A Transformational Approach
which Combines Size Inference
and Program Optimization

Position Paper

Christoph A. Herrmann and Christian Lengauer

Fakultit fiir Mathematik und Informatik,
Universitat Passau, Germany

{herrmann,lengauer}@fmi.uni-passau.de
http://www.fmi.uni-passau.de/cl/hdc/

Abstract. We propose a calculus for the analysis of list lengths in func-
tional programs. In contrast to common type-based approaches, it is
based on the syntactical structure of the program. To our knowledge, no
other approach provides such a detailed analysis of nested lists.

The analysis of lists is preceded by a program transformation which
makes sizes explicit as program values and eliminates the chain of cons
operations. This permits alternative implementations of lists, e.g., by
functions or arrays. The technique is being implemented in an experi-
mental parallelizing compiler for the functional language HDC.

We believe that analysis and parallelization work best if higher-order
functions are used to compose the program from functional building
blocks, so-called skeletons, instead of using unrestrained recursion. Skele-
tons, e.g., data-parallel combinators come with a theory of sizes and
parallelization.

1 Introduction

If functional programs are to be used for high-performance computing, efficient
data representations and operations must be provided. Our contribution is a
calculus for the analysis of the lengths of (nested) lists and a transformation into
a form which is liberated from the chain of cons-operations and which sometimes
permits array implementations even if the length depends on run-time values.

A major advantage of functional programs vs. imperative programs is that de-
pendence analysis is much easier, due to the absence of reassignments. One severe
disadvantage of functional programs as of yet is that efficient, machine-oriented
data structures (like the array) —absolutely necessary for high-performance com-
puting— play a minor role in many language implementations since they do not
harmonize with functional evaluation schemata (like graph reduction), which are
at a higher level of abstraction.

We propose to construct programs by composition of skeletons, i.e., functional
building blocks with a predefined, efficient implementation [9]. From the view

200 Christoph A. Herrmann and Christian Lengauer

of the source program, they are higher-order functions which are instantiated
with problem-specific, customizing functions. We implement skeletons in an im-
perative language close to the machine. In the compilation of the program parts
which are not skeletons, functional concepts are successively eliminated such
that these parts can be linked together with the skeleton implementations. In
this process, the most important step is the replacement of functional arguments
by data structures of the source language [1].

Aside from instantiation of skeletons, functional arguments should be used
moderately since they incur overhead and might introduce undesired depen-
dences. Recursion should be replaced by skeletons, e.g., the recursive function
map, which applies a function to each element of a list, can be replaced by a
data-parallel implementation. The need for a size analysis arises from the use of
simple inductive data structures, e.g., the list. With knowledge of its length, the
list might be implemented more efficiently as an array.

Our size analysis calculates information about the sizes of lists at compile
time, in terms of structural parameters, i.e., symbolic names assigned to the
lengths of lists in the input. Characteristic for our approach is that the size
analysis also computes a function which maps indices to elements. The result of
the analysis can then be used for optimization by program transformations, e.g.,
intermediate lists could be eliminated, similar to deforestation or map distribution
over composition [3]. The transformations provide the basis for a renewed size
inference and subsequent optimization, in an iterative process which terminates
according to criteria specified by compiler settings or directives.

Our inference and transformation rules are based on a view of lists which
abstracts from the chain of elements present in many standard representations.
Due to the absence of side effects, the compiler is not obliged to preserve a
particular representation of data structures, i.e., a list may be eliminated, fused
with some other list, represented by an array, reproduced by a function, etc.
Data aggregates treated in such an abstract fashion are known as data fields [15,
24].

As far as we know, we are the first to derive compile-time information about
each element of a list in terms of its position. This is possible by a symbolic
representation of a function mapping indices to elements — a technique which
provides the potential for a precise size analysis of nested lists and for their flat
implementations [30]. Flat structures can lead to efficiency increases in mem-
ory allocation and release, access and update of elements and marshaling for
communication.

Through size inference, the program can become amenable to further trans-
formation, since compile-time information becomes visible at points where it was
not visible before. With this kind of compilation, the efficiency of the generated
code becomes sensitive to small changes in the program and, thus, small actions
of program maintenance may have dramatic effects. Note that we aim for high
performance of selected program parts, achieved with the programmer’s inter-
action, not for a compiler which produces good code fully automatically in the
average case. The novice programmer can interact by setting compiler switches

Size Inference and Program Optimization 201

and providing program annotations. The advanced (parallel) programmer can
add skeleton implementations which capture computation schemata not previ-
ously known to the compiler.

Sect. 2 reviews related approaches to size inference. As a motivation for size
inference, we present our experimental compiler in Sect. 3. Sect. 4 presents a
transformation of the list data type which makes size expressions explicit in the
program. In Sect. 5, we discuss the simplification of size expressions in a little
auxiliary language, which need not —and, indeed, does not— contain lists, because
size expressions have been disentangled from the list contents by the transforma-
tion in Sect. 4. Sect. 6 presents an example for which an exact treatment of the
sizes of nested lists is useful: the multiplication of polynomials with coefficients
represented by lists of digits. In Sect. 7, we summarize our statements and point
to future work.

2 Related Work

The data field approach of Hammarlund and Lisper [15] inspired us to abstract
from actual representations of aggregate data objects, in favor of minimizing
dependences between data and increasing the potential for parallelism. By us-
ing an indexing function to refer to elements of an aggregate structure, many
arrangement operations can be performed without visiting the data at all, just
by modification of the indexing function: permutation, broadcast, partitioning,
etc. We apply the data field approach to the parallelization of lists. As far as
we know, the list is the most important aggregate data structure in functional
programming, and it has a rich theory [3, 28].

As Lisper and Collard [24] have pointed out, size inference can be viewed as
a form of abstract interpretation [8]. One kind of abstract information of a list
is its length. The length function is a monoid homomorphism that maps from
the concrete domain of lists to the abstract domain of natural numbers. The
empty list is mapped to zero and the function which adds an element to a list is
mapped to the successor function. Unfortunately, this nice property of the list
length is only one side of the coin. The power of abstract interpretation comes
from the fact that the calculation is performed solely in the abstract domain.
A complication with lists is that they can contain lists as elements. Applying
the abstraction at the outer nesting level incurs a loss of information about the
lengths of the lists at inner nesting levels, while an abstraction at an inner level
means that the outer lists remain part of the abstract domain.

We employ a representation of lists which isolates the size information while
preserving all other program information. Thus, we are doing something similar
to abstract interpretation by performing a static analysis of the isolated size
information. For nested lists, this means first to perform a static analysis of the
lengths of the lists at the outer nesting level, then to continue with the analysis
of the elements of that list, and so on.

The standard construction of lists is inductive and excludes a global view of
the size or a possibility to access an element by index directly. Our new repre-

202 Christoph A. Herrmann and Christian Lengauer

sentation of lists has consequences for element access beyond program analysis.
In his views approach, Wadler [31] proposes pattern matching with constructors
that do not form the representation of the data structure. We apply this princi-
ple to lists: the representation is subject to optimization by the compiler, while
the standard list constructors are still available for user programs. In addition,
a new list constructor is introduced internally, which permits symbolic pattern
matching of a list against its size and its indexing function. We took the idea of
such non-standard list constructors from cons-snoc lists and distributable homo-
morphisms [13] and powerlists [26]. In contrast to them, our approach strictly
separates length and content of a list, with the need to add auxiliary functions to
the program, mapping list indices to elements. Later in the compilation process,
inlining of these functions can improve efficiency.

Our approach differs significantly from others in three aspects: (1) the impact
of the success of the analysis and the way it is integrated into a compilation, (2)
the role of types for size inference and (3) the restrictions of the source language:

1. Our size analysis is an optional part of the compilation. Its success —more

precisely, the degree of its success— determines the efficiency of the target
code but cannot lead to a failure of the compilation or a rejection of the
program.
Size inference or size checking appears in other approaches at the front end
of a compilation process, even in transformational approaches [12]. Our size
analysis is located in the middle of the back end of the compilation, inside
an optimization loop. The analysis and subsequent program transformations
are performed in a cycle and, thus, functions are analyzed that never existed
in the source program.

2. Other researchers base size analysis, be it inference or checking, on types.

(a) Some groups draw a strong connection between types and sizes. Bellé
and Moggi [2] apply size inference in an intermediate language with a
two-level type system that distinguishes between compile-time and run-
time values [27]. Xi and Pfenning [32] use dependent types and per-
form type checking modulo constraint satisfaction. Singleton types en-
able the generation of lists of a particular size, dependent on integer
values. Jay and Sekanina [23] describe type checking in a language VEC
on vectors, which distinguishes between so-called shapely types and non-
shapely types. They distinguish two kinds of conditionals. The shapely
conditional, which requires the condition to be of shapely type, is used to
analyze recursive size functions but cannot deal with arbitrary program
values. The non-shapely conditional can deal with all program values
but cannot be used to define sizes. A surprisingly large class of programs
can be handled with this approach: all usual array indexing operations
and linear algebra. Hofmann [21] uses a linear type system to control
the size of lists and permit an in-place update which is especially useful
for sorting. Chin and Khoo [6] infer the sizes of recursive functions by a
fixed-point calculation.

Size Inference and Program Optimization 203

(b) Others perform type inference first, to keep it decidable, and then infer
sizes based on the type information. Hughes, Pareto and Sabry [22] em-
ploy three separate, successive steps: (1) Hindley-Milner inference, (2)
derivation of the size information and (3) constraint solving. Loidl and
Hammond [25] followed this approach. Our initial attempts were similar
[17], but we recognized that the treatment of nested lists in the type
information leads to a formalism which is difficult to apply. Now, we are
using types only to count the levels of nesting of the list, but do not
tag type information with size information. As far as we know, the other
groups are considering nested lists of rectangular shape only, i.e., those
isomorphic to multi-dimensional arrays. This simplifies their treatment
in the type system significantly. Fradet and Mallet [12] use predicates to
restrict operations to a subset of this rectangular shape.

3. We do not impose restrictions on the source language to perform size anal-
ysis. As a necessary consequence, arbitrary size expressions may enter the
analysis and, thus, conditions on sizes may be undecidable. Since our type
inference happens in an earlier compiler phase and is completely unrelated
to our static size analysis, the size analysis may fail but the program may
still be typable.

In all other static approaches which we are aware of size inference is decid-
able. Chin and Khoo [6], Fradet and Mallet [12] and Xi and Pfenning [32]
use linear inequalities for constraints, i.e., Presburger arithmetic. Bellé and
Moggi [2], Jay and Sekanina [23] and Hofmann [21] achieve the decidability
through their type system.

Limitation to Presburger arithmetic already rules out the following simple
function f which is likely to appear in an N-body computation: f takes a
list of size m as input and produces a list that contains all element pairs and
whose size expression m? is not permitted in a Presburger formula.
Although formulas of number theory are, in general, undecidable, there is a
good chance that one can solve more formulas than just those of Presburger
arithmetic. Our approach is based on an extensible library of formula pat-
terns and their simplifications, which are being consulted in size inference.

3 The HDC Compiler

Functional languages are well suited for program parallelization because of the
simplicity of program analysis and transformation compared to imperative lan-
guages. However, if functional languages are to be competitive, their compilers
must produce similar target code, without overhead for memory management or
auxiliary data structures. This has motivated us to develop our own compiler
for a functional language, with a strong focus on the code it produces. Skeletons
are a suitable vehicle for achieving high efficiency [19].

We name our source language HDC, for Higher-order Divide-and-Conquer,
which reflects our belief in the productivity that higher-order functions lend to

204 Christoph A. Herrmann and Christian Lengauer

programming. We have focussed on divide-and-conquer because of its high po-
tential for parallelism. Efficient parallel implementations of divide-and-conquer
skeletons have been added to the compiler and have been used to express al-
gorithms like Karatsuba’s polynomial multiplication and the n-queens problem
[20].

The syntax of HDC is a subset of Haskell [16], since we found language con-
structs like the list comprehension superior concerning notational convenience
and style. In contrast to Haskell, the semantics of HDC is strict. This is to guar-
antee that the space-time mapping —that is, the assignment of operations to time
and processors made at compile time— is respected in the actual execution.

Briefly, the HDC compiler [18] consists of the following parts:

1. front end: scanning, parsing, desugaring, A-lifting, type inference/checking

2. back end, pre-optimization part: monomorphization, elimination of func-
tional arguments, elimination of mutual recursion, case-elimination, gen-
eration of a directed acyclic program graph, tuple elimination

3. back end, optimization cycle:

(a) inlining (unfolding of function applications)
(b) rule-based optimizations by transformation (Sect. 4)
(c) size inference (Sect. 5)

4. back end, post-optimization part: abstract code generation, space-time map-
ping (parallelization), code generation, skeleton instantiation

In order to increase code efficiency, size inference and code optimizing trans-
formations are performed alternatingly in several iterations. The size information
can be used to control program transformations in the next iteration. Addition-
ally, the size information is useful in the parallelization and for memory assign-
ment in the code generation.

Due to the complexity of the task, the implementation of size inference is still
at an early stage. Thus, the experimental results available to-date [18,20] do not
reflect the impact of the methods presented here.

4 A List Transformation for Size Inference

This section is about the transformation which makes size information explicit
for the later size analysis. In the source, lists are represented by the constructor
nil ([]) for the empty list and the constructor cons (:) for appending a new
element at the front of a list. The dependences introduced by cons rule out
a constant-time access to all list elements and complicate the analysis. After
the transformation, each list is represented by a pair of its size and a function
mapping indices to elements. The transformation itself appears straightforward
with the calculus presented in Sect. 4.2. The difficulty is simplifying the occurring
expressions of the result to a closed form — in general, this is undecidable.

Size Inference and Program Optimization 205

4.1 A New Representation for Lists

To maintain the list zs as a data object, its length (#xs) and its indexing function
(Xi.zs!1i) are not kept separate but are combined by a new constructor which we
denote by I'. In the new representation, (I f n) denotes a list of length n and its
i-th element (7 > 0) has the value f(i), e.g., the indexing function f for the list
[0,1,4,9,16] is given by f(i) = i2. The indexing functions of lists appearing as
formal parameters and at the left side of let-definitions are referred to by fresh
variables. For other lists, like the arithmetic sequence [m. .n], which contains all
integers from m to n, a new auxiliary function is generated and its name is used
in the I'-expression. The indexing functions are inspected and simplified during
the analysis. In the next iteration of the optimization cycle, they may disappear
again due to inlining. We consider two distinct implementations of I'-expressions:
(1) preferably using an explicit indexing function and (2) alternatively using an
array in the case that run-time values are to be stored.

In contrast to abstract interpretation, our transformation makes the infor-
mation we want to reason about —the length— explicit without incurring a loss
of information. To emphasize this fact, we call this change of representation a
change of basis. We use the notion basis for a set of constructors that constitute
a data type.

Lemma 1 (Existence of an index/length basis). All finite lists can be ez-
pressed in a basis which makes their length and their indexing function explicit.

Proof. By an isomorphism of types [11] induced by the functions to-I" and
from-I" defined below. The domain of to-I" is the set of all finite lists, the
codomain is restricted to the image of to-I" and is taken for the domain of
from-I". map applies f to each element of this list. I" can be defined as an
algebraic data type (data).

data 'a = ' (N—> a) N

to-I' € [al =T«
to-I" xs = I' (Ai.xs!ti) (#zs)

from-I" € I'a— [a]
from-I" (I' f n) = map f [0..n—1]
O

Due to this isomorphism, we identify the types I'a and [a] and enable the
compiler to apply to-I" and from-I" where an adaptation is required. The no-
tation we use is adapted from the language Haskell [16].

4.2 Rewriting in the I'-Calculus

The I'-calculus is a set of rules that can be used for converting the standard list
representation to I'-form. Tab. 1 explains the notation used in the calculus. We
split the rules into three classes. The top of Fig. 1 gives a complete specification

206 Christoph A. Herrmann and Christian Lengauer

of the semantics of I'. In the middle part of the figure, we define the basic list
functions in terms of I'. Since pattern matching has been eliminated in an earlier
compiler phase, we rely on a predicate for the empty list and two functions for
selecting head and tail of a list, in addition to nil and cons. The rules for these
basic functions are consistent with the definition based on the representation
with nil and cons.

alb/ath | minimum/maximum of a and b

by | = (atlow) | high
® for an arbitrary binary operator of type a = 8 = «
e®high ((e ® Tiow) ® ...) ® Thigh, if low < high
ZTi|=
i=low e otherwise

e|z:=v] substitute every free occurrence of x in e by v

wkx; the highest j, for which Zz_l z; (z; € N) does not exceed k

Table 1. Notation used in the calculus

The rules in the lower part of Fig. 1 are derived from the basic list functions
and simplified. Our strategy is to use as many rules as possible to accelerate
the simplification of size information. Every list function, for which a rule is not
stated, must be analyzed itself.

The following lemma states that these rules can be used to construct a ter-
minating rewrite system. (We do not need confluence, since we do not compare
the simplified program parts.)

Lemma 2 (Termination of the reduced rewrite system). In the I'-calculus
without rule intr-I", rewriting terminates with an expression which contains nei-
ther the constructors nil and cons nor any list function on the left side of a rule.

Proof sketch. The number of occurrences of nil, cons and list functions in an
expression is finite. Each application of a rule strictly decreases this number by
at least one. O

4.3 The List Transformation Algorithm

In many circumstances, the change of basis delivers a form of the function which
expresses the lengths of the result lists in terms of the lengths of the argument
lists. The difficulty is that this reduced form will likely inherit the recursion of
the original. In Sect. 5, we tackle recursion elimination and other simplifications
of size expressions in a little language. This language has only the value domains

Size Inference and Program Optimization 207

intr-I" {zsis a list} e p (Ai.zs'3) (F#1zs)
elim-I".0 #(I _n) — n
elim-I".1 (I' fn)'i — if 0<i<nthen fielse |
null-I" mll (I’ _n) — n=0
nil-I" [] — I'(const 1)0
cons-I" z:I fn feshi p (MAi.if i=0 then z else f (i—1)) (n+1)
head-I" head (I' fn) — if n>0then f 0 else |
tail-I" tail (I' fn) — ifn>0then I (fo (+1)) (n—1)else L

sequence-I"
take-I"
drop-I"
map-I"
foldl-I"

scanl-I"

append-I’

concat-I"

[@a..b] — I (4a) ((b—a+1)10)
take k (I' fn) — I f (k1)
dropk (I' fn) — I (fo(+(k15))) (n— (k15))

map g (I' fn) — I'(gof)n

n—1

foldl @ e (I' fn) ™5 Q" (fi)

i=0
4 ‘scanl ® e‘(l"fn)
T O3 @), () ()

'fm++Tgn
WY [(Niif i<m then f i else g (i—m)) (m+n)
concat (I' (Xi-(I" (Aj.ei ;) mi)) m)

L Ok (el = p k) [= k=S) (S5 m)

Fig. 1. Rewrite rules

208 Christoph A. Herrmann and Christian Lengauer

of numbers and Booleans, but contains symbolic reduction operators, e.g., sum-
mation. The symbolic calculation is necessary since the lengths of the argument
lists are unknown at compile time and are, thus, represented by variables.

Our algorithm works on the syntax tree of the function. From an algorithmic
point, of view, the change of basis simplifies our transformation, since each list
(in I'-form) carries its (symbolic) length information along. If lengths were made
part of the type information, the correctness of the transformation could not
be established solely by equational reasoning about the functional expressions.
Also, nested lists can be treated precisely, since the length of an inner list can
be expressed in terms of its index in the outer list. Algorithm LISTSIMP (Fig. 2)
performs a complete change of basis on the lists in the expression given to it.

INPUT: expression e and a set of constraints
OUTPUT: expression semantically equivalent to e which does not
contain list operations in the standard basis

if e is a constant or variable

then if e is not of a list type
then return e
else substitute every occurrence of e by (I' f n)
where f and n are fresh names

else (e is a compound expression):

1. apply LISTSIMP to each component of e; the result is called e’

2. perform simplifications in the size language of all arithmetic ex-
pressions in €', yielding e”

3. eliminate the standard list constructors and functions from the
current node of the syntax tree by applying the rule of the I'-
calculus that matches, obtaining e’

4. if ¢ is not of a list type then return e’
else (e is a list, represented by, say (I" h m)):

(a) apply LISTSIMP to the expression m, getting m’

(b) apply LISTSIMP to the expression h using knowledge of m/',
yielding b’
(c) return (I" A’ m')

Fig. 2. Algorithm LISTSIMP

We demonstrate the algorithm on a tiny, non-recursive function. Function
rotate performs a cyclic shift of the elements of a list. Application areas are
hardware description /simulation or convolution.

The beauty of lists for this purpose is obvious: to rotate the first eight items
of a list zs, we just write: rotate (take 8 xs) ++ drop 8 zs.

1. The initial function is as follows:

rotate s = if #uxs < 2 then zs else tail xs ++ [head s

Size Inference and Program Optimization 209

Note that a straightforward compilation of this function would produce nasty
code. On the one hand, the expression tail zs cannot be shared because
[head zs| has been appended at the end. On the other hand, it cannot be
updated in-place, although it is not shared.

2. According to the algorithm, each occurrence of the list variable zs is replaced
by (I" f n), where f and n are fresh variables:

rotate (I' fn) = if #(I" fn)<2then I fn
else tail (I f n) ++ [head (I" f n)]

3. Application of the rules for #, tail and head:

rotate (I' fn) —if n<2then I fn
else I' (Ai.f (i+1)) (n—1) ++ [f 0]

4. Application of the rules for nil and cons to [f 0]:

rotate (I' fn) = if n<2then I fn
else I' (Xi.f (i+1)) (n—1)
++ ' (Mi.if i =0 then fOelse 1)1

5. Application of the append rule:

rotate (I' f n) = if n<2then I fn
else I' (Mi.if i<n—1then f(i+1) else fO) n

6. Simplification of the conditional, using information about the length:
rotate (I' fn) = I' (Xi.f ((i+1) mod n)) n

All rule applications aside from the simplification at the end are straightfor-
ward according to the rules. The success of the simplification enables further
possibilities, e.g., an optimization of a sequence of k rotations, given by the
following equality:

rotate? (I" fn) = I' (\i.f ((i+k) mod n)) n

5 Simplification of Size Expressions

In the previous section, we have decomposed list data objects into two inde-
pendent components: indexing function and length — both symbolic arithmetic
expressions. Further simplifications need not resort to the list data type anymore.

The process of size inference abstracts temporarily from the program repre-
sentation to focus on mathematical issues. Our intention is to handle constraint
solving, simplification, etc. in a separate package which need not know anything
about the syntax or semantics of the functional programming language. In this
package, we use a small, first-order functional language, the size language. It

210 Christoph A. Herrmann and Christian Lengauer

consists of a set of (possibly recursive) function definitions and a single expres-
sion which defines a size dependent on symbolic names and which can use the
set of functions.

The size language still needs to contain recursion. E.g., here is the size function
obtained from a recursive reverse function:

reverseSizen = if n = 0 thenn else reverseSize (n—1)+ 1

Simplification must solve this recursion. We will discuss that in Sect. 5.3.

5.1 The Syntax of Size Expressions

Atomic size expressions are constants and variables. Size expressions can be com-
posed by arithmetic operators, conditionals, reduction operators (e.g., summa-
tion) and applications of size functions. Variables are used to represent unknown
values and for indexing elements in a reduction.

Structural parameters are those unknowns which refer to input values of
the function to be analyzed. Especially useful input values are list lengths and
natural numbers which are decremented in recursive calls. However, the compiler
may not always be able to decide which parameters are meant to be used as
structural parameters. The user can point the compiler to a useful parameter
—say n— for the problem size or depth of recursion by “branding” its name in
the program: ne. We believe that this kind of annotation is easier to use than
annotations of the type language with size expressions.

The size information, expressed in terms of structural parameters, is derived
by following the data flow of the function [4]. Our choice of a referentially trans-
parent language enables a local analysis of each function. Where a function f is
applied to an argument x, the size information of the result can often be com-
puted by an application of the size function of f to the size information of .
We prefer to encode all functional closures by first-order data structures of the
source language. Then, z will never be a functional closure.

In the calculation of sizes, rational numbers can appear as intermediate values.
Exact rational arithmetic guarantees that no approximation errors will produce
an incorrect integral size. Integers and natural numbers are treated as subtypes
of the rational numbers. The integrality of decision variables can be enforced by
subtype declarations. Boolean values are used for constraints.

We present the abstract syntax of our size language in Fig. 3. Since we are
working with syntax trees only and abstract from parenthesization, punctuation,
etc. of a potential source language, we use algebraic data type definitions instead
of BNF rules. Like BNF, these algebraic data types can be used to define context-
free expressions and, in addition, constitute a set of patterns to be used in
transformations.

— A size program P consists of a list of function definitions (F) and an expression
S to be evaluated.

— In a function definition (name,(as,rs)) of type F, name is the name of the
function, as is a list of its parameter names and rs a tuple of result sizes.
Functions can be defined recursively.

Size Inference and Program Optimization 211

type P = ([F1,8)

type F = (Id, ([1d], [S]))

type Id = String

data T = TBool | TNat | TInt | TRat

data S = Num Rational | SV Id T
| BTrue | BFalse
| S:+:S | S:-:S | S:*:S | S:/:S | S:7:8S
| Floor S | Ceil S | Frac S
| Abs S | Sgn S | Min S S | Max S S
| §:=:S | S:<:S | S:<=:8

| IsRat S | IsInt S | IsNat S

I

I

I

I

I

I

L]

n A

Not S | S:&:S | S:1:8 | S:<=>:8
Case [(S5,S)] S
Let (Id,S) S
Apply Id [s] [1d] S
Reduce (ROp,Id,S,S,S8) S
Recur [[S]] S [S]
data ROp = Sum | Prod | Minimum | Maximum | And | Or

Fig. 3. The size language

— Id represents identifiers.

— T is a collection of types assigned to variables: TBool (Booleans), TNat (nat-
ural numbers), TInt (integers) and TRat (rational numbers). There is the
usual inclusion relation between the number types which allows coercing in
evaluation. Thus, there need not be a specific integral division. The type
information is used by solvers as constraint information.

— S is the type of syntax trees for size expressions. Each alternative on the
right side corresponds to a particular kind of node, named by a constructor.
There are two kinds of constructors: infix constructors are denoted with
surrounding colons (e.g., :+:), the other constructors are prefix constructors
(e.g., Floor). The parts of an alternative aside from the constructor either
contain subtrees (S) or attributes (e.g., ROp).

— ROp describes the set of reduction operators, i.e., accumulated applications
of a binary associative and commutative operator.

5.2 Semantics

The meaning of size expressions is defined by the following denotation, where
Tl exp] is the interpretation of expression exp.

— Z[Num r 1 = r: a number, represented by an exact rational number. Due to
the number type inclusion, it can also carry a natural or an integer.

— (SV name t) represents the variable name of type t. The value of a variable
may be used as a value of a superset but, in constraint solving, the obtained
result must match the type.

212 Christoph A. Herrmann and Christian Lengauer

— Z[BTrue] = True and Z[BFalse] = False: the boolean constants.

—TIla:®:b1 =ZLal ®ZLbT for each binary operator ®.

— I[Floorz1 = |ZLxz1]|,ZLCeilz1 = [ZL =17,

IMFfracz] =Z0z1 - |ZLz1]|,ZCAbs 21 = |ZL = 1|,
ZLSgnx1 = signum (ZLz 1)

— IMMinzyl =Z0z1|lZ0Ly1, ZMMaxz y1 =ZLz Nt Z 0Ly 1

— Z[IsRatz] = (ZLz1 € Q), ZLIsIntz1 = (ZLz1 € Z),
IlIsNat21 = (ZLz1 € N)

— I0Not 21 =~(ZLz1),ZLa:&:b1 =ZLal AZLHT,
ILa:1:b1 =ZLalVILbI,ZLa:<=>:01 =Z0al < ZIb]

— I Case [(co,v0), - (Cn,Un)] Uns1 1 = ZLv; T, where j is smallest such that
ZLc; 1 = True, with Z[¢y 41 1 = True by default.

— ZMLet (z,v) el = Z[(e[z := v]) 1. The purpose of an auxiliary definition
(Let) is to exploit common subexpressions.

— The semantics of (Apply f [eo,.-.,€n] [V0,-.-,Um] ezp) is that the size function f
is applied to the size expressions eg to e,,. f returns a tuple of size expressions
which are bound to the variables vy to v,,,. Then, the expression ezp, defined
in terms of these variables, is delivered.

— Z[Reduce (@, i, low, high, cond;) elem; T = D, elem;:

a reduction with a commutative and associative binary operator &, where
I={ie€Z|ZLlow] <i<ZLhighl NZI cond; 1 = True}.

— I Recur An él = myA™e, where A is an mxm matrix, n € N and e an m-
column vector. A =7 A]], n=7Z[nl and e = Z[é 1. Recur expressions
provide a closed form for some recurrences without using roots. E.g., the

Fibonacci number n can be expressed by fib(n) = (10) (1§)"(9).

5.3 Simplification Heuristics

After the transformation of a recursive list function into I'-form, length ex-
pressions may still be expressed recursively. Using knowledge about frequent
decomposition patterns, one can provide a heuristic procedure to find closed
forms.

Probably the patterns most often used are the decomposition of a list into
(1) head and tail and (2) the left part and the right part [13,26]. We discuss
briefly head/tail decomposition here. If we are lucky, we obtain a recursive size
function and its closed form of the following kind, where a ¢ Nand b ¢ N - N:

a , ifn=0 o
s(n) = {s(n—l) + b(n) , otherWiSe} =a+ ;b(l)

If b is a polynomial or another simple kind of function, we can eliminate the
summation operator [14]. E.g., if the size function originates from flattening a
triangular matrix, we have a = 0 and b(n) = n. In this case, we obtain:

Size Inference and Program Optimization 213

We advocate the use of an extensible library of patterns. Unfortunately, we
cannot hope to find the pattern by a syntactic match. E.g., instead of the ex-
pression s(n—1) 4+ n, we may encounter the expression |n/2| + s(n—1) + [n/2]
which is equal. Thus, we apply the following procedure:

1. Select a pattern which appears appropriate since it is known to be useful
for the operators that appear in the expression. E.g., polynomials can be
appropriate for expressions that contain only addition and multiplication.

2. Interpolate the expression with the pattern, obtaining values for the param-
eters of the pattern.

3. Run many tests with the instantiated pattern, to exclude a non-fitting pat-
tern as quickly as possible.

4. Verify symbolically that the instantiated pattern equals the expression.

5. Simplify the pattern, exploiting properties gained by specialization.

We do not advocate interpolating the recursive function as a whole because
a successful match will be very unlikely, even with a high number of attempts.
Instead, we are looking for patterns for parts of the recursive function, which
are (1) the condition that indicates the recursive case, (2) the value in the non-
recursive case, (3) the expression which modifies the arguments for the recursive
calls and (4) the expression which combines the result of the recursive calls.
Then, we apply a recurrence elimination function according to the ensemble of
patterns we obtained. A promising approach is to search for the power series of
the generating function of the recursion [14]. The n-th coefficient of the power
series carries the value of the recursive function for the input n. Chin and Khoo
[5] developed a tupling method to reduce, in some cases, recursion in multiple
variables to recursion in a single variable.

6 Example: Nested Lists in Multiple Precision Arithmetic

A major difference between our approach and those of others, e.g., [32], is that
our size information can refer to the particular position in a surrounding data
structure. Polynomial multiplication with multiple precision arithmetic makes
use of this; here the bitsize of a coefficient in the result depends on its position.

6.1 Types and Representation

In order to make the maximal amount of information statically derivable, our
programs resemble specifications of abstract digital designs [7,10,29]. The basic
arithmetic functions —which are not presented here— are producing output lists
that depend statically on the size of input lists. E.g., a function which adds two
numbers delivers a sum whose size is the maximum of both inputs; a potential
carry overflow is delivered in a separate component.

Each number is represented by a list of bits. Element ¢ of each number rep-
resents the factor (€ {0,1}) of 2¢. We define the type Polynomial, whose values
are polynomials in X, represented by their list of coefficients. Coefficients are
themselves numbers. Element i of the polynomial represents the coefficient of
X,

214 Christoph A. Herrmann and Christian Lengauer

polymul € Polynomial — Polynomial — Polynomial
polymul zss yss =
let m = #1ss
n = #yss
in [let low = O0f(k—n+1)
high = (m—1)]k
in sumlN [mul (zss!'s) (yss!t(k—i)) | i < [low. . high]]
|k« [0..m+n—2]]

polymul (I' (Xi.I" (Aj.fi ;) pi) m) (I (Xi.I" (Aj.gi,j) @) n)

=TI (Ak.let low = 0PN(k—n+1)
high = (m—1)}k
r = high—low+Reduce (Maximum, i, 0, high—low, BTrue)

(Pltow+i) F Ak—(low+i)))
(I'hr) = sunl (' (A mul (" (Aj.fij) pi) (I (Aj.gk—ij) qr—i))
(high—low+1))
in (I'h1))
(m+n-1)

Fig. 4. Transformation of polymul into I'-form

6.2 The Source Function

The upper part of Fig. 4 shows the definition of function polymul. The applica-
tion of sumN sums, for each coefficient k, the products of the coefficients of the
two polynomials zss and yss. low and high are the index bounds of the coefficients
of zss, in dependence of k. We define m as the length of zss and n as the length
of yss. The degree of the product polynomial is the sum of the degree m—1 of zss
and the degree n—1 of yss. Thus, it has m+n—1 coefficients, for X° to X™+7~2,
We use a Haskell [16] list comprehension to express this. A list comprehension
has —in our case— the form [ezp; | ¢ + [lowbound. .highbound] | where the in-
dex variable ¢ is taken from the integer range [lowbound. . highbound] and ezp;
denotes the element of the list associated with index i. Note that list compre-
hensions can be desugared in an early compiler phase; our compiler performs a
desugaring into the form map (\i.ezp;) [lowbound. . highbound).

6.3 Transformation into I'-Form

The result of the transformation is shown in the lower part of Fig. 4. In I'-form,
we use m for the length of zss and n for the length of yss. The elements of zss
and yss are expressed in terms of their position. zss!ti is itself a list, in I'-form:
(I" (Mj.fi;) pi). Here, p; is the length of zss!'i, and f; ; its element with index
j- The representation of yss!!i is analogous, with ¢ instead of p and ¢ instead of
f- The analysis should infer a simplified I'-expression for the body of polymul

Size Inference and Program Optimization 215

with respect to the following application, where zss and yss have been replaced
by their I'-form, as described above:

polymul (I' (Xi.I' (Aj.fi,;) pi) m) (I' (N.I" (Aj.gi,j) qi) 1)
With this denotation of the parts of zss and yss, we analyze and transform the
body of polymul. The first step is to transform the outer nesting level of the

result list into I'-form. We use ezp;, as an abbreviation for element £ of this list.
Remember that the list comprehension

[exp, | k + [0..m+n—2]]
has been desugared by an earlier compiler phase into:

map (Ak.exp,) [0. .m+n—2]
Applying the rules of the I'-calculus to the desugared form yields:

I' (\k.exp;,) (m+n—1)
Next, we look at the transformation of ezp, and infer the length of:
sumN [mul (zss!!i) (yss!t(k—1)) | i < [low. .high]]
After desugaring and translation into I'-form, we have:
sunll (I (Ximud (I (\jofog) pi) (I (\j-giesg) @) (high—low++1))

We skip a lot of formal treatment here and present directly the size r of the
result of the sumN application:

high—low+Reduce (Maximum,,0, high—low, BTrue)(p(jow+i) + U(k—(iowti)))

6.4 Benefit of the Transformation

We have inferred that the result polynomial has m+mn—1 coefficients, and co-
efficient £ can be represented by r digits with r as stated above. If r is not
simplified, its value must be computed quickly at run time. Function h is based
on the recursive function sumN and cannot be stated as a simple closed expression
since it depends on many run-time values. Inlining of sumN could, in principle,
be done after this transformation, but very likely sumN will not be inlined due
to its complexity.

The computation of the digits of each coefficient k£ remains the task of function
sumN. However, the size r is sufficient for our purpose, since we can allocate the
memory for the coefficients of the result in advance:

1. In a parallel computation of the coefficients, the number of bytes to be allo-
cated for each communication buffer is known in advance. Thus, an appro-
priate representation assumed, the final location of a coefficient can already
be used to receive the message.

2. A simulator of a digital design can statically allocate the exact amount of
memory cells required to store the values, i.e., no dynamic data structures
are required. A compiler which produces a hardware design has knowledge
of the exact amount of bits required for each coefficient, if the values of the
structural parameters are fixed.

216 Christoph A. Herrmann and Christian Lengauer
7 Summary and Perspectives

Size inference enhances the possibilities for a compilation of functional programs
of high efficiency. Obviously, if a list can be represented by an array because its
length is known in advance, at least the amount of space for chaining the elements
can be saved. Loss of dependences increases the potential for parallelization.

Often, intermediate copies of data objects can be saved since the result can
be put immediately at the place where it is required. This makes communication
more efficient.

The analysis is inherently undecidable and must be based on heuristics, e.g.,
partial evaluation, constraint solving, solving of recurrence equations, simplifi-
cation of symbolic expressions and pattern matching with unification. We are
pursuing the following strategy, which we hold to be quite promising: iterate
alternatingly through applying size inference and then exploiting the results
via program transformations. Possible transformations are inlining, fusion, de-
forestation and program specialization. The iterative process propagates static
information successively deeper into the program structure, until the effort to
evaluate the symbolic expressions at run time exceeds the gain.

We are going to implement size inference and the list transformation into our
compiler. We have not been able to find a tool which provides adequate support
for simplification of size expressions as we require; we may have to implement
the simplifier ourselves. Furthermore, the compiler is undergoing a redesign in
which the front end is being replaced by the front end of the Glasgow Haskell
compiler.

Acknowledgements

We are grateful to Peter Faber, Paul Feautrier, John O’Donnell and Gregor
Snelting for fruitful discussions. Michael Mendler, Walid Taha and the anony-
mous referees gave us valuable hints about related work. The work was supported
by the German Research Foundation (DFG).

References

1. Jeffrey M. Bell, Francoise Bellegarde, and James Hook. Type-driven defunctional-
ization. SIGPLAN Notices, 32(8):25-37, 1997.

2. Gianni Bellé and Eugenio Moggi. Typed intermediate languages for shape-analysis.
In Typed Lambda Calculi and Applications (TLCA’97), Lecture Notes in Computer
Science 1210, pages 11-29. Springer-Verlag, 1997.

3. Richard S. Bird. Algebraic identities for program calculation. The Computer
Journal, 32(2):122-126, 1989.

4. Siddharta Chatterjee, Guy E. Blelloch, and Allan L.Fisher. Size and access infer-
ence for data-parallel programs. Technical Report CMU-CS-91-118, Dept. Com-
puter Science, Carnegie-Mellon Univ., 1991.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

Size Inference and Program Optimization 217

Wei-Ngan Chin and Siau-Cheng Khoo. Tupling functions with multiple recursion
parameters. In Patrick Cousot, Moreno Falaschi, Gilberto File, and Antoine Rauzy,
editors, Static Analysis Third Int. Workshop (WAS’93), Lecture Notes in Computer
Science 724, pages 124-140. Springer-Verlag, 1993.

Wei-Ngan Chin and Siau-Cheng Khoo. Calculating sized types. In Proceedings of
the 2000 ACM SIGPLAN Workshop on Evaluation and Semantics-Based Program
Manipulation (PEPM-00), pages 6272, N.Y., 2000. ACM Press.

Koen Claessen and Mary Sheeran. A tutorial on Lava: A hardware description
and verification system. Technical report, Dept. of Computing Science, Chalmers
University of Technology, August 2000.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction of approximation of fixed
points. In Proc. 4th ACM Symp. Principles of Programming Languages (POPL’77),
pages 238-252. ACM Press, 1977.

John Darlington, Anthony Field, Peter Harrison, Paul Kelly, David Sharp, Qian
Wu, and Ronald L. While. Parallel programming using skeleton functions. In Arndt
Bode, Mike Reeve, and Gottfried Wolf, editors, PARLE’93: Parallel Architectures
and Languages Europe, Lecture Notes in Computer Science 694, pages 146-160.
Springer-Verlag, 1993.

Nancy A. Day, Jeffrey R. Lewis, and Byrin Cook. Symbolic simulation of micropro-
cessor models using type classes in Haskell. Technical Report CSE-99-005, Pacific
Software Research Center, Oregon Graduate Institute, 1999.

Roberto Di Cosmo. Isomorphisms of Types: from A-calculus to information re-
trieval and language design. Progress in Theoretical Computer Science. Birkhduser,
1995.

Pascal Fradet and Julien Mallet. Compilation of a specialized functional language
for massively parallel computers. Technical Report 3894, Institut National der
Recherche en Informatique et en Automatique (INRIA), 2000.

Sergei Gorlatch. Extracting and implementing list homomorphisms in parallel
program development. Science of Computer Programming, 33(1):1-27, 1999.
Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley Publishing Company, 1994.

Per Hammarlund and Bjorn Lisper. On the relation between functional and data
parallel programming languages. In Proc. Sizth Conf. on Functional Programming
Languages and Computer Architecture (FPCA’93), pages 210-222. ACM Press,
1993.

haskell.org, 2000. http://www.haskell.org.

Christoph A. Herrmann and Christian Lengauer. Size inference of nested lists in
functional programs. In Kevin Hammond, Tony Davie, and Chris Clack, editors,
Proc. 10th Int. Workshop on the Implementation of Functional Languages (IFL’98),
pages 346-364. Dept. Computer Science, Univ. College London, 1998.

Christoph A. Herrmann, Christian Lengauer, Robert Giinz, Jan Laitenberger, and
Christian Schaller. A compiler for #DC. Technical Report MIP-9907, Fakultét fiir
Mathematik und Informatik, Univ. Passau, May 1999.

Christoph A. Herrmann. The Skeleton-Based Parallelization of Divide-and-
Conquer Recursions. PhD thesis, Fakultat fiir Mathematik und Informatik, Univ.
Passau. Logos-Verlag, Berlin, 2000.

Christoph A. Herrmann and Christian Lengauer. HDC: A higher-order language
for divide-and-conquer. Parallel Processing Letters, 10(2-3):239-250, 2000.

218

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Christoph A. Herrmann and Christian Lengauer

Martin Hofmann. A type system for bounded space and functional in-place update
— extended abstract. In Gerd Smolka, editor, Programming Languages and Systems
(ESOP 2000), Lecture Notes in Computer Science 1782, pages 165-179. Springer-
Verlag, 2000.

John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Proc. 23rd Ann. ACM Symp. on Principles of Pro-
gramming Languages (POPL’96), pages 410-423. ACM Press, 1996.

C. Barry Jay and Milan Sekanina. Shape checking of array programs. In J. Harland,
editor, Proc. Australasian Theory Seminar on Computing, volume 19 of Australian
Computer Science Communications, pages 113-121, 1997.

Bjorn Lisper and Jean-Frangois Collard. Extent analysis of data fields. In Baudouin
Le Charlier, editor, Static Analysis (SAS’94), Lecture Notes in Computer Science
864, pages 208-222. Springer-Verlag, 1994.

Hans-Wolfgang Loidl and Kevin Hammond. A sized time system for a parallel
functional language. In Proc. 1996 Glasgow Workshop on Functional Programming,
1996. Electronic publication: http://www.dcs.gla.ac.uk/fp/workshops/fpw96/
Proceedings96.html.

Jayadev Misra. Powerlist: A structure for parallel recursion. ACM Trans. on
Programming Languages and Systems, 16(6):1737-1767, November 1994.
Flemming Nielson and Hanne Riis Nielson. Two-level functional languages. Num-
ber 34 in Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 1992.

John T. O’Donnell. Bidirectional fold and scan. In Functional Programming:
Glasgow 1993, Workshops in Computing, pages 193-200. Springer-Verlag, 1994.
John T. O’Donnell. From transistors to computer architecture: Teaching functional
circuit specification in Hydra. In Pieter H. Hartel and Rinus Plasmeijer, editors,
Functional Programming Languages in Education, Lecture Notes in Computer Sci-
ence 1022, pages 195-214. Springer-Verlag, 1995.

James Riely and Jan Prins. Flattening is an improvement. In Jens Palsberg, editor,
Static Analysis (SAS’2000), Lecture Notes in Computer Science 1824, pages 360—
376. Springer-Verlag, 2000.

Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In Proc. 14th ACM Symp. Principles of Programming Languages (POPL’87), pages
307-313. ACM Press, 1987.

Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Proc. 26th ACM Symp. Principles of Programming Languages (POPL’99), pages
214-227. ACM Press, 1999.

