
Feature Oriented Refactoring of Legacy Applications

Jia Liu, Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{jliu, batory}@cs.utexas.edu

Christian Lengauer
Fakultät für Mathematik und Informatik

Universität Passau
Passau, Germany

lengauer@fmi.uni-passau.de

ABSTRACT
Feature oriented refactoring (FOR) is the process of decomposing
a program into features, where a feature is an increment in program
functionality. We develop a theory of FOR that relates code refac-
toring to algebraic factoring. Our theory explains relationships
between features and their implementing modules, and why fea-
tures in different programs of a product-line can have different
implementations. We describe a tool and refactoring methodology
based on our theory, and present a validating case study.1

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Methodologies, Tools;
D.2.7 [Distribution, Maintenance, and Enhancement]: Restruc-
turing, reverse engineering, and reengineering; D.2.11 [Software
Architectures]: Data abstraction.

General Terms
Design, Languages

Keywords
features, feature interactions, refactoring, program algebra, pro-
gram synthesis, product lines

1 INTRODUCTION
A feature is an increment in program functionality [27]. It is a cen-
tral abstraction in work on software product lines [4][10] (where
each program of a product-line is differentiated from other pro-
grams by the set of features it has) and feature interactions (how
features influence each other) [7][23][27]. Features are important
because they are reusable with in a product-line and can be used to
specify program variants declaratively — much like specifying PC
configurations declaratively by selecting features via web-inter-
faces, customers want to do the same for specifying programs
[6][10]. Concomitantly, program evolution can be described in a
high-level and easy-to-understand way as the process of adding and
removing features. Giving applications a feature-based design facil-
itates such extensibility. Designing an application from the ground-

up using features is one approach [5]; an alternative is to refactor a
legacy application. This paper is about the latter.

Feature oriented refactoring (FOR) is the process of decomposing
a program into features. The challenge of FOR is two-fold. First,
feature implementations often do not translate cleanly into tradi-
tional software modules, such as methods, classes, and packages.
Aspects and refinements (e.g., fragments of methods, classes, and
packages) are better suited [5][16][14]. This requires a theory of
program structure that is based on features. Second, what makes
FOR unusual is that feature implementations are not monolithic: the
implementation of a feature can vary from one program to another.
Stated differently, a feature can be implemented by several mod-
ules, some of which are conditional. Only if the right conditions
hold — namely that certain other features are present in a program
— are these modules actually used.

FOR manipulates program structure in a highly disciplined and
sophisticated way. We develop a theory of FOR that relates code
refactoring to algebraic factoring, thus providing us with a clean
conceptual basis of program structure and manipulation. The theory
defines the relationship between features and their implementing
modules, and explains why features can have different implementa-
tions in different programs. We present a tool and refactoring meth-
odology based on this theory and offer a case study as validation.
The case study was used in a previous work on aspect refactoring
[14]. Our work lays a mathematical foundation for a new genera-
tion of sophisticated program refactoring and synthesis tools.

2 A THEORY OF FOR
2.1 Problem Definition
Metaprogramming is the concept that programming is a computa-
tion, i.e., a program (source or executable) is data whose value is to
be computed. It has been shown that a feature can be modeled as a
function that adds a capability to a program [4][5]. This enables the
development of a program to be defined as a computation, starting
with a base program and applying a sequence of functions to add
features with the desired capabilities. For example, if B is a base
program, and F and G are functions that implement different fea-
tures, a program P that is formed by base program B extended by
the features of F and G is the expression:

P = F(G(B))

Feature oriented refactoring is the inverse of feature composition.
The goal is to factor a program into an expression that has a base
program (value or constant function) composed with one or more
features (functions). FOR begins with program P and factors it into

1. Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

dsb
2006 International Conference on Software Engineering
Shanghai, China

the expression F(G(B)). In our approach, FOR is modeled by
algebraic factoring, where the terms ‘refactoring’ and ‘factoring’
are synonymous. This connection with mathematics gives us a for-
mal basis for defining feature composition and refactoring, where
compositional reasoning is a form of algebraic reasoning.

2.2 Implementing Features
Consider program R, which is factored into a base program B with
feature H, i.e., R = H(B). Two things can happen when H is com-
posed with B. First, H can add new classes, new methods, and new
variables (it can not add classes or class members that are already
defined in B). Second, H can integrate its functionality into B by
modifying the methods of B. To keep the reasoning about features
monotonic, we only allow features to extend methods of other fea-
tures; overriding the definition of a variable or a method intro-
duced in another feature is not allowed.

To illustrate, let BASE denote an elementary buffer with get and
set methods. Let RESTORE denote a “backup” feature that remem-
bers the previous value of a buffer. Figure 1a shows the buffer
class of program BASE and Figure 1b shows the buffer class of
program R = RESTORE(BASE). The underlined code indicates the
changes RESTORE makes to BASE. Namely, RESTORE adds two
members, a back variable and a restore method, to the buffer
class, and it also changes the set method. While this example is
simple, it is typical of features. Adding a feature means adding
new members to existing classes and changing existing methods.
As programs and features get larger, features can add new classes
to a program as well.

Features can be implemented in many ways. One way is to use the
AHEAD Tool Suite [5]. The changes to the buffer class are
defined as a refinement, which adds the back and restore mem-
bers and extends the set method (Figure 2a). (Method refinement
in AHEAD is equivalent to an AspectJ execution pointcut with a
single join point. The Super() construct is the counterpart of
AspectJ’s proceed()). By composing the RESTORE feature of
Figure 2a with the base program of Figure 1a, a program that is
equivalent to that in Figure 1b is produced.

Another way is to use AspectJ [2]. The aspect RESTORE

(Figure 2b) defines the back variable and restore method as
introductions (i.e., inter-type declarations), and the modification of
the set method as advice. By weaving the program of Figure 1a
with the aspect of Figure 2b, a program that is equivalent to that in
Figure 1b is produced.

Note: Generally, AspectJ aspects are not functions on

programs, and are difficult to compose [19]. For the examples
and case studies that we consider in this paper, AspectJ can be
used. More on this in Section 5.

2.3 The Optional Feature Problem
An unusual characteristic of features, which makes FOR challeng-
ing, is that a feature cannot always be implemented by a single
module, where a module contains any number of files. Let LOG be
a feature that prints the state of a buffer. Figure 3a shows a LOG
module consisting of a single file in AHEAD. Whenever a buffer
method is called, the current and previous value of the buffer is
printed.

Figure 3b shows a buffer program T that is both logged and restor-
able. It could be factored as T = LOG(RESTORE(BASE)). That is,
by weaving the BASE program (Figure 1a) with RESTORE module
(Figure 2a) and the LOG module (Figure 3a), a program that is
equivalent to Figure 3b is produced.

A key motivation for feature refactoring is the ability to customize
a program by removing unneeded features. Suppose we want a
logged buffer, i.e., LOG(BASE). We cannot build such a program
simply by weaving the modules for BASE and LOG. The reason is
that our implementation of LOG in Figure 3a assumes the presence
of both BASE and RESTORE as it references variables and methods
introduced by both (i.e., buf, back, restore). This restriction on
the reusability of the LOG feature is an instance of the optional fea-

class buffer {
int buf = 0;
int get() {return buf;}
void set(int x) {

buf=x;
}

}

class buffer {
int buf = 0;
int get() {return buf;}
int back = 0;
void set(int x) {

back = buf;
buf=x;

}
void restore() {

buf = back;
}

}

(a)

(b)Figure 1. Buffer Variations

aspect RESTORE {
int buffer.back=0;
void buffer.restore()
{ buf = back; }

before(buffer t) :
target(t) && execution

 (void buffer.set(int))
{ t.back = t.buf; }

}

refines class buffer {
int back = 0;
void restore()
{ buf = back; }

void set(int x) {
back = buf;
Super().set(x);

}
} (b)(a)

Figure 2. Possible Feature Implementations

class buffer {
int buf = 0, back = 0;
void logit() {

print(buf);
print(back);

}
int get() {

logit();
return buf;

}
 void set(int x) {

logit();
back = buf;
buf=x;

}
void restore() {

logit();
buf = back;

}
}

refines class buffer{
void logit()
{ print(buf);

print(back);
}

int get() {
logit();
return Super().

get();
}
void set(int x) {

logit();
Super().set(x);

}
void restore() {

logit();
Super().restore();

}
}

Figure 3. Restorable Buffers

(a) Log Feature
(b) Logged and
Restorable Buffer

ture problem. RESTORE is an optional feature, but our implementa-
tion of LOG makes its presence mandatory.

Feature optionality is possible if a feature is implemented by multi-
ple modules, some of which are conditionally used. Our LOG mod-
ule can be factored into the baseLOG and restoreLOG modules of
Figure 4, each consisting of a single file. If the LOG feature is
present in a program, the baseLOG module is present. The
restoreLOG module is present only if both LOG and RESTORE fea-
tures are present.

FOR requires a theory that relates features to modules, feature
expressions to module compositions, and explains the conditional
usage of modules. We develop such a theory in the next sections.

2.4 The Module Structure of Features
Features have a module structure that we need to make explicit.
Figure 5 depicts the composition of H(B): B is a base program that
is represented by a single module b. Feature H has two modules.
Module h contains the new classes, members, and methods that are
added by feature H, and module ∂b/∂H (read as “changes to b by
H”) contains the changes H makes to the methods of b.

We call h and b the
base modules of H and
B. We follow the con-
vention that features
and programs have
names in UPPERCASE,
and their base mod-
ules have names in lowercase. ∂b/∂H is called a derivative mod-
ule. Derivative modules are differentiated from base modules in
that they contain only method refinements; base modules contain
classes and introductions. In AOP terminology [16], derivatives
contain only advice. They can be implemented with aspects if we
limit their join points to the base modules they modify (in
Section 5.1 we discuss this in detail). While the name ∂b/∂H seems
fancy, it is a portent of things to come.

Example. In our buffer example, the base module of BASE,
denoted base, is the buffer class of Figure 1a. The base
module of RESTORE, denoted restore, is the class
refinement of Figure 6a; it contains the back and restore
introductions to the buffer class. The derivative module,
∂base/∂RESTORE, is Figure 6b; it defines a change to the set
method of module base.

We have a notation for the composition of H with B, namely H(B).
We need an expression that tells us how to compose modules h, b,
and ∂b/∂H to implement H(B). We define two operations on mod-
ules and follow rules proposed in [19].

The first is +, which we call introduction sum. + is a binary opera-
tion that aggregates base modules by disjoint set union. A base
module is a set of unique variables and methods that belong to one
or more classes. The base module restore has one variable
(back) and one method (restore), both belonging to class
buffer. Let a and b be base modules, which have disjoint sets of
variables and methods. The introduction sum of a and b, denoted
a+b, is formed by disjoint set union — a+b is itself a base module.
Of course, modules a and b must be co-designed so that the intro-
duction sum is meaningful. This is the case for feature refactoring
of legacy applications.

Example. Figure 7a shows base module a containing class X
(with variable xx and method xy) and class Z (with variable
zz). Figure 7b shows base module b containing class X (with
variable qq) and class W (with method tt). Figure 7c shows
a+b.

Introduction sum is associative and commutative. This follows as
disjoint set union is associative and commutative.

The second operation, denoted by •, is function composition,
which we call weaving. Normally • is used to weave the changes
of a derivative module into a base module, yielding a woven base
module. • can also be used to compose two derivative modules
into a composite derivative module.

Recall that a derivative module consists of zero or more refine-
ments (pieces of advice in AOP) that modify the methods of a
given base module. ∂b/∂H is the set of changes made by H (con-
sisting of zero or more pieces of advice) that alter the methods of
module b. The expression ∂b/∂H • b means “weave the changes of
derivative module ∂b/∂H into base module b”, and when evaluated
produces a woven base module. (Section 5 discusses our imple-
mentation).

refines class buffer{
void logit()
{ print(buf);}

int get() {
logit();
return Super().

get();
}
void set(int x) {
logit();
Super().set(x);

}
}

refines class buffer {
void logit() {

Super().logit();
print(back);

}

void restore() {
logit();
Super().restore();

}
}

Figure 4. Factored LOG Modules(a) baseLOG

(b) restoreLOG

h

b

∂b/∂H

B

H

base

derivative
module

Figure 5. Module Structure of Features

modules

refines class buffer {
int back = 0;
void restore()
{ buf = back; }

}

refines class buffer {
void set(int x) {
back = buf;
Super().set(x);

}
}

Figure 6. restore and ∂base/∂RESTORE

(a) restore
(b) ∂base/∂RESTORE

class X {
int xx;
int xy(){..}

}

class Z {
float zz;

}

class X {
String qq;

}

class W {
int tt(){..}

}

class X {
int xx;
int xy(){..}
String qq;

}
class W {

int tt(){..}
}
class Z {

float zz;
}

(a) (b)

(c)Figure 7. Introduction Sum

Example. Evaluating ∂base/∂RESTORE•base yields:

class buffer {
int buf = 0;
int get() { return buf;}

 void set(int x) { back = buf; buf=x; }
}

With the + and • operations, we can now algebraically define the
relationship between feature expression H(B) and the module
expression that implements it:

[H(B)] = h + ∂b/∂H•b (1)

where [E] is the module expression for feature expression E. That
is, the result of composing base program B with feature H is the
introduction sum of the base module h and the woven base module
that is produced by weaving the changes H makes to b with b. The
result of evaluating [RESTORE(BASE)] is the buffer class of
Figure 1b.

Weaving has two important properties. First, • distributes over +
[19], which is a fundamental concept in aspect weaving [2]. Let d
be a derivative, and m be a base module that is the introduction sum
a+b. We have:

d•m = d•(a+b)
= d•a + d•b (2)

(2) follows because advising module m equals the advising of
each of its parts. Second, let m and n be different base modules.
Weaving a derivative of m into n makes no change to n; the reason
is that a derivative of m makes changes only to m and to no other
module. In AOP-speak, the pointcut of a derivative of m targets
join points only in m (and none in n):

∂m/∂F • n = n (3)

Given the above, let’s
see how the concept of
derivatives scales. Sup-
pose we add feature J
to program H(B), to
produce program
J(H(B)). Figure 8
depicts the four mod-
ules that J might have.
Base module j contains
the new variables,
methods, and classes that J adds to H(B). In addition, feature J
may alter any existing module in H(B). That is, derivative module
∂h/∂J contains the changes that J makes to module h, ∂b/∂J con-
tains the changes that J makes to module b, and ∂2b/∂J∂H con-
tains the changes that J makes to ∂b/∂H. Module ∂2b/∂J∂H is
called a second order derivative.

Example. Our buffer example is too simple to have second
order derivatives, but our case study in Section 4 does. In
general, ∂2z/∂X∂Y is a module that encapsulates (before,
after, around) advice of targeted methods in module z, and
that references members in modules z, x, and/or y. In

AHEAD, after advice is expressed by:

void methodZ() { // a method of z
Super().methodZ(); // proceed()
code that references members of z, x, and/or y

}

Thus, classifying method extension code fragments to
derivative modules is fairly simple; it can be done by
examining the members of the code fragment that are
referenced. The tool described in Section 3 that implements
our theory relies on this.

The relationship between feature expression J(H(B)) and its mod-
ule expression is:

[J(H(B))] = ∂2b/∂J∂H • ∂b/∂J • ∂b/∂H • b
+ ∂h/∂J • h + j (4)

That is, we weave the changes made by H and J into base module
b, we weave the changes made by J into module h, and sum them
with module j. Stated differently, if we refactor a program P into
the feature expression J(H(B)), we need to identify the contents of
each of the modules in (4), and compose these modules according
to (4) to rebuild P. Any or all of the above modules may be empty,
that is, they make no introductions or changes to existing modules.

Much better than inventing module expressions on a per-example
basis is a theory that allows us to derive relations (1) and (4)
from a small number of principles.

2.5 Feature Oriented Refactoring Principles
We postulate that derivatives are operators on module expressions.
∂/∂F is an operator that denotes how feature F changes a module.
If m is a module, the change is denoted ∂m/∂F. This leads to a set of
interesting ideas.

First, we can express changes made by multiple features. For
example, the change feature F makes to the change feature Q
makes to module m is a second order derivative:

(∂/∂F) (∂m/∂Q) = ∂2m/∂F∂Q (5)

Such derivatives have a simple interpretation: ∂2m/∂F∂Q is a mod-
ule that contains changes to m by the combined features F and Q.
Only if features M, F, and Q are present in a program will module
∂2m/∂F∂Q be used in that program’s implementation. Such a mod-
ule contains AOP (before, around, after, etc.) advice that modifies
methods in module m and can reference members in modules m, f,
and q, as discussed earlier.

Consider program P in Figure 9a which is formed by the composi-
tion G(F(E)). Base module e of feature E defines a class X with
variable a and method Foo() (Figure 9b). Features F and G define
variables b and c respectively in their corresponding base modules
(Figure 9c-d). We want to extend Foo() by appending a statement
“a+=b*c;”, but only when both features F and G are present. This
is expressed by placing this statement in a second order derivative
∂2e/∂F∂G (Figure 9e). The original program P is reassembled by
the composition ∂2e/∂F∂G•e + f + g.

h

b

∂b/∂H

B

H

Figure 8. Feature Internal Structures

∂b/∂JJ

∂2b/∂J∂H

∂h/∂J j

nth order derivatives have a similar interpretation. Module ∂nb/
∂F1…∂Fn extends methods in a and can reference members in
modules b, F1 … Fn.

Second, derivatives distribute over expressions involving + and •.
Let r and s be modules and F be a feature:

∂/∂F (r+s) = ∂r/∂F • ∂s/∂F (6)
∂/∂F (r•s) = ∂r/∂F • ∂s/∂F (7)

In general, the derivative of a composition of terms is a • composi-
tion of the derivative of these terms.

Third, using the + and • operations, we can pose a law that allows
us to synthesize module expressions (1) and (4):2

[H](x) = h + ∂x/∂H • x (8)

That is, function [H], with module expression parameter x, tells us
how feature H is implemented in terms of modules. If x is primi-
tive, e.g., x=[B], we have:

[H(B)] = [H]([B]) = h + ∂[B]/∂H • [B]

If x is not primitive, i.e., x=[A(P)], then (8) is used to evaluate
[A(P)]. To expand (8) requires the use of (2)-(8).

Equation (8) is useful: it tells us how to compose modules to build
a program that is defined by a feature expression. It also tells us
how to implement a particular feature: every implementation of
feature H includes H’s base module (h) plus the changes H makes to
every module of its input program x. The modules that encapsulate
these changes are identified in the coefficient ∂x/∂H.

Recall Figure 8 which graphically depicts how program J(H(B))
is implemented by modules. The module expressions that define
the implementation of the three programs B, H(B), and J(H(B))
are derived successively:

[B] = b (def)

[H(B)] = [H]([B])
= h + ∂[B]/∂H•[B] (def (8))
= h + ∂b/∂H•b (def [B])

[J(H(B)))] = [J]([H(B)])
= j + ∂[H(B)]/∂J•[H(B)] (def (8))
= j + ∂(h + ∂b/∂H•b)/∂J•(h + ∂b/∂H•b) (def H[B])

= j + ∂h/∂J•∂2b/∂J∂H•∂b/∂J•(h+∂b/∂H•b) ((6)(7))
= j + ∂h/∂J•∂2b/∂J∂H•∂b/∂J•h

+ ∂h/∂J•∂2b/∂J∂H•∂b/∂J•∂b/∂H•b ((2))
= j + ∂h/∂J•h + ∂2b/∂J∂H•∂b/∂J•∂b/∂H•b ((3))

Note that the final expression corresponds to the right side of (4),
i.e., we have just derived law (4).

Equation (8) also tells us that the module implementation of a fea-
ture may vary from one program to another in a product-line. Con-
sider feature J and its module expression:

[J](x) = j + ∂x/∂J • x

The variability of J’s implementation lies in the “coefficient” ∂x/
∂J. That is, J’s module implementation in program J(H(B)) is
base module j plus the module expression ∂[H(B)]/∂J, which we
previously found to be:

∂[H(B)]/∂J = ∂h/∂J • ∂2b/∂J∂H • ∂b/∂J

In program J(C), for some other C, the difference would be what-
ever ∂[C]/∂J expands to. Our case study in Section 4 demon-
strates this variance.

3 A PROCESS OF FOR
We have built a tool that implements our theory to refactor legacy
Java applications. Our tool is an extension of the Eclipse IDE [25]
and utilizes Eclipse’s program analysis capabilities to transform a
program’s parse tree. It guides users through a five-step process,
which is explained below.

Step 1 (choose feature expression). Given a legacy application P,
a user defines a feature expression that specifies what features are
present in the program and in what order they are composed. Such
expressions are easy to formulate, given P’s documentation and
knowledge of its functionality. The process is step-wise refine-
ment: you start with a base program and incrementally add more
functionality, observing dependency relationships such as feature X
must be composed before feature Y if X’s functionality is needed by
Y. Doing so linearizes the addition of features to the base program,
thus leading to a feature expression.

Step 2 (label members). Our theory tells us that there are two
kinds of modules: base modules and derivatives (i.e., changes to
base modules). Base modules have the property that they contain
distinct sets of variables (i.e., data members) and methods. Thus,
any variable or method in P must belong to precisely one base
module. To define this correspondence, we ask users to label each
data member and method in P with the name of the feature (base
module) to which it belongs. Our tool helps by letting users label a
few members and it infers the labels of the remaining members. As
our labeling algorithm is heuristic (and is a variation of labeling

2. (8) is a special case of the weaving rule A(x)=a(i+x) in [19].
Since h is not affected by the derivative (i.e. advice), the rule simplifies to
A(x)=i+a(x).

Figure 9. Program P=F(G(E))

class X {
int a=1;
void Foo() {
a++;

}
}

refines class X {
int b=2;

}

refines class X {
int c=5;

}

refines class X {
void Foo() {

Super().Foo();
a += b*c;

}
}

class X {
int a=1;
int b=2;
int c=5;
void Foo() {
a++;
a += b*c;

}
} (a) P

(c) f

(d) g

(e) ∂2e/∂F∂G(b) e

algorithms used previously by others [21]), several iterations may
be necessary to achieve a partitioning (labeling) that is acceptable.

Step 3 (initial refactoring). An initial refactoring of methods into
base modules and derivatives is now performed; this step is done
automatically by our tool. For each feature, a base module is cre-
ated to contain its data member and method definitions identified
in Step 2. A method body may then be partitioned into a derivative
according to the features it references. There are many variations
of this process; we illustrate an interesting scenario where a
method is extended by multiple features.

Suppose method M is introduced by feature Fi (it is labeled Fi in
Step 2), and its body references members in features Fi, Fj and Fk
as Figure 10a indicates. Assume that features Fj and then Fk are
composed in order after Fi, which implies that M is refined by Fj
and Fk. Our tool automatically refactors this method into an empty
method M in base module fi and a refinement of M in derivative
module ∂2fi/∂Fj∂Fk as indicated in Figure 10b-c. The original
method of Figure 10a is reconstructed by evaluating ∂2fi/

∂Fj∂Fk•fi. Our tool alerts users that it has detected that M and
other methods like M are refined, and further refactoring may be
necessary. (If left as is, the body of M will be empty in every pro-
gram that does not have all three features Fi, Fj, and Fk).

Step 4 (refactor derivatives). Here is where knowledge about pro-
gram P kicks in. Suppose a user knows that features Fj and Fk are
optional, and that the base implementation of method M is the line
in Figure 10a that references only members of Fi. Figure 10d
shows the definition of M that is appropriate for base module fi.

Suppose further when Fj is added, the line that references mem-
bers of Fj appears in M. Similarly, when Fk is added, the line that
references members of Fk appears in M. When both Fj and Fk are
present, the line referencing both members in Fj and Fk appears.
So the contents of M’s body varies, depending on the presence or
absence of Fj and Fk. These variations are realized by refactoring
module ∂2fi/∂Fk∂Fj of Figure 10c into the modules fi, ∂fi/∂Fj,
∂fi/∂Fk, and ∂2fi/∂Fk∂Fj in Figure 10d-g. The original method of
Figure 10a is now reconstructed by evaluating:

∂2fi/∂Fk∂Fj • ∂fi/∂Fk • ∂fi/∂Fj • fi

Our tool helps users perform this refactoring. Other refactorings
are possible, but this is illustrative of some of the more compli-
cated scenarios that are encountered.

Of course, we expect the original methods may not be easily parti-
tioned without rewriting when feature references are tangled, as
first observed by Murphy et al. [21]. Rearranging the order of
statements may be needed before methods can be partitioned. As in
[21], we ask users to rewrite methods manually. However, as our
understanding of this process matures, we expect our tools to ana-
lyze and manipulate control flow and data flow graphs to suggest
an automatic means of method rewriting and partitioning. Several
iterations of this step may be necessary to achieve an acceptable
refactoring.

Step 5 (reconstitute program). The previous step defines the base
and derivative modules of the program. This step, which is done
automatically by our tool, relies on our theory of FOR to translate
the feature expression in Step 1 into module expressions that
define each feature. (This is accomplished by using (8)). A com-
mon activity is to create variants of the original program with dif-
ferent sets of features. We create a feature expression for each
variant, and features can be reused across different variants. Our
theory tells us how to synthesize such a variant automatically by
composing the modules defined in Step 4. The resulting program
can then be executed to verify that the functionality of a particular
feature was successfully isolated in base and derivative modules.
In the next section, we review a case study that uses our theory and
tool.

4 CASE STUDY: PREVAYLER
We refactored Prevayler [26], an open source Java application that
implements an in-memory database and maintains object persis-
tency. As everything is kept in RAM as though “you were just
using a programming language” [26], it is much faster than tradi-
tional databases. Serializable transactions are supported and que-
ries are run against Java objects. Prevayler has 28 classes and 9
interfaces defined in 2K lines of code. The classes have 101 vari-
ables and 181 methods. The interfaces have 21 methods.

void M() {
Super.M();
...reference Fj,Fk members...

}

void M() {
Super().M();
...reference Fk members...

}

void M() {
Super().M();
...reference Fj members...
...reference Fi members...
...reference Fk members...
...reference Fj,Fk members...

}

void M() {
... reference Fi members...

}

Figure 10. Refactoring Higher Order Derivatives

(c) ∂2fi/∂Fk∂Fj

(g) ∂2fi/∂Fk∂Fj

void M() {
...reference Fj members...
...reference Fi members...
...reference Fk members...
...reference Fj,Fk members...

} (a) Fi

void M() {} (b) fi

void M() {
...reference Fj members...
Super().M();

}

(d) fi

(e) ∂fi/∂Fj

(f) ∂fi/∂Fk

Step 1 (choose feature expression). We identified the following
set of features in Prevayler by reviewing its manual and source
code:

• BASE. Base program of the Prevayler framework.
• CLOCK. Provides time stamps for transactions.
• TRANSACTION. Allows database updating.
• LOGGING. Logs transactions.
• SNAPSHOT. Writes and reads database snapshots.
• CENSORING. Rejects transactions by certain criteria.
• QUERY. Retrieves database objects.

Modeling programs as features is not new; it is a core contribution
of research in software product-lines [15][9]. We can use results
from product-lines to express our feature model of Prevayler.
Figure 11a shows a feature diagram: each leaf represents a primi-
tive feature (i.e., the features we identified above), and non-leaves
are compound. Solid circles indicate that a feature is required if its
parent feature is selected; open circles indicates a feature is
optional.

Alternatively, a feature model can be expressed as a GenVoca
grammar [6], where primitive features are terminals. GenVoca
grammars (like feature diagrams) are not context free. That is,
there can be relationships between features in different subtrees
and are expressed as additional propositional formulas, such as
CENSORING implies (TRANSACTION and SNAPSHOT), meaning
if the CENSORING feature is present in a program, so too must
TRANSACTION and SNAPSHOT be present. Figure 11b shows a
GenVoca grammar. A sentence of this grammar defines a particular
member of the Prevayler product-line (i.e., a particular version that
can be synthesized from Prevayler features). Approximately 25
different versions can be created. For example, a fully-configured
version of Prevayler is specified by:

PREVAYLOR = QUERY(CENSORING(SNAPSHOT(LOGGING(
TRANSACTION(CLOCK(BASE)))))) (9)

It is not necessary to know all features up-front to perform a FOR.
In fact, we identified some of the compound features first, and later

decomposed them. Our experience with Prevayler and other pro-
grams suggests a divide-and-conquer approach works best: begin
with a feature expression of 4-5 terms, and later, decompose these
terms if necessary.

Of all the steps in our refactoring process, this step took the longest
(2.5 days) as we had to familiarize ourselves on how Prevayler
worked.

Step 2 (labeling members). We partitioned the program by assign-
ing every class member to a feature under the guidance of our
refactoring tool. As expected, we had to correct previous labelings
to better reflect the structure of features. We spent a half-day in this
step.

Step 3 (initial refactoring). As this step is automatic, it took but a
few minutes once member labels were assigned.

Step 4 (refactoring derivatives). We use one class — Prevay-
lerImpl — to illustrate how derivatives modify class members.
Four constructors/methods in PrevaylerImpl are depicted in
Figure 12. Each has a code fragment that is classified as a refine-
ment in one of three derivatives: ∂base/∂Transaction, ∂base/
∂Query and ∂2base/∂Query∂Transaction. Modules ∂base/
∂Transaction and ∂base/∂Query contain refinements of base
by features Transaction and Query respectively. The refinement
in ∂2base/∂Query∂Transaction is used when both Transaction
and Query are present. To build the system specified by (9), all
derivatives are composed. However, if a variant of Prevayler is
created, say without the Query feature, then only the ∂base/
∂Transaction module is used.

When we finished refactoring Prevayler, which took about 1.5
days, we obtained 7 base modules (one for each feature) and 9
derivatives. Table 1 lists all modules and the features to which they
belong. According to our theory, a composition of n features may
lead to O(2n) distinct modules. Experience suggests that interac-
tions among features are sparse, and a vast majority of derivatives
are empty. A model of n features maps to (approximately) 3*n
non-empty modules, a number that is easily manageable.

Figure 11. Prevayler Feature Models

PREVAYLER

CLOCKTRANSACTION BASEQUERY CENSORS LOGGING

CENSORING SNAPSHOT

(a) Feature Diagram

// grammar
PREVAYLER : [QUERY] [CENSORS] [LOGGING]

[TRANSACTION] [CLOCK] BASE ;
CENSORS : CENSORING SNAPSHOT ;

// constraints
TRANSACTION implies CLOCK;

LOGGING implies TRANSACTION;
CENSORING implies (TRANSACTION and SNAPSHOT);

(b) GenVoca Grammar

Figure 12. Cross-Cutting Derivatives

M1 M2 M3 M4

∂base/∂Transaction

∂base/∂Query

∂2base/∂Query∂Transaction

M1: PrevaylerImpl(...)

M2: void execute(Transaction)

M3: void execute(Query)

M4: void execute(
TransactionWithQuery)

Step 5 (reconstitute program). After we refactored Prevayler, we
were able to implement feature reductions to the application. We
created different versions by removing optional features from the
original feature expression. We present two here. Suppose a user
wants a version V1 that only has clock and query features:

V1 = QUERY(CLOCK(BASE))

Using the laws of Section 2, we expand [V1] and eliminate empty
derivatives (i.e., modules whose names do not appear in Table 1),
yielding:

[V1] = [QUERY(CLOCK(BASE))]
= [QUERY]([CLOCK]([BASE]))
= query + ∂2base/∂QUERY∂CLOCK•
∂base/∂QUERY• (clock + ∂base/∂CLOCK•(base))

The modules that implement the QUERY feature in V1 are under-
lined above. V2 is a slightly more complex version that adds
TRANSACTION capabilities:

[V2] = [QUERY(TRANSACTION(CLOCK(BASE)))]
= query + ∂transaction/∂QUERY •

∂2base/∂QUERY∂TRANSACTION •
∂2base/∂QUERY∂CLOCK • ∂base/∂QUERY •

 (transaction + ∂base/∂TRANSACTION •
 (clock + ∂base/∂CLOCK•(base)))

The QUERY feature, while reused in both versions, has different
implementations in V1 and V2: it contains four derivatives in V2 —
∂base/∂QUERY, ∂2base/∂QUERY∂CLOCK, ∂2base/

∂QUERY∂TRANSACTION, and ∂transaction/∂QUERY, and only
two in V1 (∂transaction/∂QUERY and ∂2base/

∂QUERY∂TRANSACTION are absent). The value of our theory is that
it is simple to specify a particular variant of a program; our theory
automatically tells us what modules are needed and how to com-
pose them to implement that variant. Tool support is essential, as
manipulating these equations is error-prone.

5 RELATED WORK
5.1 Horizontal Decomposition
We selected Prevayler because it was used as a case study for an
aspect-oriented refactoring method by Godil, Zhang, and Jacobsen
[14][28]. Their method, called Horizontal Decomposition (HD),
decomposes programs hierarchically a la Dijkstra [11] using levels
of abstraction and step-wise refinement. Program building blocks

are features that use AspectJ as the underlying weaving technol-
ogy. Aspects express changes made by a feature to existing classes
and conventional techniques express classes that a feature adds.
Together, a feature is implemented by a set of aspect files and a set
of class files. A program has a core (which corresponds to our base
program), and can have any number of features added to it. Fea-
tures are composed with the base by super-imposition, i.e., aspects
are woven into the base and classes are added to realize desired
functionality. Figure 13 shows our graphical depiction of their
SNAPSHOT feature. Design patterns were proposed as aids to help
identify features in a refactoring process.

HD is closely related to our work. (We drew Figure 13 deliberately
in a manner similar to Figure 5 to make this connection clearer).
Hierarchically decomposing programs into features — a.k.a. layers
— and step-wise refinement is the foundation of our model and
GenVoca [4]. Our methodology could benefit from HD design pat-
terns. The primary difference with HD is that we have an algebraic
theory of feature composition and decomposition. The theory tells
us properties that decompositions and their underlying base mod-
ules and derivatives must have, and these properties are automati-
cally checked by our tools. And our theory formally explains why
features can have different implementations in programs of a prod-
uct-line. HD is informal and (as far as we can tell) relies on users
to pick the correct modules to construct customized programs. Our
theory automates this task.

HD sheds light on the core equation of our theory (8):

[H](x) = h + ∂x/∂H•x (8)

An interpretation of a theory is the mapping of its concepts to a
concrete realization. An HD interpretation of (8) assumes base
module h to contain only the new classes added by feature H, while
∂x/∂H contains both advice and introductions that change x. This
is an alternative and consistent interpretation of our theory.

Not all interpretations are equally powerful. HD does not allow
base modules to contain introductions to previously defined
classes (as we do). That is, an introduction into a base class of b by
feature H must be stored in the derivative module ∂b/∂H. A refine-
ment of this introduction by feature G must be placed in a second-
order derivative module (e.g., ∂2b/∂G∂H), making it harder to rec-
ognize that G is really changing H. By allowing base modules to
have a finer granularity of introductions, we can make finer dis-
tinctions.

We refactored Prevayler prior to an in-depth study of HD. Not sur-
prisingly, the feature set that we used was slightly different than
that in [14]. Further, there is a subjective element in defining fea-
tures and partitioning programs. Their definition of CLOCK, for
example, is a superset of ours. Never-the-less, weaving several of

Feature Base Module and Derivatives

BASE base

CLOCK clock, ∂base/∂CLOCK

TRANSACTION transaction, ∂base/∂TRANSACTION

LOGGING logging, ∂transaction/∂LOGGING

SNAPSHOT snapshot, ∂base/∂SNAPSHOT

CENSORING censoring, ∂transaction/∂CENSORING

QUERY query, ∂base/∂QUERY,
∂2base/∂QUERY∂TRANSACTION,
∂2base/∂QUERY∂CLOCK, ∂transaction/∂QUERY

Table 1. Derivatives of Prevayler Features

BASE

SNAPSHOT

Figure 13. Horizontal Decomposition Structure

core classes

new SNAPSHOTaspects augmenting
existing classes classes

their aspects yields refinements that are equivalent to composing
one or several of our derivatives. Also, we found refinements in
their work that correspond to our notion of higher order deriva-
tives. Consequently, we believe the HD results and ours are in
alignment.

The main theoretical difficulty in a clean unification of HD and our
work is aspect composition. In general, aspects (as defined in
AspectJ) are difficult to compose [19]. Also, an aspect applies to
all classes of a program. If an aspect is woven into a program of n
classes, and subsequently m classes are added to the program, the
previously woven aspect “comes alive” to weave these additional
classes [20]. This behavior is difficult to model by a single func-
tion, and thus complicates program reasoning.

In the examples in this paper, these problems were avoided
because advice was limited to the refinement of individual meth-
ods. In such cases, aspect weaving mimics function composition.
An argument on the merits of functional semantics is discussed
elsewhere [19].

5.2 Other Related Work
Space precludes a discussion of all the topics to which our work is
related. We focus on a key set of contributions.

The inspiration for our work is Prehofer’s lifters [22], which our
theory formalizes. A preliminary presentation of our ideas was
sketched in [18]; it lacked the theory and a more substantial case
study that this paper provides. There is an enormous literature on
feature interactions in telecommunications (e.g., [7][23][27]).
Prior work emphasizes the dynamic or run-time impact features
have on each other (e.g. [27]), rather than the structural interac-
tions that we consider. There are a few examples of static interac-
tion models but they too follow Prehofer’s initial work [22].

We have built product-lines using AHEAD for many years [5], but
never noticed that feature implementations varied among pro-
grams. The reason is that all AHEAD features had the form (8),
where the ∂x/∂H coefficient is a constant. If other changes (deriva-
tives) were needed, we simply included another “feature” when
building a program, and defined conditions that automatically
included that feature. We did not realize that these “extra” or “con-
ditional” features were a symptom of a much deeper result about
feature implementations, which this paper exposes.

Other work on feature oriented refactoring focused on identifying
the code of a feature (for example, having tools display how fea-
ture code is distributed throughout a program) and factoring the
code into a single module or aspect [21][24]. Unlike our work,
there was (1) no underlying algebraic theory of composition (i.e.,
to know what to do with the feature after it has been identified and
modularized), and (2) no formal notion of interactions among fea-
tures. Despite these differences, labeling methods to identify fea-
ture contents and inferring other labels via program analysis is the
approach that we used and that was pioneered in [24].

Another technique to identify features by running test cases has been
proposed in [17]. Test cases are classified by the features they
belong, and features can be identified by analyzing code blocks that
are impacted by each group of test cases.

Feature oriented refactoring is closely related to the area of general
refactoring of object oriented programs [13]. For example, creating
class refinements is a crucial step in refactoring features from a
legacy application. It uses similar techniques that implement
extract subclass and push down method/field refactorings which
improve OO designs. Recent work on OO refactoring includes,
among others, utilizing generic classes [12] and class library
migration [3].

One of the issues that our theory exposes is the need for separate
compilation of modules [1][8]. The way we deal with module
compilation is through a “big inhale”, where all source files are
parsed and types are resolved prior to weaving. As a consequence,
we cannot incrementally evaluate an expression, one operation at a
time.

6 CONCLUSIONS
Features play an important role in program evolution, a significant
part of which is adding and removing features. Feature oriented
refactoring is the process of decomposing a program into features,
thus recovering a feature based design and giving it an important
form of extensibility.

A distinguishing characteristic of features is that their implementa-
tion can vary from one program to another. To explain this, we
developed an algebraic theory of FOR that exposes the highly reg-
ular structure that features impose on programs. Our theory relates
code refactoring to algebraic factoring and defines the relationship
between features and their implementing modules. It also dictates
how features are constructed from modules for a particular pro-
gram. We presented a tool and refactoring methodology based on
this theory, and offered a case study as validation. We refactored
the Prevayler application into a composition of features, and were
able to automatically synthesize variants of it by removing
optional features.

We believe our algebra lays a mathematical foundation for a new
generation of sophisticated program refactoring and synthesis tools
that can simplify program construction, evolution, and mainte-
nance.

Acknowledgements. This research is sponsored by NSF's Science
of Design Project #CCF-0438786. We thank Hans-Arno Jacobsen
for bringing his work to our attention. We also thank Sven Apel,
Alar Raabe, and Sebastian Scharinger for their helpful comments.

7 REFERENCES
[1] D. Ancona, G. Lagorio, and E. Zucca, “True Separate Compi-

lation of Java Classes”. PPDP 2002.
[2] AspectJ Manual, www.eclipse.org/aspectj/doc/prog-

guide/language.html.
[3] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring Support for

Class Library Migration”. OOPSLA 2005.
[4] D. Batory and S. O'Malley. “The Design and Implementation

of Hierarchical Software Systems with Reusable Compo-
nents”. ACM TOSEM, October 1992.

[5] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement”. IEEE TSE, June 2004.

[6] D. Batory, “Feature Models, Grammars, and Propositional
Formulas”. SPLC 2005.

[7] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec,
“Feature Interaction: A critical Review and Considered Fore-
cast”. Computer Networks 41(1), 115-141, January 2003.

[8] L. Cardelli, “Program Fragments, Linking, and Modulariza-
tion”. POPL 1997.

[9] K. Czarnecki and U. Eisenecker. Generative Programming
Methods, Tools, and Applications. Addison-Wesley, 2000.

[10] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing
Cardinality-based Feature Models and their Specialization”.
Software Process Improvement and Practice, 2005 10(1).

[11] E.W. Dijkstra, “The Structure of THE Multiprogramming
System”. CACM, May 1968.

[12] A. Donovan, et al. “Converting Java programs to use generic
libraries”. OOPSLA 2004.

[13] M. Fowler, et al. Refactoring - Improving the Design of Exist-
ing Code. Addison-Wesley, 1999.

[14] I. Godil and H.-A. Jacobsen, “Horizontal Decomposition of
Prevayler”. CASCON 2005.

[15] K. Kang, et al. “Feature Oriented Domain Analysis (FODA)
Feasibility Study”. CMU/SEI-90 TR-21, November 1990.

[16] G. Kiczales, et al., “Aspect-Oriented Programming”. ECOOP
1997.

[17] D. Licata, C. Harris, and S. Krishnamurthi, “The Feature Sig-
natures of Evolving Programs” (short paper). ASE 2003.

[18] J. Liu, D. Batory, and S. Nedunuri, “Modeling Interactions in
Feature Oriented Designs”. ICFI 2005.

[19] R. Lopez-Herrejon, D. Batory, and C. Lengauer, “A Disci-
plined Approach to Aspect Composition”. PEPM 2006.

[20] M. McEachen and R.T. Alexander, “Distributing Classes with
Woven Concerns - An Exploration of Potential Fault Scenar-
ios”. AOSD 2005.

[21] G. C. Murphy, et al., “Separating Features in Source Code: An
Exploratory Study”. ICSE 2001.

[22] C. Prehofer, “Feature Oriented Programming: A Fresh Look
at Objects”. ECOOP 1997.

[23] S. Reiff-Marganiec and M.D. Ryan, ed., Feature Interactions
in Telecom. and Software Systems VII, IOS Press, 2005.

[24] M. P. Robillard and G. C. Murphy, “Concern Graphs: Finding
and Describing Concerns Using Structural Program Depen-
dencies”. ICSE 2002.

[25] www.eclipse.org/.
[26] www.prevayler.org/.
[27] P. Zave, “Distributed Feature Composition: Middleware for

Connection Services”. www.research.att.com/

projects/dfc.
[28] C. Zhang and H.-A. Jacobsen, “Resolving Feature Convolu-

tion in Middleware Systems”. OOPSLA 2004.

