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ABSTRACT
Feature-Oriented Programming (FOP) decomposes complex
software into features. Features are main abstractions in
design and implementation. They reflect user requirements
and incrementally refine one another. Although, features
crosscut object-oriented architectures they fail to express
all kinds of crosscutting concerns. This weakness is exactly
the strength of aspects, the main abstraction mechanism
of Aspect-Oriented Programming (AOP). In this article we
contribute a systematic evaluation and comparison of both
paradigms, AOP and FOP, with focus on incremental soft-
ware development. It reveals that aspects and features are
not competing concepts. In fact AOP has several strengths
to improve FOP in order to implement crosscutting features.
Symmetrically, the development model of FOP can aid AOP
in implementing incremental designs. Consequently, we pro-
pose the architectural integration of aspects and features in
order to profit from both paradigms. We introduce aspec-
tual mixin layers (AMLs), an implementation approach that
realizes this symbiosis. A subsequent evaluation and a case
study reveal that AMLs improve the crosscutting modular-
ity of features as well as aspects become well integrated into
incremental development style.

Categories and Subject Descriptors: D.3.3 [Software]:
Programming Languages—Language Constructs and Featu-
res; D.2.11 [Software]: Software Engineering—Software Ar-
chitectures

General Terms: Design, Languages

Keywords: Feature-Oriented Programing, Aspect-Orien-
ted Programming, Component Techniques, Collaborations

1. INTRODUCTION
Program families [30] and incremental software develop-

ment [35] have a long tradition and are still subjects of cur-
rent research. A main objective of research in this field is
to simplify the maintenance, reuse, customization, and evo-
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lution of software. Two programming paradigms heavily
discussed in this context are Feature-Oriented Programming
(FOP) [7] and Aspect-Oriented Programming (AOP) [15].

FOP was developed to implement software incrementally
in a step-wise manner. Features reflect requirements and
program characteristics that are of interest to stakeholders.
The main idea is that features are mapped one-to-one to
modular implementation units (feature modules). Since it
has emerged that traditional abstractions as classes and ob-
jects are too small units of modularity, features contain a set
of classes that contribute to the features in collaborations [7,
32, 28, 20]. Therefore, refinement of features means refine-
ment of their structural elements.

AOP addresses similar issues but with a different focus:
AOP focuses mainly on separating and modularizing cross-
cutting concerns. It introduces aspects which encapsulate
code that would be otherwise tangled with other concerns
and scattered over the base program. Thereby, separation
of concerns is achieved that is important to implement com-
plex software, i.e. product lines. Although the initial focus
does not lie on incremental software development several
research efforts go into this direction [23, 28, 10, 24, 20],
however, with numerous problems that are discussed here.

Relationship of aspects and features. In this paper we
explore the relationship of AOP and FOP an therewith the
connection between aspects and features.1 We do not per-
ceive them as competing approaches but rather as approaches
that can profit from each other. The idea of FOP is to
decompose a system architecture into units that are of in-
terest to the stakeholders. Since features encapsulate col-
laborations and refine one another, the underlying object-
oriented architecture becomes organized at a higher level.
It is decomposed along these collaborations. Despite these
advantages, FOP has drawbacks regarding (1) the crosscut-
ting modularity, in particular the ability to localize, sepa-
rate, and modularize certain kinds of crosscutting concerns
as well as (2) the ability to seamlessly integrate structural
independent features [28, 20]. Both are highly related since
an integration of independent features results usually in a
crosscutting interconnection of the corresponding structural
elements. This is where AOP comes into play.

Aspects modularize concerns that otherwise crosscut other
concerns. But they are not adequate to implement all kinds
of features. In many cases aspects cannot implement fea-

1In the remaining paper we use AOP/FOP and aspects/fea-
tures synonymously, despite the fact that the former are
programming paradigms and the latter their main concepts.



tures stand-alone [22]. Other aspects and additional classes
are needed. This is because features are mostly implemented
by collaborations, but common AOP techniques are not able
to express and encapsulate collaborations. A further draw-
back of current AOP approaches is that aspects insufficiently
support incremental software development. In a nutshell, as-
pects are problematic in incremental designs because they
cannot be bounded to a certain scope and so they may affect
inadvertently unanticipated features [23, 25].

However, we see aspects at the level of classes whereas
features organize the overall architecture at a higher level.
Thinking of aspects and features in this way makes it pos-
sible to integrate both. Our idea is that a programmer im-
plements features as units that structure an aspect-oriented
architecture. Technically this means that aspects are inte-
grated into collaborations and work with classes and other
aspects in concert to implement features of a software.

The close integration of aspects and features holds several
advantages to FOP and to AOP: (1) Introducing aspects
into feature modules improves their crosscutting modularity
as well as the ability to integrate structural independent
features. (2) Our approach supports the programmer to
implement incremental designs using aspects. Due to their
integration into a stack of feature modules we were able to
bound aspects to certain layers. In short, this bounding
capability decreases unpredictable aspect behavior in the
face of adding subsequently unanticipated features.

Our view on the relationship of aspects and features differs
from previous work: Caesar [28, 27] and related approaches
aim at improving AOP by adopting component techniques.
These approaches intermix structural elements of aspects
and features, e.g. pointcuts and collaborations. Our view
is more general and explores the architectural relationship
of aspects and features. We discovered that there is a nat-
ural connection between both. By applying our ideas to
AHEAD [7] – an advanced architectural model for FOP –
we place them on a sound algebraic foundation (see Sec. 6).

However, our ideas are inspired by this previous work
and extend our investigations in FeatureC++ a feature-
oriented extension to C++ [3]. In this paper we address the
general issues that arise from the individual properties of as-
pects and features as well as their integration. Our results
are independent from a specific language and can be seen as
an architectural approach for integrating AOP and FOP.

In this paper we make the following contributions:
• Criteria for evaluating modularization techniques with

respect to incremental software development.
• An evaluation of FOP and AOP with regard to mod-

ularity, expressiveness, and reusability.
• The integration of aspects and features at architectural

level that is based on a symbiosis of AOP and FOP.
• Aspectual mixin layers, an implementation approach

that integrates aspects and feature modules in order to
exploit their strengths and their synergetic potential.

• An evaluation, a case study, and a discussion of AMLs
focusing on their contribution to AOP and FOP, in the
broader context of incremental software development.

2. BACKGROUND
For a better understanding of the remaining article we

briefly review FOP and AOP as well as two representative
languages, FeatureC++ [3] and AspectC++ [33].

2.1 Feature-Oriented Programming
FOP studies the modularity of features in product lines [7].

The idea of FOP is to build software (individual programs)
by composing features that are first-class entities in design
and implementation. Features refine other features incre-
mentally. Hence, the term refinement refers to a feature
refining others. This step-wise refinement leads to concep-
tually layered software designs.

Mixin layers are one appropriate technique to implement
features [32, 7]. The basic idea is that features are sel-
domly implemented by single classes (or aspects); Often,
a whole set of collaborating classes contribute to a feature.
Classes play different roles in different collaborations. A
mixin layer is a static component encapsulating fragments
of several different classes (roles) so that all fragments are
composed consistently. Figure 1 depicts a stack of three
mixin layers (L1 −L3) in top down order. The mixin layers
crosscut multiple classes (CA − CC). The boxes represent
the mixins. Mixins that belong to and constitute together a
complete class are called a refinement chain.

AHEAD is an architectural model for FOP and a basis for
large-scale compositional programming [7]. AHEAD gener-
alizes the concept of features: They do not consist of code
only but of several types of artifacts, e.g. makefiles, UML-
diagrams, documentation (principle of uniformity). The
ideas elaborated in this article follow AHEAD.

FeatureC++
2 is an extension to C++ that supports

FOP. FeatureC++’s mixin layers are represented by file
system directories. Thus, they have no textual representa-
tion at code level. Those mixins found inside a directory are
assigned to be members of the enclosing mixin layer.
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Figure 1: Stack of
mixin layers.
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Figure 2: Two aspects
extend three classes.

Each constant and refinement is implemented as a mixin
inside exactly one source file. Constant classes form the root
of a refinement chain. Refinements are applied to constants
as well as to other refinements. Figure 3 depicts a constant
(Line 1) and a refinement (Line 5). Programmers declare
refinements using the refines keyword. Usually, refinements
introduce new attributes and methods (Line 6) or extend
methods of their parent classes (Lines 7-9). To access the
extended method the super keyword is used (Line 8). A
more detailed explanation of FeatureC++, its capabilities,
and its implementation is given elsewhere [3].

2.2 Aspect-Oriented Programming
AOP aims at separating and modularizing crosscutting

concerns [15]. Using object-oriented mechanisms the imple-
mentation of crosscutting concerns results in tangled and
scattered code [15, 11]. The idea behind AOP is to im-
plement crosscutting concerns as aspects whereas the core
features are implemented as components. Using pointcuts

2http://wwwiti.cs.uni-magdeburg.de/iti db/fcc



1 class Buffer {
2 char *buf;
3 void put(char *s) {}
4 };
5 refines class Buffer {
6 int len; int getLength () {}
7 void put(char *s) {
8 i f (strlen(s) + len < MAX) super::put(s);
9 }

10 };

Figure 3: Refining a buffer.

1 aspect Logging {
2 pointcut log() = call ("% Buffer ::%(...)");
3 advice log() : before() {
4 cout << JoinPoint :: signature ();
5 }
6 };

Figure 4: A logging aspect in AspectC++.

and advice, an aspect weaver glues aspects and components
together. Pointcuts specify the join points of aspects and
components, whereas advice define which code is applied
to these points. Figure 2 shows two aspects (A1, A2) that
extend three classes at different join points (dashed arrows).

AspectC++3 is an C++ language extension for AOP. Fig-
ure 4 lists an aspect that implements a logging concern that
otherwise would crosscut the basic buffer functionality. The
pointcut log (Line 2) specifies the set of points in the struc-
ture and execution of the base program (join points) that
are supposed to be extended by the logging concern. An
corresponding advice (Lines 3-5) executes the logging code.

3. EVALUATING FOP AND AOP
In this section we introduce a set of criteria that forms

a basis for a systematic evaluation of modularization tech-
niques with respect to incremental software development.
We use these criteria to evaluate FOP and AOP.

3.1 Evaluation Criteria
The following considerations are based on our experience

in building product lines [2, 18] and on previous work [22,
28, 20]. We are aware that this set of criteria may not be
complete, but we consider only those criteria that are crucial
to step-wise refinement and in which FOP and AOP differ
significantly.

Homogeneous vs. heterogeneous crosscuts. Crosscutting
concerns differ in their structure [9]: Homogeneous crosscuts
apply the same code at different join points whereas hetero-
geneous crosscuts apply different code. A different point of
view is that homogeneous crosscuts interact with the base
program in a one-to-n pattern and heterogeneous crosscuts
in a m-to-n pattern. If a modularization techniques does not
provide explicit mechanisms for encapsulating homogeneous
crosscuts, the programmer has to refine each join point with
separate structural elements that contain redundant code,
e.g. refining a set of methods with a set of new methods
that all contain the same code.

3http://www.aspectc.org

Static vs. dynamic crosscutting. Crosscutting concerns
affect a program in two ways: Static crosscutting affects the
static structure, e.g. by adding members and classes. Dy-
namic crosscutting affects the dynamic behavior, e.g. method
interceptions. Whereas static crosscutting extends a given
program structure, dynamic crosscutting indicates when to
execute an extension at runtime. Both types are essential
because new features usually extend structure and behavior.

Structural dependency. A straightforward way to imple-
ment a new feature is to express it in terms of the structure
of the refined features. That means, new features super-
impose base features in order to define a set of refinements
to the existing structural elements [8, 7]. Such features
are called hierarchy-conforming because they depend on the
given program structure. Although this structure-preserving
super-imposition is very useful for comprehensibility, there
are certain situations where it is beneficial to alter the struc-
ture and to raise the abstraction level [28, 20, 14]. Such fea-
tures are called non-hierarchy-conforming. Suppose a net-
work software that is refined by an application protocol.
The interactions at application level can be much easier ex-
pressed in terms of producer (server), consumer (client), and
product (delivered data) than using the basic network ab-
stractions such as sockets and streams. Implementing such
features is strongly related to crosscutting phenomena be-
cause with object-oriented techniques several structural el-
ements at different locations (across the network protocol)
are refined by a new structure (producer-consumer pattern).

Integrating features that are structural independent re-
sults in similar problems, e.g. connecting a component for
displaying hierarchical graph structures consisting of nodes
and connections with a component abstracting the network
structure of a distributed business application. Since there
are no structural counterparts between those two compo-
nents it is very complicated to achieve a clean mapping.
Thus, such integration results in crosscutting adaptation
code [27]. Whereas the hierarchy-conforming features are
naturally supported by most language paradigms, e.g. in-
heritance, it is more difficult to implement non-hierarchy-
conforming features. Both should be explicitly supported
by modern modularization techniques.

Feature cohesion. Cohesion is the property of a feature to
encapsulate all implementation units that contribute to the
feature in one module [22]. This eases the maintainability,
clearness, and configurability of software. The one-to-one
mapping of requirements to feature modules is an idealized
goal [11]. Feature cohesion is the basis for aggregating fea-
tures to form compound features. Such hierarchical aggrega-
tion allows to reuse approved features in order to construct
new ones. This eases the implementation and understand-
ing because thinking in terms of existing features is often
easier than building features from scratch.

3.2 Evaluation
Using our criteria, we evaluate FOP and AOP step-by-

step. In order to do not complicate the evaluation, we dis-
cuss hybrid approaches, e.g. Caesar, in Section 6.

Homogeneous vs. heterogeneous crosscuts. FOP deals
with implementing heterogeneous crosscuts. Usually, a pro-
grammer refines different classes and methods with different



new classes and methods; the programmer applies different
code to different join points. It is hard to specify a set of
join points and to apply the same code to this set because
it is not explicitly supported. This results in redundant
programming effort and duplicated code. This weakness in
modularizing homogeneous crosscuts is the strength of AOP.

Using aspects the programmer specifies a set of join points
in order to apply one advice. This makes it easy to express
homogeneous crosscuts. In exchange, AOP is not well suited
to implement heterogeneous crosscuts compared to imple-
menting features as collaborations. Aspects act not at this
level of abstraction [28, 20]. They are not intended to orga-
nize a collaboration of classes and its subsequent refinement.

However, it is possible to bundle a set of static introduc-
tions or pairs of pointcuts and advice in one aspect as pro-
posed in [31], but such aspects do not reflect the structure of
the refined feature [28]. That means that the logical struc-
ture reflecting the domain knowledge is broken. But this
structure – that the programmer had in mind during the
initial design – is important for the comprehensibility of the
overall architecture [8]. However, sometimes there are sit-
uations where we want to raise the abstraction level and
change the structure, as we will explain.

Suppose a producer-consumer-protocol is refined by func-
tionality that allows for exchanging products. This refine-
ment logically extends the producer and the consumer. En-
capsulating these pieces into one single aspect moves the
code responsible for communication from the producer and
consumer away to a third abstraction (aspect). The prob-
lem of this separation is that this code is an integral part
of the producer and consumer concept. Several studies con-
firm that using instead super-imposition of the collaborating
objects perform better with respect to maintainability and
comprehensibility [7, 28, 32, 20, 14, 8].

Another way to implement a heterogeneous crosscut using
AOP is to define one refining aspect per join point, instead
of refining these different join points with one single aspect.
This solution is similar to the FOP approach but uses point-
cuts and advice – instead of using inheritance – to refine the
parent’s structural elements. However, even in the case that
there are no additional classes needed this would break fea-
ture cohesion because the several aspects that contribute to
the feature are not encapsulated in an enclosing feature mod-
ule. Integrating these aspects in a package does not rectify
this since packages cannot be composed and aggregated.

Static vs. dynamic crosscutting. Both, FOP and AOP
support static crosscutting, in particular adding methods
and attributes. FOP has a more general mechanism for in-
troducing new structural elements since it support also the
introduction of new classes. Since in AOP there is no con-
cept of feature module, one cannot specify aspects that in-
troduce new classes. However, an aspect may contain inner
classes but as already mentioned there are no mechanisms
to compose different aspects and their their inner classes
simultaneously.

Furthermore, both paradigms support dynamic crosscut-
ting. Whereas FOP supports only simple method intercep-
tions (that correspond to execution pointcuts), AOP can ex-
press more advanced dynamic crosscutting, e.g. using cflow.

Structural dependency. In FOP, features that refine other
features have to extend the static structure of the base fea-

ture. The programmer is forced to express new features in
terms of abstractions of the existent features, e.g. by refin-
ing existent classes and methods with new classes and meth-
ods. This super-imposition hinders the raising and altering
of the abstraction level. Indeed, with FOP new classes can
be added, but it is not possible to refine/extend multiple
existent classes and to introduce a new concept on top of
the refined elements. For the same reason the integration of
structural independent features leads to complex crosscut-
ting workarounds [27].

AOP allows encapsulating a refinement into aspects. As-
pects are able to refine a base program at multiple join
points. Although, the quantification of aspects is expressed
in terms of syntactical properties of the base program, the
aspects themselves do not have to be aligned with the inher-
ent structure of the base program [28]. Thus, the program-
mer can introduce new abstractions (aspects and classes in
collaboration) that build up on present structures but intro-
duce new concepts. This allows for connecting features that
differ in their structure [28, 20, 14].

Feature cohesion. Features implemented as mixin layers
are mapped one-to-one to the implementation level. All
structural elements that contribute to the feature are en-
capsulated inside a mixin layer. Hence, a high degree of
feature cohesion is achieved. Features can be composed to
form new features. This enables the programmer to generate
compound features out of atomic features.

Using AOP, a programmer expresses new features by in-
troducing aspects and classes. In many cases features cannot
be expressed using one single aspect, especially not in large
evolved programs [22, 28]. Often, the programmer intro-
duces several aspects and additional classes, e.g. a logging
aspect and a class responsible for printing log messages. One
may argue that he is able to express every feature using one
aspect stand-alone, but we argue that this conflicts with
the idea of AOP and separation of concerns. A significant
body of research confirms that classes or aspects standalone
are too small units of modularity and are not suitable for
implementing features [7, 27, 20, 34, 6].

Indeed, aspects can be encapsulated in packages or may
contain nested classes. Anyways, there is no mechanism for
refining, composing, and aggregating such constructs. Be-
sides this lack of encapsulation also the complicated and
hard-to-understand precedence rules for ordering the appli-
ance of aspects hinder an easy and consistent composition
mechanism to form compound features [23].

A further benefit of FOP which is exclusive to AHEAD
is that feature compositions can be described using alge-
braic equations. An algebraic model poses as a basis and
supports automatic composition and optimization as well as
compositional reasoning [7].

3.3 Summary
Table 1 summarizes our evaluation results. As we already

explained, all these evaluation criteria are crucial to incre-
mental software development. Choosing one modularization
technique, FOP or AOP, leads to the known problems be-
cause both have their weaknesses. Table 1 shows that both
techniques complement one another, e.g. AOP is strong in
modularizing homogeneous crosscuts whereas FOP has its
strengths in modularizing heterogeneous crosscuts. There-
fore, we propose the integration of both techniques.
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Table 1: Evaluation of FOP and AOP.

4. ON THE SYMBIOSIS OF AOP AND FOP
This section presents an approach that aims at solving the

problems discussed. We propose the integration of aspects
and features at architectural level as well as a technique
to implement the envisioned kind of feature modules. Fur-
thermore, we introduce the notion of aspect refinement and
a specific aspect bounding mechanism that follow logically
from the symbiosis of AOP and FOP. Finally, we evaluate
our approach using our criteria.

4.1 Integrating Aspects and Features
When designing and implementing software systems in a

feature-oriented way, a programmer starts usually by model-
ing and abstracting real world entities in terms of classes and
objects and their manifold collaborations. The result is an
object-oriented architecture. Feature-oriented approaches
further organize this architecture using features. Features
crosscut the architecture horizontally, i.e. they encapsulate
those class fragments (and their collaborations) that con-
tribute to the feature. Moreover, subsequent features refine
existing features, i.e. their structural elements. Therefore,
features are a mechanism that organize architectures at a
higher level of abstraction than classes (see Fig. 5).

feature−oriented
architecture

object−oriented
architecture

Figure 5: FOP Decomposition.

Our evaluation pointed us to the fact that in certain situ-
ations features cannot be appropriately expressed, i.e. inel-
egant workarounds, code redundancies as well as scattered
and tangled code polluted the implementation. Mostly, these
situations were related to crosscutting phenomena. We ar-
gue that the revealed shortcomings of common FOP ap-
proaches are directly responsible for this tension.

To overcome this tension we propose to utilize AOP mech-
anisms since they are powerful mechanisms to cope with
crosscutting concerns. As our evaluation demonstrates, sim-
ply using AOP and creating an aspect-oriented architecture
is not appropriate because of the mentioned shortcomings
(cf. Sec. 3). Therefore, we propose to decompose such archi-
tectures using the known mechanisms of FOP: An aspect-
oriented architecture serves as basis whereas features orga-
nize the architecture at a higher level of abstraction. Thus,
a feature encapsulates a collaboration of classes and aspects
(see Fig. 6). In doing that, we have well encapsulated large-
scale feature modules that incrementally refine one another

as well as powerful mechanisms to deal with crosscutting
phenomena. According to this view, aspects are at the level
of classes and contribute in collaboration with other arti-
facts to the implementation of a feature. Feature organize
the overall architecture in order to reflect a structure that
is of interest for the stakeholders.

aspect

Figure 6: Decomposing an aspect-oriented architec-
ture (dashed arrows mark aspect weaving).

4.2 Aspectual Mixin Layers
In order to provide language mechanisms to realize the

architectural integration of aspects and features, we intro-
duce AMLs. AMLs extend the notion of mixin layers [32]
by encapsulating besides mixins also aspects (see Fig. 7).
In fact an AML encapsulates roles of classes and aspects
that contribute to a collaboration, i.e. that implements a
feature. By applying an AML to a set of features the pro-
grammer can refine these features in two ways: (1) by using
common mixin-composition4 or (2) by using aspect-oriented
mechanisms, e.g. pointcuts and advice. Probably the most

aspectmixin

refinement weaving

Figure 7: Aspectual mixin layers.

important contribution of AMLs is that programmers may
choose the adequate technique – mixins or aspects – that
fits a given problem best. Moreover, they can apply a col-
laboration of both and decide to what extent one technique
is used.

However, two crucial questions arise: (1) When to use
what mechanism without interspersing both and (2) how to
integrate them a technical level.

Regarding the first question our analysis gives the an-
swer: The programmer uses mixins and their collaborations
in those situations in that they perform well, i.e. in im-
plementing static, heterogeneous, and hierarchy-conforming
crosscutting – in short, the common way of FOP. In contrast
to mixins, the programmer uses aspects to implement par-
ticular kinds of crosscutting concerns, i.e. in order to mod-
ularize homogeneous crosscuts, features that depend highly
on the runtime control flow, as well as non-hierarchy-con-
form crosscutting as in the case of connecting structural in-
dependent features. Having these rules a programmer has a
guideline to avoid intermixing both refinement mechanisms
inconsistently.

Regarding the second question there are two options: The
first option composes the mixins first and applies subse-
quently the aspects. The second composes mixins and as-
pects layer by layer. Because of technical reasons we chose in
FeatureC++ the first option. The second option is worth
to be considered but out of scope of this paper.

4The programmer may use standard object-oriented mech-
anisms, too, e.g. delegation, inheritance, etc.



Example. Figure 8 shows a stack of mixin layers that im-
plement buffer functionality, in particular a basic buffer with
iterator, an allocator, synchronization and logging support.
Whereas the first three features are implemented using mix-
ins only, the logging feature is implemented using mixins and
aspects. The rationale behind this is that the logging aspect
captures a whole set of methods that are refined. This re-
finement modularizes a homogeneous crosscutting concern
and may access the dynamic context 2

Buffer

Log

Sync

Base

Alloc

Buffer Iterator

Allocator

AllocatorIterator LockBuffer

LogAspectLogConsole

Figure 8: An AML for logging.

4.3 Aspect Refinement
The introduction of AOP concepts to FOP leads us to the

notion of aspect refinement. Since aspects are encapsulated
in mixin layers it is natural to refine them incrementally, too.
This is complementary to the view that AMLs are units of
(de)composition of aspect-oriented architectures. Since in
many AOP languages aspects have similar structural ele-
ments as classes it is straightforward to refine these elements
in the same way, e.g. introducing methods and attributes or
extending methods. Moreover, it becomes possible to refine
pointcuts and advice.

By refining a pointcut a programmer may subsequently
alter, constrain, or extend a set of join points. Hanenberg
et al. propose several patterns that could benefit of such
refinement, e.g. composite pointcut, pointcut method [12].
Think of a logging aspect that matches certain points in a
given program. Introducing new classes makes it necessary
to modify the logging aspect to match join points related
to these classes. Following the idea of incremental software
development it is recommended to refine the logging aspect
subsequently, instead of changing the aspect.

Analogously to pointcuts, it is useful to refine advice, too.
Since they encapsulate aspect functionality, they should be
subject of subsequent refinement and reuse. Unfortunately,
in most aspect languages advice are unnamed entities. There-
fore, they cannot be referred to. We recently proposed
named advice and advice refinement that address this is-
sue [4, 5]. However, a further discussion is out of scope.

Example. Figure 9 shows a feature ExtLog that refines
the feature Log. The refinement is implemented as AML.
It refines the logging aspect of Log by refining its pointcut.
In doing that, the set of intercepted methods is extended to
Allocator and Lock. Besides this, the logging console (imple-
mented as a mixin) is refined. Figure 10 lists the code of this
refinement to the logging aspect. It extends a method of a
parent aspect in order to adjust the output format (Line 2)
and refines a parent pointcut to extend the set of target
join points (Lines 3-4). The refinement is expressed using
refines. Similar to methods, super is used to refer to the
parent pointcuts (Line 4). 2

Note that refining/extending aspects is conceptually dif-
ferent than applying aspects themselves. Applying two as-
pects modifies the base program in two independent steps.

Buffer

ExtLog

Log

Sync

Base

Alloc

Buffer Iterator

Allocator

AllocatorIterator LockBuffer

LogConsole

LogConsole LogAspect

LogAspect

Figure 9: Refining an AML.

1 refines aspect LogAspect {
2 void print() { format (); super::print (); ... }
3 pointcut log() = call ("% Buffer::put (...)")
4 || super::log();
5 };

Figure 10: Refining a logging aspect.

In our logging example this would lead to two different log-
ging aspects. Instead, aspect refinement results in two as-
pect fragments that are connected via inheritance. Only
the final compound aspect is woven to the target program.
Applied to our example, we have only one logging aspect.

4.4 Bounding Aspect Quantification
The close integration of aspects into the incremental de-

velopment style of FOP leads to a further interesting issue.
It allows us to tame the unpredictable behavior of aspects.

A problem of current AOP languages is that that quan-
tification of aspects is unbounded. That means aspects can
potentially affect all other entities – also entities that are
completely unrelated or have been applied in after the in-
troduction of the aspect itself. Currently, there are no ad-
equate mechanisms to scope or bound aspects. In context
of incremental software development this means that an as-
pect may affect subsequent integrated features although the
aspect was implemented without being aware of these fea-
tures. This can lead to unpredictable effects and errors, e.g.
an aspect unintentionally interacts with a subsequent featu-
res [23, 25].

Lopez-Herrejon and Batory propose an alternative aspect
composition mechanism [23]. They argue that with regard
to software evolution, features should only affect features of
previous development stages. Each incremental refinement
to a program is assigned to a development stage. Mapping
this to aspects means that aspects should only affect ele-
ments of development stages that were already present at
the implementation time of these aspects. This corresponds
to a bounded aspect quantification.

What turns out of our proposed integration of aspects and
features in the broader context of an incremental develop-
ment model is that we are now able to implement such or
alternative bounding mechanisms. Since we know which as-
pects are part of which features and what the parent and
child features are, we can infer which aspect is permitted
to affect which feature. We implemented a first version
of bounded aspect quantification in FeatureC++ using
pointcut restructuring, i.e. translating pointcut expressions
in that way that they do affect only the ’right’ features.
However, a deeper discussion is out of scope of this paper
and we refer to [4, 5].



4.5 Evaluation of Aspectual Mixin Layers
Taking the ideas of aspect refinement and a bounded as-

pect quantification into account, we evaluate AMLs using
our criteria:

Homogeneous and heterogeneous crosscuts. The inte-
gration of aspects and mixins in AMLs enables the pro-
grammer to choose the right technique for solving a given
problem: The programmer uses aspects to implement homo-
geneous and mixins to implement heterogeneous crosscuts.
Furthermore, we recommend to combine mixins and aspects
in one feature module to profit from their collaboration.

Static and dynamic crosscutting. The integration of FOP
and AOP concepts allows us to express static crosscutting
in two ways, using mixins and using static introductions in
aspects. This introduces a semantic redundancy. As men-
tioned in the previous paragraph, we propose to use aspects
to implement homogeneous crosscuts and mixins to imple-
ment heterogeneous crosscuts, which depend on the struc-
ture of the parent feature.

By using aspects, a programmer can implement features
depending on the runtime control flow, the current state,
and the dynamic context. As with static crosscutting method
extensions can be implemented with aspects (using execu-
tion) and mixins (by extending the parent method). We
handle this analogously to static crosscutting: using aspects
for homogeneous and mixins for heterogeneous crosscuts.

Structural dependency. Aspects inside AMLs can be used
to alter the level of abstraction. They can connect features
with differing structural assembling. For example, one can
use an aspect to connect our former example of a network
software and a producer-consumer application protocol. Us-
ing common object-oriented mechanisms this mapping could
only be established via wrappers and hash-maps to apply the
refinements and maintain the connections [28, 20, 14]. This
is a non-trivial workaround and results in crosscutting code.

What is important is that a structural differing feature
consists of such binding and the new abstractions that usu-
ally are implemented as classes. Thus, AML improve the
ability to synthesize programs by composing structural dif-
ferent features.

Feature cohesion. Since we encapsulate aspects in feature
modules, we achieve a high degree of feature cohesion. Due
to the ability to refine aspects they can be reused and com-
bined to form new compound features. Indeed, aspects are
encapsulated but still crosscut module boundaries and are
not part of the interface of the feature module. What is
novel is that aspects can be refined (composed) to form new
aspects and their quantification is bound to the parent fea-
tures. This allows to reuse existent aspect functionality and
avoids unexpected interactions with subsequent features.

Features that contain aspects can be composed using dec-
larative descriptions. This is an improvement of AOP with
respect to incremental software development. In summary,
AMLs perform better than FOP and AOP standalone be-
cause they combine the advantages of both. However, it
is up to the programmer to choose the right techniques to
implement a given feature.

5. CASE STUDY
In order to survey our approach, we implement a stock

information broker [28] using mixin layers and AML.

5.1 A Stock Information Broker
A stock information broker deals with information about

the stock market. The main abstraction is the StockInfor-
mationBroker (SIB) that allows to lookup for information
about stocks (see Fig. 11). A Client can pass a StockIn-
foRequest (SIR) to the SIB by calling the method collect-
Info. The SIR contains the names of all requested stocks.
Using the SIR, the SIB queries the DBBroker in order to
retrieve the requested information. Then, the SIB returns
a StockInfo (SI) object that contains the stock quotes.

<<uses>>

StockInformationBroker

collectInfo(...)

DBBroker

getStock()

StockInfoRequest

getStocks()

StockInfo

getQuote()
addQuote()

Client

run(...)

<<uses>>

<<creates>>

<<creates>>

Figure 11: Stock Information Broker.

All classes are encapsulated in a mixin layer. In other
words, this mixin layer implements a basic stock information
broker feature. Figure 12 shows a subset of this base feature.

1 class StockInformationBroker {
2 DBBroker m_db;
3 public:
4 StockInfo &collectInfo(StockInfoRequest &req) {
5 string *stocks = req.getStocks ();
6 StockInfo *info = new StockInfo ();
7 for (unsigned int i = 0; i < req.num(); i++)
8 info ->addQuote(stocks[i], m_db.get(stocks[i]));
9 return *info; }

10 };
11 class Client {
12 StockInformationBroker &m_broker;
13 public:
14 void run(string *stocks , unsigned int num) {
15 StockInfoRequest sir(stocks , num);
16 StockInfo &info = m_broker.collectInfo(sir);
17 /∗ . . . ∗/
18 }
19 };

Figure 12: The basic stock information broker.

5.2 Implementing Refinements
In the next step we want to add two refinements: (1) a

pricing feature that charges the client’s account depending
on the received stock quotes and (2) an accounting feature
that monitors the flow of money between client and broker.
We survey their implementation using FOP and AMLs.

FOP solution. Figure 13 depicts the pricing feature im-
plemented using FOP. Client is refined by an account man-
agement (Lines 15-24), SIR is refined by a price calculation
(Lines 1-6), and SIB charges the account when passing in-
formation to the client (Lines 9-13).

The accounting feature is depicted in Figure 14. An Ac-
counting class (Line 19) stores and manages information



1 refines class StockInfoRequest {
2 float basicPrice ();
3 float calculateTax ();
4 public:
5 float price ();
6 };
7 refines class StockInformationBroker {
8 public:
9 StockInfo &collectInfo(Client &c,

10 StockInfoRequest &req) {
11 c.charge(req);
12 return super:: collectInfo(req);
13 }
14 };
15 refines class Client {
16 float m_balance;
17 public:
18 float balance ();
19 void charge(StockInfoRequest &req) { /∗ . . . ∗/ }
20 void run(string *stocks , unsigned int num) {
21 StockInfo &info = super:: m_broker.collectInfo(
22 *this , StockInfoRequest(stocks , num));
23 }
24 };

Figure 13: The pricing feature using FOP.

1 refines class StockInformationBroker {
2 int account;
3 public:
4 StockInfo &collectInfo(Client &c,
5 StockInfoRequest &req) {
6 StockInfo &info = super:: collectInfo(req);
7 Accounting ::log(account , req.price ());
8 return info;
9 }

10 };
11 refines class Client {
12 int account;
13 public:
14 void Client:: charge(StockInfoRequest &req) {
15 super:: charge(req);
16 Accounting ::log(account , req.price ());
17 }
18 };
19 class Accounting {
20 void log( int , float ) { /∗ . . . ∗/ }
21 };

Figure 14: The accounting feature using FOP.

about money transfers between client and broker. Client
and SIB are extended by account ids (Lines 2,12). More-
over, they are refined by code that captures transactions
that are critical to the money transfer. Corresponding in-
formation is passes to the Accounting class (Lines 7,16).

There are several problems to this approach: (1) The pric-
ing feature is expressed in terms of the structure of the base
feature. It would be better to describe the pricing feature
using abstractions as product, producer, and customer, but
that imposes a different structure that is hard to express in
FOP. (2) The interface of collectInfo was extended. There-
fore, the Client must inelegantly override the method run in
order to pass a reference of itself to the SIB. (3) The charging
of clients is hard-coded in the broker and cannot be altered
according to the control flow, e.g. charge only those clients
that passed a authentication procedure. (4) The accounting
feature is a homogeneous crosscut that cannot be encapsu-
lated in one location. The introduction of the account ids
and the call to log is redundant in client and broker.

1 aspect Charging {
2 pointcut collect(Client &c, StockInfoRequest &req) =
3 call ("% StockInformationBroker:: collectInfo (...)")
4 && args(req) && that(c);
5 advice collect(c, req) :
6 after(Client &c, StockInfoRequest &req) {
7 c.charge(req);
8 }
9 };

10 refines class Client {
11 float m_balance;
12 public:
13 float balance ();
14 void charge(StockInfoRequest &req) { /∗ . . . ∗/ }
15 };

Figure 15: The pricing feature using AMLs.

AML solution. Figure 15 depicts the pricing feature im-
plemented by an AML. The key difference to the common
FOP solution is the Charging aspect and the modified Client
class (run is not extended). SIR is similar to the FOP ver-
sion and SIB remains unchanged, i.e. it is not subsequently
refined.

The Charging aspect intercepts calls to the method col-
lectInfo (Lines 2-4) and charges the calling client depending
on its request (Lines 5-8). This solves the problem of the
extended interface because the client is charged by the as-
pect instead by the SIB. The client does not need to extend
the run method.

A further advantage is that the charging of client’s ac-
counts can be made dependent to the control flow, e.g. us-
ing cflow one can determine if this client has successfully
passed an authentication procedure. This makes it possible
to implement the charging function variable, e.g. depend-
ing on the caller. Finally, our example shows that by using
AMLs we are able to refine these classes that play the roles
of product (SIR) and customer (Client). Although, there is
no direct representation of the producer role, AMLs improve
the capabilities to alter the abstraction level.

The accounting feature is implemented using an aspect
(see Figure 16). The account ids are added using static intro-
ductions (Lines 2-3). A pointcut specifies the target meth-
ods (Lines 4-5) and an advice adds calls to the Accounting
class (Line 9). This solution implements the homogeneous
accounting feature in an elegant way. It encapsulates an
aspect and a class in a cohesive module.

1 aspect AccountingAspect {
2 pointcut id() = "Client" || "StockInformationBroker";
3 advice id() : int account;
4 pointcut transfers () =
5 call ("% %:: collect %(...)" || "% %:: charge (...)");
6 advice transfers () : after () {
7 StockInfoRequest &req =
8 *( StockInfoRequest *)tjp ->arg(JoinPoint ::ARGS-1);
9 Accounting ::log(tjp ->that (). account , req.price ());

10 }
11 };
12 class Accounting {
13 void log( int , float ) { /∗ . . . ∗/ }
14 };

Figure 16: The accounting feature using AMLs.



6. RELATED WORK

Aspects, features, and collaborations. Some studies eval-
uate and discuss AOP and FOP approaches [22, 28, 20].
They identify several weaknesses concerning the crosscut-
ting modularity, the reuse of features/aspects, the support
for dynamic composition, as well as missing module bound-
aries. Our evaluation is based on their results but extends
them by an explicit evaluation framework with focus on in-
cremental software development. Especially, the direct con-
nection between aspects and features is novel and results in
AMLs that exploit their synergetic potential.

Several approaches aim at collaboration-based designs and
their symbiosis with AOP mechanisms: Caesar [27, 28],
Adaptive Plug-and-Play Components [26], Aspectual Com-
ponents [19], Pluggable Composite Adapters [29], Aspectual
Collaborations [20], and Object Teams [14]. Since these ap-
proaches were highly influenced by one another, we compare
our approach to their general concepts. We choose Caesar
as a representative because it unifies the most essential ideas
and it has grown to the most matured approach.

Caesar supports componentization of aspects by encap-
sulating virtual classes as well as pointcuts and advice in
collaborations, so called aspect components. Aspect com-
ponents can be composed via their collaboration interfaces
and mixin composition. Besides this, they can be refined us-
ing pointcuts in order to implement crosscutting integration.
Due to its embedding in classes (family classes), collabora-
tions of virtual classes can be used polymorphically

Caesar and AMLs have several similarities. They employ
collaborations to form the basic building blocks. Moreover,
both integrate AOP concepts, but in different ways. A main
advantage of AMLs is that they have AHEAD as an archi-
tectural model; The others make no statement about such
a model. Hence, AMLs can revert to several advantages of
AHEAD: beside classes and aspects also other kinds of soft-
ware artifacts may be included in a feature; features are de-
scribed and composed via algebraic equations and checked
against domain-specific design rules. This opens the door
to automatic algebra-based optimization and compositional
reasoning. This is hard to implement in Caesar because
Caesar´s aspect components are explicit at language level
and their composition is done within source code.

Caesar does not provides mechanisms to refine elements
specific to aspects, i.e. pointcuts and advice. But even such
aspect refinement is a key to unify AOP and incremental
software development. Furthermore, Caesar chooses a dif-
ferent approach to bound and control aspects: Aspects can
be explicitly deployed to bound them to a certain scope. In-
stead, our bounding mechanism operates behind the scenes
by exploiting the natural order of the incremental design,
i.e. the order of the development stages.

In contrast to AMLs, Caesar provides sophisticated mech-
anisms for adapting and binding collaborations to a partic-
ular application context (on-demand remodularization).

Other related work. Colyer et al. propose the principle
of dependency alignment : a set of guidelines for structur-
ing features in modules and aspects with regard to program
families [10]. They focus on features in general and do not
distinguish between the structural properties and conceptual
differences of aspects and components.

Several recent approaches enhance aspects with generic-
ity, e.g. Sally [13], Generic Advice [21], LogicAJ [17], Framed
Aspects [24]. This improves reusability of aspects in differ-
ent contexts. AMLs and aspect refinement provide an al-
ternative way to customize aspects, i.e. by composing the
required refinements to a compound aspect. However, ideas
on generic aspects could be combined with our approach.

Hanenberg and Unland discuss the benefits of inheritance
in the context of AOP [12]. They argue that aspect inher-
itance improves aspect reuse and propose several patterns
that use aspect inheritance, i.e. pointcut method, composite
pointcut, chained advice, and template advice. The flexibility
aspect refinement can enhance these patterns by simplifying
the composition of aspects using mixin techniques.

Aspect-ware interfaces [16] and open modules [1] aim at
modular reasoning by encapsulating the interactions between
two concerns. This reduces unpredictable aspect interac-
tions but also confines the flexibility to implement unantici-
pated features. AMLs tackle the problem from another side:
Bounded quantification exploits the order that is naturally
imposed by the incrementally evolved architecture.

7. CONCLUSIONS
This paper contributed a discussion and evaluation of

FOP and AOP with respect to incremental software devel-
opment. We identified an architectural connection between
aspects and features. Both complement each other to im-
plement complex software. We introduced a set of criteria
that poses as a basis for the evaluation and comparison of
modularization techniques with focus on incremental soft-
ware development. Whereas common AOP has weaknesses
regarding heterogeneous crosscuts, feature cohesion, and im-
plementing software incrementally, FOP has shortcomings
in the crosscutting modularity. However, both contribute
essential ideas and approved techniques to incremental soft-
ware development at different levels of abstraction.

Since both paradigms have their strengths and weaknesses,
we proposed the architectural symbiosis of both paradigms
in order to exploit and combine their strengths. We ar-
gued that features are the units of (de)composing aspect-
oriented architectures. Hence, we see aspects at the level of
classes to implement concerns that would otherwise cross-
cut other concerns. Feature organize the overall architecture
at a higher level to structure the code into cohesive feature
modules that reflect the users requirements.

In order to realize such architectural integration we intro-
duced AMLs. AMLs contribute several novel ideas to FOP
and AOP. AMLs tackle the FOP problems by introducing
aspects into mixin layers. Thus, the programmer has pow-
erful mechanisms to cope with crosscutting concerns, e.g. as
in the case of homogeneous crosscuts or structural indepen-
dent features. This enables the programmer to choose the
adequate technique for a given problem. A main advantage
is that the programmer does not use aspects stand-alone but
encapsulated in AMLs with mixins in concert.

Furthermore, AML contribute a unification of AOP and
incremental software development: they integrate aspects
into an incremental development model. This allows to re-
fine aspects similar to classes. Aspect refinement is a unifi-
cation of aspects and classes with regard to mixin composi-
tion and incremental software development. It enables the
programmer to reuse existent aspect code as well as evolve
aspects over time. Refining aspects leads to the observation



that it would be useful to refine all kinds structural elements,
which follows the principle of uniformity [7]

A further benefit of the architectural integration is that
we are able to bound the quantification of aspects depend-
ing on their development stage. Aspects can be bound to
those features that are known when implementing the as-
pects. This is supposed to reduce unexpected behavior and
interactions as well as increases aspect reuse [23, 25]. This
is an important contribution to the unification of AOP in-
cremental software development.

Acknowledgments. The authors would like to thank Don
Batory, Olaf Spinczyk, Aleksandra Tesanovic, Walter Caz-
zola, and Ingolf Geist for fruitful discussions on the ideas
developed in this article. This work is partially funded by
the Metop Research Institute at Magdeburg, Germany.

8. REFERENCES
[1] J. Aldrich. Open Modules: Modular Reasoning About

Advice. In ECOOP, 2005.
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