
A Transformational Approa
hwhi
h Combines Size Inferen
eand Program OptimizationPosition PaperChristoph A. Herrmann and Christian LengauerFakultät für Mathematik und Informatik,Universität Passau, Germany{herrmann,lengauer}�fmi.uni-passau.dehttp://www.fmi.uni-passau.de/
l/hd
/Abstra
t. We propose a
al
ulus for the analysis of list lengths in fun
-tional programs. In
ontrast to
ommon type-based approa
hes, it isbased on the synta
ti
al stru
ture of the program. To our knowledge, noother approa
h provides su
h a detailed analysis of nested lists.The analysis of lists is pre
eded by a program transformation whi
hmakes sizes expli
it as program values and eliminates the
hain of
onsoperations. This permits alternative implementations of lists, e.g., byfun
tions or arrays. The te
hnique is being implemented in an experi-mental parallelizing
ompiler for the fun
tional language HDC.We believe that analysis and parallelization work best if higher-orderfun
tions are used to
ompose the program from fun
tional buildingblo
ks, so-
alled skeletons, instead of using unrestrained re
ursion. Skele-tons, e.g., data-parallel
ombinators
ome with a theory of sizes andparallelization.1 Introdu
tionIf fun
tional programs are to be used for high-performan
e
omputing, e�
ientdata representations and operations must be provided. Our
ontribution is a
al
ulus for the analysis of the lengths of (nested) lists and a transformation intoa form whi
h is liberated from the
hain of
ons-operations and whi
h sometimespermits array implementations even if the length depends on run-time values.A major advantage of fun
tional programs vs. imperative programs is that de-penden
e analysis is mu
h easier, due to the absen
e of reassignments. One severedisadvantage of fun
tional programs as of yet is that e�
ient, ma
hine-orienteddata stru
tures (like the array) �absolutely ne
essary for high-performan
e
om-puting� play a minor role in many language implementations sin
e they do notharmonize with fun
tional evaluation s
hemata (like graph redu
tion), whi
h areat a higher level of abstra
tion.We propose to
onstru
t programs by
omposition of skeletons, i.e., fun
tionalbuilding blo
ks with a prede�ned, e�
ient implementation [9℄. From the view

200 Christoph A. Herrmann and Christian Lengauerof the sour
e program, they are higher-order fun
tions whi
h are instantiatedwith problem-spe
i�
,
ustomizing fun
tions. We implement skeletons in an im-perative language
lose to the ma
hine. In the
ompilation of the program partswhi
h are not skeletons, fun
tional
on
epts are su

essively eliminated su
hthat these parts
an be linked together with the skeleton implementations. Inthis pro
ess, the most important step is the repla
ement of fun
tional argumentsby data stru
tures of the sour
e language [1℄.Aside from instantiation of skeletons, fun
tional arguments should be usedmoderately sin
e they in
ur overhead and might introdu
e undesired depen-den
es. Re
ursion should be repla
ed by skeletons, e.g., the re
ursive fun
tionmap, whi
h applies a fun
tion to ea
h element of a list,
an be repla
ed by adata-parallel implementation. The need for a size analysis arises from the use ofsimple indu
tive data stru
tures, e.g., the list. With knowledge of its length, thelist might be implemented more e�
iently as an array.Our size analysis
al
ulates information about the sizes of lists at
ompiletime, in terms of stru
tural parameters, i.e., symboli
 names assigned to thelengths of lists in the input. Chara
teristi
 for our approa
h is that the sizeanalysis also
omputes a fun
tion whi
h maps indi
es to elements. The result ofthe analysis
an then be used for optimization by program transformations, e.g.,intermediate lists
ould be eliminated, similar to deforestation or map distributionover
omposition [3℄. The transformations provide the basis for a renewed sizeinferen
e and subsequent optimization, in an iterative pro
ess whi
h terminatesa

ording to
riteria spe
i�ed by
ompiler settings or dire
tives.Our inferen
e and transformation rules are based on a view of lists whi
habstra
ts from the
hain of elements present in many standard representations.Due to the absen
e of side e�e
ts, the
ompiler is not obliged to preserve aparti
ular representation of data stru
tures, i.e., a list may be eliminated, fusedwith some other list, represented by an array, reprodu
ed by a fun
tion, et
.Data aggregates treated in su
h an abstra
t fashion are known as data �elds [15,24℄.As far as we know, we are the �rst to derive
ompile-time information aboutea
h element of a list in terms of its position. This is possible by a symboli
representation of a fun
tion mapping indi
es to elements � a te
hnique whi
hprovides the potential for a pre
ise size analysis of nested lists and for their �atimplementations [30℄. Flat stru
tures
an lead to e�
ien
y in
reases in mem-ory allo
ation and release, a

ess and update of elements and marshaling for
ommuni
ation.Through size inferen
e, the program
an be
ome amenable to further trans-formation, sin
e
ompile-time information be
omes visible at points where it wasnot visible before. With this kind of
ompilation, the e�
ien
y of the generated
ode be
omes sensitive to small
hanges in the program and, thus, small a
tionsof program maintenan
e may have dramati
 e�e
ts. Note that we aim for highperforman
e of sele
ted program parts, a
hieved with the programmer's inter-a
tion, not for a
ompiler whi
h produ
es good
ode fully automati
ally in theaverage
ase. The novi
e programmer
an intera
t by setting
ompiler swit
hes

Size Inferen
e and Program Optimization 201and providing program annotations. The advan
ed (parallel) programmer
anadd skeleton implementations whi
h
apture
omputation s
hemata not previ-ously known to the
ompiler.Se
t. 2 reviews related approa
hes to size inferen
e. As a motivation for sizeinferen
e, we present our experimental
ompiler in Se
t. 3. Se
t. 4 presents atransformation of the list data type whi
h makes size expressions expli
it in theprogram. In Se
t. 5, we dis
uss the simpli�
ation of size expressions in a littleauxiliary language, whi
h need not �and, indeed, does not�
ontain lists, be
ausesize expressions have been disentangled from the list
ontents by the transforma-tion in Se
t. 4. Se
t. 6 presents an example for whi
h an exa
t treatment of thesizes of nested lists is useful: the multipli
ation of polynomials with
oe�
ientsrepresented by lists of digits. In Se
t. 7, we summarize our statements and pointto future work.2 Related WorkThe data �eld approa
h of Hammarlund and Lisper [15℄ inspired us to abstra
tfrom a
tual representations of aggregate data obje
ts, in favor of minimizingdependen
es between data and in
reasing the potential for parallelism. By us-ing an indexing fun
tion to refer to elements of an aggregate stru
ture, manyarrangement operations
an be performed without visiting the data at all, justby modi�
ation of the indexing fun
tion: permutation, broad
ast, partitioning,et
. We apply the data �eld approa
h to the parallelization of lists. As far aswe know, the list is the most important aggregate data stru
ture in fun
tionalprogramming, and it has a ri
h theory [3, 28℄.As Lisper and Collard [24℄ have pointed out, size inferen
e
an be viewed asa form of abstra
t interpretation [8℄. One kind of abstra
t information of a listis its length. The length fun
tion is a monoid homomorphism that maps fromthe
on
rete domain of lists to the abstra
t domain of natural numbers. Theempty list is mapped to zero and the fun
tion whi
h adds an element to a list ismapped to the su

essor fun
tion. Unfortunately, this ni
e property of the listlength is only one side of the
oin. The power of abstra
t interpretation
omesfrom the fa
t that the
al
ulation is performed solely in the abstra
t domain.A
ompli
ation with lists is that they
an
ontain lists as elements. Applyingthe abstra
tion at the outer nesting level in
urs a loss of information about thelengths of the lists at inner nesting levels, while an abstra
tion at an inner levelmeans that the outer lists remain part of the abstra
t domain.We employ a representation of lists whi
h isolates the size information whilepreserving all other program information. Thus, we are doing something similarto abstra
t interpretation by performing a stati
 analysis of the isolated sizeinformation. For nested lists, this means �rst to perform a stati
 analysis of thelengths of the lists at the outer nesting level, then to
ontinue with the analysisof the elements of that list, and so on.The standard
onstru
tion of lists is indu
tive and ex
ludes a global view ofthe size or a possibility to a

ess an element by index dire
tly. Our new repre-

202 Christoph A. Herrmann and Christian Lengauersentation of lists has
onsequen
es for element a

ess beyond program analysis.In his views approa
h, Wadler [31℄ proposes pattern mat
hing with
onstru
torsthat do not form the representation of the data stru
ture. We apply this prin
i-ple to lists: the representation is subje
t to optimization by the
ompiler, whilethe standard list
onstru
tors are still available for user programs. In addition,a new list
onstru
tor is introdu
ed internally, whi
h permits symboli
 patternmat
hing of a list against its size and its indexing fun
tion. We took the idea ofsu
h non-standard list
onstru
tors from
ons-sno
 lists and distributable homo-morphisms [13℄ and powerlists [26℄. In
ontrast to them, our approa
h stri
tlyseparates length and
ontent of a list, with the need to add auxiliary fun
tions tothe program, mapping list indi
es to elements. Later in the
ompilation pro
ess,inlining of these fun
tions
an improve e�
ien
y.Our approa
h di�ers signi�
antly from others in three aspe
ts: (1) the impa
tof the su

ess of the analysis and the way it is integrated into a
ompilation, (2)the role of types for size inferen
e and (3) the restri
tions of the sour
e language:1. Our size analysis is an optional part of the
ompilation. Its su

ess �morepre
isely, the degree of its su

ess� determines the e�
ien
y of the target
ode but
annot lead to a failure of the
ompilation or a reje
tion of theprogram.Size inferen
e or size
he
king appears in other approa
hes at the front endof a
ompilation pro
ess, even in transformational approa
hes [12℄. Our sizeanalysis is lo
ated in the middle of the ba
k end of the
ompilation, insidean optimization loop. The analysis and subsequent program transformationsare performed in a
y
le and, thus, fun
tions are analyzed that never existedin the sour
e program.2. Other resear
hers base size analysis, be it inferen
e or
he
king, on types.(a) Some groups draw a strong
onne
tion between types and sizes. Bellèand Moggi [2℄ apply size inferen
e in an intermediate language with atwo-level type system that distinguishes between
ompile-time and run-time values [27℄. Xi and Pfenning [32℄ use dependent types and per-form type
he
king modulo
onstraint satisfa
tion. Singleton types en-able the generation of lists of a parti
ular size, dependent on integervalues. Jay and Sekanina [23℄ des
ribe type
he
king in a language VECon ve
tors, whi
h distinguishes between so-
alled shapely types and non-shapely types. They distinguish two kinds of
onditionals. The shapely
onditional, whi
h requires the
ondition to be of shapely type, is used toanalyze re
ursive size fun
tions but
annot deal with arbitrary programvalues. The non-shapely
onditional
an deal with all program valuesbut
annot be used to de�ne sizes. A surprisingly large
lass of programs
an be handled with this approa
h: all usual array indexing operationsand linear algebra. Hofmann [21℄ uses a linear type system to
ontrolthe size of lists and permit an in-pla
e update whi
h is espe
ially usefulfor sorting. Chin and Khoo [6℄ infer the sizes of re
ursive fun
tions by a�xed-point
al
ulation.

Size Inferen
e and Program Optimization 203(b) Others perform type inferen
e �rst, to keep it de
idable, and then infersizes based on the type information. Hughes, Pareto and Sabry [22℄ em-ploy three separate, su

essive steps: (1) Hindley-Milner inferen
e, (2)derivation of the size information and (3)
onstraint solving. Loidl andHammond [25℄ followed this approa
h. Our initial attempts were similar[17℄, but we re
ognized that the treatment of nested lists in the typeinformation leads to a formalism whi
h is di�
ult to apply. Now, we areusing types only to
ount the levels of nesting of the list, but do nottag type information with size information. As far as we know, the othergroups are
onsidering nested lists of re
tangular shape only, i.e., thoseisomorphi
 to multi-dimensional arrays. This simpli�es their treatmentin the type system signi�
antly. Fradet and Mallet [12℄ use predi
ates torestri
t operations to a subset of this re
tangular shape.3. We do not impose restri
tions on the sour
e language to perform size anal-ysis. As a ne
essary
onsequen
e, arbitrary size expressions may enter theanalysis and, thus,
onditions on sizes may be unde
idable. Sin
e our typeinferen
e happens in an earlier
ompiler phase and is
ompletely unrelatedto our stati
 size analysis, the size analysis may fail but the program maystill be typable.In all other stati
 approa
hes whi
h we are aware of size inferen
e is de
id-able. Chin and Khoo [6℄, Fradet and Mallet [12℄ and Xi and Pfenning [32℄use linear inequalities for
onstraints, i.e., Presburger arithmeti
. Bellè andMoggi [2℄, Jay and Sekanina [23℄ and Hofmann [21℄ a
hieve the de
idabilitythrough their type system.Limitation to Presburger arithmeti
 already rules out the following simplefun
tion f whi
h is likely to appear in an N -body
omputation: f takes alist of size m as input and produ
es a list that
ontains all element pairs andwhose size expression m2 is not permitted in a Presburger formula.Although formulas of number theory are, in general, unde
idable, there is agood
han
e that one
an solve more formulas than just those of Presburgerarithmeti
. Our approa
h is based on an extensible library of formula pat-terns and their simpli�
ations, whi
h are being
onsulted in size inferen
e.3 The HDC CompilerFun
tional languages are well suited for program parallelization be
ause of thesimpli
ity of program analysis and transformation
ompared to imperative lan-guages. However, if fun
tional languages are to be
ompetitive, their
ompilersmust produ
e similar target
ode, without overhead for memory management orauxiliary data stru
tures. This has motivated us to develop our own
ompilerfor a fun
tional language, with a strong fo
us on the
ode it produ
es. Skeletonsare a suitable vehi
le for a
hieving high e�
ien
y [19℄.We name our sour
e language HDC, for Higher-order Divide-and-Conquer,whi
h re�e
ts our belief in the produ
tivity that higher-order fun
tions lend to

204 Christoph A. Herrmann and Christian Lengauerprogramming. We have fo
ussed on divide-and-
onquer be
ause of its high po-tential for parallelism. E�
ient parallel implementations of divide-and-
onquerskeletons have been added to the
ompiler and have been used to express al-gorithms like Karatsuba's polynomial multipli
ation and the n-queens problem[20℄.The syntax of HDC is a subset of Haskell [16℄, sin
e we found language
on-stru
ts like the list
omprehension superior
on
erning notational
onvenien
eand style. In
ontrast to Haskell, the semanti
s of HDC is stri
t. This is to guar-antee that the spa
e-time mapping �that is, the assignment of operations to timeand pro
essors made at
ompile time� is respe
ted in the a
tual exe
ution.Brie�y, the HDC
ompiler [18℄
onsists of the following parts:1. front end: s
anning, parsing, desugaring, �-lifting, type inferen
e/
he
king2. ba
k end, pre-optimization part: monomorphization, elimination of fun
-tional arguments, elimination of mutual re
ursion,
ase-elimination, gen-eration of a dire
ted a
y
li
 program graph, tuple elimination3. ba
k end, optimization
y
le:(a) inlining (unfolding of fun
tion appli
ations)(b) rule-based optimizations by transformation (Se
t. 4)(
) size inferen
e (Se
t. 5)4. ba
k end, post-optimization part: abstra
t
ode generation, spa
e-time map-ping (parallelization),
ode generation, skeleton instantiationIn order to in
rease
ode e�
ien
y, size inferen
e and
ode optimizing trans-formations are performed alternatingly in several iterations. The size information
an be used to
ontrol program transformations in the next iteration. Addition-ally, the size information is useful in the parallelization and for memory assign-ment in the
ode generation.Due to the
omplexity of the task, the implementation of size inferen
e is stillat an early stage. Thus, the experimental results available to-date [18, 20℄ do notre�e
t the impa
t of the methods presented here.4 A List Transformation for Size Inferen
eThis se
tion is about the transformation whi
h makes size information expli
itfor the later size analysis. In the sour
e, lists are represented by the
onstru
tornil ([℄) for the empty list and the
onstru
tor
ons (:) for appending a newelement at the front of a list. The dependen
es introdu
ed by
ons rule outa
onstant-time a

ess to all list elements and
ompli
ate the analysis. Afterthe transformation, ea
h list is represented by a pair of its size and a fun
tionmapping indi
es to elements. The transformation itself appears straightforwardwith the
al
ulus presented in Se
t. 4.2. The di�
ulty is simplifying the o

urringexpressions of the result to a
losed form � in general, this is unde
idable.

Size Inferen
e and Program Optimization 2054.1 A New Representation for ListsTo maintain the list xs as a data obje
t, its length (#xs) and its indexing fun
tion(�i:xs!!i) are not kept separate but are
ombined by a new
onstru
tor whi
h wedenote by � . In the new representation, (� f n) denotes a list of length n and itsi-th element (i � 0) has the value f(i), e.g., the indexing fun
tion f for the list[0; 1; 4; 9; 16℄ is given by f(i) = i2. The indexing fun
tions of lists appearing asformal parameters and at the left side of let-de�nitions are referred to by freshvariables. For other lists, like the arithmeti
 sequen
e [m..n℄, whi
h
ontains allintegers from m to n, a new auxiliary fun
tion is generated and its name is usedin the � -expression. The indexing fun
tions are inspe
ted and simpli�ed duringthe analysis. In the next iteration of the optimization
y
le, they may disappearagain due to inlining. We
onsider two distin
t implementations of � -expressions:(1) preferably using an expli
it indexing fun
tion and (2) alternatively using anarray in the
ase that run-time values are to be stored.In
ontrast to abstra
t interpretation, our transformation makes the infor-mation we want to reason about �the length� expli
it without in
urring a lossof information. To emphasize this fa
t, we
all this
hange of representation a
hange of basis. We use the notion basis for a set of
onstru
tors that
onstitutea data type.Lemma 1 (Existen
e of an index/length basis). All �nite lists
an be ex-pressed in a basis whi
h makes their length and their indexing fun
tion expli
it.Proof. By an isomorphism of types [11℄ indu
ed by the fun
tions to-� andfrom-� de�ned below. The domain of to-� is the set of all �nite lists, the
odomain is restri
ted to the image of to-� and is taken for the domain offrom-� . map applies f to ea
h element of this list. �
an be de�ned as analgebrai
 data type (data).data �� = � (N ! �) Nto-� 2 [�℄!��to-� xs = � (�i:xs!!i) (#xs)from-� 2 ��! [�℄from-� (� f n) = map f [0..n�1℄� Due to this isomorphism, we identify the types �� and [�℄ and enable the
ompiler to apply to-� and from-� where an adaptation is required. The no-tation we use is adapted from the language Haskell [16℄.4.2 Rewriting in the � -Cal
ulusThe � -
al
ulus is a set of rules that
an be used for
onverting the standard listrepresentation to � -form. Tab. 1 explains the notation used in the
al
ulus. Wesplit the rules into three
lasses. The top of Fig. 1 gives a
omplete spe
i�
ation

206 Christoph A. Herrmann and Christian Lengauerof the semanti
s of � . In the middle part of the �gure, we de�ne the basi
 listfun
tions in terms of � . Sin
e pattern mat
hing has been eliminated in an earlier
ompiler phase, we rely on a predi
ate for the empty list and two fun
tions forsele
ting head and tail of a list, in addition to nil and
ons. The rules for thesebasi
 fun
tions are
onsistent with the de�nition based on the representationwith nil and
ons.a#b / a"b minimum/maximum of a and ba lhighlow = (a" low) #high
 for an arbitrary binary operator of type �! � ! �eOhighi=low xi = (((e
 xlow)
 :::)
 xhigh; if low � highe otherwisee[x:=v℄ substitute every free o

urren
e of x in e by v� k xi the highest j, for whi
h Pj�1i=0 xi (xi 2 N) does not ex
eed kTable 1. Notation used in the
al
ulusThe rules in the lower part of Fig. 1 are derived from the basi
 list fun
tionsand simpli�ed. Our strategy is to use as many rules as possible to a

eleratethe simpli�
ation of size information. Every list fun
tion, for whi
h a rule is notstated, must be analyzed itself.The following lemma states that these rules
an be used to
onstru
t a ter-minating rewrite system. (We do not need
on�uen
e, sin
e we do not
omparethe simpli�ed program parts.)Lemma 2 (Termination of the redu
ed rewrite system). In the � -
al
uluswithout rule intr-� , rewriting terminates with an expression whi
h
ontains nei-ther the
onstru
tors nil and
ons nor any list fun
tion on the left side of a rule.Proof sket
h. The number of o

urren
es of nil,
ons and list fun
tions in anexpression is �nite. Ea
h appli
ation of a rule stri
tly de
reases this number byat least one. �4.3 The List Transformation AlgorithmIn many
ir
umstan
es, the
hange of basis delivers a form of the fun
tion whi
hexpresses the lengths of the result lists in terms of the lengths of the argumentlists. The di�
ulty is that this redu
ed form will likely inherit the re
ursion ofthe original. In Se
t. 5, we ta
kle re
ursion elimination and other simpli�
ationsof size expressions in a little language. This language has only the value domains

Size Inferen
e and Program Optimization 207
intr-� fxs is a listg xs fresh i�! � (�i:xs!!i) (#xs)elim-� .0 # (� _ n) �! nelim-� .1 (� f n)!!i �! if 0� i<n then f i else ?null-� null (� _ n) �! n = 0nil-� [℄ �! � (
onst ?) 0
ons-� x : � f n fresh i�! � (�i:if i==0 then x else f (i�1)) (n+1)head-� head (� f n) �! if n>0 then f 0 else ?tail-� tail (� f n) �! if n>0 then � (f Æ (+1)) (n�1) else ?sequen
e-� [a..b℄ �! � (+a) ((b�a+1)"0)take-� take k (� f n) �! � f (kln0)drop-� drop k (� f n) �! � (f Æ (+(kln0))) (n� (kln0))map-� map g (� f n) �! � (g Æ f) nfoldl-� foldl
 e (� f n) fresh i�! eOn�1i=0 (f i)s
anl-� s
anl
 e (� f n)fresh i;j�! � (�j: eOj�1i=0 (f i)) (n+1)append-� � f m ++ � g nfresh i�! � (�i:if i<m then f i else g (i�m)) (m+n)
on
at-�
on
at (� (�i:(� (�j:ei;j) ni)) m)fresh k�! � (�k:((ei;j [i := � k ni℄)[j := k�P� k ni�1i=0 ni℄)) (Pm�1i=0 ni)Fig. 1. Rewrite rules

208 Christoph A. Herrmann and Christian Lengauerof numbers and Booleans, but
ontains symboli
 redu
tion operators, e.g., sum-mation. The symboli

al
ulation is ne
essary sin
e the lengths of the argumentlists are unknown at
ompile time and are, thus, represented by variables.Our algorithm works on the syntax tree of the fun
tion. From an algorithmi
point of view, the
hange of basis simpli�es our transformation, sin
e ea
h list(in � -form)
arries its (symboli
) length information along. If lengths were madepart of the type information, the
orre
tness of the transformation
ould notbe established solely by equational reasoning about the fun
tional expressions.Also, nested lists
an be treated pre
isely, sin
e the length of an inner list
anbe expressed in terms of its index in the outer list. Algorithm LISTSIMP (Fig. 2)performs a
omplete
hange of basis on the lists in the expression given to it.INPUT: expression e and a set of
onstraintsOUTPUT: expression semanti
ally equivalent to e whi
h does not
ontain list operations in the standard basisif e is a
onstant or variablethen if e is not of a list typethen return eelse substitute every o

urren
e of e by (� f n)where f and n are fresh nameselse (e is a
ompound expression):1. apply LISTSIMP to ea
h
omponent of e; the result is
alled e02. perform simpli�
ations in the size language of all arithmeti
 ex-pressions in e0, yielding e003. eliminate the standard list
onstru
tors and fun
tions from the
urrent node of the syntax tree by applying the rule of the � -
al
ulus that mat
hes, obtaining e0004. if e000 is not of a list type then return e000else (e000 is a list, represented by, say (� h m)):(a) apply LISTSIMP to the expression m, getting m0(b) apply LISTSIMP to the expression h using knowledge of m0,yielding h0(
) return (� h0 m0)Fig. 2. Algorithm LISTSIMPWe demonstrate the algorithm on a tiny, non-re
ursive fun
tion. Fun
tionrotate performs a
y
li
 shift of the elements of a list. Appli
ation areas arehardware des
ription/simulation or
onvolution.The beauty of lists for this purpose is obvious: to rotate the �rst eight itemsof a list xs, we just write: rotate (take 8 xs) ++ drop 8 xs.1. The initial fun
tion is as follows:rotate xs = if #xs < 2 then xs else tail xs ++ [head xs℄

Size Inferen
e and Program Optimization 209Note that a straightforward
ompilation of this fun
tion would produ
e nasty
ode. On the one hand, the expression tail xs
annot be shared be
ause[head xs ℄ has been appended at the end. On the other hand, it
annot beupdated in-pla
e, although it is not shared.2. A

ording to the algorithm, ea
h o

urren
e of the list variable xs is repla
edby (� f n), where f and n are fresh variables:rotate (� f n) = if #(� f n) < 2 then � f nelse tail (� f n) ++ [head (� f n)℄3. Appli
ation of the rules for #, tail and head:rotate (� f n) = if n<2 then � f nelse � (�i:f (i+1)) (n�1) ++ [f 0℄4. Appli
ation of the rules for nil and
ons to [f 0℄:rotate (� f n) = if n<2 then � f nelse � (�i:f (i+1)) (n�1)++ � (�i:if i == 0 then f 0 else ?) 15. Appli
ation of the append rule:rotate (� f n) = if n<2 then � f nelse � (�i:if i<n�1 then f (i+1) else f 0) n6. Simpli�
ation of the
onditional, using information about the length:rotate (� f n) = � (�i:f ((i+1) mod n)) nAll rule appli
ations aside from the simpli�
ation at the end are straightfor-ward a

ording to the rules. The su

ess of the simpli�
ation enables furtherpossibilities, e.g., an optimization of a sequen
e of k rotations, given by thefollowing equality:rotatek (� f n) = � (�i:f ((i+k) mod n)) n5 Simpli�
ation of Size ExpressionsIn the previous se
tion, we have de
omposed list data obje
ts into two inde-pendent
omponents: indexing fun
tion and length � both symboli
 arithmeti
expressions. Further simpli�
ations need not resort to the list data type anymore.The pro
ess of size inferen
e abstra
ts temporarily from the program repre-sentation to fo
us on mathemati
al issues. Our intention is to handle
onstraintsolving, simpli�
ation, et
. in a separate pa
kage whi
h need not know anythingabout the syntax or semanti
s of the fun
tional programming language. In thispa
kage, we use a small, �rst-order fun
tional language, the size language. It

210 Christoph A. Herrmann and Christian Lengauer
onsists of a set of (possibly re
ursive) fun
tion de�nitions and a single expres-sion whi
h de�nes a size dependent on symboli
 names and whi
h
an use theset of fun
tions.The size language still needs to
ontain re
ursion. E.g., here is the size fun
tionobtained from a re
ursive reverse fun
tion:reverseSize n = if n == 0 then n else reverseSize (n�1) + 1Simpli�
ation must solve this re
ursion. We will dis
uss that in Se
t. 5.3.5.1 The Syntax of Size ExpressionsAtomi
 size expressions are
onstants and variables. Size expressions
an be
om-posed by arithmeti
 operators,
onditionals, redu
tion operators (e.g., summa-tion) and appli
ations of size fun
tions. Variables are used to represent unknownvalues and for indexing elements in a redu
tion.Stru
tural parameters are those unknowns whi
h refer to input values ofthe fun
tion to be analyzed. Espe
ially useful input values are list lengths andnatural numbers whi
h are de
remented in re
ursive
alls. However, the
ompilermay not always be able to de
ide whi
h parameters are meant to be used asstru
tural parameters. The user
an point the
ompiler to a useful parameter�say n� for the problem size or depth of re
ursion by �branding� its name inthe program: n�. We believe that this kind of annotation is easier to use thanannotations of the type language with size expressions.The size information, expressed in terms of stru
tural parameters, is derivedby following the data �ow of the fun
tion [4℄. Our
hoi
e of a referentially trans-parent language enables a lo
al analysis of ea
h fun
tion. Where a fun
tion f isapplied to an argument x, the size information of the result
an often be
om-puted by an appli
ation of the size fun
tion of f to the size information of x.We prefer to en
ode all fun
tional
losures by �rst-order data stru
tures of thesour
e language. Then, x will never be a fun
tional
losure.In the
al
ulation of sizes, rational numbers
an appear as intermediate values.Exa
t rational arithmeti
 guarantees that no approximation errors will produ
ean in
orre
t integral size. Integers and natural numbers are treated as subtypesof the rational numbers. The integrality of de
ision variables
an be enfor
ed bysubtype de
larations. Boolean values are used for
onstraints.We present the abstra
t syntax of our size language in Fig. 3. Sin
e we areworking with syntax trees only and abstra
t from parenthesization, pun
tuation,et
. of a potential sour
e language, we use algebrai
 data type de�nitions insteadof BNF rules. Like BNF, these algebrai
 data types
an be used to de�ne
ontext-free expressions and, in addition,
onstitute a set of patterns to be used intransformations.� A size program P
onsists of a list of fun
tion de�nitions (F) and an expressionS to be evaluated.� In a fun
tion de�nition (name,(as,rs)) of type F, name is the name of thefun
tion, as is a list of its parameter names and rs a tuple of result sizes.Fun
tions
an be de�ned re
ursively.

Size Inferen
e and Program Optimization 211type P = ([F℄,S)type F = (Id,([Id℄,[S℄))type Id = Stringdata T = TBool | TNat | TInt | TRatdata S = Num Rational | SV Id T| BTrue | BFalse| S:+:S | S:-:S | S:*:S | S:/:S | S:�:S| Floor S | Ceil S | Fra
 S| Abs S | Sgn S | Min S S | Max S S| S:=:S | S:<:S | S:<=:S| IsRat S | IsInt S | IsNat S| Not S | S:&:S | S:|:S | S:<=>:S| Case [(S,S)℄ S| Let (Id,S) S| Apply Id [S℄ [Id℄ S| Redu
e (ROp,Id,S,S,S) S| Re
ur [[S℄℄ S [S℄data ROp = Sum | Prod | Minimum | Maximum | And | OrFig. 3. The size language� Id represents identi�ers.� T is a
olle
tion of types assigned to variables: TBool (Booleans), TNat (nat-ural numbers), TInt (integers) and TRat (rational numbers). There is theusual in
lusion relation between the number types whi
h allows
oer
ing inevaluation. Thus, there need not be a spe
i�
 integral division. The typeinformation is used by solvers as
onstraint information.� S is the type of syntax trees for size expressions. Ea
h alternative on theright side
orresponds to a parti
ular kind of node, named by a
onstru
tor.There are two kinds of
onstru
tors: in�x
onstru
tors are denoted withsurrounding
olons (e.g., :+:), the other
onstru
tors are pre�x
onstru
tors(e.g., Floor). The parts of an alternative aside from the
onstru
tor either
ontain subtrees (S) or attributes (e.g., ROp).� ROp des
ribes the set of redu
tion operators, i.e., a

umulated appli
ationsof a binary asso
iative and
ommutative operator.5.2 Semanti
sThe meaning of size expressions is de�ned by the following denotation, whereI[[exp ℄℄ is the interpretation of expression exp.� I[[Num r ℄℄ = r: a number, represented by an exa
t rational number. Due tothe number type in
lusion, it
an also
arry a natural or an integer.� (SV name t) represents the variable name of type t. The value of a variablemay be used as a value of a superset but, in
onstraint solving, the obtainedresult must mat
h the type.

212 Christoph A. Herrmann and Christian Lengauer� I[[BTrue℄℄ = True and I[[BFalse℄℄ = False: the boolean
onstants.� I[[a:~:b℄℄ = I[[a ℄℄~ I[[b ℄℄ for ea
h binary operator ~.� I[[Floor x ℄℄ = bI[[x ℄℄
, I[[Ceil x ℄℄ = dI[[x ℄℄e,I[[Fra
 x ℄℄ = I[[x ℄℄� bI[[x ℄℄
, I[[Abs x ℄℄ = jI[[x ℄℄j,I[[Sgn x ℄℄ = signum (I[[x ℄℄)� I[[Min x y ℄℄ = I[[x ℄℄ # I[[y ℄℄, I[[Max x y ℄℄ = I[[x ℄℄ "I[[y ℄℄� I[[IsRat x ℄℄ = (I[[x ℄℄ 2 Q), I[[IsInt x ℄℄ = (I[[x ℄℄ 2 Z),I[[IsNat x ℄℄ = (I[[x ℄℄ 2 N)� I[[Not x ℄℄ = :(I[[x ℄℄), I[[a:&:b℄℄ = I[[a ℄℄ ^ I[[b ℄℄,I[[a:|:b℄℄ = I[[a ℄℄ _ I[[b ℄℄, I[[a:<=>:b℄℄ = I[[a ℄℄, I[[b ℄℄� I[[Case [(
0; v0); :::; (
n; vn)℄ vn+1 ℄℄ = I[[vj ℄℄, where j is smallest su
h thatI[[
j ℄℄ = True, with I[[
n+1 ℄℄ = True by default.� I[[Let (x; v) e ℄℄ = I[[(e[x := v℄) ℄℄. The purpose of an auxiliary de�nition(Let) is to exploit
ommon subexpressions.� The semanti
s of (Apply f [e0,...,en℄ [v0,...,vm℄ exp) is that the size fun
tion fis applied to the size expressions e0 to en. f returns a tuple of size expressionswhi
h are bound to the variables v0 to vm. Then, the expression exp, de�nedin terms of these variables, is delivered.� I[[Redu
e (�; i; low; high;
ondi) elemi ℄℄ = Li2I elemi:a redu
tion with a
ommutative and asso
iative binary operator �, whereI = fi 2 Z j I[[low ℄℄ � i � I[[high ℄℄ ^ I[[
ondi ℄℄ = Trueg.� I[[Re
ur Â n̂ ê ℄℄ = �0Ane, where A is an m�m matrix, n 2 N and e an m-
olumn ve
tor. A = I[[Â ℄℄, n = I[[n̂ ℄℄ and e = I[[ê ℄℄. Re
ur expressionsprovide a
losed form for some re
urren
es without using roots. E.g., theFibona

i number n
an be expressed by fib(n) = (1 0) (1 11 0)n (01).5.3 Simpli�
ation Heuristi
sAfter the transformation of a re
ursive list fun
tion into � -form, length ex-pressions may still be expressed re
ursively. Using knowledge about frequentde
omposition patterns, one
an provide a heuristi
 pro
edure to �nd
losedforms.Probably the patterns most often used are the de
omposition of a list into(1) head and tail and (2) the left part and the right part [13, 26℄. We dis
ussbrie�y head/tail de
omposition here. If we are lu
ky, we obtain a re
ursive sizefun
tion and its
losed form of the following kind, where a 2 N and b 2 N ! N:s(n) = � a ; if n=0s(n�1) + b(n) ; otherwise� = a+ nXi=1 b(i)If b is a polynomial or another simple kind of fun
tion, we
an eliminate thesummation operator [14℄. E.g., if the size fun
tion originates from �attening atriangular matrix, we have a = 0 and b(n) = n. In this
ase, we obtain:s(n) = 0 + nXi=1 i = n(n+ 1)2

Size Inferen
e and Program Optimization 213We advo
ate the use of an extensible library of patterns. Unfortunately, we
annot hope to �nd the pattern by a synta
ti
 mat
h. E.g., instead of the ex-pression s(n�1) + n, we may en
ounter the expression bn=2
+ s(n�1) + dn=2ewhi
h is equal. Thus, we apply the following pro
edure:1. Sele
t a pattern whi
h appears appropriate sin
e it is known to be usefulfor the operators that appear in the expression. E.g., polynomials
an beappropriate for expressions that
ontain only addition and multipli
ation.2. Interpolate the expression with the pattern, obtaining values for the param-eters of the pattern.3. Run many tests with the instantiated pattern, to ex
lude a non-�tting pat-tern as qui
kly as possible.4. Verify symboli
ally that the instantiated pattern equals the expression.5. Simplify the pattern, exploiting properties gained by spe
ialization.We do not advo
ate interpolating the re
ursive fun
tion as a whole be
ausea su

essful mat
h will be very unlikely, even with a high number of attempts.Instead, we are looking for patterns for parts of the re
ursive fun
tion, whi
hare (1) the
ondition that indi
ates the re
ursive
ase, (2) the value in the non-re
ursive
ase, (3) the expression whi
h modi�es the arguments for the re
ursive
alls and (4) the expression whi
h
ombines the result of the re
ursive
alls.Then, we apply a re
urren
e elimination fun
tion a

ording to the ensemble ofpatterns we obtained. A promising approa
h is to sear
h for the power series ofthe generating fun
tion of the re
ursion [14℄. The n-th
oe�
ient of the powerseries
arries the value of the re
ursive fun
tion for the input n. Chin and Khoo[5℄ developed a tupling method to redu
e, in some
ases, re
ursion in multiplevariables to re
ursion in a single variable.6 Example: Nested Lists in Multiple Pre
ision Arithmeti
A major di�eren
e between our approa
h and those of others, e.g., [32℄, is thatour size information
an refer to the parti
ular position in a surrounding datastru
ture. Polynomial multipli
ation with multiple pre
ision arithmeti
 makesuse of this; here the bitsize of a
oe�
ient in the result depends on its position.6.1 Types and RepresentationIn order to make the maximal amount of information stati
ally derivable, ourprograms resemble spe
i�
ations of abstra
t digital designs [7, 10, 29℄. The basi
arithmeti
 fun
tions �whi
h are not presented here� are produ
ing output liststhat depend stati
ally on the size of input lists. E.g., a fun
tion whi
h adds twonumbers delivers a sum whose size is the maximum of both inputs; a potential
arry over�ow is delivered in a separate
omponent.Ea
h number is represented by a list of bits. Element i of ea
h number rep-resents the fa
tor (2 f0; 1g) of 2i. We de�ne the type Polynomial, whose valuesare polynomials in X , represented by their list of
oe�
ients. Coe�
ients arethemselves numbers. Element i of the polynomial represents the
oe�
ient ofX i.

214 Christoph A. Herrmann and Christian Lengauerpolymul 2 Polynomial! Polynomial ! Polynomialpolymul xss yss =let m = # xssn = # yssin [let low = 0"(k�n+1)high = (m�1)#kin sumN [mul (xss!!i) (yss!!(k�i)) j i [low..high℄ ℄j k [0..m+n�2℄ ℄polymul (� (�i:� (�j:fi;j) pi) m) (� (�i:� (�j:gi;j) qi) n)= � (� k: let low = 0"(k�n+1)high = (m�1)#kr = high�low+Redu
e (Maximum; i; 0; high�low; BTrue)(p(low+i) + q(k�(low+i)))(� h r) = sumN (� (� i : mul (� (�j:fi;j) pi) (� (�j:gk�i;j) qk�i))(high�low+1))in (� h r))(m+n�1) Fig. 4. Transformation of polymul into � -form6.2 The Sour
e Fun
tionThe upper part of Fig. 4 shows the de�nition of fun
tion polymul. The appli
a-tion of sumN sums, for ea
h
oe�
ient k, the produ
ts of the
oe�
ients of thetwo polynomials xss and yss. low and high are the index bounds of the
oe�
ientsof xss, in dependen
e of k. We de�ne m as the length of xss and n as the lengthof yss. The degree of the produ
t polynomial is the sum of the degree m�1 of xssand the degree n�1 of yss. Thus, it has m+n�1
oe�
ients, for X0 to Xm+n�2.We use a Haskell [16℄ list
omprehension to express this. A list
omprehensionhas �in our
ase� the form [expi j i [lowbound..highbound℄ ℄ where the in-dex variable i is taken from the integer range [lowbound..highbound℄ and expidenotes the element of the list asso
iated with index i. Note that list
ompre-hensions
an be desugared in an early
ompiler phase; our
ompiler performs adesugaring into the form map (�i:expi) [lowbound..highbound℄.6.3 Transformation into � -FormThe result of the transformation is shown in the lower part of Fig. 4. In � -form,we use m for the length of xss and n for the length of yss. The elements of xssand yss are expressed in terms of their position. xss!!i is itself a list, in � -form:(� (�j:fi;j) pi). Here, pi is the length of xss!!i, and fi;j its element with indexj. The representation of yss!!i is analogous, with q instead of p and g instead off . The analysis should infer a simpli�ed � -expression for the body of polymul

Size Inferen
e and Program Optimization 215with respe
t to the following appli
ation, where xss and yss have been repla
edby their � -form, as des
ribed above:polymul (� (�i:� (�j:fi;j) pi) m) (� (�i:� (�j:gi;j) qi) n)With this denotation of the parts of xss and yss, we analyze and transform thebody of polymul. The �rst step is to transform the outer nesting level of theresult list into � -form. We use expk as an abbreviation for element k of this list.Remember that the list
omprehension[expk j k [0..m+n�2℄ ℄has been desugared by an earlier
ompiler phase into:map (�k:expk) [0..m+n�2℄Applying the rules of the � -
al
ulus to the desugared form yields:� (�k:expk) (m+n�1)Next, we look at the transformation of expk and infer the length of:sumN [mul (xss!!i) (yss!!(k�i)) j i [low..high℄ ℄After desugaring and translation into � -form, we have:sumN (� (�i:mul (� (�j:fi;j) pi) (� (�j:gk�i;j) qk�i)) (high�low+1))We skip a lot of formal treatment here and present dire
tly the size r of theresult of the sumN appli
ation:high�low+Redu
e (Maximum; i; 0; high�low; BTrue)(p(low+i) + q(k�(low+i)))6.4 Bene�t of the TransformationWe have inferred that the result polynomial has m+n�1
oe�
ients, and
o-e�
ient k
an be represented by r digits with r as stated above. If r is notsimpli�ed, its value must be
omputed qui
kly at run time. Fun
tion h is basedon the re
ursive fun
tion sumN and
annot be stated as a simple
losed expressionsin
e it depends on many run-time values. Inlining of sumN
ould, in prin
iple,be done after this transformation, but very likely sumN will not be inlined dueto its
omplexity.The
omputation of the digits of ea
h
oe�
ient k remains the task of fun
tionsumN. However, the size r is su�
ient for our purpose, sin
e we
an allo
ate thememory for the
oe�
ients of the result in advan
e:1. In a parallel
omputation of the
oe�
ients, the number of bytes to be allo-
ated for ea
h
ommuni
ation bu�er is known in advan
e. Thus, an appro-priate representation assumed, the �nal lo
ation of a
oe�
ient
an alreadybe used to re
eive the message.2. A simulator of a digital design
an stati
ally allo
ate the exa
t amount ofmemory
ells required to store the values, i.e., no dynami
 data stru
turesare required. A
ompiler whi
h produ
es a hardware design has knowledgeof the exa
t amount of bits required for ea
h
oe�
ient, if the values of thestru
tural parameters are �xed.

216 Christoph A. Herrmann and Christian Lengauer7 Summary and Perspe
tivesSize inferen
e enhan
es the possibilities for a
ompilation of fun
tional programsof high e�
ien
y. Obviously, if a list
an be represented by an array be
ause itslength is known in advan
e, at least the amount of spa
e for
haining the elements
an be saved. Loss of dependen
es in
reases the potential for parallelization.Often, intermediate
opies of data obje
ts
an be saved sin
e the result
anbe put immediately at the pla
e where it is required. This makes
ommuni
ationmore e�
ient.The analysis is inherently unde
idable and must be based on heuristi
s, e.g.,partial evaluation,
onstraint solving, solving of re
urren
e equations, simpli�-
ation of symboli
 expressions and pattern mat
hing with uni�
ation. We arepursuing the following strategy, whi
h we hold to be quite promising: iteratealternatingly through applying size inferen
e and then exploiting the resultsvia program transformations. Possible transformations are inlining, fusion, de-forestation and program spe
ialization. The iterative pro
ess propagates stati
information su

essively deeper into the program stru
ture, until the e�ort toevaluate the symboli
 expressions at run time ex
eeds the gain.We are going to implement size inferen
e and the list transformation into our
ompiler. We have not been able to �nd a tool whi
h provides adequate supportfor simpli�
ation of size expressions as we require; we may have to implementthe simpli�er ourselves. Furthermore, the
ompiler is undergoing a redesign inwhi
h the front end is being repla
ed by the front end of the Glasgow Haskell
ompiler.A
knowledgementsWe are grateful to Peter Faber, Paul Feautrier, John O'Donnell and GregorSnelting for fruitful dis
ussions. Mi
hael Mendler, Walid Taha and the anony-mous referees gave us valuable hints about related work. The work was supportedby the German Resear
h Foundation (DFG).Referen
es1. Je�rey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defun
tional-ization. SIGPLAN Noti
es, 32(8):25�37, 1997.2. Gianni Bellè and Eugenio Moggi. Typed intermediate languages for shape-analysis.In Typed Lambda Cal
uli and Appli
ations (TLCA'97), Le
ture Notes in ComputerS
ien
e 1210, pages 11�29. Springer-Verlag, 1997.3. Ri
hard S. Bird. Algebrai
 identities for program
al
ulation. The ComputerJournal, 32(2):122�126, 1989.4. Siddharta Chatterjee, Guy E. Blello
h, and Allan L.Fisher. Size and a

ess infer-en
e for data-parallel programs. Te
hni
al Report CMU-CS-91-118, Dept. Com-puter S
ien
e, Carnegie-Mellon Univ., 1991.

Size Inferen
e and Program Optimization 2175. Wei-Ngan Chin and Siau-Cheng Khoo. Tupling fun
tions with multiple re
ursionparameters. In Patri
k Cousot, Moreno Falas
hi, Gilberto File, and Antoine Rauzy,editors, Stati
 Analysis Third Int. Workshop (WAS'93), Le
ture Notes in ComputerS
ien
e 724, pages 124�140. Springer-Verlag, 1993.6. Wei-Ngan Chin and Siau-Cheng Khoo. Cal
ulating sized types. In Pro
eedings ofthe 2000 ACM SIGPLAN Workshop on Evaluation and Semanti
s-Based ProgramManipulation (PEPM-00), pages 62�72, N.Y., 2000. ACM Press.7. Koen Claessen and Mary Sheeran. A tutorial on Lava: A hardware des
riptionand veri�
ation system. Te
hni
al report, Dept. of Computing S
ien
e, ChalmersUniversity of Te
hnology, August 2000.8. Patri
k Cousot and Radhia Cousot. Abstra
t interpretation: A uni�ed latti
emodel for stati
 analysis of programs by
onstru
tion of approximation of �xedpoints. In Pro
. 4th ACM Symp. Prin
iples of Programming Languages (POPL'77),pages 238�252. ACM Press, 1977.9. John Darlington, Anthony Field, Peter Harrison, Paul Kelly, David Sharp, QianWu, and Ronald L. While. Parallel programming using skeleton fun
tions. In ArndtBode, Mike Reeve, and Gottfried Wolf, editors, PARLE'93: Parallel Ar
hite
turesand Languages Europe, Le
ture Notes in Computer S
ien
e 694, pages 146�160.Springer-Verlag, 1993.10. Nan
y A. Day, Je�rey R. Lewis, and Byrin Cook. Symboli
 simulation of mi
ropro-
essor models using type
lasses in Haskell. Te
hni
al Report CSE-99-005, Pa
i�
Software Resear
h Center, Oregon Graduate Institute, 1999.11. Roberto Di Cosmo. Isomorphisms of Types: from �-
al
ulus to information re-trieval and language design. Progress in Theoreti
al Computer S
ien
e. Birkhäuser,1995.12. Pas
al Fradet and Julien Mallet. Compilation of a spe
ialized fun
tional languagefor massively parallel
omputers. Te
hni
al Report 3894, Institut National derRe
her
he en Informatique et en Automatique (INRIA), 2000.13. Sergei Gorlat
h. Extra
ting and implementing list homomorphisms in parallelprogram development. S
ien
e of Computer Programming, 33(1):1�27, 1999.14. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con
rete Mathemati
s.Addison-Wesley Publishing Company, 1994.15. Per Hammarlund and Björn Lisper. On the relation between fun
tional and dataparallel programming languages. In Pro
. Sixth Conf. on Fun
tional ProgrammingLanguages and Computer Ar
hite
ture (FPCA'93), pages 210�222. ACM Press,1993.16. haskell.org, 2000. http://www.haskell.org.17. Christoph A. Herrmann and Christian Lengauer. Size inferen
e of nested lists infun
tional programs. In Kevin Hammond, Tony Davie, and Chris Cla
k, editors,Pro
. 10th Int. Workshop on the Implementation of Fun
tional Languages (IFL'98),pages 346�364. Dept. Computer S
ien
e, Univ. College London, 1998.18. Christoph A. Herrmann, Christian Lengauer, Robert Günz, Jan Laitenberger, andChristian S
haller. A
ompiler for HDC. Te
hni
al Report MIP-9907, Fakultät fürMathematik und Informatik, Univ. Passau, May 1999.19. Christoph A. Herrmann. The Skeleton-Based Parallelization of Divide-and-Conquer Re
ursions. PhD thesis, Fakultät für Mathematik und Informatik, Univ.Passau. Logos-Verlag, Berlin, 2000.20. Christoph A. Herrmann and Christian Lengauer. HDC: A higher-order languagefor divide-and-
onquer. Parallel Pro
essing Letters, 10(2�3):239�250, 2000.

218 Christoph A. Herrmann and Christian Lengauer21. Martin Hofmann. A type system for bounded spa
e and fun
tional in-pla
e update� extended abstra
t. In Gerd Smolka, editor, Programming Languages and Systems(ESOP 2000), Le
ture Notes in Computer S
ien
e 1782, pages 165�179. Springer-Verlag, 2000.22. John Hughes, Lars Pareto, and Amr Sabry. Proving the
orre
tness of rea
tivesystems using sized types. In Pro
. 23rd Ann. ACM Symp. on Prin
iples of Pro-gramming Languages (POPL'96), pages 410�423. ACM Press, 1996.23. C. Barry Jay and Milan Sekanina. Shape
he
king of array programs. In J. Harland,editor, Pro
. Australasian Theory Seminar on Computing, volume 19 of AustralianComputer S
ien
e Communi
ations, pages 113�121, 1997.24. Björn Lisper and Jean-François Collard. Extent analysis of data �elds. In BaudouinLe Charlier, editor, Stati
 Analysis (SAS'94), Le
ture Notes in Computer S
ien
e864, pages 208�222. Springer-Verlag, 1994.25. Hans-Wolfgang Loidl and Kevin Hammond. A sized time system for a parallelfun
tional language. In Pro
. 1996 Glasgow Workshop on Fun
tional Programming,1996. Ele
troni
 publi
ation: http://www.d
s.gla.a
.uk/fp/workshops/fpw96/Pro
eedings96.html.26. Jayadev Misra. Powerlist: A stru
ture for parallel re
ursion. ACM Trans. onProgramming Languages and Systems, 16(6):1737�1767, November 1994.27. Flemming Nielson and Hanne Riis Nielson. Two-level fun
tional languages. Num-ber 34 in Cambridge Tra
ts in Theoreti
al Computer S
ien
e. Cambridge Univer-sity Press, 1992.28. John T. O'Donnell. Bidire
tional fold and s
an. In Fun
tional Programming:Glasgow 1993, Workshops in Computing, pages 193�200. Springer-Verlag, 1994.29. John T. O'Donnell. From transistors to
omputer ar
hite
ture: Tea
hing fun
tional
ir
uit spe
i�
ation in Hydra. In Pieter H. Hartel and Rinus Plasmeijer, editors,Fun
tional Programming Languages in Edu
ation, Le
ture Notes in Computer S
i-en
e 1022, pages 195�214. Springer-Verlag, 1995.30. James Riely and Jan Prins. Flattening is an improvement. In Jens Palsberg, editor,Stati
 Analysis (SAS'2000), Le
ture Notes in Computer S
ien
e 1824, pages 360�376. Springer-Verlag, 2000.31. Philip Wadler. Views: A way for pattern mat
hing to
ohabit with data abstra
tion.In Pro
. 14th ACM Symp. Prin
iples of Programming Languages (POPL'87), pages307�313. ACM Press, 1987.32. Hongwei Xi and Frank Pfenning. Dependent types in pra
ti
al programming. InPro
. 26th ACM Symp. Prin
iples of Programming Languages (POPL'99), pages214�227. ACM Press, 1999.

