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ABSTRACT

Software product lines gain momentum in research and industry.
Many product-line approaches use features as a central abstraction
mechanism. Feature-oriented software development aims at encap-
sulating features in cohesive units to support program comprehen-
sion, variability, and reuse. Surprisingly, not much is known about
the characteristics of cohesion in feature-oriented product lines, al-
though proper cohesion is of special interest in product-line engi-
neering due to its focus on variability and reuse. To fill this gap,
we conduct an exploratory study on forty software product lines
of different sizes and domains. A distinguishing property of our
approach is that we use both classic software measures and novel
measures that are based on distances in clustering layouts, which
can be used also for visual exploration of product-line architec-
tures. This way, we can draw a holistic picture of feature cohesion.
In our exploratory study, we found several interesting correlations
(e.g., between development process and feature cohesion) and we
discuss insights and perspectives of investigating feature cohesion
(e.g., regarding feature interfaces and programming style).

Categories and Subject Descriptors: D.2.8 [Software]: Soft-
ware Engineering—Metrics; D.2.11 [Software]:  Software
Architectures—Domain-Specific Architectures

General Terms: Design, Measurement

Keywords: Feature-Oriented Software Development, Software
Product Lines, Feature Cohesion, Visual Clustering, FEATUREVISU

1. INTRODUCTION

A growing community of software-engineering researchers and
practitioners theoretically investigates and industrially develops
software systems as product lines. A software product line is a
set of software-intensive systems of a domain that share a com-
mon set of features [13]. A feature is an end-user—visible program
characteristic that is relevant to the stakeholders of the application
domain. Features are used to describe the commonalities and vari-
abilities of the products of a product line [17]. For example, in
a database product line, individual database systems share a com-
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mon set of features (e.g., basic data structures) but differ in other
features (e.g., transaction management).

Recently, there have been many attempts to make features ex-
plicit in the product line’s code base [1]. For example, composi-
tional approaches such as component-based systems and feature-
oriented programming encapsulate the code that belongs to a fea-
ture (not more, not less) in a cohesive and composable unit. Anno-
tative approaches such as preprocessors and frame processors tag
code that belongs to a feature with annotations and allow program-
mers to remove or include code conditionally.

Compositional and annotative approaches have many individual
strengths and weaknesses [19], but they share the common goal of
making features explicit in design and code, and exploit this prop-
erty across the development process (e.g., for editing, generation,
and type checking). Ideally, the features of a system align with the
underlying system structure [27] (e.g., the class structure), although
this is not entirely possible due to crosscutting features (e.g., trans-
action management in a database system) [3,25]. We define feature
cohesion as the degree to which the elements (e.g., methods, fields,
classes) of a feature depend on other elements of the same feature.

In the past, it has been assumed that decomposing a system ac-
cording to its features improves naturally the quality of the sys-
tem structure and yields benefits in terms of understandability and
maintainability [1]. However, we argue that a misalignment of fea-
tures and system structure can outweigh the benefits of feature de-
composition. In the development and analysis of several product
lines [2, 18, 20, 21, 25] we witnessed examples in which features
align very well with the system’s structure, that is, the average fea-
ture cohesion is relatively high, and other examples in which the
opposite is true. However, little is known on how product lines are
structured and how a product line’s structure aligns with its fea-
tures. But this is of special interest because —compared to engi-
neering standalone software products— software product-line en-
gineering particularly aims at variability and reuse.

To investigate the characteristics of feature cohesion, we con-
duct an exploratory study on forty software product lines of dif-
ferent sizes and domains. As a technological basis, we use our
exploration and measurement tool FEATUREVIsU, which computes
all measures that we use in our exploratory study, and which can
visually relate the structural elements of a product line to its fea-
tures using layout-based clustering techniques. The idea is that,
beside classic cohesion-based measures [11,30], layout-based clus-
tering can provide additional insights into the structure of software
product lines and, in particular, into feature cohesion. Our novel
feature-cohesion—based measures consider not only the number of
references between program elements but also their distances in a
clustering layout (cohesive elements are drawn closely together in
such layouts, long-distance references do not witness cohesion).



In our exploratory study, we are interested in a number of re-

search questions concerning the characteristics of feature cohesion:

e How well does the system structure of a product line align
with its features?

e Are there significant differences in feature cohesion between
the features of a product line and between all product lines
of our sample?

e Does the feature or system size in terms of lines of code or
number of features correlate with feature cohesion?

e Does the development process (i.e., whether a product line
has been developed from scratch or refactored from a legacy
system) influence feature cohesion?

Providing answers to these questions can aid programmers, lan-
guage designers, and tool builders in their quest to develop well-
structured software, as we will discuss. To this end, we use
FEATUREVISU in two ways: (1) interactively, to visualize and ex-
plore the structure of software product lines, and (2) for automatic
processing, to conduct a quantitative analysis on feature cohesion.

Overall, we make the following contributions towards under-
standing feature cohesion:

e We adopt several classic cohesion-based measures to under-
stand and assess feature cohesion in software product lines.
To provide a more holistic view, we additionally introduce
distance-based measures derived from clustering layouts.

e We offer the open-source tool FEATUREVIsU, which com-
putes values for all measures that we use in this work (classic
and distance-based). Furthermore, FEATUREVISU can be used
to visually explore the structure of product lines, especially
with regard to feature cohesion.

e We study forty software product lines of different sizes and
domains by exploring their structure and by investigating
feature cohesion using classic measures and distance-based
measures. Based on the collected and analyzed data, we an-
swer a number of research questions regarding system struc-
ture, feature cohesion, and correlation factors.

e We discuss perspectives of our results and possible research
directions, especially with regard to information hiding, pro-
gramming guidelines, and tool support.

FEATUREVISU and all experimental data for reproducing our results
are available at our supplementary project website:
http://www.fosd.de/FeatureVisu.

2. PRELIMINARIES

In this section, we describe our holistic approach to assess fea-
ture cohesion using classic measures as well as distance-based mea-
sures that are derived from clustering layouts.

2.1 Feature Cohesion

Feature cohesion is the degree to which the elements (e.g.,
methods, fields, classes) of a feature depend on other elements
of the same feature. This definition is derived from the classic
notion of cohesion in chemistry, where cohesion is an attracting
force between molecules that tries to keep the molecules together.
Feature coupling is the degree to which the elements of a fea-
ture depend on elements outside the feature. Feature coupling acts
against feature cohesion: if the coupling to elements outside the
feature overcompensates the cohesion between the elements of the
feature, then the structure of the system disappears; if the cohesion
is stronger than the coupling, structure emerges in the system.

The cohesion-coupling ratio can be considered as a good indi-
cator for structuredness. In the spirit of classic work on software
structure [24,26], features with a high cohesion-coupling ratio (i.e.,
features whose elements depend on elements that are mostly of the
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same feature) have a positive effect on software quality, because
program units with high cohesion and low coupling can be changed
almost in isolation.

A simple approach to assess feature structure is to relate the num-
ber of dependencies between elements inside a feature (internal
dependencies) to the number of dependencies to elements outside
that feature (external dependencies). Another simple approach is
to relate the number of dependencies inside a feature to the overall
number of elements of that feature. We adopt these simple indi-
cators to features and product lines but, in addition, we pursue a
more holistic approach. The idea is to view the relations between
features from a global perspective. The elements of features and
their dependency relation form a dependency graph (which mod-
els calls, usage, inheritance, etc. as edges in the graph). Typically,
the dependency graph is a highly connected network with edge de-
grees in the order of several hundreds. Furthermore, such a graph
is generally not regular, but —if structure exists— the graph con-
tains clusters (i.e., groups of elements that heavily depend on each
other); such groups can be identified by layout-based clustering us-
ing light-weight tools [7]. In addition to classic measures, we use
information obtained from a clustering layout to explore and assess
feature cohesion. Before we define the measures that we use later
as indicators for feature cohesion, we give a brief introduction to
layout-based clustering.

2.2 Layout-Based Clustering

Overview. Clustering partitions a set of elements into subsets ac-
cording to certain properties. If we choose the nodes of the depen-
dency graph of a software system as the set of elements to be clus-
tered, and instruct the clustering algorithm to partition this set ac-
cording to the graph structure (i.e., highly connected nodes shall be
in the same cluster), then we obtain a decomposition of the software
system according to the dependencies in the graph. Work on layout-
based clustering (a.k.a. visual clustering) goes one step ahead and
argues that it is not sufficient to partition a set into equivalence
classes. Layout-based clustering considers distances between ele-
ments in a two-dimensional space, in which related elements have
close positions and unrelated elements have distant positions. The
mapping from nodes to positions is called layout. The advantage
of a clustering layout is that it reveals a degree of relatedness: two
elements can be very close (or not so close) in the same cluster,
or belong to two different clusters that are neighbors (or distant
clusters), or anywhere in between. Clustering criteria for layout-
based clustering have been formally and thoroughly investigated
by Noack [23], and the method was applied to software graphs in
CCVisu [7,10], which is the technological basis of FEATUREVISU.
Applied to features and product lines, layout-based clustering
provides a holistic view on feature structure. Intuitively, a feature
has a higher cohesion than coupling if its elements are close to each
other, because then they are connected by many internal edges. If
the elements that a feature introduces are scattered across the entire
layout, then the cohesion of the feature is lower than its coupling to
other features. Thus, we use the distances computed by a layout-
based clustering algorithm to assess feature structure in software
product lines, complementary to classic indicators for structure.

Technical Details. A clustering layout can be computed by force-
directed graph drawing, in which an energy model ensures that the
drawn layout fulfills the required clustering properties. The force-
directed approach consists of two parts: an energy model that maps
a layout to an energy value that is used for evaluation —the smaller
the number, the better the layout— and an algorithm that computes
a layout with minimal energy.



A layout of a graph G is a function p that maps each node of the
graph to a position in the two-dimensional space. An energy model
is a function U that assigns to each layout p a real number. The
layout p is the best layout for G if U(p) is the global minimum of
function U. The energy model encodes the layout goal, that is, the
user’s choices of what is considered as good layout. For clustering,
this means to produce layouts that provide separation of cohesive
subgraphs and interpretable distances. FEATUREVISU uses Noack’s
clustering energy model, which has been successfully applied to
layout-based clustering in a number of different domains [6,7, 10,
23]:

U(p) = Lpuwyer 1P0) —pw)]]
+ Y jeve —deg(v) - deg(w) - In||p(v) — p(w)],

where function p : V — R? is a layout, U(p) is the energy of p,
[|lp(v) — p(w)]| is the Euclidean distance of the nodes v and w in p,
deg(v) is the edge degree of a node v (number of edges incident
tov), and V) = {{vw} |vEVAWEV Av#w} is the set of all
possible undirected edges of nodes from V. The first term of the
sum is interpreted as attraction between connected nodes, because
its value decreases when the distance of such nodes decreases. The
second term is interpreted as repulsion between all pairs of (differ-
ent) nodes, because its value decreases when the distance between
any two nodes increases. The repulsion of each node v is weighted
by the edge degree deg(v) to avoid a bias to place nodes with heavy
edge degree in the center of the layout. Noack has formally shown
that such so-called LinLog energy models reveal clusters of a graph
naturally. That is, if the graph contains clusters, then the clusters of
the graph are visually identifiable in the layout as separated groups
of highly connected nodes [23].

An energy minimizer —the second part of the layout-based
approach— is an optimization algorithm that searches for a good
approximation of the best layout. The energy minimizer starts with
an initial layout, in which the positions of the nodes are randomly
assigned. Then, in every iteration, the algorithm tries to improve
the layout according to the energy model—by using the first deriva-
tion of the energy function (i.e., the force) to compute a direction
and a distance for the new placement of each node.

Tool Support. For our exploratory study, we extended the existing
visual-clustering tool CCVisu [7] by support for features and call
this tool extension FEATUREVISU. Visual clustering and CCVIsu
have been used previously to decompose software graphs into sub-
systems [6, 10]. It has been shown that visual clustering can aid
program comprehension by visualizing the software design based
on distances in the clustering layout [6, 10,23].

FEATUREVISU receives as input the dependency graph of a soft-
ware product line and a mapping between element nodes and fea-
tures. A node may belong to multiple features to resemble the situ-
ation in which a method contains statements of multiple features, or
multiple features share single fields or methods, which may happen
when features interact structurally [20]. The tool optimizes the lay-
out of the dependency graph iteratively by grouping element nodes
that depend on each other. The dependency graph spans a nontrivial
network, in which many forces take effect simultaneously. This il-
lustrates the global view that we pursue with the layout-based clus-
tering approach: feature cohesion is affected not only by numbers
of local references but by the global effects of forces caused by
dependencies that manifest themselves in interpretable distances.

Example. In Figure 1, we show an excerpt of the clustered depen-
dency graph of the product line BAL12JAK (for grammar processing)
of our exploratory study, computed and rendered by FEATUREVISU.
The discs (nodes of the graph) represent the fields and methods
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Figure 1: A clustering layout for the product line BALI2JAK
(features Bali, BaliBuild, and CodeGen are highlighted with ar-
rows and in blue, green, and red, respectively)
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Figure 2: An excerpt of the clustering layout for the product
line BAL12JAK including edges (feature CodeGen is highlighted
in red; edges model dependencies)

of the system. The area of a disc for a node is proportional to
the node’s edge degree. If the discs form clusters, then the corre-
sponding fields/methods heavily depend on each other. Initially, the
color of all nodes is light gray in FEATUREVIsu. For illustration, we
have colored the nodes belonging to feature Bali in blue, to feature
BaliBuild in green, and to feature CodeGen in red. To illustrate the
forces that drive the clustering, we display in Figure 2 an excerpt of
the layout of BALI2JAK, now including edges (dependencies). Both,
node coloring and displaying edges are supported by FEATUREVISU
— besides zooming, drag & drop, tool tips, etc.



Figures 1 and 2 illustrate how FEATUREVIsU can be used to ex-
plore the feature structure in software product lines. The idea is
to compare clusters and features (represented by colors). Features
whose elements form clusters are more cohesive than coupled. For
example, the elements of feature BaliBuild form a compact clus-
ter; it is largely self-referential and thus cohesive. Conversely, fea-
tures whose elements are scattered across the layout are highly cou-
pled. For example, the elements of feature Bali are scattered across
the entire layout; it shares many dependencies with other features
and has thus a much smaller cohesion-coupling ratio than BaliBuild.
Feature CodeGen is somewhere in between of Bali and BaliBuild, in
terms of structuredness: it consists of a compact cluster and some
elements scattered across the layout.

Visualizing the cross-linking between the elements of different
features helps developers to explore the reasons for a particular
clustering, for example, to get insights into why a feature is not co-
hesive and how to change that. Next, we formulate the relationship
between clusters in the layout and the structuredness quantitatively.

2.3 Indicators for Feature Cohesion

Layout-based clustering can aid program comprehension [6, 10,
23]. However, only displaying the layouts of product lines is not
sufficient to understand and compare feature cohesion systemati-
cally. Hence, we pursue a quantitative approach in addition. There
is no measure that fully captures structuredness (cf. Sec. 4). In-
stead, there are various complementary indicators that address only
particular aspects of cohesion or coupling. We contribute indicators
for structuredness based on clustering layouts.

We represent a software system by its dependency graph G =
(V,E), where the set V of nodes represents the elements of the sys-
tem (e.g., methods, fields, classes) and the set E C V x V of edges
represents the dependency relation between elements of the sys-
tem. Here, we are interested in feature-oriented product lines, so
we use a mapping elems : F — 2V in order to assign to each fea-
ture F € .Z aset elems(F) of program elements (graph nodes) that
F introduces to the software system. We assume that every feature
introduces at least one element and that every element is introduced
by at least one feature, possibly by multiple features.

Feature cohesion is the sum of attracting forces that try to keep
the elements of a feature together. In the following, we are inter-
ested in the dependency relation between elements of a feature and
from elements of a feature to elements outside the feature. Before
we introduce a number of measures designed to indicate certain
aspects of feature cohesion, we provide some auxiliary definitions.

Function dd(v) = |dep(v)|, with dep(v) = {(v,w) | (v,w) € E},
measures the number of dependencies that have impact on ele-
ment v (i.e., that relate v to other elements). This function was
used before as indicator for structural problems and complex de-
pendencies at the code level [9]; we adopt and extend it to features.

Function ID(F) = |intdep(F)|, with intdep(F) = {(v,w) |
(v,w) €EE A vEelems(F) N w € elems(F)}, measures the number
of dependencies (including self-references) that attract the elements
of a feature together. In order to compare the values for different
features, we normalize the measurement value in the following by
the number of potentially possible dependencies in feature F, that
is, [ {(»w) | v € elems(F) A w € elems(F)}| = | elems(F) |>.

Internal-ratio Feature Dependency (/FD). The first measure that
we use in our exploratory study is the internal-ratio feature de-
pendency, which measures the number of internal dependencies in
relation to the total number of potentially possible internal depen-
dencies of a feature:

|intdep(F)|

IFD(F) = ——F5
(F) |elems(F)|?

(¢))
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Function intdep(F) returns all dependency edges from elements
of feature F to elements of feature F; |elems(F)|? is the maxi-
mum possible number of dependency edges. The intuition behind
this measure is that the elements of a cohesive feature depend on
many other elements of the same feature. So, for a feature F' with
three elements each depending on all elements of F (including self-
references), we have IFD(F) = 1, which indicates that F is max-
imally cohesive. Conversely, for a feature F' with three elements,
none depending on any other element of F, we have IFD(F) =0,
which indicates that F is not cohesive. This indicator can be seen as
a feature-oriented variant of established software measures that ad-
dress relative cohesion in object-oriented and aspect-oriented sys-
tems [11,30] (Sec. 4). The indicator IFD takes only internal refer-
ences between elements of a feature into account. Hence, we use a
further measure that relates the internal references to all references.

External-ratio Feature Dependency (EFD). The measure
external-ratio feature dependency measures the number of internal
dependencies in relation to the total number of actual dependencies
(internal and external) of a feature:

_ |intdep(F)|

EFDIE) = (]

(€]

Function dep(F) = Y, cr dep(v) returns all dependencies of ele-
ments of a feature F. If a feature F' depends only on elements
outside the feature, we have EFD(F) = 0, which indicates that F
is not cohesive. Conversely, if ¥ depends only on itself, we have
EFD(F) = 1, which indicates that F is cohesive. This measure is
an adaptation of previous work to features [11,30] (Sec. 4).

Both measures (/FD and EFD) take only the numbers of ele-
ments and references into account — not the distances in the clus-
tering layout. Using IFD and EFD only, distance information ob-
tained by a clustering algorithm is not considered. The clustering
approach allows us to draw a more holistic picture of feature cohe-
sion and the effects of feature decomposition on the system struc-
ture. Layout-based clustering is essentially about relative distances
between nodes in a two-dimensional space. Dependencies are in-
terpreted as forces, and geometric proximity represents feature co-
hesion. Consequently, we define a set of new measures that take
these aspects into account.

Distance-based Internal-ratio Feature Dependency (/FDy /) and
Distance-based External-ratio Feature Dependency (EFDyy).
The first attempt is to modify the measures /FD and EFD, such that
they incorporate distance information obtained from a correspond-
ing clustering layout. Specifically, we penalize long references to
internal and reward long references to external elements.

For IFD, we obtain the distance-based measure /FDyy:

dia — v)—p(w
(y-.w)em):mpw)( 2(p) — ||p(v) = p( )H)

diag(p) - |elems(F)|?

IFDy (F)

3

First, we replaced the numerator of Equation (1) by a term
that considers the length of internal dependencies: diag(p) —
[|lp(v) — p(w)|| measures the length of dependency (v,w) and sub-
tracts it from the maximal length of a reference (diagonal diag of p)
in order to get large values if the internal reference is short. Sec-
ond, the sum of these distances is normalized by the product of
the longest possible reference (diag) and the number of potentially
possible references.



Analogously, we define the distance-based measure EFDy by
replacing the terms |intdep(F)| and |dep(F)| by their distance-
based counterparts:

y (diag(p) — ||p)-pw)|])
EFD (F) _ (vw)€intdep(F) @)
w
£ (diag(p) ~ [|p(v)—pw)]| )
(vw)€edep(F)

Normalized Average Radius (NVAR) and Normalized Maximum
Radius (VMR). The distance-based variants of our measures take
both the number of references and their lengths into account. To
provide a further complementary perspective, we define two mea-
sures that are based solely on relative distances in the layout, with-
out considering the actual numbers of references. To this end, we
exploit the notion of a dependency radius of a feature in the cluster-
ing layout to make statements about its cohesion. The dependency
radius of a feature F' is based on the distances of the elements of '
from the barycenter bc(F), where be(F) is the arithmetic mean
over all positions of the elements of F.

Specifically, we define the measures normalized average radius
(NAR) and normalized maximal radius (NMR):

mean ! |(p(v) - bc(F)| |
veelems(F)
NAR(F) =1— g ) ©)
max Hp(v)—bc(F)H
1 veelems(F)
NMR(F) =1 s ©)

Both measures are normalized by dividing the distance-based term
by the diagonal of the layout and then by subtracting the result
from 1. Thus, the measure ranges from O to 1. A feature with
only one single and well-separated cluster has a normalized radius
close to 1, which indicates that the feature is cohesive. Conversely,
a feature consisting of many elements scattered across the layout
has a normalized radius close to 0, which indicates that the feature
is not cohesive. We use both the average radius and the maximal
radius to neglect or consider outliers. We refer to the two measures
as radius-based measures.

2.4 Summary

We defined three classes of measures to quantify feature struc-
turedness in software product lines. IFD and EFD are based solely
on ratios of internal and external references. IFDyw and EFDy are
novel in that they additionally take into account the distances be-
tween nodes in a corresponding clustering layout, and NAR and
NMR are novel in that they are completely based on distance infor-
mation. All our measures are interval-scaled. They are based on a
substantial body of previous work (cohesion measures and layout-
based clustering), which provides evidence in the form of formal
proofs and empirical studies that the measures are sound and use-
ful (see Sec. 4). A novelty of our approach is to adapt the three
classes of measures to the needs of software product-line engineer-
ing and to apply them in an exploratory study to draw a holistic
picture of feature cohesion in software product lines.

3. AN EXPLORATORY STUDY ON
FORTY SOFTWARE PRODUCT LINES

By means of a study on forty software product lines of different
sizes and domains, we explore the characteristics of feature cohe-
sion in software product lines as well as its correlation with factors
such as feature size, system size, and development process. Note
that we explore the structure of the code base of a product line,
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rather than the code of the individual products that have been gen-
erated from the product line’s code base. The reason is that cohe-
sion is relevant for program comprehension, so we have to consider
what the developer sees and not the generated code that is deployed.

We briefly introduce our tool FEATUREVISU, outline the sample
product lines, present and interpret the results of our quantitative
analysis, and discuss threats to validity and perspectives.

3.1 FeatureVisu

FEATUREVISU extends the general-purpose visual-clustering tool
CCVisu [7] by support for features. It expects as input the depen-
dency graph of a product line as well as a mapping between pro-
gram elements and features (both in relational standard format—
RSF). This way, we can abstract from concrete product-line im-
plementation techniques such as annotative approaches (e.g., the C
preprocessor) and compositional approaches (e.g., feature-oriented
programming).

FEATUREVISU supports many useful user interactions, for exam-
ple, to adjust the number of iterations of the layout engine, change
a feature’s color, display edges and node names. In Section 2.2, we
have already illustrated how FEATUREVIsU is used to explore the
structure of a product line. Next, we introduce the sample product
lines of our study.

3.2 Sample Product Lines

We collected a sample of forty product lines of different do-
mains and system sizes, developed by refactoring or developed
from scratch. Table 1 provides information regarding domain, size,
and development process. All sample product lines are available on
the web. ! All product lines are based on Java, developed with the
product-line tools AHEAD [5], FEATUREHOUSE [2], and CIDE [18].
We extracted dependency graphs and the mapping between ele-
ments and features using the tools FEATUREHOUSE, DOXYGEN, and
CCVIsU, so the effort for collecting the input data was moderate.

Interestingly, some of the product lines are related. BCJAK2JAVA,
JAK2JAVA, JAMPACK, JRENAME, MIXIN, MMATRIX, and UNMIXIN
belong to the AHEAD tool suite, which is in fact a product line
of product lines [4]. So, they share certain basic features such
as parsers. Similarly, BALI2JAK, BALI2JAVACC, BALI2LAYER, and
BALICOMPOSER belong to the BALI tool suite, which is also a prod-
uct line of product lines [4]. Furthermore, CHATSYSTEM comes in
eight different variants. The variants have been developed inde-
pendently in a course on modern programming paradigms at the
University of Magdeburg. The same applies to NOTEPAD, which
comes in seven variants, independently developed in a course on
feature-oriented design at the University of Texas at Austin. The
relations between some sample product lines give us the opportu-
nity to explore whether similarities between product lines manifest
similar degrees of feature cohesion.

3.3 Measurements

In a first step, we loaded the data (dependency graphs and fea-
ture mappings) of each sample product line into FEATUREVIsU and
computed a clustering layout (two-dimensional). Then, we colored
nodes of individual features and displayed selected sets of edges
(cf. Fig. 1). This way, we got an impression of the differences
between individual features and individual product lines with re-
gard to feature cohesion (and there are considerable differences, as
our analysis confirms). In a second step, we conducted a quanti-
tative analysis. To this end, we extended FEATUREVIsU such that,
based on a clustering layout, it is able to calculate the measures
defined in Section 2.3. We collected data for all features of all

1 http://www.fosd.de/FeatureVisu/



No. | Product Line [| Domain | LOC[FS|DP
1| AHEAD/BCJAK2JAVA progr. tool 32326 15| S
2 | AHEAD/JAK2JAVA progr. tool 3293416 S
3 | AHEAD/JAMPACK progr. tool 34326 21| S
4 | AHEAD/JRENAME progr. tool 31120 17| S
5 | AHEAD/MIXIN progr. tool 32493 | 17| S
6 | AHEAD/MMATRIX progr. tool 32228 | 13| S
7 | AHEAD/UNMIXIN progr. tool 31658 | 12| S
8 | AJSTATS analysis tool 15311 (20| S
9 | BALI/BALI2JAK grammar tool 13527 | 11| S

10 | BALI/BALI2JAVACC grammar tool 14139 11| S
11 | BALI/BALI2ZLAYER grammar tool 13811 12| S
12 | BALI/BALICOMPOSER grammar tool 12197 (10| S
13 | BERKELEYDB database system | 64652 | 99 | R
14 | CHATSYSTEM/BURKE network client 614 6| S
15 | CHATS YSTEM/DREILING || network client 938 5| S
16 | CHATSYSTEM/BECKER network client 651 7| S
17 | CHATSYSTEM/WEISS network client 931 7| S
18 | CHATSYSTEM/SCHINK network client 873 7| S
19 | CHATSYSTEM/LUONG network client 862| 9| S
20 | CHATSYSTEM/REHN network client 760 6| S
21 | CHATSYSTEM/THUEM network client 5441 8| S
22 | EPL expression eval. 9112 S
23 | GAMEOFLIFE game 1656 | 14| R
24 | GPL graph library 791(27( S
25 | GUIDSL config tool 135731 26| S
26 | MOBILEMEDIAS8 multimedia 5278 | 51| R
27 | NOTEPAD/QUARK text editor 13971 10| R
28 | NOTEPAD/DELAWARE text editor 16541 6| R
29 | NOTEPAD/WELLINGTON || text editor 1522 4| R
30 | NOTEPAD/SVETOSLAV text editor 1627 6| R
31 | NOTEPAD/WEHRMAN text editor 1716 5| R
32 | NOTEPAD/GUIMBARDA text editor 1586| 9| R
33 | NOTEPAD/ROBISON text editor 1404 10| R
34 | PKJAB network client 4994 8| R
35 | PREVAYLER database system | 6867 | 6| R
36 | RAROSCOPE compression lib 428 5| R
37 | SUDOKU game 1850 7| R
38 | TANKWAR game 3184 15| S
39 | VIOLET model editor 9789 | 88| R
40 | ZIPME compression lib | 5479 35| R

Table 1: Overview of the sample product lines (LOC: num-
ber of lines of code; FS: number of features; DP: development
process—S: from scratch; R: refactored)

product lines. Due to the sheer amount of raw data, we can pro-
vide only a condensed view. However, the raw data are available
on FEATUREVISU’s website.

In Figure 3, we present values for the measurements of /FD and
EFD. On the x-axis we display the product lines (indexes corre-
spond to column ‘No.” in Table 1) and on the y-axes we present
their average IFD and EFD values (i.e., we calculated the mean of
all feature values per product line). Analogously, we present num-
bers for the measurements of /FDyw and EFDy in Figure 4 and of
NAR and NMR in Figure 5.

For illustration, Table 2 contains the measured values for the fea-
tures Bali, BaliBuild, and CodeGen from our example in Figure 1.
All three features have a low or no internal feature dependency. Ex-
ploring the layout and the code, we found that they are ‘providers’
in the sense that they bundle data and functions for other features.
External feature dependency is higher than internal feature depen-
dency for all three features. An exceptional case is feature CodeGen
that has no external references and is thus isolated. Looking at the
layout and source code, we found that the functionality of this fea-
ture is not used by other features except from the outside. Finally,
the radius-based measures are as expected, when looking at Fig-
ure 1 and Table 2.
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Feature || IFD | IFDw | EFD | EFDy | NAR | NMR

Bali || 0.02 0.01 0.5 0.38 | 0.61 0.57
BaliBuild 0 0 0.3 03| 099 | 0.99
CodeGen || 0.02 0.02 1 1| 079 0.7

Table 2: Measurements of the features Bali, BaliBuild, and Code-
Gen of the example of Figure 1

| IFD  IFDy EFD EFDy NAR NMR
IFD 1.00 1.00  0.27 028 046 0.51
IFDy 1.00  0.27 028 047 051
EFD 1.00 099 -0.15 -0.08
EFDy 1.o0 -0.11 -0.07
NAR 1.00  0.87
NMR 1.00

Table 3: Pearson’s correlation coefficients (measure vs. mea-
sure)

3.4 Statistical Analysis

Before we interpret the results, we conduct and discuss a number
of significance and correlation tests (all using the statistics tool R 2).

Significance. Looking at the data, we observed that the sample
product lines differ considerably in terms of our indicators. To
confirm that the differences between them are indeed significant
(rather than being coincidental), we used the Kruskal-Wallis test
(a statistical significance test for variance analysis of multiple sam-
ples) because the data are generally not normally distributed (tested
with the Shapiro-Wilk test). Specifically, we applied the Kruskal-
Wallis test (as well as the Shapiro-Wilk test) on a per-measure basis
to the entire set of measured values of the individual features. We
found that the data sets of all measures pass the test (all p-values
are lower than 10~19). That is, the individual product lines indeed
differ with regard to the individual measures.

Measure vs. Measure. A further interesting question is whether
the individual measures correlate. Of course, it is easy to see that
IFD and EFD are quite similar to their distance-based counter-
parts IFDy and EFDy, and that the radius-based measures pro-
vide fairly different results. But, to address this issue more sys-
tematically, we calculated for each pair of measures a correlation
coefficient (we use Pearson’s correlation coefficient, which is a
standard method to measure the association between two measured
quantities that are, at least, interval-scaled). In Table 3, we report
the calculated correlation coefficients. All correlations except be-
tween EFDy and NMR are significant (p-values not shown). Most
of the coefficients are below 0.3, which indicates almost no cor-
relation. Some are above 0.7, which indicates a strong correla-
tion; this includes the correlations between the classic measures
and their distance-based counterparts, as well as the correlation be-
tween NAR and NMR. Also, there is a weak correlation (0.3-0.7)
between the internal feature dependency (classic and weighted) and
a feature’s normalized radius (average and maximal).

Size vs. Cohesion. Furthermore, we are interested in whether the
size of a feature or of an entire product line correlates with its co-
hesion. We tested the correlation between the number of lines of
code (LOC) of a feature and the individual measures, between the
number of features of a product line and the individual measures,
as well as between the number of lines of code (LOC) of an entire
product line and the individual measures (again, using Pearson’s
correlation coefficient). In Table 4, we report the calculated corre-
lation coefficients. Many pairs of samples do not correlate (> —0.3

thtp ://wuw.r-project.org/
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| IFD  IFDwy  EFD EFDy NAR NMR
#LOC (PL) | 0.15 0.16 -0.44 -043  0.14  0.07
# features 0.55 056  0.07 0.08 036 036
#LOC (F) -0.2 -0.2  0.05 0.05 -0.34 -0.3

Table 4: Pearson’s correlation coefficients (size vs. measure);
PL: product line, F: feature

| IFD IFDy EFD EFDy NAR NMR
# from scratch | 23.6 233  58.1 57.7  90.0 83.5
# refactored 45.4 451 733 75.0 93.0 87.4

Table 5: Influence of the development process on feature cohe-
sion (all differences are significant: p < 0.006)

and < 0.3). Interestingly, there are weak but significant correlations
between the number of features and some of our measures (IFD,
IFDy, NAR, NMR). That is, the more features a product line has,
the higher is their internal feature dependency. Another interest-
ing observation is that there is a weak negative but also significant
correlation (< —0.3) between EFD (and EFDy ) and the numbers
of lines of code of a product line. That is, the larger the code base
of a product line is, the weaker is the effect of external references
of features. Finally, there is a weak negative but significant cor-
relation between the number of lines of code of a feature and its
radius-based cohesion values (VAR and NMR). That is, the smaller
a feature is, the higher is its normalized radius-based cohesion.

Process vs. Cohesion. Furthermore, we tested whether feature co-
hesion depends on the development process of a product line (i.e.,
developed from scratch or by refactoring). Since we have two dis-
crete levels in our data samples (refactored and from scratch), we
performed a Mann-Whitney-U test (a statistical significance test for
two non-normally distributed samples) to test whether there are sig-
nificant differences between product lines developed from scratch
and by refactoring in terms of the feature cohesion measures. We
performed the test for each measure based on the data of all fea-
tures. We found that there are significant differences between prod-
uct lines developed from scratch and by refactoring with regard to
each individual measure (all p-values are lower than 0.006). We
show the results in Table 5. On average, the cohesion is for all four
measures greater in product lines developed by refactoring (e.g.,
IFD is 45) than in product lines developed from scratch (e.g., IFD
is 24).

Product-Line Families. Finally, we are interested in whether there
are significant differences between the product lines of the AHEAD
family and of the BaLI family, respectively. Also we are interested
in whether there are significant differences between the different
variants of NOTEPAD and of CHATSYSTEM. To this end, we used a
Kruskal-Wallis test to determine whether the differences are sig-
nificant. For the AHEAD and BaLI product lines we did not find
significant differences; the same applies to the variants of NOTEPAD
and CHATSYSTEM, so we omit the numbers.

3.5 Interpretation

Looking at the data and the statistical analysis, we made six no-

table observations:

(1) For each measure, there are statistically significant differ-
ences between the individual sample product lines.

(2) In most cases, the measures do not correlate with other mea-
sures. On average, external feature dependency (EFD and
EFDy) is higher than internal feature dependency (IFD and
IFDy ) and lower than the radius-based measures (VAR and
NMR).



(3) The difference between the classic measures IFD and EFD
and their distance-based counterparts is marginal.

Internal feature dependency (/FD and IFDy ) correlates with
the number of features of a product line; external feature de-
pendency (EFD and EFDy ) correlates negatively with the
number of lines of code of a product line; the radius-based
measures (VAR and NMR) correlate negatively with the num-
ber of lines of code of a feature.

Product lines developed by refactoring have significantly
higher internal and external feature dependencies than prod-
uct lines developed from scratch; the same applies to the
radius-based measures.

The product lines of the AHEAD family do not differ signifi-
cantly; the same applies to BALI. The variants of NOTEPAD
do not differ significantly either; the same holds for CHAT-
SYSTEM.

(1) The first observation suggests an important insight: Only by
using feature orientation (i.e., by separating features in design and
code, or by making them otherwise explicit, e.g., by using anno-
tations), one does not necessarily attain a proper feature cohesion.
We found considerable differences between individual features and
entire product lines (effectively, covering the entire spectrum of
possible values of our measures). For example, the internal fea-
ture dependency is 0.61 for BerkeleyDB and 0.04 for Prevayler;
the external feature dependency is 0.78 for BerkeleyDB and 0.86
for Prevayler. That is, BerkeleyDB has highly cohesive and loosely
coupled features, whereas Prevayler has loosely coupled features
that are not very cohesive.

(2) The second observation tells us about the kind of cohesion
that features exhibit. Many product lines have loosely coupled fea-
tures in the sense that they depend mostly on their own elements,
rather than on elements of other features (EFD and EFDy). This
suggests that there is a potential for interfaces and information hid-
ing to encapsulate a feature’s elements (see Sec. 3.7). But our data
indicate that, internally, features are less cohesive in that a feature’s
elements depend only on few other elements of the same feature
(IFD and IFDy). This suggests that there is room for refactoring
features into smaller pieces (see Sec. 3.7). Finally, compared to the
other measures, the normalized radii of features are more homoge-
neous, but still reveal considerable differences between individual
features and product lines. That is, the elements of some features
are much more scattered across the clustering layout than others.
The fact that the normalized radii do not necessarily correlate with
the other measures illustrates that radius-based measures provide
an alternative view on feature cohesion. Feature GZIP of ZIPME
is a good example. It consists of 18 elements. Its internal fea-
ture dependency (classic and distance-based) is low because most
of its elements refer only to a few of its other elements. Its external
feature dependency is medium because there are roughly as many
external dependencies as internal dependencies. However, the dis-
tances between the feature’s elements are very low in the layout
(i.e., NAR and NMR are very high), which indicates that the inner
attraction is by far higher than the attraction from the outside. The
three pieces of information draw a holistic picture that would be
less informative without distance information.

(3) The third observation is that the distance-based measures
draw a similar picture as their classic counterparts (they correlate
strongly). But in certain cases, they provide more information than
the classic measures. Both distance-based measures penalize long
internal dependencies and reward long external dependencies. It
seems that this is not frequently effective (i.e., classic measure and
distance-based measure have similar values), but still we found sev-
eral situations in which there is a considerable difference between

(C))

(&)

(6)
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classic and distance-based measures. In these situations, features
are rated less cohesive compared to the traditional measures be-
cause their elements are pulled apart because of attractions to other
features. Feature Rot13 of CHATSYSTEM/REHN is an extreme ex-
ample: EFD(Rot13) = 100 and EFDy (Rot13) = 0. We found the
reason for the difference when examining the layout of the product
line: The feature consists of three elements that form two clusters
at different regions of the layout. EFD is maximal because the el-
ements refer only to themselves. EFDy is minimal because the
elements do not form a connected graph and thus are at different
positions in the layout. Although this is an extreme example (re-
call, on average, there is no significant difference between EFD and
EFDy), it shows that the weighted measures produce indeed differ-
ent results in special cases that may point to exceptional situations
and code smells. For feature Rot13, the developers may consider to
split it into two separate features.

(4) The forth observation is that there are correlations between
feature cohesion, and feature and system size. We observed a neg-
ative correlation between radius-based cohesion values and a fea-
ture’s size. That is, the smaller a feature is in the layout, the more
cohesive it is. This result is intuitive because large features often
share many references with other features. Furthermore, we ob-
served a positive correlation between internal feature dependency
and a feature’s normalized radii with the number of features of a
product line, and we observed a negative correlation between ex-
ternal feature dependency and the number of lines of code of a
product line. The question is why do they correlate? We believe
that the larger the product line, the larger is the number of depen-
dencies between program elements, and, consequently, the lower is
the external feature dependency. But, we cannot explain why the
internal feature dependency increases with the number of features.

(5) The fifth and probably most surprising observation is that
the features of product lines developed by refactoring have signif-
icantly higher cohesion values (for all measures) than the features
of product lines developed from scratch. This is surprising because
one would expect that it should be easier for programmers to de-
velop cohesive features when planning and designing a product line
from scratch, rather than when struggling with a given legacy de-
sign. This issue needs more investigation in the future.

(6) The sixth observation is that, although the different variants
of NOTEPAD and CHATSYSTEM have been developed indepen-
dently, the individual variants of each system do not differ signif-
icantly. This is easy to understand because NOTEPAD has been
developed by refactoring a common code base and the independent
developments of the CHATSYSTEM variants started from the same
core. The similarities between the product lines of the AHEAD
family is not surprising either, since they share certain features; the
same applies to the BALI family. These observations are interest-
ing, as they suggest that product lines of a single narrow domain
(possibly sharing features) have similarly cohesive features.

3.6 Threats to Validity

Internal Validity. To minimize threats to internal validity, we con-
trolled a number of confounding variables. In particular, we se-
lected only Java-based product lines to rule out effects due to dif-
ferent languages, and we selected a large sample size to minimize
influences of confounding variables such as programming experi-
ence and domain. In general, a key idea of our study is to assess
feature cohesion in different ways to provide a holistic picture. This
way, we circumvent the problem that a certain measure is influ-
enced by an unknown confounding variable. Additionally, we used
established statistical methods to assess significance and correla-
tions.



External Validity. A common issue is to what extent the external
validity of our study relies on the selection of samples. Can we gen-
eralize to other product lines, application domains, and languages?
The fact that we used only product lines written in Java increases
internal validity at the cost of external validity. As in every empir-
ical study, there is a trade-off between the two. For our study, we
decided to maximize internal validity to control confounding vari-
ables and to live with the fact that we cannot generalize to all kinds
of languages. However, to still increase external validity to an ac-
ceptable level, we collected as many feature-oriented product lines
as we were able to locate and to process with our tools (e.g., to infer
the dependency graphs and feature mappings), deliberately exclud-
ing too small and artificial examples. Although a larger sample
size would increase external validity, we argue that the selected
programs represent the state-of-the-art in feature-oriented product-
line engineering (with Java) because they are of substantial size, of
different domains, and have been developed mostly by others and
for different purposes.

3.7 Perspectives

A key insight of our exploratory study is that, concerning differ-
ent cohesion indicators, there are significant differences between
individual features of a product line and across individual prod-
uct lines. The point is that all sample product lines have been
developed with feature-oriented techniques. One goal of feature
orientation is to make features explicit in design and code, and to
encapsulate code belonging to a feature into a single, addressable
unit [1,5,22]. So, one would expect that features are implemented
mostly cohesively, but this seems not to be generally the case, as
our data suggest.

A further issue is that popular feature-oriented approaches such
as AHEAD do not provide proper encapsulation mechanisms for
features. That is, a programmer can separate feature code but there
is no feature-specific interface mechanism to hide internal details of
a feature. A feature-specific interface mechanism is clearly desir-
able because this would facilitate modular type and model checking
as well as separate compilation of features [16]. Our data suggest
that by far not all features and all product lines in this field are
ready for such mechanisms. Or it may be the other way around:
proper information hiding and interface mechanisms are missing
in feature-oriented approaches such that the result is a suboptimal
feature cohesion.

Another issue is that there is no established catalog of guidelines
or patterns of how to program software product lines in a feature-
oriented way. So, for example, inspecting manually the layouts of
individual product lines, we found features that are “providers” for
other features and features that are “customers”; we found features
that are used by almost all other features and features that are used
only by one or two other features. So, the study suggests that there
are different styles of feature-oriented programming. Features can
be large subsystem-like structures (e.g., a parser in MIXIN), fine-
grained extensions (e.g., adding a button in VIOLET), or everything
in between. Furthermore, features can be heavily crosscutting in
nature (e.g., latches in BERKELEYDB), almost self-contained units
(e.g., the SAT solver in GUIDSL), or everything in between. The
question is in which situation is which style favorable? We be-
lieve that tools like FEATUREVIsU and analyses like the one we per-
formed, can help to answer this question in the future.

Finally, we believe that layout-based clustering approaches can
help to understand large software systems such as product lines.

3We included EPL because it implements the expression prob-
lem — a widely-used benchmark for modularity and composition
techniques [28].
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They can point to design and code smells such as indicating a low
feature cohesion and help programmers to understand why is that
the case (e.g., too large, non-cohesive features should be divided by
refactoring). We envision tools that visualize changes and refactor-
ings of a software system in its layout online, to provide immediate
feedback to the programmer [8].

4. RELATED WORK

Cohesion Measures. The notion of feature cohesion in general and
the definition of the measures /FD and EFD in particular are based
on previous work discussing and measuring cohesion in software
systems [3,11,22,26,30].

An early definition of cohesion can be found in the work of
Stevens et al. on structured design [26]. This work defines cohesion
informally as the degree to which relationships among program ele-
ments tend to be inside individual modules rather than across mod-
ule boundaries. Our informal definition is inspired by this work.

The notion of cohesion has been used in object-oriented design
to assess the system structure; Briand et al. provide a comprehen-
sive overview of the subtle differences in the definitions of differ-
ent cohesion measures for object-oriented systems [11]. All mea-
sures are centered around key object-oriented abstraction mecha-
nisms such as methods, fields, classes, and inheritance. Most mea-
sures concentrate on the cohesion of single classes, which resem-
bles our measure /FD. Measures that consider also inter-class re-
lations such as external method invocations resemble our measure
EFD. In any case, our model and measures are more abstract (and
thus language- and paradigm-independent) in that they are defined
over dependency graphs.

Zhao and Xu apply previous work on object-oriented cohesion
measures to aspect-oriented programming [30]. Specifically, they
define two kinds of cohesion measures, one considering the cohe-
sion of elements within one module and one considering the co-
hesion across multiple modules. The former is an instance of our
measure /F'D and the latter is an instance of our measure EFD, both
applied to aspect-oriented programming. Zhao and Xu proved that
the two measures satisfy all properties necessary to define a mea-
sure. Furthermore, numerous empirical studies (e.g., [14]) rely on
these two measures, so we are confident that our measures and our
results are sound.

Finally, there is some work that stresses the importance of feature
cohesion in software product lines [3,22]. Most notably, Lopez-
Herrejon et al. compare different programming languages with re-
spect to their ability to implement cohesive feature modules [22].
However, their notion of feature cohesion is defined only infor-
mally. Hence our measures and our experiments advance the field.

Product-Line Measures. There is a large body of work aiming at
assessing and predicting the quality of product lines, especially of
product-line architectures. There are too many pieces of work to
name them all, so we refer the reader to representative examples.
Specifically, we would like to point to the work of van der Hoek et
al. [29], who propose a number of measures to assess the variability
of a product-line architecture, to the work of Her et al. [15], who
developed a framework for evaluating the reusability of a product
line’s core assets, and to the work of Cheng et al. [12], who propose
several measures based on architectural drivers. Feature cohesion
at the level of code has not been considered, nor has layout-based
clustering been used as a foundation.

5. CONCLUSION

To assess the characteristics of feature cohesion in software
product lines, we conducted an exploratory study on forty software



product lines of different sizes and domains. We defined and used
different cohesion measures including classic measures and mea-
sures that are based on layout-based clustering. The idea of using
multiple measures that are based on different foundations is to draw
a holistic picture of feature cohesion. In our study, we made several
interesting observations such as that individual features and indi-
vidual product lines differ significantly in their cohesion and that
there are correlations between feature and system size and feature
cohesion as well as between development process and feature cohe-
sion. These observations open up interesting perspectives. For ex-
ample, the role of interfaces in feature orientation is directly related
to feature cohesion but did not receive much attention in the past.
Another example is that there are different styles of implementing
features that lead to different cohesion degrees. Currently, there is
no agreement on a common catalog of programming guidelines or
design patterns for feature-oriented development, which seems to
be important when looking at the data. Finally, as we made good
experience with using FEATUREVISU, it is interesting to system-
atically explore how layout-based clustering can aid product-line
engineering, for example, in terms of comprehension and mainte-
nance.
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