tains holes whose

distribution dep ends on the upp er b ound of the inner while lo op whic h, in turn, dep ends on

the index of the outer while lo op and is only kno wn at run time. Th us, at compile time, w e

cannot generate a lo op that en umerates precisely those p oin ts of the transformed execution

com b whic h are lo cated on the line x = 4.

Of course, not all target execution spaces ha v e this prop ert y . W e call a set of p oin ts

scannable i� there exists a lo op nest whic h en umerates ev ery p oin t of the set once and no

other p oin t; otherwise the set is called unscannable .

A more detailed and formal treatmen t of scannabilit y is giv en in Chapter 5. In the

remainder of the curren t c hapter w e only need to b e a w are of the existence of suc h a problem.

4.2 Classi�cation

Prev alen tly , only t w o t yp es of lo ops are distinguished in the literature: fo r lo ops whose b ounds

are kno wn at compile time and while lo ops whose iteration n um b er, i.e., whose upp er b ound, is

not kno wn b efore run time. As w e shall see, this distinction is not su�cien t for a parallelization

in the p olyhedron mo del, esp. for target co de generation.

Therefore, w e prop ose a �ner classi�cation of lo ops and outline the impact of eac h class

on the parallelization and the necessary co de generation metho ds. The crucial factors in the

classi�cation are when the b ounds of the lo op can b e determined and whic h form they tak e.

As in the Chomsky hierarc h y of formal languages, the larger the class, the lo w er the n um b er

w e giv e it.

4.2 Classi�cation 31

In e�ect, w e classify lo ops individually and treat them individually according to their

class. Note, ho w ev er, that the class of a lo op in a nest ma y dep end on its outer lo ops.

W e in tro duce �v e classes:

Class 4: A�ne Lo ops. The b ounds of these lo ops are a�ne expressions in the indices of

the outer lo ops and in the structure parameters. These lo ops can b e treated in the p olytop e

mo del.

Example:

fo r i := 0 to n do

fo r j := 0 to i + 5 do

b o dy (i; j)

enddo

enddo

Class 3: Con v ex Lo ops. If the lo op, together with the lo ops enclosing it, en umerates a

con v ex set, of course in tersected b y a lattice (the source space), then there m ust b e a lo op

nest whic h en umerates precisely the p oin ts of the set's image (the target space) under the

space-time mapping, i.e., the target space is scannable. But there is no general mathematical

framew ork (similar to F ourier-Motzkin elimination for Class 4) for iden tifying this lo op nest.

The requiremen t that the c hec k for con v exit y m ust b e p ossible at compile time restricts

the lo op b ounds to functions in the outer lo op indices and structure parameters.

Example:

fo r i := 0 to n do

fo r j := 0 to

l

p

i

m

do

b o dy (i; j)

enddo

enddo

Note that there are a lot of extensions to non-linear analysis, e.g., [2, 43 , 49], but they all

fo cus on dep endence analysis. The tec hnique of [43] can (under some conditions) transform

p olynomial constrain ts to an (un b ounded) set of piecewise linear constrain ts. This migh t

sometimes allo w to con v ert a lo op of Class 3 to a lo op of Class 4. Ho w ev er, w e are not a w are

of an y mathematical framew ork whic h can deal prop erly with lo ops of Class 3. Therefore, w e

treat lo ops of Class 3 as lo ops of Class 2 in this thesis.

Class 2: Arbitrary fo r Lo ops. The next larger class of lo ops con tains lo ops whose n um b er

of iterations is not kno wn at compile time, but is kno wn when the execution of the lo op b egins.

The b ounds are arithmetic expressions in arbitrary v ariables and parameters. These lo ops

are usually written as fo r lo ops, ev en though the b ounds m ust b e calculated at run time.

Example:

fo r i := 0 to n do

fo r j := 0 to A [i] do

b o dy (i; j)

enddo

enddo ,

4.2 Classi�cation 32

for some arra y A .

Note that due to our seman tics of fo r lo ops an o ccurrence of index j in the upp er b ound

of the lo op do es not mak e sense, since the b ound is ev aluated only once.

If a lo op of Class 2 is con tained in a lo op nest, then the image of the nest's index set is, in

general, unscannable. Therefore, w e m ust scan a sup erset of the image and prev en t the p oin ts

whic h are not in the image from execution. F or this purp ose, w e consider con trol dep endences

with dep endence v ector

~

0 from the computation of the lo op b ound to all statemen ts of the

lo op b o dy . These dep endences reect that the maximal n um b er of iterations can and m ust

b e calculated b efore the op erations of the b o dy are executed.

F or Classes 3 and 4 suc h con trol dep endences need not b e considered since the transformed

lo op b ounds capture all required information. Ho w ev er, if the space-time mapp ed b ounds

of con v ex lo ops cannot b e computed precisely at compile time but only estimated, then

en umerating a sup erset of the image and taking explicit care of the con trol dep endences

b ecomes necessary to exclude those p oin ts from execution whic h are not in the image.

Class 1: Static while Lo ops. In man y while lo ops, the upp er b ound is also �xed when the

while lo op starts execution|ho w ev er, it is not giv en explicitly as an arithmetic expression

but as a while condition whic h do es not hold in some iteration. Consequen tly , there is a while

dep endence, i.e., a con trol dep endence from one iteration to the next iteration of the while

lo op. Ob viously the target lo op b ounds m ust b e computed at run time.

Example:

fo r i := 0 to n do

fo r j := 0 while A [i; j] > 0 do

b o dy (i; j)

enddo

enddo ,

where arra y A is not mo di�ed in the b o dy .

Ho w ev er, a lo op of Class 1 has no dep endence from the lo op b o dy to the v ariables in its

termination condition. This can b e exploited as follo ws.

W e call a while lo op robust if its termination condition can b e ev aluated at an index b ey ond

the termination index, without leading to undesired side-e�ects. W e call a robust while lo op

strict if its termination condition ev aluates to f f for al l iterations b ey ond the termination

index.

If a static while lo op is robust and strict, arbitrarily man y while conditions can b e ev aluated

sim ultaneously . Since this metho d ignores the while dep endences, w e ma y call it sp e culative

exe cution . In fact, this is the ide al case for sp eculation.

W e ma y also regard suc h a lo op as an unfa v orably denoted lo op of Class 2. Ho w ev er,

note that there is still no expression b ounding the n um b er of iterations of the lo op. Th us,

partitioning is necessary (cf. Section 6.2).

If a static while lo op is only robust but not strict, one can again ev aluate sp eculativ ely

as man y conditions in parallel as there are pro cessors. Subsequen tly , one can, in logarithmic

time, �nd the minimal index for whic h the termination condition ev aluates to t t , if an y , or

en umerate the next blo c k of conditions. This metho d �nally yields the maximal index of the

while lo op, whic h can then b e used as the upp er b ound of a fo r lo op replacing the while lo op.

W e do not exploit this option further since it falls outside our mo del.

4.3 The Example 33

Class 0: Dynamic while Lo ops. In the most general case of lo ops, the n um b er of iterations

ma y b e c hanged b y the iterations of the lo op b o dy . The di�erence to lo ops of Class 1 is a

data dep endence from a statemen t in the lo op b o dy to the while condition. This has no

consequences for the co de generation.

Example:

fo r i := 0 to n do

fo r j := 0 while A [i; j] > 0 do

b o dy (i; j)

enddo

enddo ,

where arra y A is mo di�ed in the b o dy .

In the literature, a p opular w a y of parallelizing while lo ops (Classes 1 and 0) is to divide

the lo op b o dy in to a hop efully small \con trol" and a hop efully more complex \rest" part, then

to execute the while lo op with the statemen ts of the con trol part only in order to obtain the

exten t of the while lo op, and �nally to spa wn the same n um b er of iterations b y a|hop efully

parallel| fo r lo op con taining the statemen ts of the rest part in its b o dy [64].

Note that, according to this metho d, a lo op of Class 1 has the prop ert y that the con trol

part only consists of the termination condition.

W e claim that the space-time mapping approac h uni�es and generalizes other approac hes

to the parallelization of general while lo ops [59 , 64], and that it yields the same pip elined

solutions|or b etter ones, since the metho ds describ ed b efore do not add an y non-existen t

data dep endences and pro vided one uses the b est a v ailable b y-statemen t sc heduler [29 , 30].

Of course, the suggested classi�cation is not the only p ossible one. M. Geigl [33] describ es

a v ariet y of parameters that inuence the p ossibilities of co de generation. Mainly he describ es

re�nemen ts of our classi�cation, e.g., he presen ts cases in whic h co de generation can do more

than the approac h presen ted here.

4.3 The Example

Let us classify the lo ops in our example program of transitiv e closure on page 14.

The outermost lo op is a t ypical mem b er of Class 1. If w e had stored the n um b er of no des in

some v ariable, w e w ould get a lo op of Class 3 since, together with its (non-existing) enclosing

lo ops, the resulting fo r lo op en umerates a con v ex set; if the n um b er of no des w ere a sym b olic

constan t, it w ould ev en b e a lo op of Class 4. T arget co de en umerating the transformed index

space precisely can b e generated, since it is con v ex regardless of whether the outermost lo op

is a fo r or a while lo op. Ho w ev er, if w e con v ert this lo op to Class 3 or Class 4, w e can omit

the unit and n ull con trol dep endence v ectors, whic h m ust b e cited in lo ops of Class 1. This

ma y result in a b etter sc hedule.

The lo op on d is of Class 0 since list rt [n], whic h determines its termination, b ecomes

longer as execution pro ceeds.

The innermost lo op is of Class 2 since its n um b er of iterations is �xed when the lo op starts,

but is not kno wn at compile time. On the other hand, the n um b er of iterations of this lo op

di�ers for ev ery instance, i.e., for ev ery iteration v ector (n; d), and it cannot b e guaran teed at

compile time that the set of all p oin ts (n; d; s) en umerated is con v ex, since this set dep ends

4.3 The Example 34

on the input graph whic h is not kno wn b efore run time. Therefore, the innermost lo op is not

of Class 3.

In the next three c hapters w e fo cus on the co de generation for lo ops of Class 2, 1 and 0.

T o ensure readabilit y , the theoretical sections concen trate on the p erfectly nested case, or,

more precise, on one statemen t together with its surrounding lo ops. The extension of these

ideas to imp erfectly nested lo ops do es not in tro duce theoretical but only tec hnical problems,

solutions to whic h are discussed in [33]. Ho w ev er, w e use the solutions of [33] in this thesis

in order to treat our example program of Section 2.5.

Chapter 5

Scannabilit y

As w e ha v e seen in Section 4.1, there are unscannable sets. In Section 5.1 w e try to tac kle this

problem in more detail and treat it more formally . In Section 5.2 w e try to obtain scannable

target execution spaces \b y construction", i.e., w e distinguish a class of transformation ma-

trices whic h guaran tee scannable target spaces. Section 5.3 sho ws a w a y of dealing with

unscannable sets.

5.1 Scannable Sets

W e ha v e seen that the target execution com b of Example 6 on page 30 is unscannable since

the line x = 4 con tains holes whose distribution is only kno wn at run time. Th us, in order to

formalize the de�nition of a scannable set, w e m ust formalize the de�nition of a hole.

As denoted in Section 4.1, the set of p oin ts en umerated b y one lo op at some lev el l inside

a nest with �xed outer lo op indices is a one-dimensional Z -p olyhedron, i.e., the in tersection of

a one-dimensional con v ex set and a grid. In other w ords, if the lo op at lev el l en umerates t w o

p oin ts (x

1

; � � � ; x

l

) and (x

1

; � � � ; x

l � 1

; x

0

l

) with x

l

< x

0

l

, then it also en umerates all in termediate

p oin ts (x

1

; � � � ; x

l � 1

; x

00

l

) with x

l

< x

00

l

< x

0

l

on the grid. This leads to the formal de�nition of a

hole.

De�nition 8 (Hole). Let S � Z

d

b e a set of co ordinate v ectors on a grid with an implicit

order C on the dimensions of the grid (the order in whic h the co ordinates are written do wn).

Then, a co ordinate v ector (x

1

; � � � ; x

d

) 2 Z

d

is a hole w.r.t. lev el r and order C , for 1 � r � d ,

i�

(x

1

; � � � ; x

d

) 62 S ^ (9 (x

1

; � � � ; ^x

r

; � ; � � � ; �) ; (x

1

; � � � ; �x

r

; � ; � � � ; �) :

(x

1

; � � � ; ^x

r

; � ; � � � ; �) ; (x

1

; � � � ; �x

r

; � ; � � � ; �) 2 S : �x

r

< x

r

< ^x

r

),

where � stands for an arbitrary v alue.

A co ordinate v ector (x

1

; � � � ; x

d

) 2 Z

d

is a hole w.r.t. order C i� it is a hole w.r.t. some

dimension and w.r.t. order C .

No w, w e can formally de�ne scannable sets.

De�nition 9 (Scannable set). A set S is scannable w.r.t. a prede�ned order C on the

dimensions i� S do es not con tain a hole w.r.t. order C .

A set S is scannable if it is scannable w.r.t. some order C .

35

5.2 Scannable T ransformations 36

x

y

0

0

Figure 5.1: Unscannable com b w.r.t. the depicted order

F or an illustration of these de�nitions w e tak e another, v ery simple example and compare

it with Example 6 on page 30.

Example 7. Let us again use the execution com b in Figure 3.1 on page 21 and apply the

transformation

x

y

!

=

0 1

1 0

!

n

d

!

to it. As in Example 6 on page 30 the line x = 4 con tains holes whose distribution is only

kno wn at run time (Figure 5.1).

On the other hand, this transformation only represen ts lo op in terc hange. Th us, if w e scan

�rst dimension y and then dimension x w e can en umerate precisely all p oin ts|the source

program do es so! Therefore, the com b in Figure 5.1 is scannable, but unscannable w.r.t. the

order in whic h x is the outer dimension, since, e.g., (2 ; 2) is a hole w.r.t. lev el 2 for this order.

The target execution com b of Example 6 is unscannable, since the p oin t (4 ; 2) is a hole

w.r.t. lev els 1 and 2, regardless of the order of the dimensions.

Note that the scannabilit y of transformed execution spaces is indep enden t of whic h di-

mensions are in time and whic h are in space, or ev en, whether the transformation is a v alid

space-time mapping or not.

5.2 Scannable T ransformations

After ha ving in tro duced a formal de�nition of the sets whic h w e can describ e precisely

(scannable sets), w e no w try to disco v er whether w e can gain scannable target spaces \b y

construction". More precisely , w e w an t to exploit the fact that all sour c e programs en u-

merate sets of p oin ts, whic h therefore are scannable b y de�nition. Th us, w e are in terested

in iden tifying the class of tr ansformations whic h preserv es scannabilit y . W e also call suc h

transformations scannable .

Note that the scannabilit y of a transformation can nev er b e a necessary condition for

obtaining a scannable target execution space, since, e.g., con v ex source execution spaces lead

to scannable target spaces for ev ery transformation. Th us, w e are only going to dev elop a

su�cien t condition for the scannabilit y of a transformation.

Let us �rst in tro duce the follo wing con v en tions:

� W e refer to the lo op immediately surrounding the statemen t at lev el l as lo op l .

5.2 Scannable T ransformations 37

� The columns of the space-time matrix T are ordered (left to righ t) according to the

(outside-in) order of the lo ops in the source lo op nest.

� The ro ws of T are ordered (top to b ottom) according to the (outside-in) order of the

target lo ops whic h w e w an t to generate. Whic h dimensions are in time and whic h are

in space is immaterial.

� A column whic h corresp onds to a lo op of Class 3 or lo w er is called a non-a�ne column ;

the predicate na�-c ol (c) indicates whether column c is non-a�ne.

Remark. In the p olytop e mo del, only ro ws represen ting m ulti-dimensional time ha v e a giv en

order; the ro ws represen ting (virtual) space ha v e no sp ecial p ositions, i.e., the c hoice of a

sync hronous or async hronous target program do es not inuence the transformation matrix.

Ho w ev er, in the p olyhe dr on mo del, the order of the target lo ops is v ery imp ortan t, as w e shall

see later on in this c hapter. Therefore, w e inherit the information of the nesting order of the

target lo ops as order on the ro ws of the transformation matrix.

5.2.1 Idea

Let us no w motiv ate the ideas of scannable transformations informally . The cen tral observ a-

tion is that, during the iteration of one lo op w inside a nest, the indices of its enclosing lo ops

are constan t, and, in general, the exten t of lo op w dep ends on all these indices.

Note that there is a p oten tial for optimization that w e do not exploit. W e only exploit

the information pro vided b y the class the lo op b elongs to: in a�ne lo ops, w e do not consider

scannabilit y , since it is a non-issue in Class 4.

Th us, let w b e a non-a�ne lo op inside a nest L and c

1

; : : : ; c

w � 1

the indices of its enclosing

lo ops. F urther, let T b e a transformation matrix and w

0

a ro w with T

w

0

;w

6= 0, i.e., source

dimension w is laid out in target dimension w

0

(at least partly , if there are m ultiple ro ws w

0

with T

w

0

;w

6= 0).

In order to obtain a lo op nest L

0

whic h scans an y p ossible transformed execution space of

L precisely , w e m ust require that the indices c

1

; : : : ; c

w � 1

of the surrounding source lo ops are

deriv able again, since these indices inuence the exten t of w and, th us, the exten t of w

0

.

W e name the function yielding these indices f . Note that f m ust express c

1

; : : : ; c

w � 1

in

the indices r

1

; : : : ; r

w

0

� 1

of the target lo ops whic h enclose lo op w

0

. Th us, f m ust not dep end

on indices of target lo ops inside lo op w

0

:

(8 r ; r

0

: r ; r

0

2 Z

d

^ (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) : f (r) = f (r

0

))

In tuitiv ely , these rules enforce that the iterations of a while lo op at some lev el, sa y , w of

the source lo op nest are not part of some target lo op (then also a while lo op) at a lev el less

than w . In other w ords, a while lo op in the source can only b e distributed across deep er lev els

of the target lo op nest. (Compare also the theory of lo op p erm utations [5].)

5.2.2 F ormalization

The ideas of the previous section lead to the follo wing formal de�nition of scannabilit y:

De�nition 10 (Scannable transformations). The transformation of a lo op nest L b y an

in v ertible square matrix T of rank d is scannable i�:

5.2 Scannable T ransformations 38

(8 w ; w

0

: 1 � w ; w

0

� d ^ na�-c ol (w) ^ T

w

0

;w

6= 0 : (9 f : f 2 Z

d

! Z

w � 1

:

(8 r ; r

0

; c : r ; r

0

; c 2 Z

d

^ (r = T c) ^ (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) :

f (r) = (c

1

; � � � ; c

w � 1

)

>

= f (r

0

))))

The existen tial quan ti�cation of f in De�nition 10 mak es it hard to c hec k the scannabilit y

of a giv en transformation; therefore, w e are in terested in a more concrete condition. Not

surprisingly , f is part of the in v erse space-time matrix T

� 1

. The follo wing theorem states

the precise de�nition of f .

Theorem 11 (Scannabilit y test). The tr ansformation of a lo op nest L by an invertible

squar e matrix T of r ank d is sc annable i�:

(8 w ; w

0

: 1 � w ; w

0

� d ^ na�-c ol (w) ^ T

w

0

;w

6= 0 :

(8 r ; c : 1 � r < w ^ w

0

� c � d : T

� 1

r ;c

= 0) ^ w � w

0

)

Pr o of. \) ": W e pro v e the t w o conjuncts successiv ely .

� Left conjunct: By the de�nition of scannabilit y , there is an f suc h that:

(8 r ; c : r ; c 2 Z

d

^ (r = T c) : f (r) = (c

1

; � � � ; c

w � 1

)

>

)

It follo ws that:

(8 r : r 2 Z

d

: f (r)

= (c

1

; � � � ; c

w � 1

)

>

= c j

1 ; ��� ;w � 1

= (T

� 1

r)

�

�

�

1 ; ��� ;w � 1

= T

� 1

�

�

�

1 ; ��� ;w � 1

r)

f is a linear function. W e name the matrix that represen ts it M = T

� 1

�

�

�

1 ; ��� ;w � 1

2

Z

(w � 1) � d

. Note that M is the upp er part of T

� 1

. By sho wing that the righ t part

of M is zero, w e pro v e that some upp er righ t corner of T

� 1

is zero. The de�nition

of scannabilit y giv es us:

(8 r ; r

0

: r ; r

0

2 Z

d

^ (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) : f (r) = f (r

0

))

) f M is the matrix for f g

(8 r ; r

0

: r ; r

0

2 Z

d

^ (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) : M r = M r

0

)

) f de�nition of matrix-v ector-pro duct, ignoring equal summands g

(8 r ; r

0

: r ; r

0

2 Z

d

: (8 i : 1 � i � w � 1 :

(� j : w

0

� j � d : M

i;j

r

j

) = (� j : w

0

� j � d : M

i;j

r

0

j

)))

) f c ho ose r

0

= 0 g

(8 r : r 2 Z

d

: (8 i : 1 � i � w � 1 : (� j : w

0

� j � d : M

i;j

r

j

) = 0))

) f arithmetic g

(8 i; j : 1 � i � w � 1 ^ w

0

� j � d : M

i;j

= 0)

) f M = T

� 1

�

�

�

1 ; ��� ;w � 1

g

(8 i; j : 1 � i � w � 1 ^ w

0

� j � d : T

� 1

i;j

= 0)

5.2 Scannable T ransformations 39

� Righ t conjunct: W e kno w that rank(T

� 1

) = d , since T is an in v ertible square

matrix of rank d . Th us:

d

= rank(T

� 1

)

� rank(M) + rank(T j

w ; ��� ;d

)

� rank(M) + d � (w � 1)

, f arithmetic g

w � 1 � rank(M)

, f rank(M) � w � 1 (since M has w � 1 ro ws) g

rank(M) = w � 1

Th us, there m ust b e some n um b er k of non-zero columns that is at least as big as

rank(M) . It follo ws that rank(M) � k � w

0

� 1, since all columns from column w

0

to the righ t are zero. This yields, with the deriv ed v alue for rank(M), w � w

0

.

\ (": Let the column w b e a non-a�ne column, and let w � w

0

with T

w

0

;w

6= 0. Then, let

r ; r

0

; c b e v ectors in Z

d

suc h that r = T c and (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

). De�ne

f (x) = T

� 1

�

�

�

1 ; ��� ;w � 1

x . W e sho w that this c hoice for f satis�es the conditions required

in the de�nition of scannabilit y . The righ t side of the if-and-only-if in Theorem 11

yields:

�

8 i; j : 1 � i < w ^ w

0

� j � d : T

� 1

i;j

= 0

�

) f (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) ^ (r = T c) g

T

� 1

�

�

�

1 ; ��� ;w � 1

r = T

� 1

�

�

�

1 ; ��� ;w � 1

r

0

^ T

� 1

�

�

�

1 ; ��� ;w � 1

r =

�

T

� 1

r

�

�

�

�

1 ; ��� ;w � 1

= c j

1 ; ��� ;w � 1

= (c

1

; � � � ; c

w � 1

)

>

, f de�nition of f g

f (r) = f (r

0

) ^ f (r) = (c

1

; � � � ; c

w � 1

)

>

Theorem 11 pro vides us with a simple w a y of c hec king whether the target space of the

transformation can b e scanned precisely b y a target lo op nest.

Let us c hec k whether De�nition 10, and th us Theorem 11, b oth for scannable transfor-

mations, guaran tee scannable target execution spaces, i.e., whether De�nition 10 is su�cient

for creating scannable sets. In the pro of of the follo wing lemma w e denote a line b et w een t w o

p oin ts x and y b y line (x; y).

Lemma 12. The tar get exe cution sp ac e of a lo op nest L obtaine d by a sc annable and uni-

mo dular matrix T c ontains no holes.

Pr o of. W e pro v e this lemma b y con tradiction: assume h = (h

1

; � � � ; h

w

0

; � ; � � � ; �) is a hole

w.r.t. lev el w

0

where � stands for an arbitrary v alue. T o simplify the pro of, w e c ho ose h suc h

that the lev el w.r.t. its corresp onding source co ordinates is minimal.

5.2 Scannable T ransformations 40

(9 w

0

: 1 � w

0

� d : h as just describ ed)

, f de�nition of hole g

(9 w

0

: 1 � w

0

� d : h 62 T X ^ (9 h

�

; h

+

: h

�

; h

+

2 T X ^

h

�

= (h

1

; � � � ; h

w

0

� 1

; h

�

w

0

; � ; � � � ; �) ; h

+

= (h

1

; � � � ; h

w

0

� 1

; h

+

w

0

; � ; � � � ; �) :

h

+

w

0

> h

w

0

> h

�

w

0

))

) f the target space is not generated b y an a�ne lo op nest g

(9 w ; w

0

: 1 � w ; w

0

� d : T

w

0

;w

6= 0 ^ na�-c ol (w) ^ h 62 T X ^

(9 h

�

; h

+

: h

�

; h

+

2 T X ^

h

�

= (h

1

; � � � ; h

w

0

� 1

; h

�

w

0

; � ; � � � ; �) ; h

+

= (h

1

; � � � ; h

w

0

� 1

; h

+

w

0

; � ; � � � ; �) :

h

+

w

0

> h

w

0

> h

�

w

0

))

) f De�nition 10 with h

�

as r and h

+

and h as r

0

and pro of of Theo-

rem 11 g

(9 w ; w

0

: 1 � w ; w

0

� d : T

w

0

;w

6= 0 ^ na�-c ol (w) ^ h 62 T X ^

(9 h

�

; h

+

: h

�

; h

+

2 T X ^

h

�

= (h

1

; � � � ; h

w

0

� 1

; h

�

w

0

; � ; � � � ; �) ; h

+

= (h

1

; � � � ; h

w

0

� 1

; h

+

w

0

; � ; � � � ; �) :

h

+

w

0

> h

w

0

> h

�

w

0

) ^

�

T

� 1

h

+

�

�

�

�

1 ; ��� ;w � 1

=

�

T

� 1

h

�

�

�

�

1 ; ��� ;w � 1

=

�

T

� 1

h

�

�

�

�

�

1 ; ��� ;w � 1

)

) f T is injectiv e and h

�

w

0

6= h

w

0

6= h

+

w

0

g

(9 w ; w

0

: 1 � w ; w

0

� d : T

w

0

;w

6= 0 ^ na�-c ol (w) ^ h 62 T X ^

(9 h

�

; h

+

: h

�

; h

+

2 T X ^

h

�

= (h

1

; � � � ; h

w

0

� 1

; h

�

w

0

; � ; � � � ; �) ; h

+

= (h

1

; � � � ; h

w

0

� 1

; h

+

w

0

; � ; � � � ; �) :

h

+

w

0

> h

w

0

> h

�

w

0

) ^

�

T

� 1

h

+

�

�

�

�

1 ; ��� ;w � 1

=

�

T

� 1

h

�

�

�

�

1 ; ��� ;w � 1

=

�

T

� 1

h

�

�

�

�

�

1 ; ��� ;w � 1

^

�

T

� 1

h

+

�

�

�

�

w

6=

�

T

� 1

h

�

�

�

�

w

6=

�

T

� 1

h

�

�

�

�

�

w

)

) f lev el of T

� 1

h is minimal g

(9 w ; w

0

: 1 � w ; w

0

� d : T

w

0

;w

6= 0 ^ na�-c ol (w) ^ h 62 T X ^

(9 h

�

; h

+

: h

�

; h

+

2 T X ^

h

�

= (h

1

; � � � ; h

w

0

� 1

; h

�

w

0

; � ; � � � ; �) ; h

+

= (h

1

; � � � ; h

w

0

� 1

; h

+

w

0

; � ; � � � ; �) :

h

+

w

0

> h

w

0

> h

�

w

0

) ^

�

T

� 1

h

+

�

�

�

�

1 ; ��� ;w � 1

=

�

T

� 1

h

�

�

�

�

1 ; ��� ;w � 1

=

�

T

� 1

h

�

�

�

�

�

1 ; ��� ;w � 1

^

�

T

� 1

h

+

�

�

�

�

w

6=

�

T

� 1

h

�

�

�

�

w

6=

�

T

� 1

h

�

�

�

�

�

w

^

(8 k : w + 1 � k � d :

�

T

� 1

h

�

�

�

�

k

= lb

k

))

) f the source lo op at lev el w cannot skip the index v alue

�

T

� 1

h

�

�

�

�

w

g

(9 w ; w

0

: 1 � w ; w

0

� d : T

w

0

;w

6= 0 ^ na�-c ol (w) ^ h 62 T X ^

(9 h

�

; h

+

: h

�

; h

+

2 T X ^

h

�

= (h

1

; � � � ; h

w

0

� 1

; h

�

w

0

; � ; � � � ; �) ; h

+

= (h

1

; � � � ; h

w

0

� 1

; h

+

w

0

; � ; � � � ; �) :

h

+

w

0

> h

w

0

> h

�

w

0

) ^

T

� 1

h 2 X)

) f simpli�cation g

h 62 T X ^ T

� 1

h 2 X

, f de�nition of X and predicate calculus g

f f

5.2 Scannable T ransformations 41

Remark. Of course, scannabilit y do es not imply the v alidit y of the space-time mapping.

T ak e, e.g., the execution space in Figure 3.1 and the iden tit y as the transformation. That

is, lea v e the lo ops as they are, only map one of them|it do es not matter whic h|en tirely

to space. This satis�es scannabilit y , since no lo ops are p erm uted, but it violates the while

dep endences of that while lo op mapp ed to space.

5.2.3 Additional Bene�t of Scannable T ransformations

Up to no w, w e ha v e concen trated on the question of whether a set S of p oin ts is \precisely"

scannable. As noted ab o v e, w e in tend to en umerate a sup erset of S and prev en t the holes

from execution when dealing with unscannable sets. But w e m ust still �nd a lo op nest, i.e.,

lo op b ounds|in this case, to en umerate the sup erset. The follo wing example sho ws that this

is, in general, a non-trivial task.

Example 8. T ak e the lo op nest

fo r i := 0 to n do

fo r j := 0 while c ondition (i; j) do

b o dy

enddo

enddo

and try to in terc hange the lo ops, i.e.,

T =

0 1

1 0

!

:

The b ound for the outer target lo op will alw a ys ha v e to compute the maximal exten t of all

n + 1 while lo op instances; but this requires b oth indices i and j , since w e ha v e to ev aluate

the conditions c ondition (i; j) for all indices i and j . So, there is no precise outer lo op b ound

that do es not dep end on the inner indices.

Th us, there cannot exist a generalization of the F ourier-Motzkin elimination metho d for

arbitrary lo op nests with arbitrary transformations, whic h yields target lo op b ounds en umer-

ating (ev en some sup erset of) the target execution space and only dep ending on outer lo op

indices and parameters.

This raises the question: is it p ossible to �nd (precise) lo op b ounds for the target execution

space generated b y a scannable transformation whic h do not dep end on inner indices? The

answ er is giv en b y the follo wing immediate consequence of De�nition 10.

Lemma 13. The b ounds of the tar get lo ops which enumer ate the tar get exe cution sp ac e gen-

er ate d by a sc annable tr ansformation do not dep end on lo op indic es of inner tar get lo ops.

Pr o of. In the source program there exists some (not explicitly giv en) function g

w

(c

1

; � � � ; c

w � 1

),

whic h yields the lo w er (upp er) b ound b

w

of a source lo op w for �xed source indices (c

1

; � � � ;

c

w � 1

). W e sho w that the lemma is true for the target lo op b ound at an y lev el w

0

. Therefore,

let D b e the set of all source dimensions w whic h are (partly) laid out in target dimension

w

0

. Th us, for an y w

0

:

5.2 Scannable T ransformations 42

(8 w : w 2 D : T

w

0

;w

6= 0) ^ T scannable

) f De�nition 10 g

(8 w : w 2 D : (9 f : f 2 Z

d

! Z

w � 1

:

(8 r ; r

0

; c : r ; r

0

; c 2 Z

d

^ (r = T c) ^ (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) :

f (r) = (c

1

; � � � ; c

w � 1

) = f (r

0

))) _ : na�-c ol (w))

) f de�ne b

w

:= g

w

(c

1

; � � � ; c

w � 1

); insert it as condition and as

consequence g

(8 w : w 2 D : (9 f : f 2 Z

d

! Z

w � 1

: (8 r ; r

0

; c : r ; r

0

; c 2 Z

d

^ (r = T c) ^

g

w

(c

1

; � � � ; c

w � 1

) = b

w

^ (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) :

f (r) = (c

1

; � � � ; c

w � 1

) = f (r

0

) ^ g

w

(c

1

; � � � ; c

w � 1

) = b

w

)) _ : na�-c ol (w))

) f substitute (c

1

; � � � ; c

w � 1

) b y f (r) and f (r

0

) g

(8 w : w 2 D : (9 f : f 2 Z

d

! Z

w � 1

: (8 r ; r

0

; c : r ; r

0

; c 2 Z

d

^ (r = T c) ^

g

w

(c

1

; � � � ; c

w � 1

) = b

w

^ (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) :

f (r) = (c

1

; � � � ; c

w � 1

) ^ g

w

(f (r)) = g

w

(f (r

0

)) = b

w

)) _ : na�-c ol (w))

) f omit f (r) = (c

1

; � � � ; c

w � 1

); substitute f b y T

� 1

�

�

�

1 ; ��� ;w � 1

(cf. pro of

of Theorem 11) g

(8 w : w 2 D : (8 r ; r

0

; c : r ; r

0

; c 2 Z

d

^ (r = T c) ^

g

w

(c

1

; � � � ; c

w � 1

) = b

w

^ (8 i : 1 � i � w

0

� 1 : r

i

= r

0

i

) :

g

w

(T

� 1

�

�

�

1 ; ��� ;w � 1

r) = g

w

(T

� 1

�

�

�

1 ; ��� ;w � 1

r

0

) = b

w

) _ : na�-c ol (w))

Th us, an y t w o p oin ts r ; r

0

whic h do not di�er in outer target lo op indices compute the

same b order co ordinate for the target lo op w

0

with �xed outer indices (r

1

; � � � ;r

w

0

� 1

).

Remark. Note that Lemmas 12 and 13 are implications only . In b oth cases, the rev erse

implication is not true since, e.g., for con v ex lo op nests the target space is alw a ys scannable,

regardless of the transformation.

5.2.4 Applicabilit y

5.2.5 Choices of Space-Time Mappings

Our requiremen ts for a precise scan limit the c hoice of space-time mapping signi�can tly . Let

us discuss what freedom of c hoice is left:

� If only the outermost lo op of the nest is a non-a�ne lo op, then ev ery space-time mapping

pro duces scannable execution spaces, since the scannabilit y condition is trivially satis�ed

(1 � r < w is imp ossible for w = 1).

� In a t w o-dimensional nest with an inner non-a�ne lo op, the in v ertible space-time matrix,

and, equiv alen tly , its in v erse, m ust ha v e the form

x 0

y z

!

with y 2 Z and x; z 2 Z nf 0 g .

� F or deep er lo op nests, there is a wider c hoice of space-time mappings. It is easy to

sho w that all lo w er triangular matrices are scannable; ho w ev er, this is not a necessary

condition. Assume a nest of three lo ops of whic h only the second is a while lo op. Then,

the follo wing space-time matrix is scannable:

T =

0

B

@

1 0 0

1 1 1

1 1 2

1

C

A

T

� 1

=

0

B

@

1 0 0

� 1 2 � 1

0 � 1 1

1

C

A

5.3 Unscannable Execution Spaces 43

5.2.6 Async hronous T arget Lo op Nests and Scannabilit y

No w that w e ha v e demonstrated the b ene�ts of scannable transformations, w e w an t to kno w

whether there alw a ys exists a scannable transformation. Since it dep ends on the p osition of the

sc hedule in the space-time matrix, the answ er is di�eren t for sync hronous and async hronous

programs.

Lemma 14. F or asynchr onous tar get lo op nests, a sc annable sp ac e-time mapping c an always

b e found.

Pr o of. Let T b e the iden tit y matrix of rank d , where d is the depth of the lo op nest. T

is b oth scannable (De�nition 10) and a v alid allo cation since w e imp osed no requiremen ts

on allo cations (De�nition 7), and th us, b y app ending ro ws for the sc hedule dimensions, w e

obtain a v alid space-time matrix.

Note that the iden tit y is not the only allo cation whic h leads to a scannable space-time

mapping|it is just the simplest and most general one for the pro of. Another v ery similar,

scannable and alw a ys v alid async hronous space-time matrix can b e comp osed as follo ws:

the �rst ro ws, represen ting the allo cation, are the unit v ectors of length d for dimensions

1 ; � � � ; d � 1, and the ro w(s) for the sc hedule is/are app ended b elo w. If the sc hedule is one-

dimensional, the resulting square matrix represen ts a sk ewing of all lo ops in to the innermost

dimension, whic h represen ts time. Of course, one ma y c ho ose di�eren t allo cations in practice.

5.3 Unscannable Execution Spaces

5.3.1 Motiv ation: Wh y Unscannable T ransformations?

One migh t w onder whether it is necessary to consider unscannable transformations at all.

Unfortunately , the answ er is y es|if one is in terested in sync hronous target lo op nests, i.e.,

nests whose outer lo op is sequen tial.

Consider some while lo op in the source lo op nest but not at the outer lev el. Because of

the while dep endences, ev ery while lo op m ust b e partially laid out in time. But time is the

outer target lo op, so p ortions of the while lo op m ust mo v e to an outer lev el|a violation of

the scannabilit y condition! Th us, only the trivial case of a fo r lo op nest with an enclosing

while lo op can ha v e a sync hronous target lo op nest that satis�es scannabilit y .

5.3.2 Con trolling the Scan of an Unscannable Execution Space

T o generate target co de for an unscannable target execution space w e m ust en umerate a

sup erset of it. W e name this sup erset T S and its in v erse image under the space-time mapping

S .

F or lo ops of Class 2 the source lo op b ounds are giv en as arithmetic expressions whic h can

b e ev aluated at an y p oin t. Therefore, one can, separately for ev ery p oin t, determine whether

the p oin t b elongs to T X or to T S nT X .

In while lo ops the upp er b ound is not giv en explicitly but calculated iterativ ely instead.

Th us, the information ab out the termination of a while lo op can only b e propagated along

the to oth of the while lo op. Consequen tly , at a p oin t in T S , one cannot decide b y lo cal

5.3 Unscannable Execution Spaces 44

information only whether the p oin t b elongs to T X or not, but one needs the information

ab out the termination of its enclosing while lo ops.

F or this purp ose w e de�ne a predicate for a nest of while lo ops whic h is an accurate

recognizer of the p oin ts in T X , i.e., whic h distinguishes the p oin ts in T X from those outside.

In the follo wing c hapters, w e use this predicate to prev en t the execution of holes in the target

p olyhedron at run time.

Note that for simplicit y w e only consider while lo ops in the lo op nest; w e do not consider

p ossible additional fo r lo ops in the follo wing discussions since they only in tro duce additional

dimensions but do not raise an y problems.

De�nition 15 (Activit y recognizer active

r

and active). Let r b e some lev el of the source

lo op nest and w the while lo op at that lev el. active

r

holds for an y p oin t x in I i� the source

program en umerates x , that is, i� at least the while condition c ondition

r

of lo op w is ev aluated

at p oin t x . F ormally:

(8 (x

1

; � � � ; x

d

) : (x

1

; � � � ; x

d

) 2 I : (8 r : 1 � r � d : active

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) =

if x

r

> lb

r

! active

r

(x

1

; � � � ; x

r

� 1 ; lb

r + 1

; � � � ; lb

d

) ^ (1)

c ondition

r

(x

1

; � � � ; x

r

� 1)

[] x

r

= lb

r

^ r > 1 ! active

r � 1

(x

1

; � � � ; x

r � 1

; lb

r

; � � � ; lb

d

) ^ (2)

c ondition

r � 1

(x

1

; � � � ; x

r � 1

)

[] x

r

= lb

r

^ r = 1 ! t t (3)

[] x

r

< lb

r

! f f (4)

�))

active (x

1

; � � � ; x

d

) = (9 r : 1 � r � d : active

r

(x

1

; � � � ; x

d

))

The cases of the de�ning equation can b e explained as follo ws. P oin t (x

1

; � � � ;x

r

; lb

r +1

; � � � ; lb

d

)

is activ e with resp ect to lev el r i�

(1) the p oin t represen ts some non-leading step of a lo op, the while condition holds and the

previous step is activ e with resp ect to lev el r (hence the x

r

� 1), or

(2) the p oin t represen ts the �rst step of an inner lo op, the while condition holds for the

immediately enclosing lo op and the p oin t is activ e with resp ect to the lev el of the

immediately enclosing lo op (hence the x

r � 1

), or

(3) the p oin t represen ts the �rst step of the en tire lo op nest.

In all other cases, (x

1

; � � � ;x

r

; lb

r +1

; � � � ; lb

d

) is inactiv e with resp ect to lev el r . These include

the case where the while condition of w is violated (co v ered b y alternativ es (1) and (2)), and

the case that the p oin t is not ev en in the index space (alternativ e (4)). Note, that p oin ts for

whic h the while condition holds at lev el r but not at lev el r + 1 are activ e with resp ect to lev el

r but not with resp ect to lev els r + 1 and deep er.

The recursiv e de�nition of predicate active

r

follo ws the dep endences whic h are in tro duced

b y the while indices. Since our space-time mapping m ust resp ect these dep endences, w e can

b e sure that, during scanning, the activit y of an y p oin t x in T I need not b e c hec k ed b efore

the activit y of its predecessor has b een c hec k ed. Therefore, w e can compute predicate active

r

,

for ev ery p oin t on ev ery to oth of the execution com b, in sequence from the ro ot to the tip

5.4 The Example 45

and store the result un til it is needed. Note that active

r

at p oin t (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

is calculated from c ondition

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) or c ondition

r � 1

(x

1

; � � � ; x

r � 1

; lb

r

; � � � ;

lb

d

), whic h is usually data dep enden t on the lo op b o dy at (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) or (x

1

;

� � � ; x

r � 1

; lb

r

; � � � ; lb

d

), resp ectiv ely . In this case, the computation of the v alues of active

r

is

executed alternately with the computations of the lo op b o dy .

Note that active

r

at p oin t (x

1

; � � � ;x

r

; lb

r +1

; � � � ; lb

d

) dep ends on active

r

at exactly one other

p oin t (see the de�nition); active

r

at p oin t (x

1

; � � � ;x

r

; lb

r +1

; � � � ; lb

d

) is used for the computation

of active

r

at p oin t (x

1

; � � � ; x

r

+ 1 ; lb

r + 1

; � � � ; lb

d

) and, if r is not the innermost lo op lev el, also

for the computation of active

r +1

at itself.

Since the index space of a while lo op nest con tains p oin ts that do not mo del a lo op step

but only a terminating test, w e also require a recognizer, exe cute d , for p oin ts of I , that do

represen t the execution of the lo op b o dy .

De�nition 16 (Recognizer exe cute d

r

and exe cute d).

(8 r : 1 � r � d : (8 x : x 2 I : exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ,

(active

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^ c ondition

r

(x

1

; � � � ; x

r

))))

(8 x : x 2 I : exe cute d (x) , exe cute d

d

(x

1

; � � � ; x

d

))

A t this p oin t, w e ha v e the mac hinery for a formal de�nition of the execution space:

De�nition 17 (Execution space). X = f x 2 I : exe cute d (x) g

Later on, w e shall need its extension to all p oin ts that are activ e in some dimension:

De�nition 18 (Activit y space).

b

X = f x 2 I : active (x) g

Some hin ts on the implemen tation of the in tro duced predicates exe cute d and active are

giv en in Chapter 7 whic h treats the problem of termination detection, since w e w an t to

in tegrate the solutions for the termination and the scanning problem in one common sc heme.

5.4 The Example

Let us consider the space-time mappings of T able 3.3 on page 25.

The essen tial transformation for statemen t S

1

is the iden tit y matrix of dimensionalit y 1.

It is trivially scannable. The same is true for the other one-dimensional statemen ts S

2

and

S

3

, since constan t o�sets do not b ecome part of the essen tial transformation matrix.

Analogously , the t w o-dimensional statemen ts S

5

to S

7

and S

9

ha v e iden tical essen tial

transformations. Let us �rst c hec k the scannabilit y of the sync hronous transformation matrix:

T =

1 4

1 0

!

T

� 1

=

1

4

0 4

1 � 1

!

Applying Theorem 11 for w = 2 and w

0

= 1 sho ws that this transformation is not scannable,

as is to b e exp ected follo wing the explanations in Section 5.3.1. W e p ostp one the presen tation

of the target co de for this case to Chapter 7, where the rest of the necessary theory will b e

presen ted.

5.4 The Example 46

Let us no w c hec k the scannabilit y of the async hronous transformation matrix for the

one-dimensional allo cation:

T

0

=

1 0

1 4

!

T

0� 1

=

1

4

4 0

� 1 1

!

Theorem 11 is trivially satis�ed for w = 1. F or w = 2, the only non-zero en try in T

0

is in ro w

w

0

= 2; since T

0� 1

1 ; 2

= 0 the condition is satis�ed, to o. Th us: T

0

is scannable.

F or the three-dimensional statemen t S

8

w e get the same result.

Consequen tly , for ev ery statemen t, there is an async hronous lo op nest whic h scans pre-

cisely the target execution space of this statemen t.

Since w e are no w sure of its existence, let us try to �nd an async hronous lo op \nest"

for some one-dimensional statemen t, sa y , S

2

. In the async hronous case the outermost lo op

(in this one-dimensional case the only target lo op) is a lo op in space; w e name its index

p . The allo cation of S

2

yields p = n . Th us, w e en umerate the target execution space of

S

2

|analogously to the source execution space|with fo r p := 0 while no de [p] 6= ? do S

2

.

On the other hand, this raises a big problem: since w e do not kno w at compile time the

exten t of the while lo op, w e m ust allo cate in�nitely man y pro cessors initially . This problem

of while lo ops in space is tac kled in Chapter 6.

Therefore, w e also p ostp one the presen tation of the target co de of the example program

under the scannable transformation with the one-dimensional allo cation un til the end of

Chapter 6.

Chapter 6

Pro cessor Allo cation

An imp ortan t problem of parallelizing general lo op nests is the determination of upp er b ounds

for all target lo ops. In this c hapter w e address the problem of b ounding the space dimensions

whereas the next c hapter deals with the b ounds on the time dimensions.

The problem of pro cessor allo cation is treated in t w o phases: �rst, w e establish whether

the pro cessor space can b e limited at compile time at all, and second, w e mak e some remarks

on partitioning/tiling tec hniques.

6.1 Limitation of the Pro cessor Dimensions

Since w e allo w the upp er lo op b ound to b e unkno wn, the space-time mapping ma y b e de�ned

on an in�nite domain (index space) and, th us, ma y de�ne an in�nite range (target space). It

is easy to ascertain that only a �nite n um b er of pro cessors will b e required at an y p oin t in

time. W e can state this fact as a theorem. Since only the while lo ops con tribute to the in�nit y

of the index space, w e do not consider fo r lo ops but sho w only that an y nest of while lo ops

de�nes, at an y time step, a �nite set of pro cessors in the target space. Then, w e conclude

without further pro of that mixed lo ops also do so.

Theorem 19. L et v

1

; : : : ; v

r

b e line arly indep endent ve ctors of Z

r

and �

1

; : : : ; �

r

2 N nf 0 g . Then the interse ction of any hyp erplane H thr ough the set of p oints f (�

1

v

1

; 0 ; : : : ; 0) ;

: : : ; (0 ; : : : ; 0 ; �

r

v

r

) g and the p olyhe dr al c one K sp anne d by the ve ctors v

1

; : : : ; v

r

is �nite.

Pr o of. Our basis of Z

r

is f v

1

; : : : ; v

r

g . Then K = f x j x 2 N

r

^ � I x � 0 g = N

r

is the

p olyhedral cone spanned b y v

1

; : : : ; v

r

[44]. (I is the iden tit y matrix.) F urthermore, H =

f x j x 2 Z

n

^ (

1

�

1

; : : : ;

1

�

r

) x = 1 g . Then:

H \ K = f x j x 2 N

r

^ (� i : 0 < i � r :

x

i

�

i

) = 1 g

� f x j x 2 N

r

^ (8 i : 0 < i � r : 0 � x

i

� �

i

) g

Since the sup erset on the righ t is �nite, so is H \ K .

Corollary 20 (Finiteness of time slices). In the p olyhe dr on mo del, the iter ation sp ac e I

r epr esenting a nest of lo ops is the c one K , and H \ K c orr esp onds to some time slic e t

� 1

(x) � I

for a �xe d x 2 t (I) . Thus, e ach time slic e is �nite.

47

6.2 P artitioning T ec hniques 48

Ho w ev er, this corollary do es not sp ecify an upp er b ound on the n um b er of pro cessors. W e

kno w that the n um b er of pro cesses is giv en b y an a�ne function of time, i.e., the n um b er

of used pro cessors gro ws a�nely with time. But, for async hronous lo op nests, the time

co ordinate is en umerated b y the inner lo ops and, th us, cannot b e used in the b ounds of the

outer spatial lo ops. As w e ha v e seen in Section 5.4, w e w ould ha v e to allo cate in�nitely man y

pro cessors initially . Collard [14] solv es this problem for the case that there is one while lo op

at the outermost lev el.

In a real implemen tation the un b oundedness m ust b e solv ed at compile time since, in

general, all pro cessors m ust b e allo cated b efore the parallel program starts its execution.

This can b e ac hiev ed b y standard partitioning or folding tec hniques (cf. Section 6.2).

Remark. The usual practice of allo cating pro cessors at the start of a program's execution

migh t b e tak en as an explanation for the absence of a pa rwhile construct (a parallel while

lo op with an upp er b ound giv en b y an arbitrary b o olean expression). But there is also a

theoretical reason: the construct pa rwhile w ould ha v e to activ ate a set of pro cessors in one

time step (lik e pa rfo r) and w ould, therefore, ha v e to test all its conditions successiv ely un til

the �rst termination condition ev aluates to t t ; this cannot b e done in constan t time.

6.2 P artitioning T ec hniques

La ying out a while lo op partly in space only mak es sense if w e b ound the n um b er of pro cessors

required b y partitioning the pro cessor space in some w a y . This has b ecome an activ e area of

researc h recen tly [18 , 57 , 58].

The idea of partitioning is that a single dimension can also b e en umerated b y a nest of

lo ops, not only b y a single lo op. T o apply this idea to a p olyhedron P w e pro ceed in sev eral

steps: �rst, w e select the dimensions whic h shall b e partitioned (let us denote the p olyhedron

pro jected on these dimensions b y P); second, w e de�ne a tile, i.e., a p olytop e with �xed

shap e and size in P ; third, w e generate nested lo ops en umerating all p oin ts of the tile and

all tiles necessary to co v er P ; fourth, w e replace the original lo ops en umerating the selected

dimensions of P b y the new lo op nest.

In our framew ork w e w an t to partition the dimensions in (virtual) space, computed b y

the allo cator, and replace them b y dimensions in real space, i.e., dimensions en umerating

real pro cessors, and dimensions in time. These dimensions in time are in addition to the

time dimensions en umerating the sc hedule. In other w ords, partitioning o�ers us a trade-o�

b et w een space and time. Note that w e partition the target space, not the source space as is

t ypical in literature.

Due to the degrees of freedom left, there are t w o con trary w a ys of partitioning whic h are

kno wn as LSGP (lo cally sequen tial, globally parallel) and LPGS (lo cally parallel, globally

sequen tial) [38]. In the LSGP metho d, the p oin ts inside a tile are en umerated sequen tially b y

one pro cessor (lo cally sequen tial) and the tiles are distributed among the pro cessors (globally

parallel), i.e., one uses one pro cessor p er tile. In the LPGS metho d, the tile corresp onds to

the real set of pro cessors, i.e., ev ery pro cessor is resp onsible for one p oin t of the tile (lo cally

parallel), and the tiles are en umerated successiv ely (globally sequen tial).

Recen t literature prefers the LSGP metho d [18] since, in general, there are man y lo cal

comm unications whic h b ecome obsolete if neigh b oring op erations are executed on one pro-

cessor. Additionally , there are e�ectiv e metho ds for c ho osing the shap e of the tile according

6.2 P artitioning T ec hniques 49

to the dep endences of the p olyhedron to b e scanned, whic h results in a further reduction of

comm unication.

Ho w ev er, in the presence of while lo ops w e cannot c ho ose the LSGP metho d since w e

cannot predict the \global" size and, therefore, the exten t of the \globally parallel" dimen-

sions. W e m ust use LPGS partitioning metho ds; they yield constan t b ounds for the pro cessor

dimensions and map all un b ounded dimensions to time. The only remaining problem for

parallelizing lo op nests con taining while lo ops is ho w to handle the termination of the target

lo ops in time. This will b e discussed in the next c hapter.

Remark 21 (P arallel lo ops). W e ha v e just seen that, due to the application of LPGS par-

titioning for async hronous lo op nests, the lo ops in space are fo r lo ops. In Section 6.1 w e ha v e

learned that in sync hronous lo op nests w e can b ound the space dimensions b y expressions

in the indices of surrounding lo ops in time (Corollary 20). Th us, w e can mak e the follo wing

observ ation: in the target lo op nest, ev ery lo op in space is a fo r lo op (th us a pa rfo r), ev en if

there are while dimensions mapp ed (partly) to this space dimension.

Remark 22 (Co de generation). Note that the partitioning tec hniques in tro duce additional

lo ops in time. Therefore, w e m ust tak e care that these additional lo ops resp ect the sc hedule

(remem b er that the execution order of sequen tial lo ops is determined b y the lexicographic

order of the index v ectors): if the additional lo ops in time are nested inside the lo ops en umer-

ating the sc hedule then the sc hedule's index determines the execution order|the additional

time dimensions are only a re�nemen t of the sc hedule. Ho w ev er, if the additional lo ops in

time are nested outside of the lo ops en umerating the sc hedule then the additional lo ops de-

termine the execution order, i.e., the sc hedule is not resp ected an y more, whic h leads to an

incorrect target lo op nest!

Since, �rst, the partitioning metho d replaces the original spatial lo ops b y the nest of new

lo ops in space and time, and, second, the new lo ops in time m ust b e inner lo ops w.r.t. the

dimensions of the sc hedule, the original spatial lo ops m ust b e inner lo ops w.r.t. the sc hedule.

In other w ords, lo op nests whic h are sub ject to a partitioning m ust sp ecify sync hronous

parallelism.

Note that taking the sync hronous program as input for partitioning is a su�cien t but not

a necessary condition for resp ecting the sc hedule; the application to the example program in

the next section starts with the async hronous program and yields a correct target program.

Note, in addition, that the co de after partitioning as just describ ed is sync hronous. Ho w-

ev er, the dimensions of the real pro cessors are b ounded b y expressions describing the real

parallel mac hine, i.e., these dimensions are b ounded b y parameters kno wn at compile time.

If these are the only expressions in the b ounds of the parallel lo ops, e.g., if there are no

expressions dep ending on outer lo op indices, then w e can easily shift these parallel lo ops to

the outermost lev els (ev en without F ourier-Motzkin elimination). This shift results in an

async hronous target program.

Otherwise, it is also p ossible to obtain an async hronous target program, b y �rst ignoring

the additional b ounds, subsequen tly p erforming the shift and �nally in tro ducing guards whic h

prev en t those p oin ts from execution whic h are additionally en umerated b ecause of ignoring

the additional b ounds. W e do not go in to more detail here since this is indep enden t of whether

the lo ops b eing while lo ops or fo r lo ops; details can b e found in [56].

6.3 The Example 50

terminate d := f f ;

pa rfo r pp := 0 to NrPr o c � 1 do

fo r tp := 0 while : terminate d step NrPr o c do

p := tp + pp ;

if : terminate d then

if no de [p] = ? then terminate d := t t endif

end if

if : terminate d then

b o dy (p)

end if

enddo

enddo

Figure 6.1: A single while lo op (partly) in space after partitioning

6.3 The Example

Let us �rst partition the one-dimensional lo op (nest) fo r p := 0 while no de [p] 6= ? do b o dy (p)

of Section 5.4.

W e use as pro cessor la y out a one-dimensional arra y of NrPr o c pro cessors. In the par-

titioned program (Figure 6.1) the fo r lo op with index pp en umerates the NrPr o c (i.e., a

constan t n um b er of) \lo cally parallel" pro cessors, whereas the while lo op with index tp , laid

out in time, en umerates the tiles \globally sequen tially". F or simplicit y w e k eep the original

index p throughout the b o dy; its v alue is computed b y the �rst statemen t of the new lo op

b o dy .

Note that the original termination condition is treated as a regular statemen t and is

therefore lo cated in the b o dy of the lo op.

Both, the necessit y of partitioning and the fact that termination conditions b ecome regular

statemen ts in the lo op b o dy , ha v e an una v oidable consequence: the original lo op b o dy m ust

b e guarded. On the other hand, guards in the b o dy of the target lo op nest o ccur an yw a y if

one deals with b y-statemen t transformations or piecewise a�ne functions, as w e ha v e seen in

Section 3.3.2. F or simplicit y w e decided to guard ev ery separate statemen t in the lo op b o dy

individually with all necessary conditions instead of using a nest of guards|ev en if some

parts of the guards apply to sev eral statemen ts.

Note that the lo op nest in Figure 6.1 is not complete: there is no dimension en umerating

the time t

1

computed b y the sc heduler. As announced in the previous section, w e w an t to

generate a partitioned v ersion of the async hronous program. Ho w ev er, if w e nest the dimension

of the sc hedule inside the additional time dimension tp whic h is caused b y partitioning, then

w e are mo difying the sc hedule. Therefore, w e m ust con vince ourselv es that this mo di�cation

preserv es v alidit y: in tuitiv ely , the new sc hedule (tp; t

1

) enforces that ev ery pro cessor �rst

terminates the to oth whic h it is curren tly w orking on, b efore starting a new to oth with a

larger v alue for tp . Since there are no dep endences from an y to oth to one of its predecessor

teeth, this new sc hedule is also v alid. The formal pro of has to establish that the new sc hedule

(tp; t

1

) resp ects ev ery dep endence; w e omit it here.

6.3 The Example 51

No w w e are able to presen t the target co de, whic h is giv en in Figure 6.2. The basic

structure is equiv alen t to the one of Example 5 on page 26. The main di�erence is that the

guards ha v e an additional conjunct, due to partitioning, and the fact that the termination

condition is ev aluated inside the lo op. The initializations and the lo op header are tak en from

Figure 6.1. The only mo di�cation is in the computation of predicate terminate d , whic h results

from the fact that the co de in Figure 6.2 is an executable function for distributed-memory

mac hines, on whic h the old v alue of terminate d m ust b e receiv ed and its new v alue m ust

b e sen t explicitly . This is done b y the blo c king comm unication primitiv es SendNo de and

ReceiveNo de whic h, similarly to the corresp onding P arix command: tak e as �rst argumen t

the n um b er of a real pro cessor and as second argumen t the v alue to b e sen t or receiv ed. (The

ag dete ctor and the conditional ReceiveNo de statemen t at the b ottom of the outermost lo op

are only necessary due to the blo c king comm unications.)

Of course, the target program of Figure 6.2 can b e optimized a lot. F or example, w e need

not store the v alue of tag at ev ery p oin t in a separate v ariable but w e could use arra y tag

itself. Ho w ev er, the goal of this example is to sho w ho w the metho ds describ ed so far can

deriv e a parallel lo op nest from a sequen tial lo op nest con taining while lo ops.

6.3 The Example 52

terminate d := f f

pa rfo r pp := 0 to NrPr o c � 1 do

fo r tp := 0 while not terminate d step NrPr o c do

p := tp + pp

ub

d

[p] := 1

fo r t

1

:= p while t

1

� max (p + 1 ; p + 4 ub

d

[p] + 8) do

if not terminate d and p = t

1

then

if p > 0 then ReceiveNo de ((p � 1)% NrPr o c ; terminate d) endif

if not terminate d and no de [p] = ? then

terminate d := t t

dete ctor := t t

end if

SendNo de ((p + 1)% NrPr o c ; terminate d)

end if

if not terminate d and p + 1 = t

1

then

rt [p; 0] := p

nxt [p] := 1

end if

if not terminate d and (p + 4) � t

1

< (p + 4 ub

d

[p] + 4) and

(t

1

� p � 4)% 4 = 0 then

if rt [p; (t

1

� p � 4) = 4] = ? then ub

d

[p] := (t

1

� p � 4) = 4 end if

end if

if not terminate d and (p + 5) � t

1

< (p + 4 ub

d

[p] + 5) and

(t

1

� p � 5)% 4 = 0 then

if c ond [p; (t

1

� p � 5) = 4] := not tag [p; rt [p; (t

1

� p � 5) = 4]]

end if

if not terminate d and (p + 6) � t

1

< (p + 4 ub

d

[p] + 6) and

(t

1

� p � 6)% 4 = 0 and if c ond [p; (t

1

� p � 6) = 4] then

tag [p; rt [p; (t

1

� p � 6) = 4]] := t t

ub

c

[p; (t

1

� p � 6) = 4] := nrsuc [rt [p; (t

1

� p � 6) = 4]]

end if

if not terminate d and (p + 8) � t

1

< (p + 4 ub

d

[p] + 8) and

(t

1

� p � 8)% 4 = 0 and if c ond [p; (t

1

� p � 8) = 4] then

nxt [p] := nxt [p] + nrsuc [rt [p; (t

1

� p � 8) = 4]]

end if

if not terminate d and (p + 7) � t

1

< (p + 4 ub

d

[p] + 7) and

(t

1

� p � 7)%4 = 0 and if c ond [p; (t

1

� p � 7) = 4] then

fo r t

2

:= 0 to ub

c

[p; b (t

1

� p � 7) = 4 c] � 1 do

rt [p; t

2

+ nxt [p]] := suc [rt [p; (t

1

� p � 7) = 4] ; t

2

]

end do

end if

end do

enddo

if dete ctor then ReceiveNo de ((p � 1)% NrPr o c ; terminate d) endif

enddo

Figure 6.2: T arget program for the scannable transformation with one-dimensional allo cation

Chapter 7

T ermination Detection

So far, w e ha v e describ ed metho ds for prev en ting holes inside a scanned target space from

execution and w e b ound lo ops in space b y partitioning. The remaining op en question is:

ho w do w e b ound the lo ops in time? As in the previous c hapters w e assume that the source

program terminates; still, esp. for unscannable target execution spaces, it is a di�cult problem

to �nd b ounds for the lo ops in time.

Example 9. T ak e again the lo op nest

fo r i := 0 to n do

fo r j := 0 while c ondition (i; j) do

b o dy

enddo

enddo

and as space-time mapping

t

p

!

=

j

i

!

;

where p is space and t is time. (W e assume that this transformation resp ects the dep endences

of the b o dy; the while dep endence is resp ected.) With this mapping there is no elegan t w a y

of expressing the termination condition of the outermost lo op. As stated in Example 8 on

page 41, w e ha v e to ev aluate the conditions c ondition (i; j) for all i and j , i.e., w e need b oth

indices. A p ossible termination condition w ould b e

(8 p : 0 � p � n : (9 t

0

: 0 � t

0

� t : : c ondition (p; t

0

))) :

These quan ti�cations are p oten tially costly b ecause, in general, their ranges gro w with time.

The common idea b ehind all options discussed in the succeeding sections is: w e terminate

the execution as so on as w e recognize that there is no more activit y in the scanned space. Eac h

of the follo wing sections prop oses a di�eren t w a y for determining this fact b y in terpreting and

detecting \no activit y", dep ending on the target language and the target arc hitecture.

7.1 T ermination Detection for Sp ecial Languages

Some data-parallel languages pro vide supp ort for detecting distributed termination. A go o d

example is the construct whilesomewhere in Hyp er-C [35]. This parallel lo op construct tak es

53

7.2 T ermination Detection in Shared Memory 54

exe cute d (x

1

; � � � ; x

d

) �

r := level (x

1

; � � � ; x

d

) ;

if exe c

r

[x

1

; � � � ; x

r � 1

; x

r

� 1] ^ : c ondition

r

(x

1

; � � � ; x

r

) then

de cr (c ounter)

endif ;

exe c

r

[x

1

; � � � ; x

r

] := exe c

r

[x

1

; � � � ; x

r � 1

; x

r

� 1] ^ c ondition

r

(x

1

; � � � ; x

r

) ;

fo r k := 1 + r to d do

exe c

k

[x

1

; � � � ; x

k

] := exe c

k � 1

[x

1

; � � � ; x

k � 1

] ^ c ondition

k

(x

1

; � � � ; x

k

) ;

if exe c

k

[x

1

; � � � ; x

k

] then incr (c ounter) end if

enddo ;

ba rrier ;

terminate d := (c ounter = 0) ;

ba rrier ;

return (exe c

d

[x

1

; � � � ; x

d

])

Figure 7.1: F ormalization of the coun ter sc heme

as parameter a b o olean function b whic h is ev aluated at ev ery pro cessor; the lo op b ounded b y

whilesomewhere terminates i� all pro cessors ev aluate function b to f f . F or sync hronous target

lo op nests with only one dimension in time, this construct can b e used directly to b ound the

lo op in time.

The idea is as follo ws. The execution of a lo op nest con taining while lo ops terminates when

all pro cessors are inactiv e according to De�nition 15. So, the lo op in time can b e b ounded

b y \ whilesomewhere active ". This solv es the termination detection problem.

In the follo wing sections w e presen t t w o termination detection algorithms, b oth for shared

and one of them for distributed memory systems, in the case that the target language used

do es not supp ort termination detection directly . Note that there are a lot of general termi-

nation detection algorithms, but these are not of in terest to us since w e are in the fortunate

p osition that w e kno w a lot ab out the structure of the program parts for whic h w e w an t to

detect termination.

W e w an t to �nd a predicate terminate d whic h can b e used as a termination condition

of the while lo ops in time. Th us, the goal of the next sections is to �nd (implemen table)

de�nitions for this predicate.

7.2 T ermination Detection in Shared Memory

7.2.1 Idea

The execution of a while lo op nest terminates when the outermost while lo op has terminated

and all instances of inner while lo ops ha v e terminated, to o|in other w ords, when all teeth

ha v e terminated. T o implemen t this, w e use a shared global coun ter that is incremen ted

at the ro ot and decremen ted at the tip of ev ery to oth in an y dimension. Th us, the whole

program terminates if and only if there are no activ e teeth left, i.e., the coun ter has b een

reset to 0.

7.2 T ermination Detection in Shared Memory 55

Algorithm exe cute d gener ator

Input:

� The d while lo op conditions.

� The d lo op coun ters (x

1

; � � � ; x

d

) (b ecome the argumen ts to exe cute d).

Output: Co de implemen ting function exe cute d .

generate(function exe cute d (x

1

; � � � ; x

d

) : b o olean)

for r:= d do wn to 0

if r � 1 then

generate(if x

r

> lb

r

then)

generate(if exe c

r

[x

1

; � � � ; x

r � 1

; x

r

� 1] and not c ondition

r

(x

1

; � � � ; x

r

)

then de cr (c ount) endif)

generate(exe c

r

[x

1

; � � � ; x

r

] := exe c

r

[x

1

; � � � ; x

r � 1

; x

r

� 1] and

c ondition

r

(x

1

; � � � ; x

r

))

end if

for k := r + 1 to d

generate(exe c

k

[x

1

; � � � ; x

k

] := exe c

k � 1

[x

1

; � � � ; x

k � 1

] and

c ondition

k

(x

1

; � � � ; x

k

))

generate(if exe c

k

[x

1

; � � � ; x

k

] then incr (c ount) end if)

end for

if r � 1 then generate (else) else generate (end if)

end for

generate(ba rrier)

generate(terminate d := (c ount = 0))

generate(ba rrier)

generate(return (exe c

d

[x

1

; � � � ; x

d

]))

Figure 7.2: Algorithm exe cute d gener ator for automatic generation of the co de for exe cute d

7.2.2 F ormalization

A formalization of this idea can b e added to an imp erativ e sp eci�cation of exe cute d suc h

that the calculation of terminate d is hidden as a side e�ect of the masking function exe cute d

in the target program (exe c

r

is an r -dimensional p ersisten t arra y that stores the v alue of

exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)). F unction exe cute d is called with the source co ordinates

of eac h scanned p oin t in the target index space.

The sp eci�cation of function exe cute d is presen ted in Figure 7.1, where functions incr (c ounter)

and de cr (c ounter) atomically incremen t and decremen t c ounter , resp ectiv ely . c ondition

0

() and

exe cute d

0

() m ust b e initialized to t t . The level of a p oin t is de�ned as d min us the n um b er of

trailing lb co ordinates.

If w e expand the de�nition of level and unroll the lo op on k at compile time, w e obtain

the co de generation sc heme for exe cute d in Figure 7.2. The co de generated for exe cute d in the

case of t w o nested while lo ops is giv en in Figure 7.3.

V arious instances of exe cute d in teract as follo ws. A t ev ery time step t , function exe cute d is

called on ev ery pro cessor p of T S , i.e., on the en tire h yp erplane t , in tersected with T S , to c hec k

whether the transformed b o dy at the co ordinates (t; p) m ust b e executed or not. Essen tially ,

this c hec k b oils do wn to the ev aluation of the while conditions. The com bination of all these

7.2 T ermination Detection in Shared Memory 56

ev aluations determines whether, at time t , the program terminates or not, i.e., whether the

v alue of c ount is zero. Of course, it is mandatory that ev ery pro cessor has the same view of

the state of global termination at ev ery logical time t (otherwise, it could p erhaps stop to o

early and blo c k the en tire computation). F or this reason, w e m ust ensure that all up dates of

the coun ters (esp. all incremen ts) in the v arious instances of exe cute d ha v e completed b efore

an y pro cessor reads the v alue of c ount . In addition, w e m ust ensure that no pro cessor can

start its next iteration, and p ossibly mo dify the coun ter, b efore all other pro cessors ha v e read

c ount . Both cases can only b e guaran teed b y barrier sync hronization.

function exe cute d (w

1

; w

2

) : b o olean

if w

2

> lb

2

then

if exe c

2

[w

1

; w

2

� 1] and not P

2

(w

1

; w

2

) then de cr (c ount) endif ;

exe c

2

[w

1

; w

2

] := exe c

2

[w

1

; w

2

� 1] and P

2

(w

1

; w

2

) ;

else if w

1

> lb

1

then

if exe c

1

[w

1

� 1] and not P

1

(w

1

) then de cr (c ount) endif ;

exe c

1

[w

1

] := exe c

1

[w

1

� 1] and P

1

(w

1

) ;

exe c

2

[w

1

; w

2

] := exe c

1

[w

1

] and P

2

(w

1

; w

2

) ;

if exe c

2

[w

1

; w

2

] then incr (c ount) endif

else = � w

1

= lb

1

; w

2

= lb

2

� =

exe c

1

[w

1

] := P

1

(w

1

) ;

if exe c

1

[w

1

] then incr (c ount) endif ;

exe c

2

[w

1

; w

2

] := exe c

1

[w

1

] and P

2

(w

1

; w

2

) ;

if exe c

2

[w

1

; w

2

] then incr (c ount) endif

endif ;

ba rrier ;

terminate d := (c ount = 0) ;

ba rrier ;

return (exe c

2

[w

1

; w

2

])

Figure 7.3: F unction exe cute d for t w o nested while lo ops

7.2.3 Correctness

Let us v erify that a target lo op program whose time lo ops are b ounded with terminate d do es

not terminate to o early .

Lemma 23. The implementation of terminate d via the c ounters is c orr e ct.

Pr o of. W e pro v e this fact informally . The follo wing prop erties ensure that, at a giv en time

step t , terminate d is not set to t t if some while lo op iteration has not terminated in the exe-

cution domain:

� F or ev ery to oth in ev ery dimension, c ount is incremen ted once (at its ro ot) and decre-

men ted once (at its tip)|in this order. During execution ev ery to oth con tributes 1 to

the global v alue of c ount , whereas b efore the start and after termination there is no

con tribution to c ount .

7.2 T ermination Detection in Shared Memory 57

� Barrier sync hronization ensures that all up dates of c ount o ccur b efore the pro cessors

read the v alue of c ount . Note that the order in whic h incremen ts and decremen ts tak e

place do es not a�ect the �nal v alue.

� If there is at least one pro cessor ev aluating some exe cute d

r

(x

1

; � � � ; x

d

) (1 � r � d) to t t

at time t then the to oth � at lev el r and through the p oin t (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

has started but not y et �nished execution. Th us, at this p oin t in time, � is con tributing

1 to c ount .

� Since � con tributes 1 to c ount and since there cannot ha v e b een more decremen ts than

incremen ts, c ount m ust b e strictly p ositiv e, th us prev en ting termination.

7.2.4 Optimization

The straigh t-forw ard implemen tation of the coun ter sc heme in Figure 7.2 has an essen tial

dra wbac k: there is only one shared coun ter whic h can b e up dated b y an y iteration, i.e., this

coun ter is a b ottlenec k.

A b etter implemen tation w ould use m ultiple coun ters, eac h of whic h is only resp onsible

for one r -dimensional subspace, th us a v oiding man y conicts. As so on as suc h a coun ter

b ecomes zero, the coun ter resp onsible for the next outer dimension is decremen ted. E.g., if

w e substitute r b y d w e get the sc heme describ ed b efore; if w e substitute r b y 1 w e use one

coun ter p er to oth.

Note that in the latter case there ma y still b e conicting accesses of the coun ters: if all

teeth terminate at the same time, then the teeth started b y some to oth � cause the coun ter

of � to b e decremen ted, whic h terminates � , and so on. All in all, w e can ha v e linearly man y

conicting accesses of coun ters.

Another optimization is necessary for b ounding the size of arra y exe c , for whic h w e ga v e

no b ound so far. J.-F. Collard [12] presen ts a w a y of determining a b ound for arra ys b y

calculating the life time of the arra y elemen ts and then in tro ducing reassignmen ts.

7.2.5 The Example

Let us no w apply the coun ter sc heme in the dev elopmen t of a sync hronous and, th us, un-

scannable target lo op nest for our example program. F or simplicit y , Figures 7.4 to 7.6 sho w

the target lo op nest and some auxiliary functions b efore partitioning.

The target lo op nest is presen ted in Figure 7.4, where (c ? e

1

: e

2

) denotes a conditional

expression whose v alue is e

1

if condition c ev aluates to t t and e

2

otherwise. Note that, due

to the imp erfect nesting, w e m ust use a separate predicate terminate d (and, th us, a separate

coun ter) for ev ery source while dimension. In addition, w e store the maxim um v alue of all

upp er b ounds of a lo op at lev el l in max index

l

. F or while lo ops the v alue of this v ariable

is not v alid b efore the corresp onding while lo op terminates, i.e., max index

l

con tains a v alid

v alue when terminate d

l

is t t .

Let us no w consider the guards in more detail. In principle there are rather simple

guards for non-lo op statemen ts and more complex guards for lo op statemen ts. W e discuss

the structure of the functions exe cute d for the t w o cases b y taking one example for eac h case;

the guards for the other statemen ts are v ery similar.

F or a guard of a non-lo op statemen t, w e c ho ose arbitrarily predicate exe cute d of statemen t

S

5

(Figure 7.5). The then branc h of exe cute d S 5 c hec ks for violations of the constrain ts of

7.2 T ermination Detection in Shared Memory 58

fo r t 1 := 0 while t 1 � (not terminate d

1

? t 1 : (not terminate d

2

? t 1 :

max (4 � max index

2

+ 3 + max index

1

; max index

1

))) do

pa rfo r p 1 := min (t 1 � 1 ; 0) to t 1 do

if executed S 1(t 1 ; p 1) then

skip

end if

if executed S 2(t 1 ; p 1) then

rt [t 1 � 1 ; 0] := t 1 � 1

end if

if executed S 3(t 1 ; p 1) then

nxt [t 1 � 1] := 1

end if

if executed S 4(t 1 ; p 1) then

skip

end if

if executed S 5(t 1 ; p 1) then

if c ond [p 1 ; (t 1 � p 1 � 5) = 4] := (not T ag [p 1 ; rt [p 1 ; (t 1 � p 1 � 5) = 4]])

end if

if executed S 6(t 1 ; p 1) and if c ond [p 1 ; (t 1 � p 1 � 6) = 4] then

tag [p 1 ; rt [p 1 ; (t 1 � p 1 � 6) = 4]] := t t

end if

if executed S 7(t 1 ; p 1) and if c ond [p 1 ; (t 1 � p 1 � 6) = 4] then

skip

end if

if executed S 9(t 1 ; p 1) and if c ond [p 1 ; (t 1 � p 1 � 8) = 4] then

nxt [p 1] := nxt [p 1]+

nrsuc [rt [p 1 ; (t 1 � p 1 � 8) = 4]]

end if

fo r t 2 := 0 to max f or 0 0 0 do

if executed S 8(t 1 ; p 1 ; t 2) and if c ond [p 1 ; (t 1 � p 1 � 7) = 4] then

rt [p 1 ; t 2 + nxt [p 1]] := suc [rt [p 1 ; (t 1 � p 1 � 7) = 4] ; t 2]

end if

end do

enddo

enddo

Figure 7.4: The sync hronous target program

the target index space, whereas the else branc h c hec ks for the remaining index p oin ts whether

the curren t p oin t b elongs to the target exe cution space.

As a represen tativ e of function exe cute d of a lo op statemen t w e select exe cute d S 4 (Fig-

ure 7.6). F unction exe cute d S 4 �rst computes the new v alue of exe cute d at the curren t

p oin t. Then, it actualizes the coun ters and the v ariables max index storing the maximal

lo op b ounds of a dimension. Bet w een the sync hronizations via the ba rrier , terminate d is

computed and the v alue of exe cute d is returned. F or implemen tation reasons, the v alue of

7.2 T ermination Detection in Shared Memory 59

function exe cute d S 5(t 1 ; p 1) : b o olean

if t 1 < 5 o r p 1 < 0 o r p 1 > t 1 � 5 o r (t 1 � p 1 � 5)% 4 then

return (f f)

else

return (exe c

2

[p 1 ; (t 1 � p 1 � 5) = 4])

endif

Figure 7.5: exe cute d S 5

function exe cute d S 4(t 1 ; p 1) : b o olean

if t 1 � 4 and p 1 � 0 and p 1 � t 1 � 4 and (t 1 � p 1 � 4)% 4 = 0 then

if (t 1 � p 1 � 4) = 4 = 0 then

exe c

2

[p 1 ; (t 1 � p 1 � 4) = 4] := (rt [p 1 ; (t 1 � p 1 � 4) = 4] 6= ?) and exe c

1

[p 1]

else

exe c

2

[p 1 ; (t 1 � p 1 � 4) = 4] := (rt [p 1 ; (t 1 � p 1 � 4) = 4] 6= ?) and exe c

2

[p 1 ; ((t 1 � p 1 � 4) = 4) � 1]

end if

if exe c

2

[p 1 ; (t 1 � p 1 � 4) = 4] then

skip = � w ould b e incr (c ount

3

) if there w ere an inner while lo op � =

else if ((t 1 � p 1 � 4) = 4 > 0 ? exe c

2

[p 1 ; (t 1 � p 1 � 4) = 4 � 1] : exe c

1

[p 1]) then

de cr (c ount

2

)

max index

2

:= max (max index

2

; (t 1 � p 1 � 4) = 4)

end if

else

lo c al index violation ag := t t

endif

ba rrier

if c ount

2

= 0 then

terminate d

2

:= t t

endif

ba rrier

if lo c al index violation ag then

return (f f)

else

return (exe c

2

[p 1 ; (t 1 � p 1 � 4) = 4])

endif

Figure 7.6: exe cute d S 4

exe cute d at p oin ts outside of the index space is not stored in the arra y exe c but in a lo cal

ag lo c al index violation ag . Note that the computed v alue of exe cute d is stored in arra y

exe c , whic h allo ws us to access this v alue without re-calling function exe cute d ; this a v oids the

undesired re-computation of the side e�ects in exe cute d .

7.3 T ermination Detection with Distributed Memory 60

1

3

sig

sig

3

2

sig

1

2

1

3

sig

dimensions

1

2

3

M

P

Figure 7.7: A three-dimensional com b

7.3 T ermination Detection with Distributed Memory

In this section w e presen t a solution of the termination problem that requires only lo cal

comm unication.

7.3.1 Idea

The basic idea of our solution is as follo ws: if (carefully selected) teeth along dimension r

of the execution space inform their (still executing) neigh b ors in dimensions 1 ; � � � ; r � 1 of

their termination, the maximal co ordinates of ev ery dimension of the execution space are

comm unicated.

If w e ensure that no to oth terminates b efore it has b een informed of the termination of its

neigh b ors, p oin ts that are in v olv ed in these comm unications are partially maximal un til the

p oin t (x

1

; � � � ;x

d

) in S is reac hed whose co ordinates are all maximal, i.e., ha v e the prop ert y

(8 x

0

: x

0

2 X : (8 r : 1 � r � d : x

0

r

� x

r

)). When scanning this p oin t, w e can terminate all

target lo ops.

The propagation of the maxima, up to lev el r , pro ceeds b y v alueless signals. Signal

sig

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) starts at p oin t (x

1

; � � � ;x

r

; lb

r +1

; � � � ; lb

d

) at lev el r and is sen t to

the neigh b oring to oth in direction k , where k is some outer lev el with resp ect to r , i.e., k < r .

The main problem is ho w to establish whether a to oth can terminate immediately when

the corresp onding while condition is violated or whether it has to w ait for some signal �rst.

Example 10. Consider the three-dimensional com b of Figure 7.7.

Our sc heme is more easily understo o d in the sync hronous mo del.

In the �gure, the teeth of X are represen ted b y solid lines. Some teeth are extended b y

dotted lines, indicating that they are w aiting for at least one signal. P oin ts (of S) on dotted

7.3 T ermination Detection with Distributed Memory 61

lines do not execute the lo op b o dy , they only w ait for signals. Signals are represen ted b y

dashed arro ws.

Our aim is to iden tify the p oin t M whose co ordinates are maximal in ev ery dimension.

The �rst co ordinate of M is quite easy to determine: it is the v alue at whic h the outermost

lo op terminates.

The second co ordinate of M is the maxim um of the lengths of all teeth p oin ting up (in

the �gure). T o determine it, ev ery v ertical to oth tells its righ t neigh b or the maxim um of its

o wn heigh t and the maximal heigh t left of it. This is the meaning of sig

2

1

. If a v ertical to oth

is ready to terminate but did not y et receiv e sig

2

1

from its left neigh b or, it m ust w ait (except

for the leftmost to oth) un til this signal is receiv ed. (In the �gure, the to oth at the righ t m ust

w ait.) Then it itself sends sig

2

1

on to its righ t neigh b or and terminates. The follo wing formal

prop ert y holds for all teeth in dimension 2:

sig

2

1

(x

1

; x

2

; lb

3

)) (8 x

0

1

; x

0

2

: (x

0

1

; x

0

2

; lb

0

3

) 2 X ^ x

0

1

� x

1

: x

0

2

� x

2

)

The determination of the maximal depth of teeth in eac h v ertical plane (x

1

constan t)

pro ceeds analogously . Signals sig

3

2

are sen t from ev ery (p erhaps extended, since w aiting)

to oth � along dimension 3 to its upp er neigh b or of that plane, indicating that the curren t

depth (the length of �) is maximal for all teeth in dimension 3 to the left and including � , for

�xed x

1

. F ormally:

sig

3

2

(x

1

; x

2

; x

3

)) (8 x

0

2

; x

0

3

: (x

1

; x

0

2

; x

0

3

) 2 X ^ x

0

2

� x

2

: x

0

3

� x

3

)

T o com bine the maxima of all v ertical planes, the maximal p oin t of eac h plane sends a

signal sig

3

1

to its righ t neigh b or. Again, it is imp ortan t that this righ t neigh b or m ust not

terminate b efore the signal is receiv ed. Whic h teeth m ust w ait? The maximal depth in ev ery

v ertical plane is reac hed at the end of the (p erhaps extended) v ertical to oth that forms the

base of this plane. This heigh t w as propagated to the righ t neigh b or b y sig

2

1

. A t that heigh t,

the maximal depth will also b e propagated. Therefore, the to oth, ro oted at that p oin t (e.g.,

P in the �gure) whic h receiv ed sig

2

1

and whic h p oin ts in to dimension 3 (the thic k to oth in the

�gure), m ust w ait un til sig

3

1

is receiv ed. Again, formally:

sig

3

1

(x

1

; x

2

; x

3

)) (8 x

0

1

; x

0

2

; x

0

3

: (x

0

1

; x

0

2

; x

0

3

) 2 X ^ x

0

1

� x

1

: x

0

2

� x

2

^ x

0

3

� x

3

)

The formal prop erties implied b y the signals form a pattern that w e call the partial

maximalit y (of a p oin t). M is partially maximal with resp ect to all dimensions and is,

therefore, the maximal p oin t.

7.3.2 F ormalization

In the follo wing, w e de�ne partial maximalit y recursiv ely for an arbitrary n um b er of dimen-

sions. Then w e construct a mec hanism that sends signals from partially maximal p oin ts to

the appropriate destinations.

T o include the host of the pro cessor arra y , w e in tro duce a little hac k. W e imagine one

more dimension, 0, whic h has exten t 2. The p olyhedron is lo cated at p osition 0, and the host

at p osition 1. Then w e in tro duce signals that tra v el from p osition 0 to p osition 1. They are

mean t to comm unicate the termination of the target lo ops to the host.

7.3 T ermination Detection with Distributed Memory 62

De�nition 24 (P artial maximalit y m

r

k

). m

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) i� for �xed indices

at lev els 1 to k � 1 and for p oin ts (x

0

1

; � � � ; x

0

r

) b elo w (x

0

1

; � � � ; x

0

r

; lb

0

r +1

; � � � ; lb

0

d

) at lev el k

(x

0

k

� x

k

), p oin t (x

1

; � � � ;x

r

; lb

r +1

; � � � ; lb

d

) is maximal in all dimensions k + 1 ; � � � ; r . F ormally:

(8 r : 0 < r � d : (8 (x

1

; � � � ; x

r

) : (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) 2

b

X :

(8 k : 0 � k < r : m

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) =

(8 x

0

k

; � � � ; x

0

r

: (x

1

; � � � ; x

k � 1

; x

0

k

; � � � ; x

0

r

; lb

0

r +1

; � � � ; lb

0

d

) 2

b

X ^ x

0

k

� x

k

:

x

0

k +1

� x

k +1

; � � � ; x

0

r

� x

r

))))

If m

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

), w e call p oin t (x

1

; � � � ;x

r

; lb

r +1

; � � � ; lb

d

) partially maximal with

resp ect to dimensions k + 1 to r .

Note that, for k = 0, the righ t-hand side of De�nition 24 simpli�es to:

(8 x

0

1

; � � � ; x

0

r

: (x

0

1

; � � � ; x

0

r

; lb

0

r +1

; � � � ; lb

0

d

) 2

b

X : x

0

1

� x

1

^ � � � ^ x

0

r

� x

r

)

F or our comm unication sc heme of m b y signals, w e need an additional predicate, w

r

k

(x

1

;

� � � ; x

r

; lb

r +1

; � � � ; lb

d

), whic h indicates that the to oth that is ro oted at (x

1

; � � � ;x

r � 1

; lb

r

; � � � ; lb

d

)

and extends along dimension r m ust w ait un til signal sig

r

k

arriv es at some p oin t (x

1

; � � � ;x

r � 1

;

x

0

r

; lb

r +1

; � � � ; lb

d

) with x

0

r

� x

r

. These additional p oin ts at whic h a to oth w aits but executes

nothing mak e the di�erence b et w een S and X . The lemmata that follo w are v alid for all

p oin ts in S .

De�nition 25 (sig and w).

(8 (x

1

; � � � ; x

d

) : (x

1

; � � � ; x

d

) 2 I : (8 k ; r : 0 � k < r � d : sig

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) =

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : w

r

s

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) _ sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)) ^

(r > k + 1) sig

r � 1

k

(x

1

; � � � ; x

r � 1

; lb

r

; � � � ; lb

d

))))

F or all other p oin ts sig is initialized with f f :

(8 (x

1

; � � � ; x

d

) : (x

1

; � � � ; x

d

) 2 Z

d

� I : (8 k ; r : 0 � k < r � d :

sig

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) = f f))

(8 (x

1

; � � � ; x

d

) : (x

1

; � � � ; x

d

) 2 I : (8 k ; r : 0 � k < r � d : w

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) =

if k = 0 ! f f (1)

[] r = k + 1 ^ k > 0 ^ x

k +1

= lb

k +1

! x

k

6= lb

k

(2)

[] r > k + 1 ^ k > 0 ^ x

k +1

= lb

k +1

! sig

r � 1

k

(x

1

; � � � ; x

k

� 1 ; � � � ; x

r � 1

; lb

r

; � � � ; lb

d

) (3)

[] r � k + 1 ^ k > 0 ^ x

r

> lb

r

! w

r

k

(x

1

; � � � ; x

r � 1

; x

r

� 1 ; lb

r +1

; � � � ; lb

d

) ^ (4)

: sig

r

k

(x

1

; � � � ; x

k

� 1 ; � � � ; x

r � 1

; x

r

� 1 ; lb

r +1

; � � � ; lb

d

)

�))

These equations can b e explained as follo ws.

sig states that an y p oin t of a to oth that need not b e executed and that do es not ha v e to

w ait for an y signal sends signal sig

r

k

if either the to oth and the signal lie in a t w o-dimensional

plane (recursion base) or the ro ot (x

1

; � � � ;x

r � 1

; lb

r

; � � � ; lb

d

) of the to oth has already sen t the

signal in to the same direction (recursion).

w

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) states whether the p oin t (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) at lev el r

has to w ait for some signal from direction k :

7.3 T ermination Detection with Distributed Memory 63

(1) No p oin t has to w ait for signals from the host.

(2) In ev ery t w o-dimensional subspace (dimensions k and r = k + 1), ev ery to oth, i.e., at

least the �rst p oin t of it (with x

k +1

= lb

k +1

), has to w ait for a signal from the to oth

immediately preceding it|if an y , i.e., if x

k

6= lb

k

.

(3) In ev ery at least three-dimensional subspace (dimensions k to r > k + 1), ev ery to oth

parallel to dimension r , i.e., at least the �rst p oin t of it, has to w ait for some signal

from direction k i� its ro ot at lev el r � 1 has receiv ed a signal from the same direction k .

(4) An y p oin t of a to oth that is not the �rst p oin t has to w ait for a signal i� its predecessor

on the to oth had to w ait and did not receiv e the signal it w as w aiting for.

7.3.3 Signals and their Signi�cance for Lo cal Maximalit y

The main result of this subsection is that signals sig correctly propagate prop ert y m of lo cal

maximalit y . W e state this in t w o separate lemmata.

Lemma 26 (Lo cal maxim um). A p oint of some to oth along dimension r that ne e d not b e

exe cute d with r esp e ct to r and ne e d not wait for a signal is maximal with r esp e ct to dimension

r . F ormal ly:

(8 x

1

; � � � ; x

r

: (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) 2 S : : exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : (: w

r

s

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) _

sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

; lb

r +1

; � � � ; lb

d

))))

(8 x

0

r

: (x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) 2 S : x

0

r

� x

r

))

Pr o of. W e pro v e the in v erse implication: (H) C) , (: C) : H).

: (8 x

0

r

: (x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) 2 S : x

0

r

� x

r

)

, f predicate calculus g

(9 x

0

r

: (x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) 2 S : x

0

r

> x

r

)

) f if p oin t (x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) is scanned, it m ust b e exe-

cuting or w aiting g

(9 x

0

r

: (x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) 2 S : exe cute d

r

(x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) _

(9 s : 1 � s < r : (w

r

s

(x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) ^

: sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

0

r

; lb

r +1

; � � � ; lb

d

)))

) f predicate calculus g

: (8 (x

1

; � � � ; x

r

) : (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) 2 S : : exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : w

r

s

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) _ sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)))

In the follo wing lemma, S U B

r

k

(x

1

; � � � ; x

k � 1

) is the subspace of S in dimensions k to r

(1 � k < r � d) and at �xed co ordinates (x

1

; � � � ;x

k � 1

).

Lemma 27 (sig implemen ts m).

(8 k ; r : 0 � k < r � d : (8 (x

1

; � � � ; x

r

) : (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) 2 S :

sig

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)) m

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)))

7.3 T ermination Detection with Distributed Memory 64

Pr o of. By induction on the dimension of S U B

r

k

(x

1

; � � � ; x

k � 1

).

� Induction base (r = k + 1):

F or sig

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

)) m

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) w e m ust distin-

guish t w o cases, since x

0

do es not exist.

{ First case: k = 0

sig

1

0

(x

1

; lb

2

; � � � ; lb

d

)

, f de�nition of sig with k = 0, r = 1 g

: exe cute d

1

(x

1

; lb

2

; � � � ; lb

d

)

) f Lemma 26 with k = 0, r = 1 g

(8 x

0

1

: (x

0

1

; lb

2

; � � � ; lb

d

) 2 S : x

0

1

� x

1

)

, f de�nition of m

1

0

g

m

1

0

(x

1

; lb

2

; � � � ; lb

d

)

{ Second case: k > 0

W e pro v e sig

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

)) m

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) b y in-

duction on x

k

.

� Induction base (x

k

= lb

k

):

sig

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

)

, f de�nition of sig with x

k

= lb

k

and simpli�cation for r = k + 1 g

: exe cute d

k +1

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) ^ (8 s : 1 � s < k + 1 :

: w

k +1

s

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) _

sig

k +1

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

k +1

; lb

k +2

; � � � ; lb

d

))

) f Lemma 26 g

(8 x

0

k +1

: (x

1

; � � � ; x

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S : x

0

k +1

� x

k +1

)

, f lb

k

is the smallest x

k

; in tro duction of a new dumm y with empt y

range g

(8 x

0

k

; x

0

k +1

: (x

1

; � � � ; x

k � 1

; x

0

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S ^ x

0

k

� x

k

:

x

0

k +1

� x

k +1

)

, f de�nition of m g

m

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

)

� Induction step (x

k

� 1 ! x

k

, where x

k

> lb

k

):

sig

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

)

, f de�nition of sig with x

k

> lb

k

and simpli�cation for r = k + 1 g

: exe cute d

k +1

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) ^ (8 s : 1 � s < k + 1 :

(: w

k +1

s

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) _

sig

k +1

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

k +1

; lb

k +2

; � � � ; lb

d

)))

, f duplicate of

: w

k +1

k

_ sig

k +1

k

(x

1

; � � � ; x

k � 1

; x

k

� 1 ; x

k +1

; lb

k +2

; � � � ; lb

d

) g

7.3 T ermination Detection with Distributed Memory 65

: exe cute d

k +1

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) ^ (8 s : 1 � s < k + 1 :

(: w

k +1

s

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) _

sig

k +1

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

k +1

; lb

k +2

; � � � ; lb

d

))) ^

: w

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) _

sig

k +1

k

(x

1

; � � � ; x

k � 1

; x

k

� 1 ; x

k +1

; lb

k +2

; � � � ; lb

d

)

) f Lemma 26 g

(8 x

0

k +1

: (x

1

; � � � ; x

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S : x

0

k +1

� x

k +1

) ^

: w

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

) _

sig

k +1

k

(x

1

; � � � ; x

k � 1

; x

k

� 1 ; x

k +1

; lb

k +2

; � � � ; lb

d

)

) f b y structural induction on the de�nition of w g

(8 x

0

k +1

: (x

1

; � � � ; x

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S : x

0

k +1

� x

k +1

) ^ (x

k

= lb

k

_

(9 [x

k +1

: [x

k +1

� x

k +1

: sig

k +1

k

(x

1

; � � � ; x

k

� 1 ; [x

k +1

; lb

k +2

; � � � ; lb

d

)))

, f x

k

6= lb

k

(induction step) g

(8 x

0

k +1

: (x

1

; � � � ; x

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S : x

0

k +1

� x

k +1

) ^

(9 [x

k +1

: [x

k +1

� x

k +1

: sig

k +1

k

(x

1

; � � � ; x

k

� 1 ; [x

k +1

; lb

k +2

; � � � ; lb

d

))

) f induction h yp othesis for sig

k +1

k

(x

1

; � � � ; x

k

� 1 ; [x

k +1

; lb

k +2

; � � � ; lb

d

) g

(8 x

0

k +1

: (x

1

; � � � ; x

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S : x

0

k +1

� x

k +1

) ^

(9 [x

k +1

: [x

k +1

� x

k +1

: m

k +1

k

(x

1

; � � � ; x

k

� 1 ; [x

k +1

; lb

k +2

; � � � ; lb

d

))

, f [x

k +1

� x

k +1

; de�nition of m) g

(8 x

0

k +1

: (x

1

; � � � ; x

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S : x

0

k +1

� x

k +1

) ^

m

k +1

k

(x

1

; � � � ; x

k

� 1 ; x

k +1

; lb

k +2

; � � � ; lb

d

)

, f de�nition of m g

(8 x

0

k +1

: (x

1

; � � � ; x

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S : x

0

k +1

� x

k +1

) ^ (8 x

0

k

; x

0

k +1

:

(x

1

; � � � ; x

k � 1

; x

0

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S ^ x

0

k

� x

k

� 1 : x

0

k +1

� x

k +1

)

, f com bination of t w o quan ti�cation ranges g

(8 x

0

k

; x

0

k +1

: (x

1

; � � � ; x

k � 1

; x

0

k

; x

0

k +1

; lb

k +2

; � � � ; lb

d

) 2 S ^

x

0

k

� x

k

: x

0

k +1

� x

k +1

)

, f de�nition of m g

m

k +1

k

(x

1

; � � � ; x

k � 1

; lb

k

; � � � ; lb

d

)

� Induction step (k ! k � 1, where r � k > 1):

sig

r

k � 1

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

, f de�nition of sig with r > k + 1 g

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^ (8 s : 1 � s < r :

:

r

s

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) _ sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)) ^

sig

r � 1

k � 1

(x

1

; � � � ; x

r � 1

; lb

r

; � � � ; lb

d

)

) f Lemma 26 g

(8 x

0

r

: (x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) 2 S : x

0

r

� x

r

) ^

sig

r � 1

k � 1

(x

1

; � � � ; x

r � 1

; lb

r

; � � � ; lb

d

)

) f induction h yp othesis for sig

r � 1

k � 1

g

(8 x

0

r

: (x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) 2 S : x

0

r

� x

r

) ^

m

r � 1

k � 1

(x

1

; � � � ; x

r � 1

; lb

r

; � � � ; lb

d

)

, f de�nition of m g

7.3 T ermination Detection with Distributed Memory 66

(8 x

0

r

: (x

1

; � � � ; x

r � 1

; x

0

r

; lb

r +1

; � � � ; lb

d

) 2 S : x

0

r

� x

r

) ^

(8 x

0

k � 1

; � � � ; x

0

r � 1

: (x

1

; � � � ; x

k � 2

; x

0

k � 1

; � � � ; x

0

r � 1

; lb

r

; � � � ; lb

d

) 2 S ^ x

0

k � 1

� x

k � 1

:

x

0

k

� x

k

^ � � � ^ x

0

r � 1

� x

r � 1

)

) f com bination of t w o quan ti�cation ranges g

(8 x

0

k

; � � � ; x

0

r

: (x

1

; � � � ; x

k � 2

; x

0

k � 1

; � � � ; x

0

r

; lb

r +1

; � � � ; lb

d

) 2 S ^ x

0

k � 1

� x

k � 1

:

x

0

k

� x

k

^ � � � ^ x

0

r

� x

r

)

, f de�nition of m g

m

r

k � 1

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

Our aim has b een to iden tify the p oin t of S with maximal co ordinates in all dimensions.

The scanning of this p oin t indicates the termination of the en tire target lo op nest. W e ha v e

constructed a signaling sc heme in whic h this p oin t sends signal sig

d

0

to the host.

Remark 28 (Optimization).

� A to oth in direction r m ust send at least one signal, in to direction r � 1.

� One simple optimization can b e made immediately: signals need not b e sen t to p oin ts

x along a to oth that has terminated, i.e., p oin ts that neither are activ e nor w ait for a

signal. Th us, sig

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) implies that, for an y k

0

with k

0

< k , sig

r

k

0

(x

1

;

� � � ; x

r

; lb

r +1

; � � � ; lb

d

) need not b e sen t. In Example 10 w e ha v e already omitted these

signals, but they are of course part of De�nition 25. Th us ev ery terminating to oth has

to send at most one signal.

� In summary , ev ery to oth m ust send exactly one signal when it terminates.

7.3.4 T arget Co de Generation for Distributed Memory Mac hines

In the remainder of this section w e deriv e co de for the target program. In a straigh t-forw ard

implemen tation w e could augmen t the source program b y an implemen tation of the predicates

and the signals, dev elop ed in the previous sections, and apply the space-time mapping to this

augmen ted source program.

Ho w ev er, since the transformation of the signaling sc heme is problem-indep enden t w e

decided to deriv e a sk eleton for the transformed signaling sc heme whic h can b e �lled with

the problem-sp eci�c b o dy statemen ts and transformations. This strategy also un burdens the

target generator of a parallelizing compiler signi�can tly , whic h accelerates the target co de

generation.

Th us, w e presen t an augmen tation of the tar get lo op b o dy suc h that the irregular shap e

of the transformed execution space is dealt with prop erly . Our augmen tation implemen ts the

signaling sc heme presen ted ab o v e. W e pro v e that, while the target lo ops en umerate T S , the

augmen ted b o dy reduces the execution of the lo op nest to precisely the p oin ts of T X .

7.3.4.1 General T ec hnique

First w e presen t the target co de whic h is abstract in the sense that it is neither optimized for

memory usage (it is single-assignmen t!) nor adapted to the execution mo del (sync hronous or

async hronous) of the target mac hine. These adaptations are giv en in Section 7.3.4.3.

7.3 T ermination Detection with Distributed Memory 67

The target co de m ust sp ecify comm unications (send and receiv e primitiv es) explicitly .

W e use three primitiv es that are executable on the P arix

1

op erating system [45], one for

transmitting and t w o for receiving. The reception mo de dep ends on the t yp e of message

transmitted.

Our signaling sc heme con tains t w o t yp es of messages.

� One t yp e is resp onsible for the propagation of information along one to oth. An example

is the v alue of the predicate active . The receipt of a message of this t yp e is necessary

for the execution of the lo op b o dy at the resp ectiv e p oin t.

� The other t yp e of messages is for signals sig . These signals m ust b e \prob ed" [42], since

execution of a lo op iteration ma y pro ceed without their receipt.

Let us briey describ e the three primitiv es:

� asend (dir ; list of vals) is a P arix command that transmits a list of v alues in to a sp eci-

�ed direction in (d � 1)-dimensional space. Comm unication is async hronous to prev en t

deadlo c ks.

� receive (dir ; list of vals) is a P arix command that p erforms a blo c king receiv e of a list

of v alues from a sp eci�ed direction.

� creceive (dir ; list of vals) is a command de�ned b y us that p erforms a non-blo c king receiv e

of a list of v alues from a sp eci�ed direction. Martin [42] de�nes the v alue of a prob e

Y on some comm unication action Y as a b o olean v alue that indicates whether the

corresp onding comm unication action is p ending. In our con text, Y is a receive command

from some direction and, th us, Y holds i� the corresp onding asend command did already

tak e place. With this construct, w e de�ne creceive (dir ; list of vals) as follo ws:

if receive (dir ; list of vals) then receive (dir , list of vals) endif .

Note: receive (dir ; list of vals) corresp onds roughly to the P arix command

Select (ReceiveOption (dir)) [45].

W e are no w able to presen t the single-assignmen t target program. F or readabilit y w e

only describ e the case of a p erfect lo op nest; the tec hnical mo di�cations for the general case

can b e found in [33]. Also for simplicit y , w e implemen t termination b y the P arix command

Ab o rtServer whic h is executed only b y the iteration that is maximal for all dimensions (i.e.,

partially maximal with resp ect to dimensions 1 to d , as de�ned in De�nition 24). Th us, the

while lo ops in the target program need no upp er b ound.

The sk eleton of the target lo op nest is displa y ed in Figure 7.8 and re�ned in the subsequen t

Figures 7.9 and 7.10. This co de is for async hronous parallel execution on mac hines with

distributed memory . The necessary c hanges for sync hronous execution and/or shared memory

are discussed in Section 7.3.4.3.

Note that the lo ops in the �gure represen t the w orst case of a nest with only while lo ops,

whic h are therefore sequen tial (remem b er that there is no parallel while lo op). Ho w ev er, this

is not t ypical, since the parallel lo ops (whic h hop efully do exist) can b e written as (parallel)

fo r lo ops (Remark 21 on page 49). Th us, some of the while lo ops in the sc heme are replaced

b y pa rfo r lo ops.

1

P arix

T M

is an op erating system for parallel computers with distributed memory b y the P arsytec com-

pan y based on the SPMD programming mo del [46].

7.3 T ermination Detection with Distributed Memory 68

k

1

(lb

1

) := 0

pr g-active

1

(lb

1

) := t t

fo r y

1

:= lb

1

while t t do

.

.

.

fo r y

d

:= lb

d

while t t do

b

pre

1

(x

1

)

.

.

.

b

pre

d

(x

1

; � � � ; x

d

)

if pr g-active

d

(x

1

; � � � ; x

d

) and c ondition

d

(x

1

; � � � ; x

d

) then

b (x

1

; � � � ; x

d

)

end if

b

p ost

1

(x

1

)

.

.

.

b

p ost

d

(x

1

; � � � ; x

d

)

end do

.

.

.

end do

Figure 7.8: The target lo op nest

The augmen tation of the lo op b o dy for ev ery lev el r , i.e., b

r

(x

1

; � � � ; x

r

), consists of t w o

parts:

� The pre�x b

pre

r

(x

1

; � � � ; x

r

), executed b efore the transformed source lo op b o dy , is dis-

pla y ed in Figure 7.9. It receiv es all necessary data and calculates the output v alues of

all v ariables that are in tro duced b y our signaling sc heme.

� The p ost�x b

p ost

r

(x

1

; � � � ; x

r

), executed after the source lo op (at least for async hronous

execution, see Remark 29), is displa y ed in Figure 7.10. It is resp onsible for sending all

necessary information.

Let us no w discuss the co de in detail:

V ariables:

� chan

S

k

represen ts the c hannel for the signals that tra v el along dimension k . chan

D

r

represen ts the c hannel for the data, i.e., pr g-active

r

, k

r

, and pr g-w

r

k

, 1 � k < r , that

are propagated along ev ery to oth.

� k

r

is the direction in whic h the to oth m ust send a signal b efore it terminates. It

corresp onds to the lo w er index k of sig

r

k

(x

1

; � � � ; x

r

). The optimization outlined in

Remark 28 ensures that there is a unique k for eac h to oth.

� sigval

r

corresp onds to sig

r

k

in De�nition 25 (more precisely , it guaran tees the �rst

t w o conjuncts of De�nition 25, cf. Lemma 35).

7.3 T ermination Detection with Distributed Memory 69

(8 r : 1 � r � d : b

pre

r

(x

1

; � � � ; x

r

) :

if x

r +1

= lb

r +1

and � � � and x

d

= lb

d

then

A :

8

>

>

>

>

<

>

>

>

>

:

/* receiv e signals */

creceive (chan

S

1

; [r cve d

r

1

(x

1

; � � � ; x

r

)])

.

.

.

creceive (chan

S

r � 1

; [r cve d

r

r � 1

(x

1

; � � � ; x

r

)])

B :

8

>

<

>

:

/* receiv e data */

receive (chan

D

r

; [pr g-active

r

(x

1

; � � � ; x

r

) ; k

r

(x

1

; � � � ; x

r

) ;

pr g-w

r

1

(x

1

; � � � ; x

r

) ; � � � ; pr g-w

r

r � 1

(x

1

; � � � ; x

r

)])

/* calculate output v alues for all signals */

C :

8

>

<

>

:

pr g-w

r

1

(x

1

; � � � ; x

r

+ 1) := pr g-w

r

1

(x

1

; � � � ; x

r

) and not r cve d

r

1

.

.

.

pr g-w

r

r � 1

(x

1

; � � � ; x

r

+ 1) := pr g-w

r

r � 1

(x

1

; � � � ; x

r

) and not r cve d

r

r � 1

D :

8

>

>

>

>

<

>

>

>

>

:

pr g-w

r +1

1

(x

1

; � � � ; x

r

; lb

r +1

) := r cve d

r

1

(x

1

; � � � ; x

r

)

.

.

.

pr g-w

r +1

r � 1

(x

1

; � � � ; x

r

; lb

r +1

) := r cve d

r

r � 1

(x

1

; � � � ; x

r

)

pr g-w

r +1

r

(x

1

; � � � ; x

r

; lb

r +1

) := (x

r

6= lb

r

)

9

>

>

>

>

=

>

>

>

>

;

 only for r < d

E : k

r

(x

1

; � � � ; x

r

+ 1) := k

r

(x

1

; � � � ; x

r

)

if pr g-active

r

(x

1

; � � � ; x

r

) and c ondition

r

(x

1

; � � � ; x

r

) then

sigval

r

(x

1

; � � � ; x

r

) := f f

pr g-active

r

(x

1

; � � � ; x

r

+ 1) := t t

pr g-active

r +1

(x

1

; � � � ; x

r

; lb

r +1

) := t t

F : k

r +1

(x

1

; � � � ; x

r

; lb

r +1

) := r

)

 only for r < d

else

G : pr g-w

r

(x

1

; � � � ; x

r

) := pr g-w

r

1

(x

1

; � � � ; x

r

+ 1) o r � � � o r pr g-w

r

r � 1

(x

1

; � � � ; x

r

+ 1)

sigval

r

(x

1

; � � � ; x

r

) := not pr g-w

r

(x

1

; � � � ; x

r

)

pr g-active

r

(x

1

; � � � ; x

r

+ 1) := f f

pr g-active

r +1

(x

1

; � � � ; x

r

; lb

r +1

) := f f

H :

8

>

>

>

>

>

<

>

>

>

>

>

:

if sigval

r

(x

1

; � � � ; x

r

) then

k

r +1

(x

1

; � � � ; x

r

; lb

r +1

) := k

r

(x

1

; � � � ; x

r

)

else

k

r +1

(x

1

; � � � ; x

r

; lb

r +1

) := r

end if

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

 only for r < d

end if

end if

)

Figure 7.9: The pre�x of the transformed lo op b o dy

7.3 T ermination Detection with Distributed Memory 70

(8 r : 1 � r � d : b

p ost

r

(x

1

; � � � ; x

r

) :

if x

r +1

= lb

r +1

and � � � and x

d

= lb

d

then

I :

8

>

<

>

:

if k

r

(x

1

; � � � ; x

r

) = 0 and sigval

r

(x

1

; � � � ; x

r

) then

Ab o rt Server ()

endif

9

>

=

>

;

 only for r = d

J :

8

>

<

>

:

/* send data */

asend (chan

D

r

; [pr g-active

r

(x

1

; � � � ; x

r

+ 1) ; k

r

(x

1

; � � � ; x

r

+ 1) ;

pr g-w

r

1

(x

1

; � � � ; x

r

+ 1) ; � � � ; pr g-w

r

r � 1

(x

1

; � � � ; x

r

+ 1)])

K :

8

>

>

>

<

>

>

>

:

/* send signals */

if k

r

(x

1

; � � � ; x

r

) 6= 0 and sigval

r

(x

1

; � � � ; x

r

) then

asend (chan

S

k

r

; [t t])

end if

endif

)

Figure 7.10: The p ost�x of the transformed lo op b o dy

� pr g-active

r

(x) is the coun terpart of the predicate active in the source lo op nest,

i.e., for ev ery p oin t x of I , the v alue of pr g-active

r

(x) at the end of the program

is equal to the v alue of active

r

(x). W e sa y pr g-active implements predicate active

and pro v e this fact in Lemma 33. The v alue of pr g-active (x) is unde�ned if T x is

not scanned b y the target lo op nest.

� Analogously , pr g-w

r

k

is the coun terpart of w

r

k

in De�nition 25.

Exe cution:

� The outermost if clause prev en ts the b o dy from receiving, calculating and sending

signals and messages that are not sp eci�ed b y our signaling sc heme of De�nition 25,

i.e., signals at depth r

0

> r .

� P art A prob es signals that are exp ected and receiv es those that are actually b eing

sen t. Th us, r cve d

r

k

(x

1

; � � � ; x

r

) is equal to sig

r

k

(x

1

; � � � ; x

k

� 1 ; � � � ; x

r

).

� P art B propagates all necessary information along the to oth in direction r .

� P art C implemen ts alternativ e (4) of De�nition 25.

� All but the last line of part D implemen ts alternativ e (3); the last line implemen ts

alternativ e (2).

� Line E copies the v alue of k for the next iteration.

� The if clause after line E tests whether the curren t iteration m ust b e executed

with resp ect to lev el r (De�nition 16). The v alue of pr g-active

r

, sigval

r

and, if they

exist, pr g-active

r +1

and k

r +1

dep end on the outcome of the test.

� sig

r

k

has three conjuncts (De�nition 25). The �rst corresp onds to the then or the

else branc h of said if clause, the second to the calculation at line G . The third

conjunct is satis�ed b y an appropriate setting of k

r

in parts F and H .

7.3 T ermination Detection with Distributed Memory 71

� pr g-active implemen ts active (De�nition 15), as pro v ed in Lemma 33.

� P art I applies only for r = d . It tests for sig

d

0

(i.e., sigval

d

and k

d

= 0) and, if so,

terminates the en tire program (compare Lemma 27 and De�nition 24).

� P art J sends the data that are receiv ed b y P art B on to the next p oin t of the

to oth.

� P art K sends sig

r

k

, if it has to b e sen t, i.e., if sigval holds. (A t presen t, w e ignore

signals in direction 0, but one could probably use this information to dev elop

smarter lo op b ounds.)

Remark 29. In the sync hronous mo del, w e obtain the same seman tics if the p ost�xes are

made pre�xes instead. This is an optimization if eac h pro cessor has a co-pro cessor for the

transmission of messages so that computation and message handling can pro ceed in parallel, as

is the case for the transputer [34]. F or async hronous mac hines, there is no similar optimization

since only the receipt of messages can guaran tee that the sender has up dated all transformed

source v ariables.

7.3.4.2 Correctness Pro of

In this section, w e pro v e that the target program executes the transformed source lo op b o dy

for all p oin ts whose in v erse image is in the execution space.

F or the follo wing pro ofs, w e need a formal de�nition of T S , the set of target p oin ts that

are scanned b y the target program. Note that the target while lo ops ha v e no upp er b ounds:

they en umerate an in�nite set. Our w a y of terminating the target program is b y calling the

P arix command Ab o rtServer at some p oin t. This call terminates the whole program. Th us,

p oin ts of T I are scanned un til the Ab o rtServer command is issued at some p oin t. This leads

to the follo wing de�nition:

De�nition 30 (pr g-sc anne d , S and T S). The image of a p oin t x 2 I is scanned b y the target

program if all p oin ts with a sc hedule not larger than t (x) do not call the Ab o rtServer command,

where the call of Ab o rtServer is guarded b y the condition k

r

(x

0

) = 0 ^ sigval

r

(x

0

) (Figure 7.10,

P art I). F ormally:

(8 x : x 2 I : pr g-sc anne d (x) =

(8 x

0

: x

0

2 I ^ t (x

0

) � t (x) : : (k

r

(x

0

) = 0 ^ sigval

d

(x

0

))))

S = f x 2 I : pr g-sc anne d (x) g

T S = fT x 2 T I : pr g-sc anne d (x) g

T o b e able to reason ab out target p oin ts whose transformed lo op b o dy is executed, w e need

also a formal de�nition of those p oin ts. The target program executes the transformed lo op

b o dy i� the p oin t is scanned and pr g-active

d

(x

1

; � � � ; x

d

) ^ c ondition

d

(x

1

; � � � ; x

d

) (Figure 7.8).

Th us, w e de�ne a predicate pr g-exe c accordingly and pro v e (Theorem 41) that the transformed

lo op b o dy is executed exactly for those p oin ts that b elong to the execution space, i.e., that

pr g-exe c (y) is equal to exe cute d (T

� 1

y) for all p oin ts y 2 T I .

De�nition 31 (pr g-exe c).

(8 x : x 2 I : pr g-exe c (x) = pr g-sc anne d (x) ^ pr g-active

d

(x) ^ c ondition

d

(x))

7.3 T ermination Detection with Distributed Memory 72

This de�nition mak es sense only if pr g-active is nev er reassigned. The follo wing auxiliary

lemma to that e�ect is pro v ed informally .

Lemma 32. Every variable pr g-active

r

(x

1

; � � � ; x

r

) , 1 � r � d and (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

2 I , is assigne d at most onc e during the exe cution of the tr ansforme d c o de.

Pr o of. Ev ery pr g-active

r

(x

1

; � � � ; x

r

) o ccurs exactly once as left hand side of an assignmen t.

Three disjoin t cases co v er ev ery p oin t (x

1

; � � � ;x

r

; lb

r +1

; � � � ; lb

d

) of I :

1. if (r = 1 ^ x

r

= lb

r

), it is assigned b y the initialization statemen t pr g-active

1

(lb

1

) := t t ;

2. if (1 < r < d ^ x

r

= lb

r

), it is assigned b y pr g-active

r +1

(x

1

; � � � ; x

r

; lb

r +1

) := t t in the then

branc h of b

pre

r � 1

(x

1

; � � � ; x

r � 1

);

3. if x

r

> lb

r

, it is assigned either b y pr g-active

r

(x

1

; � � � ; x

r

+ 1) := t t or b y pr g-active

r

(x

1

;

� � � ; x

r

+ 1) := f f in the then branc h or the else branc h of b

pre

r

(x

1

; � � � ; x

r

), resp ectiv ely .

Since no p oin t is scanned more than once, w e conclude that pr g-active

r

(x

1

; � � � ; x

r

) is assigned

at most once for an y (x

1

; � � � ;x

r

).

In the succeeding lemmata w e pro v e prop erties of the target program. Th us, w e need to

refer to v alues of program v ariables. In our single-assignmen t setting, w e are only in terested

in the v alues at the end of the exe cution of the tar get pr o gr am . This allo ws us to compute the

v alues of some v ariables from the v alues of other v ariables b y straigh t-forw ard co de insp ection.

First, w e pro v e that predicate active is implemen ted correctly .

Lemma 33. pr g-active

r

implements active

r

for al l p oints of I wher e the value of pr g-active

r

is de�ne d, i.e., whose image is sc anne d by the tar get pr o gr am. F ormal ly:

(8 r ; (x

1

; � � � ; x

d

) : 1 � r � d ^ T (x

1

; � � � ; x

d

) 2 T S :

pr g-active

r

(x

1

; � � � ; x

r

) = active

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

))

Pr o of. Induction o v er the nesting depth r , and then induction o v er the index range of the r

lo op.

� Induction base (r = 1):

{ Induction base (x

1

= lb

1

):

x

1

= lb

1

) f de�nition of pr g-active (Figure 7.8) and active g

pr g-active

1

(x

1

) = t t = active

1

(x

1

; lb

2

; � � � ; lb

d

)

{ Induction step (x

1

� 1 ! x

1

, where x

1

> lb

1

):

pr g-active

1

(x

1

)

, f de�nition of pr g-active

1

(x

1

) in the if clause of b

1

(x

1

� 1): g

pr g-active

1

(x

1

� 1) ^ c ondition

1

(x

1

� 1)

, f induction h yp othesis for x

1

� 1 g

active

1

(x

1

� 1 ; lb

2

; � � � ; lb

d

) ^ c ondition

1

(x

1

� 1)

, f de�nition of active

r

for r = 1 and x

1

> lb

1

g

active

1

(x

1

; lb

2

; � � � ; lb

d

)

7.3 T ermination Detection with Distributed Memory 73

� Induction step (r � 1 ! r , where r > 1):

{ Induction base (x

r

= lb

r

):

pr g-active

r

(x

1

; � � � ; x

r � 1

; lb

r

)

, f de�nition of pr g-active

1

(x

1

) in the if clause of b

r � 1

(x

1

; � � � ; x

r � 1

): g

pr g-active

r � 1

(x

1

; � � � ; x

r � 1

) ^ c ondition

r � 1

(x

1

; � � � ; x

r � 1

)

, f induction h yp othesis for r � 1 g

active

r � 1

(x

1

; � � � ; x

r � 1

; lb

r

; � � � ; lb

d

) ^ c ondition

r � 1

(x

1

; � � � ; x

r � 1

)

, f de�nition of active

r

for r > 1 and x

r

= lb

r

g

active

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

{ Induction step ((x

1

; � � � ; x

r

� 1) ! (x

1

; � � � ; x

r

), where x

r

> lb

r

):

analogously to x

1

� 1 ! x

1

.

Next, w e pro v e that predicate sig (De�nition 25) is also implemen ted correctly . W e pro ceed

in sev eral steps:

1. The follo wing de�nition, De�nition 34, giv es the predicate that corresp onds to sig in

the target program a name: pr g-sig .

2. Tw o auxiliary lemmata lead up to Corollary 37, whic h expresses pr g-sig analogously to

the de�nition of sig .

3. This corresp ondence is helpful for the pro of of Lemma 38, whic h states that pr g-sig

implies sig .

According to Figure 7.10, P art K , a signal is sen t if (k

r

(x) 6= 0) ^ sigval

r

(x). The direction

of this signal is k

r

(x). This leads to the follo wing de�nition:

De�nition 34 (pr g-sig

r

k

). In the target program, a signal is sen t in to direction k i� the di-

rection giv en b y k

r

(x) equals k and sigval

r

(x) holds. F ormally:

(8 r : 1 � r < d : (8 (x

1

; � � � ; x

r

) : T (x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) 2 T S : (8 k : 0 � k < r :

pr g-sig

r

k

(x

1

; � � � ; x

r

) = (k

r

(x

1

; � � � ; x

r

) = k) ^ sigval

r

(x

1

; � � � ; x

r

))))

where k

r

(x) is de�ned in parts E , F and H the target program.

Lemma 35. If a p oint T (x

1

; � � � ; x

d

) is sc anne d by the tar get pr o gr am, the value of sigval

r

(se c ond c onjunct of De�nition 34) is analo gous to the �rst two c onjuncts of the de�nition of

sig (De�nition 25). F ormal ly:

(8 (x

1

; � � � ; x

d

) : T (x

1

; � � � ; x

d

) 2 T S : (8 r : 0 < r � d : sigval

r

(x

1

; � � � ; x

r

) =

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ pr g-sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

))))

Pr o of. F ollo wing the program, w e distinguish t w o cases.

� Case 1 (pr g-active

r

(x

1

; � � � ; x

r

) ^ c ondition

r

(x

1

; � � � ; x

r

)):

In this case, exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) holds:

7.3 T ermination Detection with Distributed Memory 74

exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

, f De�nition 16 g

active

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^ c ondition

r

(x

1

; � � � ; x

r

)

, f Lemma 33 g

pr g-active

r

(x

1

; � � � ; x

r

) ^ c ondition

r

(x

1

; � � � ; x

r

)

, f condition of the �rst case g

t t

Th us,

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ pr g-sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

))

, f exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

), f f is n ull of ^ g

f f

, f de�nition of sigval b y the program in this case g

sigval

r

� Case 2 (: (pr g-active

r

(x

1

; � � � ; x

r

) ^ c ondition

r

(x

1

; � � � ; x

r

))):

Analogously , in this case, w e obtain : exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

).Then:

sigval

r

(x

1

; � � � ; x

r

)

, f de�nition of sigval in this case and de�nitions in P arts C and G of

the program g

:

�

(pr g-w

r

1

(x

1

; � � � ; x

r

) ^ : r cve d

r

1

(x

1

; � � � ; x

r

)) _ � � � _

: (pr g-w

r

r � 1

(x

1

; � � � ; x

r

) ^ : r cve d

r

r � 1

(x

1

; � � � ; x

r

))

�

, f de Morgan, t wice g

(: pr g-w

r

1

(x

1

; � � � ; x

r

) _ r cve d

r

1

(x

1

; � � � ; x

r

)) ^ � � � ^

(: pr g-w

r

r � 1

(x

1

; � � � ; x

r

) _ r cve d

r

r � 1

(x

1

; � � � ; x

r

))

, f formalization g

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ r cve d

r

s

(x

1

; � � � ; x

r

))

, f de�nition of r cve d g

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ pr g-sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

))

, f : exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

), t t is unit of ^ g

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ pr g-sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

))

Lemma 36. If p oint T (x

1

; � � � ; x

d

) is sc anne d by the tar get pr o gr am, the validity of k

r

(x

1

;

� � � ; x

r

) = k (�rst c onjunct of De�nition 34) implies pr g-sig

r � 1

k

(x

1

; � � � ; x

r � 1

) , in analo gy to

the thir d c onjunct of the de�nition of sig (De�nition 25). F ormal ly:

(8 r : 1 � r � d : (8 (x

1

; � � � ; x

d

) : T (x

1

; � � � ; x

d

) 2 T S : (8 k : 0 � k < r :

k

r

(x

1

; � � � ; x

r

) = k) (r = k + 1 _ pr g-sig

r � 1

k

(x

1

; � � � ; x

r � 1

)))))

Pr o of.

k

r

(x

1

; � � � ; x

r

) = k

, f de�nition of k

r

in the program g

k

r

(x

1

; � � � ; x

r � 1

; lb

r

) = k

) f de�nition of k

r

in the program: in Figure 7.8, in P art F and in the

else branc h of part H k

r

is set to r � 1; in the then branc h of P art

H (where sigval holds) it is set to k

r � 1

(x

1

; � � � ; x

r � 1

) g

7.3 T ermination Detection with Distributed Memory 75

(r � 1 = k) _ (sigval

r � 1

(x

1

; � � � ; x

r � 1

) ^ k

r � 1

(x

1

; � � � ; x

r � 1

) = k)

, f De�nition 34 g

(r = k + 1) _ pr g-sig

r � 1

k

(x

1

; � � � ; x

r � 1

)

Corollary 37. If a p oint T (x

1

; � � � ; x

d

) is sc anne d by the tar get pr o gr am, the c onjunction of

sigval

r

and k

r

(x

1

; � � � ; x

r

) = k (and, by De�nition 34, the value of pr g-sig

r

k

(x

1

; � � � ; x

r

)) is

analo gous to al l thr e e c onjuncts of the de�nition of sig (De�nition 25). F ormal ly:

(8 r : 1 � r � d : (8 (x

1

; � � � ; x

d

) : T (x

1

; � � � ; x

d

) 2 T S : (8 k : 0 � k � d :

pr g-sig

r

k

(x

1

; � � � ; x

r

) = : exe cute d

r

(x

1

; � � � ; x

d

) ^

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ pr g-sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

)) ^

(r = k + 1 _ pr g-sig

r � 1

k

(x

1

; � � � ; x

r � 1

)))))

Pr o of.

pr g-sig

r

k

(x

1

; � � � ; x

r

)

, f De�nition 34 g

sigval

r

(x

1

; � � � ; x

r

) ^ k

r

(x

1

; � � � ; x

r

) = k

) f Lemma 35 and Lemma 36 g

(: exe cute d

r

(x

1

; � � � ; x

d

) ^ (8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _

pr g-sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

))) ^

(r = k + 1 _ pr g-sig

r � 1

k

(x

1

; � � � ; x

r � 1

))

Lemma 38 (pr g-sig implemen ts sig).

(8 r : 1 � r � d : (8 (x

1

; � � � ; x

d

) : T (x

1

; � � � ; x

d

) 2 T S : (8 k : 0 � k < r :

pr g-sig

r

k

(x

1

; � � � ; x

r

)) sig

r

k

(x

1

; � � � ; x

d

))))

Pr o of. Induction on the \distance" N = (� i : 1 � i � d : x

i

) of p oin t x from the origin

� Induction base (N = 0):

pr g-sig

r

k

(x

1

; � � � ; x

r

)

) f De�nition 34 (pr g-sig) g

(k

r

(x

1

; � � � ; x

r

) = k) ^ sigval

r

(x

1

; � � � ; x

r

)

) f predicate calculus g

sig v al

r

(x

1

; � � � ; x

r

)

) f Lemma 35 g

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ pr g-sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

))

) f N = 0 implies (x

1

; � � � ; x

r

) = (0 ; � � � ; 0) and pr g-sig

r

s

(x

1

; � � � ; x

s

�

1 ; � � � ; x

r

) = f f = sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) g

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

; lb

r +1

; � � � ; lb

d

))

, f De�nition 25 (sig) g

sig

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

� Induction step (N � 1 ! N , where N > 0):

7.3 T ermination Detection with Distributed Memory 76

pr g-sig

r

k

(x

1

; � � � ; x

r

)

) f De�nition 34 (pr g-sig), predicate calculus and Lemma 35, as for the

induction base g

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ pr g-sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

))

) f induction h yp othesis for (x

1

; � � � ; x

s

� 1 ; � � � ; x

r

) g

: exe cute d

r

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

) ^

(8 s : 1 � s < r : : pr g-w

r

s

(x

1

; � � � ; x

r

) _ sig

r

s

(x

1

; � � � ; x

s

� 1 ; � � � ; x

r

; lb

r +1

; � � � ; lb

d

))

, f De�nition 25 (sig) g

sig

r

k

(x

1

; � � � ; x

r

; lb

r +1

; � � � ; lb

d

)

Armed with these lemmata, w e can sho w that the target program executes the b o dy at

all p oin ts with an in v erse image in X .

Remem b er that the sc hedule for a nest of while lo ops is an a�ne function in the lo op

indices with p ositiv e co e�cien ts. Also, our correctness pro of is restricted to suc h sc hedules.

If w e ha v e a mixed nest of fo r and while lo ops and the sc hedule con tains a negativ e co e�cien t

for some fo r lo op indices, w e m ust �rst re-index the fo r lo op and the corresp onding indices in

the b o dy to rev ert the en umeration of the fo r lo op. Then, our metho ds can b e applied.

Lemma 39. A l l tr ansforme d p oints with inverse image in X ar e sc anne d if the sche dule is

an a�ne function with p ositive c o e�cients, i.e., for any dimension t in time,

(8 i : 1 � i � d : T

t;i

� 0)) (8 x : x 2 X : T x 2 T S) :

Pr o of. Our aim is to apply De�nition 30. First, w e �nd a p oin t

b

x 2

b

X with t (x) <

lex

t (

b

x):

x 2 X

) f De�nition 17 and De�nition 16 g

active

d

(x) ^ c ondition

d

(x)

, f De�nition 15 for (x

1

; � � � ; x

r

+ 1 ; � � � ; x

d

), where 1 � r � d is a while

dimension g

active

r

(x

1

; � � � ; x

r

+ 1 ; � � � ; x

d

)

) f De�nition 18 g

(x

1

; � � � ; x

r

+ 1 ; � � � ; x

d

) 2

b

X

W e name this p oin t

b

x ; 0 <

lex

t (

b

x) � t (x), since r is a while lo op.

No w w e can pro v e the lemma. Let x b e an y p oin t in X and

b

x a corresp onding p oin t in

b

X

as just de�ned. Applying De�nition 30, w e sho w that all p oin ts that are en umerated b y time

slices up to and including t (p) do not ab ort the program:

t t

, f trivial quan ti�cation g

(8 x

0

: x

0

2 I ^ t (x

0

) �

lex

t (x) : t (x

0

) �

lex

t (x))

) f prop ert y t (x) <

lex

t (

b

x) of

b

x and transitivit y of �

lex

and <

lex

g

(8 x

0

: x

0

2 I ^ t (x

0

) �

lex

t (x) : t (x

0

) <

lex

t (

b

x))

, f t is an a�ne function, sa y , ro w t in T g

(8 x

0

: x

0

2 I ^ t (x

0

) �

lex

t (x) :

(9 t : 1 � t � d : (� i : 1 � i � d : T

t;i

x

0

i

) < (� i : 1 � i � d : T

t;i

b

x

i

)))

) f (8 t; i : 1 � t; i � d : T

t;i

� 0) b y assumption, arithmetic g

7.3 T ermination Detection with Distributed Memory 77

(8 x

0

: x

0

2 I ^ t (x

0

) �

lex

t (x) : (9 i : 1 � i � d : x

0

i

<

b

x

i

))

, f negation of De�nition 24 g

(8 x

0

: x

0

2 I ^ t (x

0

) �

lex

t (x) : : m

d

0

(x

0

))

) f con trap ositiv e of Lemma 27 g

(8 x

0

: x

0

2 I ^ t (x

0

) �

lex

t (x) : : sig

d

0

(x

0

))

) f Lemma 38 and De�nition 34 g

(8 x

0

: x

0

2 I ^ t (x

0

) �

lex

t (x) : : (k

d

(x

0

) = 0) ^ sigval

d

(x

0

))

) f De�nition 30 g

pr g-sc anne d (x)

, f De�nition 30 g

T x 2 T S

Lemma 40. pr g-active ensur es that al l le gal p oints ar e exe cute d, i.e., that T x 2 T I is exe cute d

i� x 2 I is exe cute d and T x is sc anne d by the tar get pr o gr am. F ormal ly:

(8 x : x 2 I : pr g-exe c (x) , pr g-sc anne d (x) ^ exe cute d (x)) :

Pr o of.

pr g-exe c (x)

, f De�nition 31 (pr g-exe c) g

pr g-sc anne d (x) ^ pr g-active

d

(x

1

; � � � ; x

d

) ^ c ondition

d

(x

1

; � � � ; x

d

)

, f Lemma 33 g

pr g-sc anne d (x) ^ active

d

(x

1

; � � � ; x

d

) ^ c ondition

d

(x

1

; � � � ; x

d

)

, f De�nition 16 (exe cute d) g

pr g-sc anne d (x) ^ exe cute d (x

1

; � � � ; x

d

)

Theorem 41. F or a�ne sche dules with p ositive c o e�cients, the lo op b o dy b is exe cute d at

y 2 T I i� it is exe cute d at T

� 1

y 2 I . F ormal ly, for any dimension t in time:

(8 i : 1 � i � d : T

t;i

� 0)) (8 y : y 2 T I : pr g-exe c (T

� 1

y) , exe cute d (T

� 1

y))

Pr o of.

\) ": part \) " of Lemma 40.

\ (":

� y is scanned (Lemma 39);

� ev ery scanned p oin t whose in v erse image is in X is executed (part \ (" of Lemma 40).

7.3.4.3 P ossible Adaptations of the Co de to the T arget Arc hitecture

Memory reduction for distributed memory systems. F or a real implemen tation, w e

�rst in tro duce re-assignmen ts b y a simple mo di�cation of the sk eleton in Figures 7.8 to 7.10

(w e assume an injectiv e allo cation):

� all v ariables that are indexed with (x

1

; � � � ;x

r

) b ecome lo cal scalars, e.g., pr g-active

r

(x

1

;

� � � ; x

r

) b ecomes pr g-active

r

;

7.3 T ermination Detection with Distributed Memory 78

� all v ariables that are indexed with (x

1

; � � � ; x

r

+ 1) b ecome lo cal renamed scalars, e.g.,

pr g-active

r

(x

1

; � � � ; x

r

+ 1) b ecomes pr g-active out

r

;

� all v ariables that are indexed with (x

1

; � � � ; x

r

; lb

r + 1

) b ecome lo cal scalars, e.g.,

pr g-active

r +1

(x

1

; � � � ; x

r

; lb

r + 1

) b ecomes pr g-active

r + 1

(note the di�eren t index).

Note, that the upp er b ound d on r is kno wn at compile time.

Adaptation for async hronous systems. As w e men tioned already , the signaling sc heme

is most easily describ ed for sync hronous mac hines. In this case, the giv en target co de is

complete and correct.

In the async hronous case, w e can alw a ys �nd a space-time mapping that is scannable (Sec-

tion 5.2.6). Still, for whatev er reasons, one has the option of an unscannable transformation

also for the async hronous mo del, but with a sligh tly mo di�ed v ersion of the target co de just

presen ted.

The mo di�cations result from the fact that, in the async hronous case, there is no global

clo c k, i.e., the time comp onen t of ev ery space-time mapp ed iteration cannot b e in terpreted

globally . Th us, sending an y message from an iteration on pro cessor P at time t to another

iteration on pro cessor P

0

with execution time t

0

mak es no sense| t

0

migh t b e in the past with

resp ect to the clo c k of pro cessor P .

W e can a v oid this problem as follo ws: instead of the conditional sending of v alueless sig-

nals, send unconditionally messages carrying the v alue of the condition, and use the blo c king

receive for the receipt of these messages. The mo di�ed part K is

if k

r

(x

1

; � � � ; x

r

) 6= 0 then

asend (chan

S

k

r

; [sig v al

r

(x

1

; � � � ; x

r

)])

endif

Note, ho w ev er, the increase in the n um b er of messages.

Adaptation for shared memory systems. Section 7.2 con tains a termination detection

sc heme for shared memory systems via coun ters for shared memory . Alternativ ely , the sig-

naling sc heme for distributed memory just deriv ed can also b e adapted to shared memory

systems: of course, parts B and J are sup eruous. Ho w ev er, the exc hange of the signals in

parts A and K m ust b e transformed to shared memory access.

Let us briey compare the signaling sc heme adapted to shared memory and the coun ter

sc heme with the extreme optimization of using one coun ter p er to oth (i.e., r = 1 in Sec-

tion 7.2.4). The optimized coun ter sc heme still has to deal with conicting accesses to the

coun ters whic h leads to an increase in execution time; this kind of b ottlenec k do es not exist

in the adapted signaling sc heme (at least not, if w e neglect p ossible conicts on the memory

bus of the shared memory system). On the other hand, the signaling sc heme ma y increase

the execution time due to the necessary prolongation of the teeth. F or b oth sc hemes, the

order of magnitude of the increase of the execution time is the same: linear in the exten t of

the lo ops.

7.3 T ermination Detection with Distributed Memory 79

7.3.5 The Example

The man ual application of the signaling sc heme to our example program is error-prone and,

as of y et, w e ha v e no implemen tation of it. Th us, w e do not presen t the target co de here, but

o�er only some remarks for the implemen tation of the signaling sc heme.

W e ha v e presen ted our sc heme for p erfect lo op nests. F or an imp erfect nest there are

t w o options: either one uses a separate instance of the signaling sc heme for ev ery statemen t

or one uses a single instance of the sc heme for the whole lo op nest. In the �rst option, our

sc heme can b e applied without c hange; ho w ev er, it w ould result in more comm unications than

necessary . Therefore, w e prop ose to implemen t the second option.

If w e w an t to use only one instance of the signaling sc heme for the whole program, w e

m ust distinguish b et w een lo op statemen ts and regular statemen ts: the signaling sc heme is

implemen ted for the lo op statemen ts only , i.e., ev ery lo op statemen t at an y lev el r computes

the v alues of its predicate active

r

, whic h are passed on to all statemen ts (regular and lo op

statemen ts) in the b o dy of the lo op. Th us, the main mo di�cation is that the recursiv e

de�nition of active

d

is not unrolled at a single iteration p oin t (as in Figure 7.8), but is

ev aluated recursiv ely , with di�eren t iteration p oin ts computing the parts of active

d

at the

di�eren t recursion lev els r caused b y alternativ e (2) of De�nition 15.

Chapter 8

Lo oP o

This c hapter presen ts an o v erview and the curren t state of our source-to-source parallelizer

Lo oP o (Lo o p P arallelization in the P o lyhedron Mo del). Since Lo oP o is not y et complete, w e

cannot o�er the reader an y p erformance measures of the dev elop ed target programs on real

parallel mac hines at this time.

Lo oP o is a protot yp e system whose purp ose is to assist us in the researc h on and ev al-

uation of space-time mapping metho ds for lo op parallelization. T o that end, it implemen ts

the complete path from executable source co de to executable target co de, with switc hes for

c ho osing alternativ e metho ds. A t presen t, w e pro vide sev eral inequation solving metho ds,

sev eral dep endence analyzers, sc hedulers, allo cators and sev eral metho ds of co de generation.

Lo oP o is in the public domain and uses only freely a v ailable soft w are to ensure easy

distribution. It runs on Sun w orkstations under SunOS 4.1.x and Solaris 2.x, and on PCs

under Lin ux.

Lo oP o can b e used as a platform for exp erimen ting with an y step of the parallelization

pro cess in the mo del; an yb o dy in terested in one sp ecial asp ect of the parallelization can

plug his o wn mo dule to Lo oP o and gets a complete source-to-source compiler. The cen tral

data structures of the in terface (restricting the applicabilit y) are|according to the metho d|

p olyhedra and piecewise a�ne functions.

Ho w ev er, the most imp ortan t asp ect of Lo oP o is that it in tegrates while lo ops. More

details on this asp ect are giv en in Section 8.3.

8.1 The Structure of Lo oP o

Lo oP o tra v erses a sequence of steps whic h transform the source program to an executable

parallel target program. There are mo dules for scanning and parsing, (in)equalit y solving,

dep endence analysis, sc heduling, allo cation and target co de generation. A fron t end pro vides

the user with a graphical in terface b y whic h he/she can con trol Lo oP o. There is also a

graphical to ol for displa ying index spaces and iteration dep endence graphs of lo op nests.

Subsequen tly , w e giv e a v ery brief o v erview of the system since it is not at the cen ter of

this thesis. See our W eb pages on Lo oP o for more details [41]. Also a list of all p eople w orking

in the Lo oP o team can b e found there|all implemen tation has b een done via programming

pro jects and master's theses of studen ts at the Univ ersit y of P assau.

80

8.1 The Structure of Lo oP o 81

8.1.1 The F ron t End

The fron t end enables the user to in v ok e mo dules b y mouse clic ks (Figure 8.1). In order

to optimize Lo oP o's results and suit the needs of the user, most mo dules pro vide an option

windo w where sp eci�c features can b e altered (Figure 8.2).

Figure 8.1: Lo oP o's main windo w

8.1.2 The Input to Lo oP o

Lo oP o accepts (imp erfect) lo op nests in C and F ortran notation (among others) and declara-

tions of functions, pro cedures and sym b olic constan ts. Lo oP o also tak es explicit sp eci�cations

of dep endences, sc hedules and allo cations b y the user, if so desired. By stating explicit dep en-

dences, one can exp erimen t with the space-time mapping of non-executable programs, i.e.,

programs with incomplete lo op b o dies.

8.1.3 The Inequation Solv ers

There are sev eral metho ds for parametric linear programming, whic h is the cen tral mathe-

matical problem of the p olyhedron mo del. W e considered the follo wing metho ds for use in

Lo oP o:

1. F ourier-Motzkin. This is the standard doubly exp onen tial metho d of p olytop e pro jec-

tion (Section 3.3.1).

8.1 The Structure of Lo oP o 82

Figure 8.2: Lo oP o' options windo w for the sc heduler

2. PIP. This is F eautrier's system for parametric in teger programming [27]. It pro ceeds

indirectly b y transforming the original system of inequations in to a dual system and

solving that. In principle it is an extension of the w ell-kno wn simplex algorithm so as

to deal with parameters.

3. Weispfenning. There is another direct metho d whic h is only singly exp onen tial [60]. It

p erforms b etter than F ourier-Motzkin on problems with more than four v ariables.

4. Ome ga. The Omega library [48] b y Pugh solv es linear programs on the basis of Pres-

burger form ulas (a�ne constrain ts, the usual logical connectiv es, and existen tial and

univ ersal quan ti�ers), with e�cien t heuristics for this sp ecial application �eld.

The curren t implemen tation of Lo oP o uses mainly PIP; the dep endence mo dule o�ers a

c hoice of PIP or F ourier-Motzkin. Omega will b e in tegrated as an alternativ e for PIP and

F ourier-Motzkin in all mo dules.

8.1.4 The Dep endence Analyzers

A t presen t, Lo oP o features t w o to ols for dep endence analysis:

8.1 The Structure of Lo oP o 83

1. Banerje e. The dep endence analysis metho d describ ed b y Banerjee [4] mak es no distinc-

tion b et w een o w, an ti and output dep endences. F urthermore, spurious dep endences

are not eliminated.

2. F e autrier. The metho d of F eautrier [28] allo ws p oten tially more parallelism, since it

only considers true dep endences (no an ti and output dep endences)|th us, enforcing a

con v ersion to single-assignmen t form|and eliminates all spurious dep endences, i.e., it

computes only the o w dep endences|ho w ev er for a�ne lo ops only .

8.1.5 The Sc hedulers

Presen tly , Lo oP o pro vides three di�eren t automatic sc hedulers:

1. L amp ort. The h yp erplane metho d b y Lamp ort [5, 39] can handle p erfectly nested fo r

lo ops with uniform dep endences. It yields a one-dimensional a�ne sc hedule for the

complete lo op b o dy and, as allo cation, a pro jection on to the source axes suc h that the

space-time mapping formed b y the com bination of sc hedule and allo cation is unimo du-

lar.

2. F e autrier. The F eautrier sc heduler [29 , 30] determines an optimal (conca v e) sc hedule for

imp erfectly nested fo r lo ops with a�ne dep endences, at the cost of a longer computation

time based on the necessit y of dealing with parametric in teger linear programming [27].

The resulting sc hedule for ev ery statemen t can b e m ulti-dimensional and piecewise

a�ne.

F or a comparison with Lamp ort's metho d, one can call the F eautrier sc heduler by iter a-

tion (in the case of a p erfectly nested input program), whic h enforces the same sc hedule

for all statemen ts in the lo op b o dy .

3. Darte/Vivien. Darte and Vivien prop osed a fast sc heduler with reasonably go o d re-

sults [20], whic h can sc hedule arbitrary lo op programs with uniform and non-uniform

dep endences. It uses a less precise dep endence description (direction v ectors) than the

F eautrier sc heduler. Therefore, the qualit y of its sc hedules is somewhere b et w een that

of Lamp ort's and F eautrier's sc hedules.

8.1.6 The Allo cators

Presen tly , Lo oP o pro vides t w o di�eren t allo cators:

1. F e autrier. F eautrier's metho d [31] determines the placemen t of op erations on virtual

pro cessors. It is based on the \o wner computes rule" and tries to \cut" dep endences b y

mapping the dep ending op erations to the same pro cessor, starting with dep endences in

the highest dimensions (greedy heuristic).

2. Dion/R ob ert. The metho d of Dion and Rob ert [25] uses the reduced dep endence graph,

where the dep endences are either giv en b y the direction v ectors or the dep endence cone.

In addition to the allo cation for the computation an allo cation of the data, i.e., a data

distribution is generated.

8.2 First Exp eriences 84

The allo cators do not insp ect the sc hedule, and ma y therefore generate an allo cation in

whic h some dimensions are linearly dep enden t on the sc hedule.

In addition, w e are curren tly adding a mo dule for partitioning to Lo oP o. This mo dule

maps the virtual pro cessors to a �xed n um b er of real pro cessors.

8.1.7 The Displa y Mo dule

Lo oP o also features a graphical displa y er whic h depicts the source index space and the dep en-

dences therein in up to three dimensions. In the curren t implemen tation all statemen ts m ust

ha v e the same index space; this excludes imp erfectly nested lo ops. A dep endence �lter pro-

vides a graphical in terface to enable the user to select a subset of statemen ts and dep endences

whic h satisfy these restrictions.

The displa y ed p olytop e can b e rotated or ev en transformed b y an arbitrary a�ne matrix

to sho w the target space.

8.1.8 The T arget Generator

The target generator consists of t w o mo dules: one deriv es the target lo op nest(s), the other

adds comm unications for sync hronization and comm unication.

8.1.8.1 The T arget Lo ops

The lo ops of the transformed source program are constructed from the index spaces, the

dep endences, the sc hedule and the allo cation. Note that transformations can b e individual

for ev ery statemen t in the source program. The target lo ops are represen ted as a parse tree

whic h do es not con tain an y sync hronization or comm unication statemen ts.

The construction of the parse tree pro ceeds in t w o phases. First the program parts are

constructed and transformed individually , and then the results are com bined to a single

target program, as describ ed in Section 3.3.2. Aside from the t w o options of sync hronous or

async hronous co de, three merging strategies are a v ailable [61]:

1. the parts are simply com bined with a p ar al lel op er ator , i.e., there are sev eral separate

lo op nests whic h are assumed to b e executed in parallel,

2. merging at run time as describ ed in Section 3.3.2,

3. merging at compile time.

8.1.8.2 Sync hronization and Comm unication

The parse tree represen ting the target lo ops is then translated to one of a v ariet y of p ossible

output languages, e.g., some parallel C or F ortran dialect or P arix -C. Sync hronization and

comm unication is added if the user so desires [26]. The target program (with comm unication)

is executable on an y P arix mac hine.

8.2 First Exp eriences

Our �rst tests sho w ed that there are t w o main restrictions limiting the applicabilit y of Lo oP o

in practice. The �rst is the lac k of conditional statemen ts in the curren t v ersion of Lo oP o.

This will b e �xed so on.

8.3 Lo oP o and while Lo ops 85

The other limitation is more deeply connected with the use of the p olytop e mo del for space-

time mapping. The p olytop e mo del o�ers v ery precise analysis and sc heduling tec hniques.

Ho w ev er, these tec hniques are based on in teger linear programming whic h is a computationally

complex problem. W e ha v e had to learn that the (in)equation solv ers are the most problematic

comp onen t of the parallelizer: not only do they consume most of the compilation time but

they ev en frequen tly fail to compute a solution in real applications.

8.3 Lo oP o and while Lo ops

One of the main reasons for starting the pro ject Lo oP o w as our need for a parallelizing

source-to-source compiler whose in ternal structure w e kno w v ery w ell, in order to b e able to

implemen t parallelization tec hniques for while lo ops. The extension to lo ops of Class 2, 1 and

0 will b e part of v ersion 2 of Lo oP o whic h w e hop e to complete b y the end of 1996.

Chapter 9

Conclusions

The con tribution of this thesis is an extension of the applicabilit y of parallelization metho ds.

W e started with the p olytop e mo del, whic h is a v ery useful mathematical framew ork for

automatic parallelization, but whic h is restricted to fo r lo ops with a�ne b ounds. W e succeeded

in generalizing the metho ds for the p olytop e mo del and dev elop ed, in sev eral stages, the

p olyhedron mo del as a mathematical framew ork for the parallelization of lo op nests con taining

while lo ops.

First, w e decided to use an index for while lo ops, in analogy to fo r lo ops, and dropp ed the

requiremen t that index spaces m ust b e b ounded, whic h did not a�ect the space-time mapping

tec hniques. Then, w e realized that the execution spaces at run time are, in general, not con v ex,

leading to target execution spaces whic h cannot b e scanned precisely . W e distinguished

space-time mappings that do not raise this problem and suggested, for the other space-time

mappings, a sc heme whic h prev en ts the execution of holes in the target execution space.

Finally w e b ounded the dimensions in space b y partitioning and the dimensions in time,

dep ending on the target mac hine, b y v arious termination detection sc hemes.

With all these sc hemes at our disp osal, w e can drop the requiremen t of a�nit y on lo ops

altogether.

Ho w ev er, there is, of course, an imp ortan t di�erence in e�ciency: �rst, while lo ops al-

w a ys lead to a lo op-carried dep endence, th us reducing parallelism. Second, and probably

w orse, these dep endences come from the necessit y of transferring information b et w een di�er-

en t p oin ts of the index space, whic h leads to man y comm unications. Third, the treatmen t

of unscannable spaces, necessary for arbitrary fo r lo ops as w ell as for while lo ops, results in

a constan t slo wdo wn due to the necessit y of ev aluating guards at ev ery scanned target index

p oin t.

On the other hand, w e ha v e seen that the parallelism in nested while lo ops ma y o�er

the p oten tial for a sp eed-up of orders of magnitude: if there are only while dep endences,

one dimension in time is su�cien t, i.e., w e can reac h linear time. Of course, additional

dep endences in the lo op b o dy ma y reduce the parallelism further.

Note that maximal parallelism do es not imply maximal e�ciency of the parallel program;

this observ ation, also v alid for fo r lo ops, is still more imp ortan t for while lo ops b ecause of

their increased comm unication v olume. Therefore, partitioning is an imp ortan t sub ject in

parallelizing nested while lo ops.

Besides extending the applicabilit y of existing parallelization metho ds, w e also ha v e sug-

gested a classi�cation of lo ops. T able 9.1 giv es an idea of the impact of eac h class on co de

86

87

T ransformation

Class scannable unscannable Commen ts

guard b ound guard b ound

4 none arith none arith p olytop e mo del

3 none arith none arith no general mathematical metho ds

2 none arith arith arith

1 none iter iter sc heme sp ecial cases exist

0 none iter iter sc heme

T able 9.1: The impact of classes of lo ops and scannabilit y to co de generation

generation, for b oth scannable and unscannable transformations. In eac h case, the complexit y

of the co de generation is determined b y the nature of the guards, if an y , and the form of the

lo op b ounds.

F or the guards w e distinguish:

� none lo cal guards are not necessary ,

� arith the guard is an arithmetic expression,

� iter the guard m ust b e computed iterativ ely .

F or the b ounds w e distinguish:

� arith the lo op b ound is an arithmetic expression, similarly to the source program,

� iter the lo op b ound m ust b e computed iterativ ely , similarly to the source program,

� sc heme termination detection m ust b e p erformed b y a sp ecial sc heme.

Note that w e ha v e discussed a simple sp eculativ e sc heme in the case of robust and strict

conditions in lo ops of Class 1, whic h do es not app ear in the table. Note further, that guards

ma y b e in tro duced due to merging program parts at run time, due to partitioning or due

to the fact that lo op statemen ts of while lo ops b ecome regular statemen ts inside the lo op

b o dy|ev en if the en try in the table is \none".

Our w ork do es not deal with sp eculation in the general case. One reason is that w e

w an ted to a v oid v ery lo w-lev el problems for co de generation on the tec hnical side, as, e.g.,

handling arithmetic exceptions in sp eculativ ely executed iterations, as w ell as the exploitation

of algorithm-sp eci�c prop erties on the abstract side, suc h as con v ergence prop erties and n u-

merical stabilit y , b ecause w e are in terested in a mac hine-indep enden t general-purp ose metho d

for parallelizing lo op nests con taining while lo ops.

The other reason is that, of course, also in the sp eculativ e approac h, target lo ops m ust b e

generated. W e exp ect that our metho ds can at least b e a basis for that purp ose. One minor

di�erence to the presen ted co de generation sc hemes is that, for sp eculativ e execution, some

of the lo cal guards can b e dropp ed; this means that holes are assigned useful w ork (ev en if

that w ork is not part of the source program, e.g., additional iterations of an appro ximation

algorithm). The ma jor problem will probably b e to �nd adequate termination conditions for

sp eculativ e execution.

If suc h problems do not o ccur, as, e.g., in robust and strict lo ops of Class 1, one migh t

drop (or at least replace) some carefully selected con trol dep endences in order to increase

parallelism and use our sc heme again.

Com bining the sp eculativ e and the conserv ativ e approac h in one common framew ork is

in teresting future w ork.

88

Of course, there still remains a lot of (tec hnical) w ork to b e done. In this thesis, w e

restricted the tec hnical discussions to p erfect nests of only while lo ops in the in ten t of a clean

presen tation. Our main concern w as to sho w that a general lo op nest can b e parallelized at

all, and at whic h costs; w e ha v e reac hed this goal since one can (e.g., with the help of guards)

transform an y lo op program to a p erfect nest of while lo ops. Ho w ev er, in practice the cen tral

goal is the e�ciency of the parallel program. Th us, w e m ust not transform a program to a

p erfect nest of while lo ops but w e m ust exploit an y p ossibilit y for optimization o�ered b y eac h

individual lo op.

F urthermore, curren t partitioning tec hniques are optimized for nests of a�ne lo ops. Since

these tec hniques cannot b e used for while lo ops, w e can o�er only a sub optimal solution at

presen t. The imp ortance of partitioning in the presence of while lo ops certainly justi�es the

searc h for optimal partitioning tec hniques for lo op nests con taining while lo ops.

The cen tral remaining limitation of the p olyhedron mo del is the restriction to arra ys

as the only data structure, whic h is inherited from the p olytop e mo del. E�orts to relax this

restriction are curren tly b eing undertak en. Progress in this area w ould eliminate the necessit y

of man ual in teraction during program analysis. This w ould allo w us to run our metho ds on

a wide range of applications completely automatically .

W e exp ect that one ma jor �eld of application is the parallelization of algorithms for

sparse data structures, since sparsit y usually leads to irregularit y . As seen in our example

of computing the reexiv e transitiv e closure of a sparse graph, this kind of algorithm can b e

parallelized without sp eculation, i.e., our metho ds can b e applied without c hange.

Bibliograph y

[1] C. Ancourt and F. Irigoin. Scanning p olyhedra with DO lo ops. In Pr o c. 3r d A CM

SIGPLAN Symp. on Principles & Pr actic e of Par al lel Pr o gr amming (PPoPP) , pages

39{50 . A CM Press, 1991.

[2] F. Balasa, F. F ranssen, F. Catthor, and H. De Man. T ransformation of nested lo ops with

mo dulo indexing a�ne recurrences. Par al lel Pr o c essing L etters , 4(3):271{280 , Septem b er

1994.

[3] U. Banerjee. Dep endenc e A nalysis for Sup er c omputing . The Klu w er In t. Series in En-

gineering and Computer Science: P arallel Pro cessing and Fifth Generation Computing.

Klu w er, 1988.

[4] U. Banerjee. L o op T r ansformations for R estructuring Compilers: The F oundations .

Klu w er, 1993.

[5] U. Banerjee. L o op T r ansformations for R estructuring Compilers: L o op Par al lelization .

Klu w er, 1994.

[6] M. Barnett and C. Lengauer. Unimo dularit y and the parallelization of lo ops. Par al lel

Pr o c essing L etters , 2(2{3):273{281 , 1992.

[7] A. Bernstein. Analysis of programs for parallel pro cessing. IEEE T r ans. on Ele ctr onic

Computers , EC-15(5):757{763 , Octob er 1966.

[8] J. P . Bonomo and W. R. Dykson. Pip elined iterativ e metho ds for shared-memory ma-

c hines. Par al lel Computing , 11:187{199 , 1989.

[9] Z. Chamski. Scanning p olyhedra with DO lo op sequences. In B. Sendo v and I. Dimo v,

editors, Pr o c. Workshop on Par al lel A r chite ctur es (WP A 92) . Elsevier (North-Holland),

1992.

[10] P . Clauss, C. Mongenet, and G. R. P errin. Calculus of space-optimal mappings of systolic

algorithms on pro cessor arra ys. J. VLSI Signal Pr o c essing , 4(1):27{36 , F ebruary 1992.

[11] J.-F. Collard and M. Griebl. Generation of sync hronous co de for automatic parallelization

of while lo ops. In S. Haridi, K. Ali, and P . Magn usson, editors, EUR O-P AR '95 Par al lel

Pr o c essing , Lecture Notes in Computer Science 966, pages 315{326 . Springer-V erlag,

August 1995.

[12] J.-F. Collard. Co de generation in automatic parallelizers. In C. Girault, editor, Pr o c.

Int. Conf. on Applic ations in Par al lel and Distribute d Computing, IFIP W.G. 10.3 , pages

185{194 . North-Holland, April 1994.

89

BIBLIOGRAPHY 90

[13] J.-F. Collard. A metho d for static sc heduling of dynamic con trol programs. T ec hnical

Rep ort 94-34, Lab oratoire de l'Informatique du P arall � elisme, Ecole Normale Sup � erieure

de Ly on, Decem b er 1994.

[14] J.-F. Collard. Space-time transformation of while-lo ops using sp eculativ e execution. In

Pr o c. 1994 Sc alable High Performanc e Computing Conf. , pages 429{436 . IEEE Computer

So ciet y Press, Ma y 1994.

[15] J.-F. Collard. Automatic parallelization of while -lo ops using sp eculativ e execution. Int.

J. Par al lel Pr o gr amming , 23(2):191{219 , 1995.

[16] J.-F. Collard, D. Barthou, and P . F eautrier. F uzzy arra y datao w analysis. In Pr o c.

5th A CM SIGPLAN Symp. on Principles & Pr actic e of Par al lel Pr o gr amming (PPoPP) ,

pages 92{102 . A CM Press, July 1995.

[17] J.-F. Collard and P . F eautrier. Automatic generation of data parallel co de. In H. J.

Sips, editor, Pr o c. F ourth International Workshop on Compilers for Par al lel Computers ,

pages 321{332 , Decem b er 1993.

[18] A. Darte. Regular partitioning for syn thesizing �xed-size systolic arra ys. INTEGRA-

TION , 12(3):293{304 , Decem b er 1991.

[19] A. Darte and Y. Rob ert. Constructiv e metho ds for sc heduling uniform lo op nests. IEEE

T r ans. on Par al lel and Distribute d Systems , 5(8):814{822 , August 1994.

[20] A. Darte and F. Vivien. Automatic parallelization based on m ulti-dimensional sc heduling.

T ec hnical Rep ort 94-24, Lab oratoire de l'Informatique du P arall � elisme, Ecole Normale

Sup � erieure de Ly on, Septem b er 1994.

[21] A. Darte and Y. Rob ert. Mapping uniform lo op nests on to distributed memory arc hi-

tectures. Par al lel Computing , 20(5):679{710 , Ma y 1994.

[22] A. Darte and Y. Rob ert. A�ne-b y-statemen t sc heduling of uniform and a�ne lo op nests

o v er parametric domains. J. Par al lel and Distribute d Computing , 29(1):43{59 , August

1995.

[23] A. Darte and F. Vivien. Optimal �ne and medium grain parallelism detection in p olyhe-

dral reduced dep endence graphs. In Par al lel A r chite ctur es and Compilation T e chniques .

Computer Science Press, 1996.

[24] E. W. Dijkstra and C. S. Sc holten. Pr e dic ate Calculus and Pr o gr am Semantics . T exts

and Monographs in Computer Science. Springer-V erlag, 1990.

[25] M. Dion and Y. Rob ert. Mapping a�ne lo op nests: New results. In L e ctur e Notes in

Computer Scienc e 919 , pages 184{189 . Springer-V erlag, 1995.

[26] P . F ab er. T ransformation v on Shared-Memory-Programmen in Distributed-Memory-

Programme. Master's thesis, F akult• at f • ur Mathematik und Informatik, Univ ersit• at P as-

sau, 1996. T o app ear in Decem b er.

[27] P . F eautrier. P arametric in teger programming. Op er ations R ese ar ch , 22(3):243{268 ,

1988.

BIBLIOGRAPHY 91

[28] P . F eautrier. Datao w analysis of arra y and scalar references. Int. J. Par al lel Pr o gr am-

ming , 20(1):23{53 , F ebruary 1991.

[29] P . F eautrier. Some e�cien t solutions to the a�ne sc heduling problem. P art I. One-

dimensional time. Int. J. Par al lel Pr o gr amming , 21(5):313{348 , Octob er 1992.

[30] P . F eautrier. Some e�cien t solutions to the a�ne sc heduling problem. P art I I. Multidi-

mensional time. Int. J. Par al lel Pr o gr amming , 21(6):389{420 , Octob er 1992.

[31] P . F eautrier. T o w ard automatic distribution. Par al lel Pr o c essing L etters , 4(3):233{244 ,

1994.

[32] A. F ern� andez, J. Llab er

�

ia, and M. V alero-Garc

�

ia. Lo op transformation using non unimo d-

ular matrices. IEEE T r ans. on Par al lel and Distribute d Systems , 6(8):832{840 , August

1995.

[33] M. Geigl. P arallelization of general lo op nests in the p olyhedron mo del. Master's the-

sis, F akult• at f • ur Mathematik und Informatik, Univ ersit• at P assau, 1996. T o app ear in

Decem b er.

[34] I. Graham and T. King. The T r ansputer Handb o ok . Pren tice-Hall, 1990.

[35] Hyp erparallel T ec hnologies, Ecole P olytec hnique Pro jet X-P^ ole 91128 P alaiseau Cedex

F rance. Hyp er C Do cumentation , June 1993.

[36] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for uniform

recurrence equations. J. A CM , 14(3):563{590 , July 1967.

[37] W. Kelly , W. Pugh, and E. Rosser. Co de generation for m ultiple mappings. T ec hnical

Rep ort CS-TR-3317, Dept. of Computer Science, Univ. of Maryland, 1994.

[38] S.-Y. Kung. VLSI Pr o c essor A rr ays . Pren tice-Hall In t., 1988.

[39] L. Lamp ort. The parallel execution of DO lo ops. Comm. A CM , 17(2):83{93 , F ebruary

1974.

[40] C. Lengauer. Lo op parallelization in the p olytop e mo del. In E. Best, editor, CONCUR'93 ,

Lecture Notes in Computer Science 715, pages 398{416 . Springer-V erlag, 1993.

[41] Lo oPo. http://www.uni-passau.de/ ~ lo op o/ .

[42] A. Martin. The prob e: An addition to comm unication primitiv es. Information Pr o c essing

L etters , 20(3):125{130 , 1985.

[43] V. Maslo v and W. Pugh. Symplifying p olynomial constrain ts o v er in tegers to mak e

dep endence analysis more precise. In B. Buc h b erger and J. V olk ert, editors, Par al lel

Pr o c essing: CONP AR 94 { V APP VI , Lecture Notes in Computer Science 854, pages

737{748 . Springer-V erlag, 1994.

[44] G. L. Nemhauser and L. A. W olsey . Inte ger and Combinatorial Optimization . In terscience

Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[45] P arsytec. P ARIX 1.2 R efer enc e Manual , Marc h 1993.

BIBLIOGRAPHY 92

[46] H. P artsc h. Some exp erimen ts in transforming to w ards parallel executabilit y . In R. P aige,

J. Reif, and R. W ac h ter, editors, Par al lel A lgorithm Derivation and Pr o gr am T r ansfor-

mation , pages 71{110 . Klu w er Academic Publishers, 1993.

[47] W. Pugh. A practical algorithm for exact arra y dep endence analysis. Comm. A CM ,

35(8):102{114 , August 1992.

[48] W. Pugh and D. W onnacott. Eliminating false data dep endences using the Omega

test. A CM SIGPLAN Notic es , 27(7):140{151 , July 1992. Pr o c. A CM SIGPLAN '92

Confer enc e on Pr o gr amming L anguage Design and Implementation (PLDI) .

[49] W. Pugh and D. W onnacott. Going b ey ond in teger programming with the Omega test

to eliminate false data dep endences. T ec hnical Rep ort CS-TR-3191, Dept. of Computer

Science, Univ ersit y of Maryland, College P ark, Decem b er 1992.

[50] P . Quin ton. The systematic design of systolic arra ys. In F. F. Souli � e, Y. Rob ert,

and M. Tc h uen te, editors, A utomata Networks in Computer Scienc e , c hapter 9, pages

229{260 . Manc hester Univ ersit y Press, 1987. Also: T ec hnical Rep orts 193 and 216, IRISA

(INRIA-Rennes), 1983.

[51] P . Quin ton and V. v an Dongen. The mapping of linear recurrence equations on regular

arra ys. J. VLSI Signal Pr o c essing , 1(2):95{113 , Octob er 1989.

[52] S. V. Ra jopadh y e. Syn thesizing systolic arra ys with con trol signals from recurrence

equations. Distribute d Computing , 3:88{105 , 1989.

[53] S. K. Rao. R e gular Iter ative A lgorithms and their Implementations on Pr o c essor A rr ays .

PhD thesis, Departmen t of Electrical Engineering, Stanford Univ ersit y , Octob er 1985.

[54] S. K. Rao and T. Kailath. Regular iterativ e algorithms and their implemen tations on

pro cessor arra ys. Pr o c. IEEE , 76(3):259{282 , Marc h 1988.

[55] A. Sc hrijv er. The ory of Line ar and Inte ger Pr o gr amming . Series in Discrete Mathematics.

John Wiley & Sons, 1986.

[56] M. Sc h umergrub er. P artitionierung v on parallelen Sc hleifens• atzen. Master's thesis,

F akult• at f • ur Mathematik und Informatik, Univ ersit• at P assau, 1997. T o app ear in F ebru-

ary 1997.

[57] J.-P . Sheu and T.-H. T ai. P artitioning and mapping nested lo ops on m ultipro cessor

systems. IEEE T r ans. on Par al lel and Distribute d Systems , 2:430{439 , 1991.

[58] J. T eic h and L. Thiele. P artitioning of pro cessor arra ys: A piecewise regular approac h.

INTEGRA TION , 14(3):297{332 , 1993.

[59] P . P . Tirumalai, M. Lee, and M. S. Sc hlansk er. P arallelization of while lo ops on pip elined

arc hitectures. J. Sup er c omputing , 5:119{136 , 1991.

[60] V. W eispfenning. P arametric linear and quadratic optimization b y elimination. T ec hnical

Rep ort MIP-9404, F akult• at f • ur Mathematik und Informatik, Univ ersit• at P assau, 1994.

T o app ear in J. Symb olic Computation .

BIBLIOGRAPHY 93

[61] S. W etzel. Automatic co de generation in the p olytop e mo del. Master's thesis, F akult• at

f • ur Mathematik und Informatik, Univ ersit• at P assau, 1995.

[62] M. W olfe. Optimizing Sup er c ompilers for Sup er c omputers . Researc h Monographs in

P arallel and Distributed Computing. MIT Press, 1989.

[63] M. W olfe. The Tin y lo op restructuring researc h to ol. In H. D. Sc h w etman, editor, Pr o c.

Int. Conf. on Par al lel Pr o c essing , v olume I I, pages 46{53 . CR C Press, 1991.

[64] Y. W u and T. G. Lewis. P arallelizing while lo ops. In D. A. P adua, editor, Pr o c. Int.

Conf. on Par al lel Pr o c essing , v olume I I, pages 1{8 . P ennsylv ania State Univ ersit y Press,

1990.

[65] J. Xue. Automating non-unimo dular transformations of lo op nests. Par al lel Computing ,

20(5):711{728 , Ma y 1994.

Index

� , 18

, 12

� , 18

�

c

, 20

� , 23

� , 23

a�ne dep endence, 19

a�ne dep endences, 7

a�ne lo ops, 7

allo cation, 23

an ti dep endence, 19

async hronous parallelism, 25

automatic parallelization, 6

conserv ativ e execution, 10

con trol dep enden t, 20

con trol structures, 11

coun ter, 54

data dep enden t, 18

data structures, 11

dep endence graph, 20

dep endence v ector, 19

dep endences, 18

depth, 13

direction v ectors, 19

distance v ector, 19

essen tial transformation matrix, 24

execution com b, 20

execution space, 13

exp erimen tal approac h, 6

o w dep endence, 19

fo r lo ops, 6

F ourier-Motzkin elimination, 25

free sc hedule, 23

hole w.r.t. lev el r and order C , 35

hole w.r.t. order C , 35

I , 11

imp erfect lo op nest, 7

index space, 11

index v ector, 11

LPGS, 48

LSGP , 48

level , 55

lo op l , 36

lo op b ound ev aluation, 14

lo op statemen ts, 13

lo op-carried dep endence, 19

lo op-indep enden t dep endence, 19

Lo oP o, 7

m

r

k

, 62

mo del-based approac h, 6

na� � c ol (c), 37

non-a�ne column, 37

op eration, 12

output dep endence, 19

o v erla y represen tation, 14

partially maximal, 62

partitioning, 48

pa rwhile , 48

p erfect lo op nest, 7

p olyhedron, 7, 10

p olyhedron mo del, 13

p olytop e, 10

p olytop e mo del, 7

pr g-exe c , 71

pr g-sc anne d , 71

program part, 26

reduced dep endence graph, 21

restrictions, 10

robust, 32

94

INDEX 95

S , 43, 71

scannable set w.r.t. order C , 35

scannable space, 30

scannable transformation, 37

scannable transformations, 36

scanning, 25

sc hedule, 23

sequen tial execution order, 18

single-assignmen t con v ersion, 19

single-assignmen t form, 19

sink, 19

source, 19

space-time mapping, 11

space-time matrix, 23

sp eculativ e execution, 10

sp eculativ e execution, ideal case, 32

spurious dep endences, 19

strict, 32

structure parameters, 7

sync hronous parallelism, 25

T , 11

T

S

, 23

T I , 11, 24

T S , 43, 71

T X , 24

target execution space, 24

target index space, 24

target p olyhedron, 24

target space, 11

testing p oin ts, 14

to oth, 20

transformation matrix, 23

true dep endence, 19

uniform dep endence, 19

uniform dep endences, 7

unimo dular, 25

unscannable space, 30

whilesomewhere , 53

while dep endences, 20

while lo ops, 6

X , 13

Z -p olyhedron, 10

Z -p olytop e, 10

