
Aspectual Feature Modules
Sven Apel, Thomas Leich, and Gunter Saake, Member, IEEE Computer Society

Abstract—Two programming paradigms are gaining attention in the overlapping fields of software product lines (SPLs) and

incremental software development (ISD). Feature-oriented programming (FOP) aims at large-scale compositional programming and

feature modularity in SPLs using ISD. Aspect-oriented programming (AOP) focuses on the modularization of crosscutting concerns in

complex software. Although feature modules, the main abstraction mechanisms of FOP, perform well in implementing large-scale

software building blocks, they are incapable of modularizing certain kinds of crosscutting concerns. This weakness is exactly the

strength of aspects, the main abstraction mechanisms of AOP. We contribute a systematic evaluation and comparison of FOP and

AOP. It reveals that aspects and feature modules are complementary techniques. Consequently, we propose the symbiosis of FOP

and AOP and aspectual feature modules (AFMs), a programming technique that integrates feature modules and aspects. We provide a

set of tools that support implementing AFMs on top of Java and C++. We apply AFMs to a nontrivial case study demonstrating their

practical applicability and to justify our design choices.

Index Terms—Feature-oriented programming, aspect-oriented programming, software product lines, incremental software

development, collaboration-based design, separation of concerns, crosscutting modularity.

Ç

1 INTRODUCTION

SOFTWARE product lines (SPLs) [39] and incremental software
development (ISD) [98] are gaining much attention in

software engineering and are subjects of ongoing research.
In their overlapping fields, several methods, techniques,
and tools have been proposed, for example, stepwise
refinement [117], program families [95], AHEAD (Algebraic
Hierarchical Equations for Application Design) [24], and
generative programming [46]. Besides methodological, pro-
cess-related, and tool-related issues, the capabilities of
programming languages are crucial for success in this field.
Two novel programming paradigms discussed in this
context are feature-oriented programming (FOP) [96] and
aspect-oriented programming (AOP) [63].

FOP aims at the modularity of features in SPLs. Programs in
SPLs are implemented incrementally by composing code
associated with features. FOP has emerged from layered
architectures [23] and from domain engineering [46]. It is a
paradigm that provides mechanisms for implementing and
composing features that represent domain concepts. Features
are means to communicate the commonalities and vari-
abilities of the programs or software systems associated
with a domain.

There are two key ideas of FOP: 1) Features are mapped
one-to-one to modular implementation units called feature
modules and 2) feature modules incrementally refine feature

modules already present in a program. Since traditional
abstraction mechanisms such as classes are too small units
of modularity, a feature module encapsulates a set of classes
(and/or class fragments) that define a feature, a so-called
collaboration [99], [115]. Feature composition is the consistent
composition of a feature’s structural elements with the
elements of other features. Different compositions lead to
different programs.

AOP addresses related issues: AOP focuses on localizing,

separating, and modularizing crosscutting concerns. A

concern is an issue or problem that is of interest to

stakeholders. In this sense, concerns are related to features,

which we will explore in this paper. Crosscutting concerns

are special because their implementation does not align

with the hierarchical or block structure of other concerns

already present in a program.
Aspects, the main abstraction mechanisms of AOP, en-

capsulate code that otherwise would be tangled with and

scattered across other concern implementations, which is a

result of an improper crosscutting modularity [63], [110]. By

using aspects, a separation of crosscutting concerns is

achieved, which is important for building complex software

including SPLs. Although not the initial focus of AOP, several

research efforts of the AOP community address SPLs [42],

[53], [60], [65], [72], [78] and ISD [13], [77].

1.1 The Relationship of Features and Aspects

In this paper, we explore the relationship of FOP and AOP.

At first glance, FOP and AOP differ in their intention. FOP

aims at programming language and tool support for

domain engineering, that is, at features, which are the

fundamental units of abstraction that have a meaning in a

domain. AOP aims at the modularization of crosscutting

concerns. This also includes concerns that do not usually

appear in domain engineering. That is, all features are

concerns (possibly crosscutting concerns), but not all

concerns are features of a domain.

162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

. S. Apel is with the Department of Informatics and Mathematics,
University of Passau, 94030 Passau, Germany.
E-mail: apel@infosun.fim.uni-passau.de.

. T. Leich is with the Department of Applied Informatics, Metop Research
Institute, Sandtorstrasse 23, 39106 Magdeburg, Germany.
E-mail: thomas.leich@metop.de.

. G. Saake is with the School of Computer Science, University of Magdeburg,
Universitaetsplatz 2, 39106 Magdeburg, Germany.
E-mail: saake@iti.cs.uni-magdeburg.de.

Manuscript received 29 Jan. 2007; revised 2 Aug. 2007; accepted 8 Nov. 2007;
published online 16 Nov. 2007.
Recommended for acceptance by H. Ossher.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0024-0107.
Digital Object Identifier no. 10.1109/TSE.2007.70770.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

The different focus of FOP and AOP has led to different
terminologies, methods, programming mechanisms, and
tools commonly associated with the two programming
paradigms. Overall, the situation is quite confusing. We aim
at dispelling the confusion by offering a classification of
design and implementation problems addressed by FOP
and AOP and by a systematic comparison of their
capabilities to solve these problems. We compare FOP and
AOP at the level of programming language mechanisms,
although an isolated discussion is difficult. In order to keep
focused, we do not consider developments relating FOP
and AOP to software analysis, modeling, and process.

The focus on language mechanisms enables us to
compare FOP and AOP on the basis of a small set of
evaluation criteria. Of course, some mechanisms are best
practice in both paradigms and there are researchers that
even classify FOP mechanisms, in particular collaborations,
as a subset of AOP [58], [82], [85] or AOP mechanisms, in
particular advice, as a subset of FOP [24], [46], [77].
Therefore, we first define what we mean when we talk
about FOP mechanisms and AOP mechanisms. Our dis-
tinction is motivated by the historical roots of FOP and AOP
and by contemporary opinions that are widely shared, as
we will explain. Therefore, the results of our analysis
should be interpreted in this context.

Commonly, features in FOP are implemented by
collaborations. Each feature module encapsulates those
fragments of the classes of a program that belong to a
feature. FOP decomposes an object-oriented design along a
further dimension (beyond classes) into units that are of
interest to the stakeholders. Although feature modules are
capable of implementing crosscutting concerns, we and
others [86] experienced that not all kinds of crosscutting
concerns can be modularized appropriately. The classifica-
tion of crosscutting concerns, which we will present, allows
us to understand the nature of these problematic concerns.
This is where AOP comes into play.

AOP provides a multitude of mechanisms to modularize
crosscutting concerns. Considering all of them here is not
possible. Consequently, we limit our attention to what we
feel are the most important mechanisms. Our choice is
supported by former attempts to capture the essence of
AOP [52], [80], [83], [106] and by the fact that AspectJ,1 the
most mature and popular AOP language, supports these
mechanisms. Particularly, we consider quantification and
implicit invocation mechanisms such as pointcuts and
advice, as well as static injection mechanisms such as
intertype declarations, which we will review in the next
section. Note that we do not consider symmetric AOP
approaches [57] (for example, subject-oriented programming
[56], [92] or aspectual components [68]) since they are much
closer (if not similar) to our notion of FOP than to our
notion of AOP. We discuss these, as we call them, hybrid
approaches in Section 6.

Our study reveals that FOP and AOP provide comple-
mentary mechanisms that can profit from each other.
Although features are often crosscutting concerns, in
general, one cannot implement a feature cohesively and
modularly with aspects without restrictions (it may be done

in some cases). The difference in the concerns commonly
considered in AOP is that features come in large quantities
and may have a substantial size. For example, in SPL
development, the quantities and sizes of features challenge
AOP mechanisms [59], [60]. Aspects are not an adequate
alternative of feature modules because, in many cases,
multiple aspects and classes are needed to implement a
feature with a proper structure [55], [60], [61], [86], [105].
The reason is that AOP mechanisms are not sufficient to
express, encapsulate, and compose collaborations of multi-
ple artifacts. Though there are some workarounds (for
example, nested aspects and packaging of aspects), they are
complicated and unintuitive, as we will explain. The bottom
line is that, in order to profit from both FOP and AOP
mechanisms, we need to combine them.

1.2 Integrating Features and Aspects

Object orientation decomposes a program along concerns
(that may be features), which typically results in a hierarchy
of classes. FOP and AOP decompose a program further
along those concerns that do not align with the class
structure, where decomposition is the intellectual process of
structuring software into modules. Feature modules struc-
ture an object-oriented design into fragments of classes and
their collaborations that belong to a feature. This way,
feature modules form a layered architecture that reflects the
ISD methodology of FOP. Aspects decompose a program
along those concerns that crosscut the class structure and
that are supposed to be well modularized. This illustrates
that feature-based and aspect-based decomposition may
overlap. Nevertheless, the use of aspects only depends on
the crosscutting relationship between concerns. If there is
no crosscutting, classes and other non-AOP mechanisms are
used. Features do not depend on the crosscutting notion.
The abstractions of a domain define that features should be
implemented modularly. Whether these are crosscutting
concerns or not is not important.

Typically, feature-based and aspect-based decomposi-
tion lead 1) to a different program structure because of their
different intention and 2) to a different implementation
because of their different language mechanisms. This can be
observed in several case studies on AOP-based (for
example, [40], [41], [71], [72], [120]) and FOP-based
programs (for example, [23], [35], [66], [112], [119]). Usually,
aspects are small units that are used for a few concerns
whose implementation would otherwise lead to extreme
code scattering and tangling. Features represent any
domain abstraction, which results in small-sized, medium-
sized, and large-sized feature modules. Using these two
kinds of decomposition side by side, aspects might affect
code associated with several features and feature modules
might contain code from several aspects.

Thinking of aspect-based and feature-based decomposi-
tion in this way makes it possible to integrate both. The
systematic combination of FOP and AOP leads to a
decomposition of software along three dimensions: classes,
aspects, and features. Our goal is to eliminate their overlap
by assigning aspect-based and feature-based decomposition
to different design and implementation problems based on
the paradigms’ individual strengths and weaknesses. We
will show that the problems roughly map to the different

APEL ET AL.: ASPECTUAL FEATURE MODULES 163

1. http://www.eclipse.org/aspectj/.

kinds of crosscutting concerns that we have identified. Our
key idea is that programmers implement features as units
that structure an aspect-oriented design instead of an object-
oriented design. Feature implementations become enriched
by AOP mechanisms because they may contain aspect
artifacts. Technically, this means that aspects are integrated
into feature modules and work with classes and other
aspects in concert to implement the features of an SPL.

This kind of integration of feature modules and aspects
has two advantages for FOP and AOP: 1) an improvement of
the crosscutting modularity of features due to the sophis-
ticated modularization mechanisms that aspects provide
and 2) an alignment of AOP and ISD achieved by the
seamless integration of aspects into the ISD style of feature-
based SPLs.

1.3 Contributions

In this paper, we make the following contributions:

. a systematic evaluation and comparison of FOP and
AOP, on top of a definition of FOP and AOP, a
classification of crosscutting concerns, and a set of
evaluation criteria;

. a proposal of the symbiosis of FOP and AOP and a
programming technique, called aspectual feature
modules (AFMs), that implements the symbiosis
differently from previous work;

. a set of programming guidelines for using FOP and
AOP mechanisms in concert; and

. an evaluation of AFMs by means of a nontrivial,
medium-sized case study that indicates the profit-
able integration of aspects and feature modules.

This paper revises, extends, and combines our prior work
presented in the technical tracks of ICSE ’06 [15] and
GPCE ’06 [8].

2 BACKGROUND

For a better understanding of the remainder of this paper,
we briefly review FOP and AOP, as well as the two
representative languages Jak [24] and AspectJ [62].

2.1 Feature-Oriented Programming

Research on FOP investigates the modularity of features in
SPLs in which a feature is an increment in program
functionality [24]. Feature modules are modules that realize
features at design and implementation levels. Typically,
features modules refine the content of other feature
modules in an incremental fashion.

An important observation is that features are seldom
implemented by single classes, but, instead, are mostly
implemented by a whole set of classes that cooperate to
complete a task. This coordinated interclass communication
is called a collaboration [24], [50], [69], [86], [89], [99], [102],
[115]. Feature modules facilitate the abstraction, encapsula-
tion, and composition of collaborations.

Classes play different roles in different collaborations
[115]. A role encapsulates the behavior or functionality that
a class provides when a corresponding collaboration with
other classes is established, or in the context of FOP, when a
corresponding feature is present in a program or software
system. That is, a role is the part of a class that implements

the communication protocol with other classes participating
in a particular collaboration. From the FOP perspective,
each role is implemented by a refinement. A refinement adds
new elements to a class and extends existing elements, such
as methods. Usually, features extend a program by adding
several new classes and by applying several new roles to
existing classes simultaneously. Hence, the implementation
of a feature cuts across several places in the base program.

Fig. 1 depicts the collaboration-based design of a simple
program that deals with graph data structures.2 The feature
BasicGraph consists of the classes Graph, Node, and Edge

that together provide functionality to construct and display
graph structures.3 The feature Weight adds roles to Graph

and to Edge and a class Weight to implement a weighted
graph, that is, a graph that assigns to each edge a specific
weight value.

2.2 Jak—FOP for Java

Jak4 is an extension of Java for FOP. It provides a
language construct to express refinements of classes, for
example, for implementing roles. Classes in Jak are
implemented as standard Java classes. Fig. 2 depicts our
feature BasicGraph implemented in Jak.5 It consists of the
classes Graph (Lines 1-13), Edge (Lines 14-18), and Node

(Lines 19-22). A programmer can add nodes (Lines 3-7) and
print out the graph structure (Lines 8-12).

A refinement in Jak encapsulates the changes a feature
applies to a class. It is declared by the keyword refines. A
class composed with a series of refinements forms a new
(compound) class. Technically, class refinement can be
implemented with various mechanisms (see Section 6).

Fig. 3 depicts our feature Weight implemented in Jak: It
introduces a class Weight (Line 16); it refines the class
Graph (Lines 1-11) by introducing a new method add

(Lines 6-10) and by extending an existing method add via
overriding (Lines 2-5); it refines the class Edge (Lines 12-15)
by adding a field weight (Line 13) and by extending the
method print (Line 14). The mechanism of extending a
method via overriding and invoking Super

6 is called a
method extension (Lines 2-5, 14).

164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Fig. 1. Collaboration-based design of a graph implementation.

2. The diagram uses the UML notation [30] with some extensions: White
boxes represent classes or roles; gray boxes denote collaborations; solid
arrows denote refinement, that is, to add a new role to a class.

3. We write feature names in italic fonts and names of internal elements
of features (for example, classes, methods, and fields) in typewriter fonts.

4. http://www.cs.utexas.edu/users/schwartz/ATS.html.
5. For brevity, we depict the code of all classes and all refinements

belonging to a feature in a single listing.
6. In contrast to Java, the Jak keyword Super refers to the class that is

refined. For brevity, we write Super instead of Superð< argument types >Þ,
which is actually used in Jak for technical reasons.

A feature module is represented by a containment
hierarchy [24]. A containment hierarchy contains all artifacts
implementing a feature. In Jak, a containment hierarchy is
realized by a file system directory, which contains a set of
files that store the content of the different artifacts
belonging to a feature. Thus, a feature module has no
textual representation at the code level. The artifacts, that is,
classes and refinements found inside a directory, are the
members (assets) of the enclosing feature.

Feature composition superimposes containment hierar-
chies in which artifacts of the same name and type are
composed recursively. Two classes are composed via class
refinement and two methods are composed via overriding.
For example, the classes Graph and Edge of feature
BasicGraph (Fig. 2) are subsequently refined by two
refinements of feature Weight (Fig. 3). The two refinements
override a method each (Lines 2-5 and 14).

2.3 Aspect-Oriented Programming

Aspect-Oriented programming (AOP) is a programming
paradigm that aims at the modularization of crosscutting
concerns (also known as crosscuts) [49], [63]. It has been
observed that traditional programming paradigms such as
OOP do not perform well in modularizing crosscutting
concerns [63]. This is because they decompose software
along only one (dominant) dimension [110]. The imple-
mentation of concerns that do not fit this decomposition
leads to code scattering, tangling, and replication.

In our remarks on FOP, we have already considered a kind
of crosscutting concern: Collaborations extend a program at
different places, thus cutting across the module boundaries
introduced by classes. Feature modules implement
collaborations. AOP considers crosscutting concerns without
special focus on feature modularity or collaborations.

AOP addresses the problems caused by crosscutting
concerns as follows: Concerns that can be modularized well

using the given decomposition mechanisms of a program-
ming language (also known as host programming language)
are implemented using these mechanisms. All other
concerns that crosscut the implementation of other concerns
are implemented as so-called aspects. This illustrates that the
use of aspects depends on a given decomposition into
concern representations.

An aspect enables a programmer to encapsulate code
that is associated with one crosscutting concern, thereby
eliminating code scattering and tangling. Aspects may
affect multiple places in a program via one piece of code,
thereby avoiding code replication. An aspect weaver merges
the separate aspects of a program and the base program at
predefined join points, which is called aspect weaving. Join
points can be both, syntactical elements of a program (static
join points) or events in the dynamic execution of the
program (dynamic join points) [80].

Pointcuts are declarative specifications that select (static
and dynamic) join points; pieces of advice contain the code
that is executed when dynamic join points occur or that is
added to static join points in the program. Intertype
declarations (also known as static introductions) inject
members statically into existing classes.

Crosscutting concerns that affect static join points are
called static crosscutting concerns and crosscutting concerns
that affect dynamic join points are called dynamic cross-
cutting concerns. Static crosscutting concerns are typically
implemented by intertype declarations; dynamic cross-
cutting concerns are typically implemented by advice.

2.4 AspectJ—AOP for Java

AspectJ is an extension of Java for AOP. In Fig. 4, we depict
an aspect AddColor that adds facilities for printing colored
graph data structures (feature Color). It defines an interface
Colored (Line 2), and it declares that Node and Edge

implement this interface (Line 3); it introduces a field
color

7 (Line 4), it advises the execution of the method

APEL ET AL.: ASPECTUAL FEATURE MODULES 165

Fig. 3. Adding support for weighted graphs via refinements (Weight).

7. Our notation of intertype declarations differs from AspectJ. The
declaration “int ðA k BÞ:i” means that field i is introduced to A and B.

Fig. 2. A simple graph implementation (BasicGraph).

print of Edge and Node (Lines 5-6), and it introduces the
class Color as a static inner class.

AspectJ provides several mechanisms for the implemen-
tation of dynamic crosscutting concerns. For example, in
Fig. 5, we depict an aspect that advises the execution of a
method only if it occurs in the control flow of another
method execution (using cflowbelow). This is a dynamic
crosscutting concern since it crosscuts the dynamic compu-
tation of another concern implementation. It makes the
dynamic interaction of two (or more) concerns explicit.

3 EVALUATION OF FOP AND AOP

We use three criteria to evaluate and compare FOP and
AOP. The criteria are sufficient to reveal the differences of
FOP and AOP.

3.1 Evaluation Criteria

3.1.1 Homogeneous and Heterogeneous Crosscuts

Colyer et al. have introduced the distinction between
homogeneous crosscuts and heterogeneous crosscuts [42].

A homogeneous crosscut extends a program at multiple
join points by adding the same extension, which is a
modular piece of code. In our example, the feature Color
is a homogeneous crosscut since it introduces the same
piece of code to Edge and Node and extends both their
print methods.

A heterogeneous crosscut extends multiple join points by
adding multiple extensions, where each individual extension
is implemented by a distinct piece of code, which affects
exactly one join point. In our example, the feature Weight is a
heterogeneous crosscut since it extends Graph and Edge at
different join points with different pieces of code.

In our evaluation, we examine how FOP and AOP
perform with respect to homogeneous and heterogeneous
crosscuts.

3.1.2 Static and Dynamic Crosscuts

Mezini and Ostermann have introduced the distinction
between static crosscuts and dynamic crosscuts [86].

A static crosscut extends the structure of a program
statically, that is, it adds new classes and interfaces and
injects new fields, methods, interfaces, and superclasses,
etc. Note that method extensions are not static crosscuts, as
we will explain soon. For example, the feature Weight
introduces one class and injects one method and one field.

A dynamic crosscut affects the runtime control flow of a
program. The semantics of a dynamic crosscut can be

understood and defined in terms of an event-based model
[116]: A dynamic crosscut executes additional code when
predefined events occur during the program execution. Such
events are dynamic join points [80], [94], [116]. Examples of
programming constructs that can implement dynamic cross-
cuts are Jak method extensions and AspectJ advice.

In our evaluation, we examine how FOP and AOP
perform with respect to static and dynamic crosscuts.

3.1.3 Feature Cohesion

Cohesion is the ability of a feature to group and encapsulate
all implementation details that define the feature in one unit
and to assign a name to it [76], [107]. This enables the
programmer to reason about a feature’s implementation in
one location, separated from other feature implementations.
The highest degree of cohesion is achieved by a one-to-one
mapping of requirements (features as domain abstractions)
to corresponding units at implementation level (features
implemented with cohesive modules) [46].

3.2 Evaluation

3.2.1 Homogeneous and Heterogeneous Crosscuts

A significant body of work has shown that collaborations of
classes are predominantly of a heterogeneous structure [24],
[31], [69], [86], [89], [93], [99], [102], [104], [105], [110], [113],
[115]. That is, the roles and classes added to a program
differ in their functionality, as in our graph example. A
collaboration is a heterogeneous crosscut. A feature module
is well qualified to implement a heterogeneous crosscut.

In contrast to feature modules, aspects perform well in
extending a set of join points using one cohesive piece of
advice or one localized intertype declaration, thus mod-
ularizing a homogeneous crosscut. This way, programmers
avoid code replication.

Although both approaches support the implementation of
crosscuts that the other approach focuses on, they cannot do
so elegantly [86]. For example, to implement our feature Color
(a homogeneous crosscut) in Jak, we would introduce two
refinements to the classes Node and Edge, which contain
exactly the same code. Our AspectJ solution proposed
previously avoids this code replication (cf., Fig. 4).

Conversely, aspects may implement a collaboration (a
heterogeneous crosscut) by bundling intertype declarations
and pieces of advice. Actually, there are several ways to do
so, which range from implementing one collaboration with
one aspect to implementing each role with one aspect.

166 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Fig. 4. Adding support for colored graphs via an aspect (Color).

Fig. 5. Advising a method execution dependently on the control flow.

One may argue that, for our simple example, it does not
really matter whether one uses feature modules or aspects.
However, the difference between FOP and AOP becomes
more apparent when considering features at a larger scale.
Suppose a base program consists of many classes and a
feature extends most of them. In an FOP solution, the
programmer defines, per class to be extended, a new role
with the same name (Fig. 6). This way, the programmer is
able to retrieve the program structure within the new
feature. There is a one-to-one mapping between the
structural elements of the base program and the elements
of the feature. Of course, this mapping is only relevant for
the elements of the base program that are refined.

In an AOP solution, a programmer would either merge
all participating roles into one aspect (first option) or
implement each role with one aspect (second option); all
cases in between are possible, too, for example, two aspects
that implement two roles each.

While implementing a collaboration by a single aspect
(first option) is possible [97] (Fig. 7), it flattens the inherent
object-oriented structure of the feature and makes it hard to
trace the mapping between base program and feature [86],
[105]. Note that the difference between FOP and AOP, as
shown in Figs. 6 and 7, is not only a matter of visualization.
The point is that the inner structure of the aspect does not
reflect the structure of the base program; there is a
nontrivial mapping between structural elements of the base
program and the feature implementation (aspect). The
programmer has to trace this mapping continuously, that
is, to translate continuously between abstractions of the
base program and the feature. The one-to-one mapping of

the FOP solution is easier to understand, especially for
large-scale features.

Implementing each role as a distinct aspect (second
option) [55], [61], [100] would enable us to establish a one-
to-one mapping between the structural elements of the base
program and the elements of the collaboration, provided
the programmer follows reasonable naming conventions
(Fig. 8). This way, an AOP solution would be very similar to
an FOP solution. However, the mapping between classes
and roles is not enforced by the programming language
and, thus, is left to the discipline of the programmer. This is
an important point since the missing linguistic means of
AOP languages for expressing collaborations and roles
leads to a code in which the role implementations and their
interaction tend to vanish.

Furthermore, the way in which inheritance and roles are
replaced by aspect weaving does not provide any benefit. It
has been argued that such a replacement of object-oriented
techniques is questionable [67], [86], [105], especially
considering the additional complexity introduced by
quantification [3], [106].

The bottom line is that one should use simple mechan-
isms (class refinement, method overriding) for solving
simple problems (heterogeneous crosscuts) and use sophis-
ticated mechanisms (pointcuts and advice) for solving more
sophisticated problems (homogeneous crosscuts).

3.2.2 Static and Dynamic Crosscuts

Features and aspects may extend the structure of a base
program statically, that is, by injecting new members and
introducing new superclasses and interfaces to existing
classes. Additionally, features are able to encapsulate and
introduce new classes. Traditional aspects, as exemplified
by AspectJ, are not able to introduce independent classes—
at least not as part of an encapsulated feature (see the
discussion below about feature cohesion).8

As opposed to AOP, FOP provides no extra language
support for implementing dynamic crosscuts. That is,
dynamic crosscuts can be implemented, but there are no
tailored abstraction mechanisms to express them in an
intuitive way, for example, by an event-condition-action

APEL ET AL.: ASPECTUAL FEATURE MODULES 167

8. Although it is correct that one can just add another class to an
environment, for example, using AspectJ, this is at the tool level and not at a
model level. The programmer has to build his own mechanisms (outside of
the tool) to implement feature modularity [76]. For example, in FACET, an
AspectJ implementation of a CORBA event channel, the programmers
implemented a nontrivial mechanism for feature management [59].

Fig. 6. Implementing a large-scale feature with a feature module.

Fig. 7. Implementing a large-scale feature with an aspect.

Fig. 8. Using one aspect per role to implement a feature.

pattern. Though language abstractions such as cflow and
cflowbelow can be implemented (emulated) by FOP, this
usually results in code replication, tangling, and scattering.
For example, Fig. 9 depicts our extension of the printing
mechanism (cf., Fig. 5) of the class Node implemented using
FOP; the refinements of the classes Graph and Edge are
analogous. Omitting AOP constructs results in a compli-
cated workaround (underlined) for tracing the control flow
(Lines 2, 6, 8) and executing the actual extension con-
ditionally (Lines 4-5). Compared to the FOP solution, the
AOP solution captures the intention of the programmer
more precisely and explicitly (cf., Fig. 5).

FOP only supports method extensions that are able to
implement simple dynamic crosscuts that affect method
executions [86]. However, a programmer may want to
express a new feature in terms of the dynamic semantics of
the base program. Aspects are intended exactly for this kind
of crosscut. They provide a sophisticated set of mechanisms
to refine a base program based upon its execution, for
example, mechanisms for tracing the dynamic control flow
and for accessing the runtime context of join points.

The bottom line is that AOP performs well for modular-
izing advanced dynamic crosscuts (that is, dynamic crosscuts
that are not method extensions) and FOP only supports
method extensions that can be implemented via method
overriding.

3.2.3 Feature Cohesion

Features implemented via feature modules have an explicit
representation at design and implementation levels. All
structural elements that contribute to a feature are
encapsulated within a single feature module. Hence, a high
degree of feature cohesion is achieved.

Using AOP, a programmer expresses new features by
aspects, but, in many cases, features cannot be expressed
using one single aspect, especially not in complex programs
[76], [86]. Often, the programmer introduces several aspects
and additional classes. For example, the feature Weight
consists of the aspect AddWeight and the class Weight.
One may argue that we could express every feature using
only one aspect, but this violates the principle of separation
of concerns—it destroys the inner structure of a feature’s
implementation, as explained above. Classes and aspects
are too small units of modularity and, therefore, are not

suitable for implementing features [24], [31], [69], [86], [89],
[93], [102], [104], [105], [110], [113], [115].

Nevertheless, there are several ways to group collabora-
tions of multiple aspects and classes. For example, aspects
could be grouped in a package, in an enclosing aspect or
class, or just in a file system directory. However, without
FOP, there are no means to compose those constructs to
achieve a consistent composition of the features’ structural
elements. Of course, one could implement all of these things
and this has been done in collaboration-based designs for
years. The point is that there are solutions available and we
show how to reuse them. Note that hybrid approaches like
Caesar [84], [85], [86] exploit the mechanisms of collabora-
tion-based design such as mixin composition and virtual
classes. We discuss them in Section 6.

In summary, feature modules provide appropriate
means for the cohesive implementation of program fea-
tures. An aspect should not implement an entire feature
because, in AOP, it is a class-like entity that cannot express
a collaboration. Also, a group of aspects and classes is not
an option since there are no appropriate mechanisms for
their consistent composition.

3.3 Summary, Perspective, and Goals

Table 1 summarizes the results of our comparative
evaluation. It reveals that FOP and AOP complement one
another. That is, both have strengths where the other is
weak. Using both AOP and FOP together offers rewards
that neither of them could accomplish in isolation. In our
further considerations, we show how these strengths and
weaknesses map to programming guidelines that assist
programmers in choosing appropriate implementation
mechanisms for a given problem.

4 THE SYMBIOSIS OF FOP AND AOP

In this section, we address the following issues: 1) How do
we combine FOP and AOP and 2) does their combination
outperform FOP and AOP in isolation?

First, we explore the space for achieving a symbiosis of
FOP and AOP. Then, we present our approach of integrat-
ing feature modules and aspects, which we call AFMs.

4.1 Design Space

FOP and AOP can be combined in two ways: 1) Design a
programming language that combines the mechanisms of
FOP and AOP, which we call an in-language approach, and
2) integrate aspects as software artifacts into the develop-
ment style of FOP and ISD, which we call an architectural
approach.9

The in-language approach enables researchers to explore
the language properties of FOP and AOP, as well as their
possible integration. In Section 6, we discuss some work
that has been taking the in-language approach. As our
evaluation will reveal, some language mechanisms of FOP
and AOP are redundant. It is an interesting research
question as to what a novel language that integrates FOP
and AOP should look like, but in an aggregated and

168 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Fig. 9. Implementing the extended printing mechanism via refinement.

9. Note that it would also be possible to add feature support to AOP,
which could be achieved in turn either by an in-language approach or an
architectural approach.

stripped-down form. Previous work has not discussed what
mechanisms are essential and for which problems which
mechanisms should be used. Furthermore, in-language
approaches are useful to explore advanced language level
issues such as type systems, polymorphism, and soundness.
First steps have been made in this direction (Section 6).

The architectural approach takes into account that FOP is
also a design method to develop SPLs in an ISD manner.
AHEAD (Algebraic Hierarchical Equations for Application

Design), an architectural model of FOP, is comprised of all
kinds of software artifacts and lays an algebraic foundation
for features and ISD [24]. In this sense, aspects are just a
new software artifact that should be integrated into the
architectural model as well, however, with special char-
acteristics and individual support at the language level. The
architectural approach allows us to step back from the
implementation and to explore the essential properties of
FOP and AOP mechanisms, apart from the specifics of a
programming language or environment. First attempts have
been undertaken to explore the general characteristics of
software composition based on features and aspects using
program algebra (Section 6).

Although both approaches promise interesting insights,
we concentrate on the architectural approach. One reason is
that most of the previous studies have been done in the field
of in-language approaches. Another reason is that we are
interested in adopting the results of the work on FOP and
AOP to other kinds of software artifacts. In principle,
software composition based on FOP and AOP should be
applicable to any kind of software artifact with a hierarch-
ical structure [24], [38], [110].

In Section 4.5, we compare our architectural approach
with an in-language approach and, in Section 6, we review
related work on in-language approaches.

4.2 The Integration of Feature Modules and Aspects

When designing and implementing software in a feature-
oriented way, a programmer usually starts by modeling
and abstracting real-world entities in terms of classes and
objects and their collaborations. The result is an object-
oriented design (left side in Fig. 10). FOP further structures
this design along collaborations that classes undergo. Only
the subsets of classes (roles) that participate in a collabora-
tion to implement a certain feature are encapsulated inside
the corresponding feature module, that is, features crosscut
the object-oriented design (right side in Fig. 10). Subsequent
features refine existing features by superimposing their
structure [24], [31], [50], [89], [91], [102]. Hence, a feature
module is a mechanism that decomposes an object-oriented
design along a further dimension, that is, the features of a
program.10

Our evaluation pointed us to the fact that, in some
situations, the implementation of a feature cannot be
modularized appropriately by using a traditional feature
module. Attempts to do so result in code replication,
scattering, and tangling. Typically, these situations are
related to crosscutting phenomena. We argue that the
shortcomings of FOP revealed by our evaluation are
directly responsible for this issue.

To address this issue, we propose to employ AOP since it
provides powerful mechanisms to modularize crosscutting
concerns. Nevertheless, as our evaluation has revealed,
simply using aspects instead of feature modules for
implementing program features is not appropriate either,
for example, because of the lack of feature cohesion and
abstraction mechanisms for collaborations. Instead, we

APEL ET AL.: ASPECTUAL FEATURE MODULES 169

TABLE 1
A Comparison of FOP and AOP with Regard to Our Criteria

10. Note that decomposition in this context means the intellectual
process of a programmer to model real-world entities in objects and to
structure this object-oriented design further along features [46].

propose using aspects to implement only the concerns that
crosscut a given object-oriented design and that cannot be
modularized well using feature modules. Thus, a program-
mer creates an aspect-oriented design, that is, a hierarchy of
classes and aspects (left side in Fig. 11).

In order not to forgo the benefits of feature modules, we
propose decomposing such aspect-oriented design using the
mechanisms of FOP: Although the aspect-oriented design serves

as a substrate, feature modules decompose this design further along

the features of the program. Hence, a feature is implemented by a
collaboration of classes and aspects (right side in Fig. 11).11

One benefit of this integration is that we have well
encapsulated large-scale feature modules that refine one
another incrementally and that dispose of powerful mechan-
isms for dealing with crosscutting phenomena.

In summary, aspects and feature modules are not
competing implementation techniques but decompose a
program in different ways. That is, a software is decom-
posed along three dimensions: classes, aspects, and fea-
tures. An object-oriented design is the basis; aspects
modularize certain kinds of concerns that crosscut the
underlying object-oriented design; feature modules decom-
pose the design to impose a structure that is of interest to
stakeholders. In this symbiosis, FOP and AOP profit from
one another and overcome their individual limitations, as
we will illustrate shortly.

4.3 Aspectual Feature Modules

Aspectual feature modules (AFMs) are a concrete approach to
implementing the symbiosis of FOP and AOP. AFMs extend
the notion of a traditional feature module, for example,
known from Jak, by integrating aspects as well as classes
and refinements of classes. That is, an AFM encapsulates
the roles of collaborating classes and aspects that contribute
to a feature. Hence, a feature is implemented by a collection
of artifacts, among them classes, refinements, and aspects,
each artifact appropriate for a specific design or implemen-
tation problem.

Note that, typically, an aspect inside a feature module
does not implement a role. A refinement is adequate for this
task. An aspect is merely a mechanism to extend multiple
classes by code that would otherwise be tangled and
scattered. In this sense, an aspect may implement a set of
roles or fragments of these roles. The advantage of moving
away from roles implemented via refinements toward using
aspects is to benefit from AOP’s capabilities to modularize
homogeneous and dynamic crosscutting concerns.

Overall, an AFM refines a program in two ways: 1) by
using Jak-like refinements or 2) by using aspect-oriented

mechanisms, that is, advice and intertype declarations.
Probably the most important contribution of AFMs is that

programmers may choose the appropriate technique—class
refinements or aspects—that fits a given problem best. They

can apply a combination of both and decide to what extent
either technique is used, according to our programming

guidelines (Table 1).
It is worth noting that, much like classes and refine-

ments, an aspect is an integral part of a feature module and

is applied and removed together with the feature it belongs
to. It may extend classes and refinements of other features

already present in a program.
Fig. 12 depicts the feature-oriented design of our graph

implementation, consisting of the features BasicGraph,

Weight, and Color. Color is implemented with an aspect
and a class; it is encapsulated in an AFM. As we discussed

before, advising executions of the methods print in Node

and Edge is a homogeneous crosscut—the same is true for

injecting the field color to Node and Edge (cf., Fig. 4). In
this situation, it is beneficial to use an aspect because it is

able to avoid code replication. Encapsulating the aspect
AddColor and the class Color attains feature cohesion.

As with standard feature modules, an AFM is repre-

sented as a containment hierarchy. Besides Java artifacts, it
contains also aspects, for example, AspectJ artifacts. After

the composition process, we have, in the case of AFMs, a
traditional aspect-oriented program (and in the case of
traditional feature modules, we have an object-oriented

program). Now it becomes clear that it is necessary to
weave the aspects and the object-oriented base program in a

subsequent step—after the base classes and refinements
have been composed. These two steps can be accomplished

by different compiler passes or by different tools [7].

170 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Fig. 10. Feature-oriented decomposition of an object-oriented design.

11. Note that the original aspect has been split into two pieces (a base and
a subsequent refinement). This is called aspect refinement and is not further
considered here [13].

Fig. 11. Feature-oriented decomposition of an aspect-oriented design.

Fig. 12. Implementing the feature Color with an aspectual feature

module.

It is worth noting that AFMs are independent of a
specific host language. They can be implemented in any
pair of feature-oriented and aspect-oriented language that
can be woven, for example, Jak and AspectJ, or FeatureC++
[14] and AspectC++ [103], etc. Hence, AFMs are invariant
with respect to the specifics of the host languages. When the
host languages improve, then AFMs improve as well. Thus,
AFMs can profit from research on FOP and AOP. With an
in-language approach, this would not be possible or only
with a major effort.

Nevertheless, once we have chosen a pair of host
languages, for example, Jak and AspectJ, AFMs may profit
from specific properties of the languages. For example,
AspectJ pointcuts may refer to individual roles in a Jak
collaboration since Jak uses specific naming conventions. In
our graph example, the method print of the role of Edge
in the collaboration BasicGraph can be referred to by
Edge_BasicGraph.print. However, first class language
support for advising roles is certainly more appropriate
than naming conventions.

4.4 Reviewing the Evaluation Criteria

We apply our evaluation criteria to compare AFMs with
traditional FOP and AOP.

4.4.1 Homogeneous and Heterogeneous Crosscuts

The integration of aspects and the traditional constituents of
feature modules enables the programmer to choose the
appropriate technique for a given problem: The program-
mer uses aspects to implement homogeneous crosscuts and
a set of classes and refinements to implement heteroge-
neous crosscuts, which are in fact collaborations. As
mentioned, this is independent of whether a crosscut is
static or dynamic. Aspects, classes, and refinements can be
combined at will.

4.4.2 Static and Dynamic Crosscuts

The integration of FOP and AOP allows us to express static
crosscuts in two ways using refinements of classes and
using intertype declarations in aspects. This introduces a
semantic redundancy. As mentioned in the previous
paragraph, we propose using aspects to implement static
crosscuts that are homogeneous and using refinements to
implement static crosscuts that are heterogeneous.

By using aspects, a programmer can implement features
depending on the runtime control flow. As with static
crosscuts, method extensions can be implemented by
aspects (using advice) and by refinements (using method
overriding). We handle this analogously to static crosscuts:
use aspects for method extensions that are homogeneous
and use Jak-like refinements for method extensions that are
heterogeneous. Advanced dynamic crosscuts are always
implemented using advice because FOP does not provide
adequate language mechanisms.

4.4.3 Feature Cohesion

Since we encapsulate aspects in feature modules, we achieve
a high degree of feature cohesion. Aspects, as well as their
collaborating classes (for example, aspect AddColor and
class Color), are located in one feature module along with
other software artifacts. As mentioned, with traditional AOP,
programmers would need to provide their own mechanisms
for grouping all aspects and classes that belong to a feature

(for example, [59]). With AFMs, the programmer is able to
explicitly recognize which artifacts belong to a feature, not
only at the file system or tool level, but also at the model level.

4.4.4 Summary

The evaluation shows that AFMs outperform FOP and AOP
used in isolation by exploiting their strengths. This is
embodied in our programming guidelines: 1) use aspects
for homogeneous and advanced dynamic crosscuts and
2) use collaborations and refinements for heterogeneous
crosscuts and method extensions. An observance of these
guidelines improves the crosscutting modularity of AFMs
compared to traditional feature modules without destroy-
ing the object-oriented structure per se.

4.5 Architectural versus In-Language Approach

Though not the main subject of this paper, we outline the
differences in our architectural approach with previous work
on in-language approaches, for example, [58], [68], [69], [85].

A first notable difference is that in-language approaches
combine several FOP and AOP mechanisms in a single
programming language. That is, they unify several lan-
guage constructs in a well-defined syntax and semantics.
Inspired by the work on AHEAD, we chose another
approach instead. AFMs are represented by containment
hierarchies that may contain different kinds of artifacts,
including, among others, classes, refinements, and aspects.
Consequently, we do not have a programming language
that integrates FOP and AOP mechanisms, but a methodol-
ogy and framework that handles different artifacts in
different ways during composition.

AFMs align well with the AHEAD principles in that they
treat classes, refinements, and aspects as different kinds of
artifacts that are composed differently. This enables us to
use AFMs on top of different languages (C++ and Java are
already supported, as explained in Section 4.6). It is even
possible to explore principles of FOP and AOP in the
composition of noncode artifacts. Therefore, it has been
shown that, for the composition of several kinds of noncode
artifacts, FOP and AOP mechanisms are useful, for
example, for grammar specifications [24], [33], XML
documents [6], [112], [118], feature expressions [24], design
documents [38], [45], [64], requirement specifications [37],
makefiles [24], and feature models [4].

Certainly, in-language approaches can also be migrated
to different programming languages, but, since they have
special compilers, type systems, etc., this transition is
difficult, time consuming, and error prone. The benefit of
in-language approaches is exploring advanced program-
ming language concepts such as typing issues and poly-
morphism inside one well-defined language. AFMs are not
intended for such exploration.

A further difference between the architectural approach
and the in-language approach is that, in the in-language
approach, the actual composition of features is specified
inside the source code of the program and, in the architectural
approach, outside of the program. With AFMs, to compose a
graph application with the features BasicGraph, Weight, and
Color, we would specify an external feature expression,
which simply enumerates the feature names, for example,
we have

APEL ET AL.: ASPECTUAL FEATURE MODULES 171

Graph ¼ BasicGraph �Weight � Color:

With an in-language approach, the composition would
be specified in the source code, for example, we have

collaboration Graph extends BasicGraph & Weight & Color:

The reason for this is that collaborations are first-class
language constructs in in-language approaches. In an
architectural approach, they are not.

The benefit of an internal specification (in-language
approach) is that the runtime entities of a program can
reason about collaborations. For example, collaborations
could be composed at runtime [44], [93]. However, with this
approach, the compositional reasoning and the rest of the
program behavior are intermixed. This is similar to
metaprogramming in which a metaprogram and a base
program are written in the same language and integrated in
the same program.

The benefit of an external specification (architectural
approach) of a feature composition is that tools and
programmers can easily reason about the composition.
The reason is that the composition is specified in a separate
composition language, as it is good practice in the field of
component-based systems [1], [109]. A specification is in
some sense an architectural description of a software
system. It can itself be a subject of composition and
modification [19], [111] and can be optimized on the basis
of domain knowledge [24], [46]. A tool just has to interpret
and manipulate the specification. This is sometimes called
architectural metaprogramming [19] since the reasoning about
a software system is moved to the architectural level. With
an in-language approach, the information about the actual
composition is often scattered across the program, for
example, in the form of extends clauses and/or explicit
instantiations of collaborations. Although this allows
dynamic reasoning about collaboration, it hinders external
compositional reasoning.

In summary, both approaches to the symbiosis of FOP
and AOP have their advantages and disadvantages and are
useful for exploring different issues. Previous work con-
centrated on in-language approaches. We chose to explore
the architectural approach.

4.6 Tool Support

We provide tool support for AFMs on top of two host
programming languages, C++ and Java.

FeatureC++12 is a language extension of C++ that
supports FOP. It comes with a tool for composing feature
modules and an FOP compiler for C++ artifacts. Specifi-
cally, it introduces class refinement to the C++ language in
the form of the syntax presented here, that is, the keywords
refines and Super—with some minor adaptations to the
C++ standard. FeatureC++ supports AFMs by integrating
AspectC++ [103] aspects into feature modules.

A further way to implement AFMs is to combine the
AHEAD Tool Suite13 and AspectJ. Although the AHEAD
Tool Suite is used to compose traditional feature modules,
AspectJ weaves the aspects of the individual feature
modules to the synthesized class hierarchies.14 This

necessitates some minor tool support (build scripts) and
modifications to the aspect code (referring to roles via
hclass namei hcollaboration namei). The AFMs of our case
study are implemented this way.

5 CASE STUDY

This section demonstrates the practical applicability of
AFMs to a medium-sized case study. Furthermore, we are
interested in how often we need FOP and AOP mechanisms
and if the inferred strengths of AFMs pay off in a practical
scenario.

5.1 Overview of P2P-PL

As a case study, we use a product line for peer-to-peer overlay
networks (P2P-PL), which has been implemented by the first
author [11], [12], [34]. Besides the basic functionality as
routing and data management in a P2P network [5], P2P-PL
supports several advanced features, for example, query
optimization, metadata propagation, incentive mechanisms
to counter peers that misbehave, called free riders [29].
Numerous experiments concerning these features de-
manded many different configurations to make statements
about their specific effects, their variants, and combinations
[34]. Hence, P2P-PL seemed to be a good test case for AFMs.

P2P-PL has a fine-grained design and consists of
113 feature modules (traditional and aspectual). P2P-PL
was implemented using the AHEAD Tool Suite and
AspectJ. As explained in Section 4.6, the AHEAD Tool
Suite served for implementing feature modules and AspectJ
for composing and weaving aspects within feature mod-
ules. The code base of P2P-PL is approximately 6,400 lines
of source code.

5.2 Aspectual Feature Modules in P2P-PL

In P2P-PL, 14 of the 113 features (12 percent) use aspects
with one aspect per feature (Table 2). The remaining

172 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

12. http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/.
13. http://www.cs.utexas.edu/users/schwartz/ATS.html.
14. It is even possible to refine aspects similarly to classes, which is called

aspect refinement and explained elsewhere [13].

TABLE 2
Aspectual Feature Modules Used in P2P-PL

99 features have been implemented with traditional feature
modules—without aspects. To give the reader an impres-
sion of how aspects and feature modules have been
combined in P2P-PL, we explain a simplified example.

5.2.1 An Example—Feedback Generation

The feedback generation feature is part of an incentive
mechanism for penalizing free riders—peers that profit from
the P2P network but do not contribute adequately [29]. The
feedback generation feature, on top of the implementation of
a peer, identifies free riders by keeping track of whether other
peers respond adequately to messages. If this is not the case,
an observed peer is considered a free rider. Specifically, the
generator observes the traffic of outgoing and incoming
messages, and it traces which peers have responded in time.
The generator creates positive feedback to reward coopera-
tive peers and negative feedback to penalize free riders.
Feedback information is represented by Feedback objects
and stored in a repository (FeedbackRepository); it is
passed to other (trusted) peers attached to outgoing
messages in order to inform them about free riding. Based
on the collected information, a peer judges the coopera-
tiveness of other peers. Messages from peers considered
free riders are ignored—only cooperative peers profit by the
overall P2P network [29].

The implementation of feedback generation crosscuts the
message sending and receiving features of P2P-PL. In
Fig. 13, we show an AFM that implements the feedback
generation feature. It contains an aspect (dark gray) and
introduces four new classes for feedback management.
Additionally, it refines the class Peer (by a Jak refinement)
so that Peer owns a log for outgoing queries and a
repository for feedback information.

Although the feedback generation feature implements a
heterogeneous crosscut, it relies on dynamic context
information, that is, it is an advanced dynamic crosscut.
Fig. 14 lists an excerpt of the aspect FeedbackGenerator.
The first piece of advice refines the message sending
mechanism by registering outgoing messages in a query
log (Lines 2-7). It is executed only if the method send was
called in the dynamic control flow of the method forward.
This is expressed using the pointcut cflow (Line 5) and
avoids advising unintended calls to send, which are not
triggered by the message forwarding mechanism.15 The

second piece of advice intercepts the execution of a query
listener task for creating Feedback objects (Lines 8-10).

Fig. 15 depicts the refinement of the class Peer

implemented as a Jak refinement.16 It adds a feedback
repository (Line 2) and a query log (Line 3). Moreover, it
refines the constructor by registering a feedback handler in
the peer’s message handling mechanism (Lines 4-8).

In summary, the feedback generation AFM encapsulates
four classes that implement the basic feedback management,
an aspect that intercepts the message transfer, and a Jak
refinement that extends the class Peer. Omitting AOP
mechanisms would result in code tangling and scattering
since the retrieval of dynamic context information crosscuts
other features, for example, clients of the message forwarding
mechanism. Implementing this feature as one standalone
aspect would not reflect the structure of the P2P-PL
framework that includes feedback management. All
would be merged in one or more aspect(s) that would
decrease program comprehension. Our AFM solution
encapsulates all contributing elements cohesively in a
collaboration that reflects the intuitive structure of the
P2P-PL framework that we had in mind during its design.

5.3 Statistics

5.3.1 Number of Classes, Refinements, and Aspects

The base P2P framework contains only two classes. A fully
configured P2P system consists of 127 classes. Thus,
refining the base framework into a fully configured system
required the incremental introduction of 125 classes. In
addition to class introductions, 130 class refinements and

APEL ET AL.: ASPECTUAL FEATURE MODULES 173

15. The reason for using cflow is that the method send is called many
times inside a peer, but we wanted to advise only those executions of send
that occur when the peer forwards a message to another peer.

16. The actual syntax for constructor refinement in Jak differs
slightly [24].

Fig. 13. Feedback generation implemented with an aspectual feature

module.

Fig. 14. An aspect for feedback generation, part of an AFM (excerpt).

Fig. 15. Adding feedback management to the class Peer.

14 aspects were used to modularize crosscutting concerns.
The main point is that we used primarily classes and
refinements rather than aspects for implementing features
—about 5 percent of the overall number of mechanisms are
aspects (Fig. 16).

5.3.2 LOC Associated with Classes, Refinements, and

Aspects

Of the overall P2P-PL code base, aspect code sums up to
6 percent and refinement code to 46 percent and code for
classes to 48 percent (Fig. 17). These statistics are in line
with the numbers given above on the ratio of implementa-
tion mechanism usage.

5.3.3 LOC Associated with Extensions and Introductions

Of the overall code base, 23 percent implement dynamic
crosscuts: 6 percent are associated with AspectJ pointcuts
and advice and 17 percent with method extensions. The
remaining 77 percent are associated with introductions of
new functionality (static crosscuts). This suggests that the
dominant role of features is to introduce new structures in
P2P-PL, rather than extending existing methods or advising
join points (Fig. 18).

5.3.4 Number and Properties of Aspects

Of the 14 aspects that were used, eight modularized
homogeneous crosscuts, seven aspects implemented ad-
vanced dynamic crosscuts (which cannot be implemented
by method overriding), and three aspects implemented
purely heterogeneous crosscuts (Fig. 19),17 which we
discuss as borderline cases below.

In summary, 11 of 14 aspects (79 percent) exploit the
advanced capabilities of AOP. Using FOP exclusively
would result in replicated, scattered, and tangled code, as
explained before. Only three aspects implement collabora-
tions that could also be implemented by traditional feature
modules. Section 5.4 explains why, in these particular cases,
using aspects was appropriate.

5.3.5 Number of Feature-Related Classes and

Refinements

With respect to the question of whether aspects are used
standalone or with other classes and refinements in concert,
we observed that, besides an aspect, each AFM has one to
two (up to six) classes and refinements. This demonstrates
that AFMs in P2P-PL encapsulate collaborations of aspects,
classes, and refinements, rather than single aspects in
isolation.

5.4 Lessons Learned

5.4.1 Refinements and Aspects—When to Use What?

A central question for programmers is when to use
refinements à la FOP and when to use aspects. Our
programming guidelines provide an answer. What we have
learned from our case study is that a wide range of
problems can be solved by using object-oriented mechan-
isms and FOP. Specifically, we used FOP for expressing and
refining collaborations of classes. Collaborations are typi-
cally heterogeneous crosscuts with respect to a base
program. Each added feature module reflects a subset of
the structure of the base program and adds new and refines
existing structural elements. A significant body of prior
work advocates this view [24], [31], [50], [69], [86], [89], [93],
[102], [104], [105], [110], [113], [115].

Using aspects in isolation for implementing collabora-
tion-based designs, as proposed in [55], [61], [97], [100], was
not an option, as explained before.

174 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

17. In the original study [8], we distinguished between homogeneous
crosscuts and those that alter the inheritance relationship. Also note that
some aspects were counted for more than one category, for example,
homogeneous and dynamic.

Fig. 16. Number of classes, refinements, and aspects in P2P-PL.

Fig. 17. LOC of classes, refinements, and aspects in P2P-PL.

Fig. 18. LOC of static and dynamic crosscuts in P2P-PL.

Fig. 19. Number and type of crosscuts implemented by aspects.

Nevertheless, aspects proved to be a useful modulariza-
tion mechanism. In our study, we have learned that they help
in those situations in which traditional OOP and FOP fail:

. By using aspects and their pattern-matching and
wildcard mechanisms for homogeneous crosscuts,
we could avoid code replication. The aspect-oriented
implementation achieves a 5 percent code reduction
compared to an equivalent object-oriented or fea-
ture-oriented variant.18

. In the implementation of seven P2P-PL features, the
aspects helped to express the advanced dynamic
crosscuts, which are not just method extensions.
Aspects perform better in this respect than FOP
because they provide sophisticated language-level
constructs that capture the programmers intension
more precisely and intuitively (for example, cflow).

Our case study provides statistics on how often AOP and
FOP mechanisms are used. AOP mechanisms were used in
12 percent of all features because they allowed us to avoid
code replication, scattering, and tangling. However, aspects
occupied only 6 percent of the code base. This is because
OOP and FOP mechanisms were sufficient to implement
most features (94 percent of the P2P-PL code base). By using
AOP for homogeneous crosscuts, we could achieve a code
reduction of 5 percent.

We did not address the (important) issue of whether the
aspects or feature modules that used standalone would
have produced a superior result, which we will address in
further work. We merely evaluated the integration of
aspects and feature modules and whether the inferred
programming guidelines are applicable to a nontrivial
software project.

5.4.2 Borderline Cases

We also discovered a few situations in which a decision
based on our guidelines was not obvious.

We realized that some homogeneous crosscuts could be
modularized alternatively by introducing an abstract base
class that encapsulates this common behavior. Although
this works, for example, for introducing an integer field for
assigning IDs to different types of messages, it does not
work for classes that are completely unrelated, as in the case
of a logging feature. It is up to the programmer to decide
whether the target classes are syntactically and semantically
close enough to be grouped via an abstract base class.

Though our study has shown that a traditional collabora-
tion-based design à la FOP works well for most features, we
found three heterogeneous features for which it is not clear
whether an aspect would not be more intuitive. Two of them
are so small that it simply does not matter. The third feature
introduces a multitude of toString methods to a set of
classes. Naturally, each of these methods is implemented
differently. Thus, the feature is a heterogeneous crosscut.
However, in this particular case, it seems more intuitive to
group all toString methods in one aspect. We believe that
this is caused by the partly homogeneous nature of this

crosscut, that is, introducing a set of methods for the same
purpose to different classes. Another plausible reason is
that this feature is not really a collaboration. That is, the
refinements do not add roles to the target classes that
establish a collaboration. Exploring this issue will be part of
further work.

6 RELATED WORK

6.1 Implementation of Refinements

Our approach of implementing class refinement is based on
Jak and FeatureC++, which use a kind of mixin-based
inheritance [32], [114]. We chose a mixin approach because
of the tool infrastructure and its success in several domains
[10], [20], [21], [27], [35], [66], [115]. Mixin composition is even
applicable to the subsequent refinement of aspects [13].
However, we are aware of several alternative mechanisms
that might achieve similar results, for example, virtual
classes [51], [79], classboxes [26], nested inheritance [87], and
traits [48].

6.2 Implementation of Feature Modules

Several languages and tools support collaboration-based
design. Potentially, all of them could be used to implement
feature modules and AFMs; however, each has some
limitations.

Several languages support the abstraction and static
composition of mixin layers, which are a kind of feature
module, for example, C++ mixin layers [102], P++ [101], and
Java layers [36]. Other approaches exploit related ideas of
composing and nesting class hierarchies [43], [50], for
example, Scala [89], Jx [87], J& [88], Classbox/J [26], CaesarJ
[17], and ContextJ [44], to name a few; all of these are in-
language approaches.

A main advantage of AFMs is that they have AHEAD as
an architectural model—the approaches mentioned above
do not refer to any model. Hence, AFMs build upon the
strengths of AHEAD: Aside from classes and aspects, other
kinds of software artifacts may also be included in a feature;
feature modules are composed declaratively by means of a
separate specification (feature expressions) and checked
against domain-specific design rules [18]. This opens the
door to automatic algebra-based optimization and composi-
tional reasoning [16], [24], [77]. It is not obvious how to
carry this over to in-language approaches because the
definition of features is done in the same language as their
composition. That is, without a separate composition
mechanism/language, it is not trivial to implement me-
chanisms for optimizing and reasoning about composition
specifications.

Jiazzi is a component system that supports the composi-
tion of collaborations (also in bytecode) via external rules
[81]. Since collaborations are represented outside the
language, Jiazzi fits the AHEAD architectural model.
However, although aspects could possibly be integrated, it
is not obvious how to compile them independently, which
is a primary goal of Jiazzi.

6.3 Aspects and Collaborations

Several studies suggest exploiting the synergetic potential
of mechanisms for aspects and collaborations, for example,

APEL ET AL.: ASPECTUAL FEATURE MODULES 175

18. We computed the reduction by subtracting the code size of
homogeneous extensions from the hypothetical code size of a set of
heterogeneous extensions that implement the same functionality.

Caesar [17], Aspectual Collaborations [69], and Object Teams

[58]. These approaches are closely related to each other

since they have common roots [68]. For simplicity, we

compare our approach to their general concepts.
All of the approaches mentioned represent collabora-

tions explicitly at the language level and integrate different

kinds of mechanisms associated with AOP, for example,

pointcuts and advice, aspectual methods, traversals, adapters,

and bindings. These AOP mechanisms are intended mainly

for the modularization of crosscutting concerns that arise

from integrating two collaborations. According to the

design space of integrating AOP and FOP, the approaches

above fall into the first category: They integrate AOP and

FOP mechanisms at language level. This is advantageous

when exploring issues like typing and polymorphism.

6.4 Multidimensional Separation of Concerns
(MDSoC)

MDSoC is a concept and method that aims at the clean

separation of multiple, potentially overlapping and inter-

acting concerns simultaneously, with support for on-

demand remodularization to encapsulate new concerns at

any time [110]. Hyper/J supports MDSoC for Java [92]; it

introduces the concept of hyperslices, which roughly maps to

an encapsulated collaboration of classes. It has been

observed that features in AHEAD and hyperslices have

many commonalities, especially regarding their composi-

tion semantics based on superimposition and their mechan-

isms for composing hyperslices/features [22]. What differs

in FOP is that integrating two features that are of a different

structure demands a manual integration of the artifacts

inside the features, for example, by using wrappers or

multiple inheritance [58], [84]. Hyper/J supports declara-

tive composition rules to establish a (possibly complex)

mapping between different hyperslices. AHEAD only

supports recursive merging of containment hierarchies by

type and name.
AFMs, as an extension to traditional feature modules, use

aspects to establish the mapping between two unrelated

features, as suggested first by Mezini et al. [68], [85]. The code

that establishes the mapping is sometimes called connector

[68] or adapter [58]. These are related to the Hyper/J

composition rules but at a lower level (programming

language level). In this respect, AFMs more closely follow

the approach of CaesarJ than of Hyper/J. It remains an

open issue which variant of on-demand remodularization

and crosscutting integration is preferable.

6.5 Aspects and Information Hiding

One issue of AFMs is that current AOP languages do not

respect the principle of information hiding [2], [90], [106],

[108]. However, there are several efforts to solve this

problem, for example, open modules [2], [90], information

hiding interfaces [54], [108], harmless advice [47], or stratified

aspects [28]. The point here is that AFMs can profit from

these developments. Since AFMs do not depend on a

specific host language, new languages can easily be

integrated. This is a major advantage of AFMs compared

to in-language approaches.

6.6 Selected AOP Case Studies

Colyer and Clement refactored an application server using
aspects [41]. Specifically, they factored three homogeneous
crosscuts and one heterogeneous crosscut. Although the
number of aspects is marginal, the size of the case study is
impressively high (millions of LOC). Although they draw
positive conclusions, they admit (but did not explore) a
strong relationship to FOP. This paper demonstrates the
useful integration of both worlds.

Zhang and Jacobsen refactored several CORBA ORBs
[120]. Using code metrics, they demonstrate that program
complexity could be reduced. They propose an incremental
process of refactoring which they call horizontal decomposi-
tion. Liu et al. point out a close relationship to FOP [70]. Our
study confirms that, with respect to the implementation of
program features, aspects are too small units of modular-
ization [69], [86].

Coady and Kiczales undertook a retroactive study of
aspect evolution in the code of the FreeBSD operating
system (200-400 KLOC) [40]. They factored four concerns
and evolved them in three steps; inherent properties of
concerns were not explained in detail.

Kästner et al. refactored the in-memory transactional
storage engine Berkeley DB (84 KLOC) into an SPL [60].
Specifically, they detached the code of 38 features and
implemented them with AHEAD containment hierarchies.
Due to the sheer size of Berkeley DB, several features have
been implemented by more than one aspect (overall,
151 aspects). The major fraction of AOP mechanisms used
in Berkeley DB implements static and heterogeneous
crosscuts and method extensions.

Lohmann et al. examine the applicability of AOP to
embedded infrastructure software [71]. They show that
AOP mechanisms, if carefully used, do not impose a
significant overhead. In their study, they factored in three
concerns of a commercial embedded operating system; two
concerns were homogeneous and one heterogeneous.

6.7 Selected FOP Case Studies

A significant body of research supports the success of FOP
in the implementation of large-scale applications, for
example, for the domain of network software [23],
databases [23] [25], [66], avionics [20], and command-and-
control simulators [21] to mention a few. The AHEAD tool
suite is the largest example, with about 100 KLOC [24],
[112]. However, none of these studies make quantitative
statements about the properties of the implemented
features nor do they evaluate the implementation mechan-
isms used with respect to the structures of the concerns. The
features they consider are traditional collaborations with
heterogeneous crosscuts, which is in line with our findings
in P2P-PL.

Lopez-Herrejon and Batory explore the ability of AOP to
implement product lines in an FOP and ISD fashion [73],
[75]. They illustrate how collaborations are translated
automatically to aspects. They neither address in which
situations which implementation technique is most appro-
priate nor how the aspects generated affect program
comprehensibility.

Xin et al. evaluate Jiazzi and AspectJ for feature-oriented
decomposition [119]. They reimplemented an AspectJ-based

176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

CORBA event service [59] by replacing aspects with Jiazzi
units, which are a form of feature modules. They conclude
that Jiazzi provides better support for structuring software
and manipulating features, while AspectJ is more suitable
for manipulating existing Java code in unanticipated ways.
However, they do not examine the structure of the
implemented features. Their success in implementing all
features of their case study using Jiazzi feature modules
hints that most of them (if not all) come in the form of
object-oriented collaborations.

We are not aware of further published studies that take
both AOP and FOP into account.

7 CONCLUSION

FOP and AOP are two related programming paradigms
discussed in the context of SPLs and ISD. By means of a
systematic evaluation, we have revealed that FOP and AOP
are complementary paradigms whose combination can
overcome their individual limitations. Consequently, we
have proposed that AFMs realize the symbiosis of FOP and
AOP by integrating aspects into feature modules. This way,
the ability of feature modules to modularize crosscutting
concerns is improved and aspects become integrated into
the stepwise development philosophy of FOP. The evalua-
tion of AFMs has shown that, with regard to our criteria,
AFMs perform better than aspects or feature modules in
isolation.

We have incorporated the strengths and weaknesses of
FOP and AOP into a set of programming guidelines to
answer the question of when to use which mechanisms. On
one hand, the programmer uses collaborations of classes
and refinements in the situations in which they suffice, that
is, in implementing heterogeneous and method extensions.
On the other hand, the programmer uses aspects to
implement homogeneous and advanced dynamic crosscuts,
where traditional feature modules fail.

Our case study has demonstrated the practical applic-
ability of the integration of FOP and AOP. We have
observed that the dominant role of features is the introduc-
tion of new structural elements—adding new classes and
new members to existing classes. Refinement of existing
methods involved a small fraction of features (17 percent).
This is in line with prior studies [73], [75]. Although aspects
were used infrequently (6 percent of the code base), they
enhanced the crosscutting modularity of features and
reduced code replication (by 5 percent). That is, using
aspects or feature modules in isolation would not have
achieved a clean design or implementation.

The result of our case study provides a single data point.
A different line of research confirms our hypothesis that
object-oriented collaborations (expressed by classes and
refinements) define the predominant way in which features
are implemented, where aspects are useful in expressing
homogeneous and advanced dynamic crosscuts [7], [9], [74].

In summary, our case study provides supporting
evidence that AFMs are applicable to a nontrivial software
project and that our programming guidelines assist in
choosing and using sufficient implementation mechanisms
for a given problem.

ACKNOWLEDGMENTS

The authors thank Don Batory, Walter Cazzola, William

Cook, Christian Kästner, Christian Lengauer, Roberto

Lopez-Herrejon, Olaf Spinczyk, Aleksandra Tesanovic,

Sahil Thaker, and Salvador Trujillo for useful comments

and fruitful discussions on ideas presented in this article.

The presented case study was conducted while Sven Apel

was visiting the group of Don Batory at the University of

Texas at Austin. The work of Sven Apel and Thomas Leich

was funded in part by the German Research Foundation

(DFG), project number SA 465/32-1.

REFERENCES

[1] F. Achermann and O. Nierstrasz, “A Calculus for Reasoning about
Software Composition,” Theoretical Computer Science, vol. 331,
nos. 2-3, pp. 367-396, 2005.

[2] J. Aldrich, “Open Modules: Modular Reasoning about Advice,”
Proc. European Conf. Object-Oriented Programming, pp. 144-168,
2005.

[3] R. Alexander, “The Real Costs of Aspect-Oriented Programming,”
IEEE Software, vol. 20, no. 6, pp. 92-93, Nov./Dec. 2003.

[4] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C.
Lucena, “Refactoring Product Lines,” Proc. Int’l Conf. Generative
Programming and Component Eng., pp. 201-210, 2006.

[5] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-
Peer Content Distribution Technologies,” ACM Computing Sur-
veys, vol. 36, no. 4, pp. 335-371, 2004.

[6] F. Anfurrutia, O. Dı́az, and S. Trujillo, “On Refining XML
Artifacts,” Proc. Int’l Conf. Web Eng., pp. 473-478, 2007.

[7] S. Apel, “The Role of Features and Aspects in Software
Development,” PhD dissertation, School of Computer Science,
Univ. of Magdeburg, 2007.

[8] S. Apel and D. Batory, “When to Use Features and Aspects? A
Case Study,” Proc. Int’l Conf. Generative Programming and Compo-
nent Eng., pp. 59-68, 2006.

[9] S. Apel, D. Batory, and M. Rosenmüller, “On the Structure of
Crosscutting Concerns: Using Aspects or Collaborations,” Proc.
GPCE Workshop Aspect-Oriented Product Line Eng., http://
www.softeng.ox.ac.uk/aople/, 2006.

[10] S. Apel and K. Böhm, “Towards the Development of Ubiquitous
Middleware Product Lines,” Proc. ASE Workshop Software Eng. and
Middleware, pp. 137-153, 2004.

[11] S. Apel and K. Böhm, “Self-Organization in Overlay Networks,”
Proc. CAISE Workshop Adaptive and Self-Managing Enterprise
Applications, vol. 2, pp. 139-153, 2005.

[12] S. Apel and E. Buchmann, “Biology-Inspired Optimizations of
Peer-to-Peer Overlay Networks,” Practices in Information Processing
and Comm. (Praxis der Informationsverarbeitung und Kommunikation),
vol. 28, no. 4, pp. 199-205, 2005.

[13] S. Apel, C. Kästner, T. Leich, and G. Saake, “Aspect Refinement—
Unifying AOP and Stepwise Refinement,” J. Object Technology
(Proc. Int’l Conf. Technology of Object-Oriented Languages and
Systems), vol. 6, no. 9, pp. 13-33, 2007.

[14] S. Apel, T. Leich, M. Rosenmüller, and G. Saake, “FeatureC++: On
the Symbiosis of Feature-Oriented and Aspect-Oriented Program-
ming,” Proc. Int’l Conf. Generative Programming and Component
Eng., pp. 125-140, 2005.

[15] S. Apel, T. Leich, and G. Saake, “Aspectual Mixin Layers: Aspects
and Features in Concert,” Proc. Int’l Conf. Software Eng., pp. 122-
131, 2006.

[16] S. Apel, C. Lengauer, D. Batory, B. Möller, and C. Kästner, “An
Algebra for Feature-Oriented Software Development,” Technical
Report MIP-0706, Dept. of Informatics and Math., Univ. of Passau,
2007.

[17] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann, “An
Overview of CaesarJ,” Trans. Aspect-Oriented Software Development,
vol. 1, no. 1, pp. 135-173, 2006.

[18] D. Batory, “Feature Models, Grammars, and Propositional
Formulas,” Proc. Int’l Software Product Line Conf., pp. 7-20, 2005.

[19] D. Batory, “From Implementation to Theory in Program Synth-
esis,” Proc. Int’l Symp. Principles of Programming Languages, pp. 135-
136, 2007.

APEL ET AL.: ASPECTUAL FEATURE MODULES 177

[20] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer, “Creating
Reference Architectures: An Example from Avionics,” Proc. Symp.
Software Reusability, pp. 27-37, 1995.

[21] D. Batory, C. Johnson, B. MacDonald, and D.v. Heeder, “Achiev-
ing Extensibility through Product-Lines and Domain-Specific
Languages: A Case Study,” ACM Trans. Software Eng. and
Methodology, vol. 11, no. 2, pp. 191-214, 2002.

[22] D. Batory, J. Liu, and J. Sarvela, “Refinements and Multi-
Dimensional Separation of Concerns,” Proc. Int’l Symp. Founda-
tions of Software Eng., pp. 48-57, 2003.

[23] D. Batory and S. O’Malley, “The Design and Implementation of
Hierarchical Software Systems with Reusable Components,” ACM
Trans. Software Eng. and Methodology, vol. 1, no. 4, pp. 355-398,
1992.

[24] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-Wise
Refinement,” IEEE Trans. Software Eng., vol. 30, no. 6, pp. 355-371,
June 2004.

[25] D. Batory and J. Thomas, “P2: A Lightweight DBMS Generator,”
J. Intelligent Information Systems, vol. 9, no. 2, pp. 107-123, 1997.

[26] A. Bergel, S. Ducasse, and O. Nierstrasz, “Classbox/J: Controlling
the Scope of Change in Java,” Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pp. 177-189,
2005.

[27] E. Berger, B. Zorn, and K. McKinley, “Composing High-
Performance Memory Allocators,” Proc. Int’l Conf. Programming
Language Design and Implementation, pp. 114-124, 2001.

[28] E. Bodden, F. Forster, and F. Steimann, “Avoiding Infinite
Recursion with Stratified Aspects,” Proc. Int’l Net.ObjectDays Conf.,
pp. 49-64, 2006.

[29] K. Böhm and E. Buchmann, “Free Riding-Aware Forwarding in
Content-Addressable Networks,” VLDB J., vol. 16, no. 4, pp. 463-
482, 2007.

[30] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, second ed. Addison-Wesley, 2005.

[31] J. Bosch, “Super-Imposition: A Component Adaptation Techni-
que,” Information and Software Technology, vol. 41, no. 5, pp. 257-
273, 1999.

[32] G. Bracha and W. Cook, “Mixin-Based Inheritance,” Proc. Int’l
Conf. Object-Oriented Programming, Systems, Languages, and Appli-
cations and the European Conf. Object-Oriented Programming, pp. 303-
311, 1990.

[33] M. Bravenboer and E. Visser, “Concrete Syntax for Objects:
Domain-Specific Language Embedding and Assimilation without
Restrictions,” Proc. Int’l Conf. Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 365-383, 2004.

[34] E. Buchmann, S. Apel, and G. Saake, “Piggyback Meta-Data
Propagation in Distributed Hash Tables,” Proc. Int’l Conf. Web
Information Systems and Technologies, pp. 72-79, 2005.

[35] R. Cardone, A. Brown, S. McDirmid, and C. Lin, “Using Mixins to
Build Flexible Widgets,” Proc. Int’l Conf. Aspect-Oriented Software
Development, pp. 76-85, 2002.

[36] R. Cardone and C. Lin, “Comparing Frameworks and Layered
Refinement,” Proc. Int’l Conf. Software Eng., pp. 285-294, 2001.

[37] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters, “Semantics-
Based Composition for Aspect-Oriented Requirements Engineer-
ing,” Proc. Int’l Conf. Aspect-Oriented Software Development, pp. 36-
48, 2007.

[38] S. Clarke, W. Harrison, H. Ossher, and P. Tarr, “Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design,
and Code,” Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 325-339, 1999.

[39] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[40] Y. Coady and G. Kiczales, “Back to the Future: A Retroactive
Study of Aspect Evolution in Operating System Code,” Proc. Int’l
Conf. Aspect-Oriented Software Development, pp. 50-59, 2003.

[41] A. Colyer and A. Clement, “Large-Scale AOSD for Middleware,”
Proc. Int’l Conf. Aspect-Oriented Software Development, pp. 56-65,
2004.

[42] A. Colyer, A. Rashid, and G. Blair, “On the Separation of Concerns
in Program Families,” Technical Report COMP-001-2004, Com-
puting Dept., Lancaster Univ., 2004.

[43] W. Cook, “A Denotational Semantics of Inheritance,” PhD
dissertation, Dept. of Computer Science, Brown Univ., 1989.

[44] P. Costanza, R. Hirschfeld, and W. de Meuter, “Efficient Layer
Activation for Switching Context-Dependent Behavior,” Proc. Joint
Modular Languages Conf., pp. 84-103, 2006.

[45] K. Czarnecki and M. Antkiewicz, “Mapping Features to Models: A
Template Approach Based on Superimposed Variants,” Proc. Int’l
Conf. Generative Programming and Component Eng., pp. 422-437,
2005.

[46] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[47] D. Dantas and D. Walker, “Harmless Advice,” Proc. Int’l Symp.
Principles of Programming Languages, pp. 383-396, 2006.

[48] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black,
“Traits: A Mechanism for Fine-Grained Reuse,” ACM Trans.
Programming Languages and Systems, vol. 28, no. 2, pp. 331-388,
2006.

[49] T. Elrad, R. Filman, and A. Bader, “Aspect-Oriented Program-
ming: Introduction,” Comm. ACM, vol. 44, no. 10, pp. 29-32, 2001.

[50] E. Ernst, “Higher-Order Hierarchies,” Proc. European Conf. Object-
Oriented Programming, pp. 303-329, 2003.

[51] E. Ernst, K. Ostermann, and W. Cook, “A Virtual Class Calculus,”
Proc. Int’l Symp. Principles of Programming Languages, pp. 270-282,
2006.

[52] R. Filman and D. Friedman, “Aspect-Oriented Programming Is
Quantification and Obliviousness,” Aspect-Oriented Software Devel-
opment, pp. 21-35, Addison-Wesley, 2005.

[53] M. Griss, “Implementing Product Line Features by Composing
Aspects,” Proc. Int’l Software Product Line Conf., pp. 271-288, 2000.

[54] W. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai,
and H. Rajan, “Modular Software Design with Crosscutting
Interfaces,” IEEE Software, vol. 23, no. 1, pp. 51-60, Jan./Feb. 2006.

[55] S. Hanenberg and R. Unland, “Roles and Aspects: Similarities,
Differences, and Synergetic Potential,” Proc. Int’l Conf. Object-
Oriented Information Systems, pp. 507-520, 2002.

[56] W. Harrison and H. Ossher, “Subject-Oriented Programming: A
Critique of Pure Objects,” Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pp. 411-428,
1993.

[57] W. Harrison, H. Ossher, and P. Tarr, “Asymmetrically versus
Symmetrically Organized Paradigms for Software Composition,”
Technical Report RC22685 (W0212-147), IBM Research Division,
2002.

[58] S. Herrmann, “Object Teams: Improving Modularity for Cross-
cutting Collaborations,” Proc. Int’l Net.ObjectDays Conf., pp. 248-
264, 2002.

[59] F. Hunleth and R. Cytron, “Footprint and Feature Management
Using Aspect-Oriented Programming Techniques,” Proc. Joint
Conf. Languages, Compilers, and Tools for Embedded Systems and
Software and Compilers for Embedded Systems, pp. 38-45, 2002.

[60] C. Kästner, S. Apel, and D. Batory, “A Case Study Implementing
Features Using AspectJ,” Proc. Int’l Software Product Line Conf.,
pp. 223-232, 2007.

[61] E. Kendall, “Role Model Designs and Implementations with
Aspect-Oriented Programming,” Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pp. 353-369,
1999.

[62] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.
Griswold, “An Overview of AspectJ,” Proc. European Conf. Object-
Oriented Programming, pp. 327-353, 2001.

[63] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” Proc.
European Conf. Object-Oriented Programming, pp. 220-242, 1997.

[64] J. Klein, L. Hélouët, and J.-M. Jézéquel, “Semantic-Based Weaving
of Scenarios,” Proc. Int’l Conf. Aspect-Oriented Software Develop-
ment, pp. 27-38, 2006.

[65] K. Lee, K. Kang, M. Kim, and S. Park, “Combining Feature-
Oriented Analysis and Aspect-Oriented Programming for Product
Line Asset Development,” Proc. Int’l Software Product Line Conf.,
pp. 103-112, 2006.

[66] T. Leich, S. Apel, and G. Saake, “Using Step-Wise Refinement to
Build a Flexible Lightweight Storage Manager,” Proc. East-
European Conf. Advances in Databases and Information Systems,
pp. 324-337, 2005.

[67] K. Lieberherr, “Controlling the Complexity of Software Designs,”
Proc. Int’l Conf. Software Eng., pp. 2-11, 2004.

[68] K. Lieberherr, D. Lorenz, and M. Mezini, “Programming with
Aspectual Components,” Technical Report NU-CCS-99-01, Col-
lege of Computer Science, Northeastern Univ., 1999.

[69] K. Lieberherr, D. Lorenz, and J. Ovlinger, “Aspectual Collabor-
ations—Combining Modules and Aspects,” Computer J., vol. 46,
no. 5, pp. 542-565, 2003.

178 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

[70] J. Liu, D. Batory, and C. Lengauer, “Feature-Oriented Refactoring
of Legacy Applications,” Proc. Int’l Conf. Software Eng., pp. 112-
121, 2006.

[71] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schröder-
Preikschat, “A Quantitative Analysis of Aspects in the eCos
Kernel,” Proc. Int’l EuroSys Conf., pp. 191-204, 2006.

[72] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat, “Lean and
Efficient System Software Product Lines: Where Aspects Beat
Objects,” Trans. Aspect-Oriented Software Development, vol. 2, no. 1,
pp. 227-255, 2006.

[73] R. Lopez-Herrejon, “Understanding Feature Modularity,” PhD
dissertation, Dept. of Computer Sciences, Univ. of Texas at Austin,
2006.

[74] R. Lopez-Herrejon and S. Apel, “Measuring and Characterizing
Crosscutting in Aspect-Based Programs: Basic Metrics and Case
Studies,” Proc. Int’l Conf. Fundamental Approaches to Software Eng.,
pp. 423-437, 2007.

[75] R. Lopez-Herrejon and D. Batory, “From Crosscutting Concerns to
Product Lines: A Function Composition Approach,” Technical
Report TR-06-24, Dept. of Computer Sciences, Univ. of Texas at
Austin, 2006.

[76] R. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating Support
for Features in Advanced Modularization Technologies,” Proc.
European Conf. Object-Oriented Programming, pp. 169-194, 2005.

[77] R. Lopez-Herrejon, D. Batory, and C. Lengauer, “A Disciplined
Approach to Aspect Composition,” Proc. Int’l Symp. Partial
Evaluation and Semantics-Based Program Manipulation, pp. 68-77,
2006.

[78] N. Loughran and A. Rashid, “Framed Aspects: Supporting
Variability and Configurability for AOP,” Proc. Int’l Conf. Software
Reuse, pp. 127-140, 2004.

[79] O. Madsen and B. Moller-Pedersen, “Virtual Classes: A Powerful
Mechanism in Object-Oriented Programming,” Proc. Int’l Conf.
Object-Oriented Programming, Systems, Languages, and Applications,
pp. 397-406, 1989.

[80] H. Masuhara and G. Kiczales, “Modeling Crosscutting in Aspect-
Oriented Mechanisms,” Proc. European Conf. Object-Oriented
Programming, pp. 2-28, 2003.

[81] S. McDirmid, M. Flatt, and W. Hsieh, “Jiazzi: New-Age
Components for Old-Fashioned Java,” Proc. Int’l Conf. Object-
Oriented Programming, Systems, Languages, and Applications,
pp. 211-222, 2001.

[82] S. McDirmid and W. Hsieh, “Aspect-Oriented Programming with
Jiazzi,” Proc. Int’l Conf. Aspect-Oriented Software Development,
pp. 70-79, 2003.

[83] K. Mehner and A. Rashid, “Towards a Generic Model for AOP
(GEMA),” Technical Report CSEG/1/03, Computing Dept., Lan-
caster Univ., 2003.

[84] M. Mezini and K. Ostermann, “Integrating Independent Compo-
nents with On-Demand Remodularization,” Proc. Int’l Conf.
Object-Oriented Programming, Systems, Languages, and Applications,
pp. 52-67, 2002.

[85] M. Mezini and K. Ostermann, “Conquering Aspects with Caesar,”
Proc. Int’l Conf. Aspect-Oriented Software Development, pp. 90-100,
2003.

[86] M. Mezini and K. Ostermann, “Variability Management with
Feature-Oriented Programming and Aspects,” Proc. Int’l Symp.
Foundations of Software Eng., pp. 127-136, 2004.

[87] N. Nystrom, S. Chong, and A. Myers, “Scalable Extensibility via
Nested Inheritance,” Proc. Int’l Conf. Object-Oriented Programming,
Systems, Languages, and Applications, pp. 99-115, 2004.

[88] N. Nystrom, X. Qi, and A. Myers, “J&: Nested Intersection for
Scalable Software Composition,” Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pp. 21-35, 2006.

[89] M. Odersky and M. Zenger, “Scalable Component Abstractions,”
Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages,
and Applications, pp. 41-57, 2005.

[90] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. de Moor,
and G. Sittampalam, “Adding Open Modules to AspectJ,” Proc.
Int’l Conf. Aspect-Oriented Software Development, pp. 39-50, 2006.

[91] H. Ossher and W. Harrison, “Combination of Inheritance
Hierarchies,” Proc. Int’l Conf. Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 25-40, 1992.

[92] H. Ossher and P. Tarr, “Hyper/J: Multi-Dimensional Separation
of Concerns for Java,” Proc. Int’l Conf. Software Eng., pp. 734-737,
2000.

[93] K. Ostermann, “Dynamically Composable Collaborations with
Delegation Layers,” Proc. European Conf. Object-Oriented Program-
ming, pp. 89-110, 2002.

[94] K. Ostermann, M. Mezini, and C. Bockisch, “Expressive Pointcuts
for Increased Modularity,” Proc. European Conf. Object-Oriented
Programming, pp. 214-240, 2005.

[95] D. Parnas, “Designing Software for Ease of Extension and
Contraction,” IEEE Trans. Software Eng., vol. 5, no. 2, pp. 264-
277, 1979.

[96] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at
Objects,” Proc. European Conf. Object-Oriented Programming,
pp. 419-443, 1997.

[97] E. Pulvermüller, A. Speck, and A. Rashid, “Implementing
Collaboration-Based Design Using Aspect-Oriented Program-
ming,” Proc. Int’l Conf. Technology of Object-Oriented Languages
and Systems, pp. 95-104, 2000.

[98] V. Rajlich, “Changing the Paradigm of Software Engineering,”
Comm. ACM, vol. 49, no. 8, pp. 67-70, 2006.

[99] T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O.
Lehne, E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, and P.
Stenslet, “OORASS: Seamless Support for the Creation and
Maintenance of Object-Oriented Systems,” J. Object-Oriented
Programming, vol. 5, no. 6, pp. 27-41, 1992.

[100] M. Sihman and S. Katz, “Superimpositions and Aspect-Oriented
Programming,” Computer J., vol. 46, no. 5, pp. 529-541, 2003.

[101] V. Singhal, “A Programming Language for Writing Domain-
Specific Software System Generators,” PhD dissertation, Dept. of
Computer Sciences, Univ. of Texas at Austin, 1996.

[102] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-
Based Designs,” ACM Trans. Software Eng. and Methodology,
vol. 11, no. 2, pp. 215-255, 2002.

[103] O. Spinczyk, D. Lohmann, and M. Urban, “AspectC++: An AOP
Extension for C++,” Software Developer’s J., pp. 68-74, 2005.

[104] F. Steimann, “On the Representation of Roles in Object-Oriented
and Conceptual Modeling,” Data and Knowledge Eng., vol. 35, no. 1,
pp. 83-106, 2000.

[105] F. Steimann, “Domain Models Are Aspect Free,” Proc. Int’l Conf.
Model Driven Eng. Languages and Systems, pp. 171-185, 2005.

[106] F. Steimann, “The Paradoxical Success of Aspect-Oriented
Programming,” Proc. Int’l Conf. Object-Oriented Programming,
Systems, Languages, and Applications, pp. 481-497, 2006.

[107] W. Stevens, G. Myers, and L. Constantine, “Structured Design,”
IBM Systems J., vol. 13, no. 2, pp. 115-139, 1974.

[108] K. Sullivan, W. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari,
and H. Rajan, “Information Hiding Interfaces for Aspect-Oriented
Design,” Proc. Int’l Symp. Foundations of Software Eng., pp. 166-175,
2005.

[109] C. Szyperski, D. Gruntz, and S. Murer, Component Software—
Beyond Object-Oriented Programming, second ed. Addison-Wesley/
ACM Press, 2002.

[110] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr., “N Degrees of
Separation: Multi-Dimensional Separation of Concerns,” Proc. Int’l
Conf. Software Eng., pp. 107-119, 1999.

[111] S. Trujillo, M. Azanza, and O. Dı́az, “Generative Metaprogram-
ming,” Proc. Int’l Conf. Generative Programming and Component
Eng., 2007.

[112] S. Trujillo, D. Batory, and O. Dı́az, “Feature Refactoring a Multi-
Representation Program into a Product Line,” Proc. Int’l Conf.
Generative Programming and Component Eng., pp. 191-200, 2006.

[113] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B.
Nørregaard Jørgensen, “Dynamic and Selective Combination of
Extensions in Component-Based Applications,” Proc. Int’l Conf.
Software Eng., pp. 233-242, 2001.

[114] M. VanHilst and D. Notkin, “Using C++ Templates to Implement
Role-Based Designs,” Proc. JSSST Int’l Symp. Object Technologies for
Advanced Software, pp. 22-37, 1996.

[115] M. VanHilst and D. Notkin, “Using Role Components in
Implement Collaboration-Based Designs,” Proc. Int’l Conf. Object-
Oriented Programming, Systems, Languages, and Applications,
pp. 359-369, 1996.

[116] M. Wand, G. Kiczales, and C. Dutchyn, “A Semantics for Advice
and Dynamic Join Points in Aspect-Oriented Programming,”
ACM Trans. Programming Languages and Systems, vol. 26, no. 5,
pp. 890-910, 2004.

[117] N. Wirth, “Program Development by Stepwise Refinement,”
Comm. ACM, vol. 14, no. 4, pp. 221-227, 1971.

APEL ET AL.: ASPECTUAL FEATURE MODULES 179

[118] E. Wohlstadter and K. De Volder, “Doxpects: Aspects Supporting
XML Transformation Interfaces,” Proc. Int’l Conf. Aspect-Oriented
Software Development, pp. 99-108, 2006.

[119] B. Xin, S. McDirmid, E. Eide, and W. Hsieh, “A Comparison of
Jiazzi and AspectJ for Feature-Wise Decomposition,” Technical
Report UUCS-04-001, School of Computing, Univ. of Utah, 2004.

[120] C. Zhang and H.-A. Jacobsen, “Resolving Feature Convolution in
Middleware Systems,” Proc. Int’l Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications, pp. 188-205, 2004.

Sven Apel received the PhD degree in computer
science from the University of Magdeburg in
2007. He is a postdoctoral associate with the
Chair of Programming at the University of
Passau, Germany. His research interests include
advanced programming paradigms, software
product lines, and algebra for software construc-
tion. For more information on the author, see
http://www.infosun.fim.uni-passau.de/cl/staff/
apel/.

Thomas Leich is currently working toward the
PhD degree in computer science at the Uni-
versity of Magdeburg, Germany. He is the head
of the Department of Applied Informatics at the
Metop Research Institute, Magdeburg, Ger-
many. His research interests are tailor-made
and embedded data management and software
product lines. For more information on the
author, see http://www.metop.de.

Gunter Saake is a full professor of computer
science. He is the head of the Database and
Information Systems Group at the University of
Magdeburg, Germany. His research interests
include database integration, tailor-made data
management, object-oriented information sys-
tems, and information fusion. He is a member of
the IEEE Computer Society. For more informa-
tion on the author, see http://wwwiti.cs.uni-
magdeburg.de/~saake/.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

180 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

