
Innovations Syst Softw Eng (2007) 3:281–289
DOI 10.1007/s11334-007-0030-3

ORIGINAL PAPER

Pointcuts, advice, refinements, and collaborations: similarities,
differences, and synergies

Sven Apel · Christian Kästner · Martin Kuhlemann ·
Thomas Leich

Received: 24 May 2007 / Accepted: 24 July 2007 / Published online: 29 August 2007
© Springer-Verlag London Limited 2007

Abstract Aspect-oriented programming (AOP) is a novel
programming paradigm that aims at modularizing complex
software. It embraces several mechanisms including (1)
pointcuts and advice as well as (2) refinements and collabo-
rations. Though all these mechanisms deal with crosscutting
concerns, i.e., a special class of design and implementation
problems that challenge traditional programming paradigms,
they do so in different ways. In this article we explore their
relationship and their impact on modularity, which is an
important prerequisite for reliable and maintainable soft-
ware. Our exploration helps researchers and practitioners to
understand their differences and exposes which mechanism
is best used for which problem.

1 Introduction

Separation and modularization of concerns is a long-standing
goal in software development [12,29]. Crosscutting concerns
are design and implementation problems that cut across sev-
eral places in a program. They challenge traditional program-

S. Apel (B)
Department of Informatics and Mathematics,
University of Passau, Passau, Germany
e-mail: apel@uni-passau.de

C. Kästner · M. Kuhlemann
School of Computer Science, University of Magdeburg,
Magdeburg, Germany
e-mail: kaestner@iti.cs.uni-magdeburg.de

M. Kuhlemann
e-mail: kuhlemann@iti.cs.uni-magdeburg.de

T. Leich
Department of Applied Informatics,
Metop Research Institute, Magdeburg, Germany
e-mail: thomas.leich@metop.de

ming paradigms, e.g., object-oriented programming (OOP),
because their implementation typically leads to code tangling,
scattering, and replication [17]. Modularizing crosscutting
concerns requires advanced mechanisms beyond traditional
concepts like classes and procedures. Work on aspect-
oriented programming (AOP) addresses this issue.

In this paper we evaluate and compare two aspect-ori-
ented approaches that provide diverse mechanisms and tools
to improve crosscutting modularity. On the one hand, there
are pointcuts and advice that are grouped typically in aspects.
We call languages that use mainly these mechanisms to mod-
ularize crosscutting concerns advice and pointcut languages
(ALs). Popular examples of ALs are AspectJ [18], Aspect
C++ [31], and Eos [30]. On the other hand, there are class
refinements that are grouped typically in collaboration mod-
ules. These are used primarily in collaboration languages
(CLs) such as Classbox/J [9], Jiazzi [25], Scala [28], Jak [8].

In this article we explore the similarities and differences
of ALs and CLs and their impact on crosscutting modular-
ity. Modularity is an important prerequisite for reliable and
maintainable software, relevant for organizations that require
high standards on software quality like NASA. It is crucial
for researchers and, especially, for practitioners in this field to
understand the relationship between both paradigms, espe-
cially since there is an ongoing confusion on what aspect-
oriented languages should offer. Our exploration sheds light
on this issue and assists in choosing the right design or imple-
mentation mechanism for the right problem, with the goal of
a suitable modular structure of software.

2 Crosscutting in a chat application

We start our discussion with a simple chat application. It con-
sists of multiple clients that communicate through a server.

123

282 S. Apel et al.

1 public class Client implements Runnable {
2 public Client(String host , int port) {
3 history = new ArrayList();
4 login();
5 }
6 public void run() {
7 while(true)
8 handleMsg(inputStr.readObject ());
9 }

10 private void handleMsg(Object msg) {
11 if (msg instanceof EncryptedMessage)
12 msg = ((EncryptedMessage)msg).decrypt();
13 history.add(msg);
14 i f (msg instanceof TextMessage)
15 receivedTextLine (((TextMessage)msg). content);
16 }
17 public void send(Message msg) {
18 msg = Encrypter.encrypt(msg);
19 try {
20 outputStr.writeObject(msg); outputStr.flush ();
21 } catch (IOException ex) {
22 listener.stop ();
23 }
24 }
25 private void login() { send(new AuthMessage(”user”, ”pwd”)); }
26 /∗ . . . ∗/
27 }

28 public class Server {
29 private Set connections = new HashSet ();
30 private Set authCons = new HashSet();
31 public Server(int port) throws IOException {
32 ServerSocket server = new ServerSocket(port);
33 while (true) {
34 Socket client = server.accept ();
35 Connection c = new Connection(s, this);
36 connections.add(c); c.start ();
37 }
38 }
39 public void broadcast(Message msg) {
40 for (Connection c : connections)
41 if (authCons.contains(c))
42 c.send(msg);
43 }

44 // continuing public c lass Server
45 public void disconnect(Connection c) {
46 authCons.remove(c); connections.remove(c);
47 }
48 public boolean login(Connection c, String u, String p) {
49 boolean res = checkLogin(u, p);
50 if (res) authCons.add(c); return res;
51 }
52 /∗ . . . ∗/
53 }

54 public class Connection extends Thread {
55 public void run() {
56 handler.broadcast(name + " has joined.");
57 while(true)
58 handleMsg(name , inputStr.readObject ());
59 }
60 private void handleMsg(String name , Object msg) {
61 if (msg instanceof EncryptedMessage)
62 msg = ((EncryptedMessage)msg).decrypt();
63 i f (msg instanceof TextMessage)
64 server.broadcast (((TextMessage)msg). content);
65 if (msg instanceof AuthMessage) {
66 AuthMessage amsg = (AuthMessage)msg;
67 if (server.login(this, amsg.user, amsg.pwd))
68 server.broadcast(name + ” authenticated”);
69 else this.send(new TextMessage(”denied”));
70 }
71 }
72 public void send(Message msg) {
73 msg = Encrypter.encrypt(msg);
74 synchronized(os) { outputStr.writeObject(msg); }
75 }
76 /∗ . . . ∗/
77 }

78 abstract class Message implements Serializable {
79 /∗ . . . ∗/
80 }
81 class TextMessage extends Message { /∗ . . . ∗/ }
82 class EncryptedMessage extends Message { /* ... */ }
83 class AuthMessage extends Message { /* ... */ }

Fig. 1 Java implementation of a chat application (excerpt)

The server forwards incoming messages to all registered
clients. Clients authenticate themselves (concern Authen-
tication), all message transfer is encrypted (concern
Encryption), and each client keeps a history of received
messages (concern History). We use this application to
illustrate and classify crosscutting concerns.

Our first implementation of the chat application is purely
object-oriented and written in Java. Though it could be imple-
mented differently, it serves our need to explain the effects of
crosscutting. The implementation consists of the three main
classes Client, Server, and Connection. Their list-
ings—shortened for brevity1—are shown in Fig. 1. Client
and server communicate with a standard Java stream. A cli-
ent waits for new messages from the stream (Lines 6–9) and
interprets them with the methodhandleMsg (Lines 10–16).
New messages are sent to the stream with the method send
(Lines 17–24).2

The chat server is implemented similarly to the client, but
creates a new thread for each incoming connection (Lines 33–
37). This thread receives messages from the stream (Line 58)
and passes them to the method handleMsg (Lines 60–71),

1 The complete listings are available at http://wwwiti.cs.uni-
magdeburg.de/iti_db/research/chat.
2 Messages are shown in a GUI, which is not relevant for this article.

and it sends messages back to the connected client (Lines 72–
75). In order to broadcast a received message, handleMsg
informs the server (Line 64), which forwards the message to
all connected clients (Lines 39–43).

This simple example demonstrates the crosscutting nature
of some concerns incorporated in our implementation of the
chat application. For instance, the implementation of the con-
cerns Encryption (underlined and red) and History (sans
serif font and blue) are tangled within the method hand-
leMsg in Client (Lines 10–16); the implementation of
the concern Authentication (slanted font and green) is
scattered over the classes Client, Server, and Connec-
tion; the implementation of the concern Encryption con-
tains replicated code scattered across the classes Client
and Connection.

Code tangling, scattering, and replication occur typically
in the implementation of crosscutting concerns [35,17]. Code
scattering refers to the code belonging to one concern scat-
tered across multiple modules; code tangling refers to the
code belonging to multiple concerns mixed in one module;
code replication refers to multiple code fragments in one
program that are equal or similar.

Note that crosscutting concerns and their negative effects
on modularity are not a matter of bad or good programming
style, but an inherent problem of traditional programming

123

Pointcuts, advice, refinements, and collaborations: similarities, differences, and synergies 283

Client(…)

Client

«aspect»
Encryption

«aspect»
History

«aspect»
Authentication

run()
handle(…)
send(…)
login(…)

Server(…)

Server

broadcast(…)
disconnect(…)
login(…)

run()

Connection

handle(…)
send(…)

Fig. 2 Implementing the chat application with aspects

paradigms such as OOP [35,17]. We could have implemented
the chat application differently to avoid some tangling and
scattering, but we would observe these problems again in
different locations in the source code or in other concerns.
ALs and CLs solve this problem with novel language mech-
anisms. In this article we examine these mechanisms and
their properties and discuss them with regard to our initial
object-oriented implementation.

3 Advice and pointcut languages

ALs like AspectJ or AspectC++ are popular languages in
the AOP community. They aim at modularizing crosscutting
concerns to resolve code replication, tangling, and scattering,
which occur also in our chat application.

The idea behind ALs is to encapsulate all code associ-
ated with one crosscutting concern into a single module,
usually called an aspect. An aspect specifies several points
(a.k.a. join points) in the computation of a base program,
which can be understood as events. Furthermore, an aspect
defines what happens when these events occur. Typically, a
programmer uses a pointcut to specify a set of join points
and advice to define what code is executed additionally at
these points; inter-type declarations are not related directly
to pointcuts and advice but frequently used together with
them. They inject new members into existing classes from
within an aspect.

In our chat application we highlighted three crosscutting
concerns. Authentication crosscuts three classes, Encry-
ption crosscuts three classes, and History crosscuts one
class but in two different methods. In Fig. 2 we depict these
three concerns implemented as aspects. Each aspect encap-
sulates one concern of the chat application, while the base
program is implemented by traditional classes. The arrows
denote the places where the aspects extend the base program.3

In Fig. 3 we show the feature Encryption written in
AspectJ. The aspectEncryption contains the two pointcuts
send (Lines 2–3) and receive (Lines 4–5). They capture

3 To be precise, the arrows do not refer to the join points but to their
projection on static program code (a.k.a. join point shadows) [15].

1 public aspect Encryption {
2 pointcut send(Message msg) :
3 execution(void *.send(Message)) && args(msg);
4 pointcut receive(Message msg) :
5 execution(void *. handleMsg(Message))&& args(msg);
6 void around(Message msg): send(msg){
7 msg = Encrypter.encrypt(msg); proceed(msg);
8 }
9 void around(Message msg): receive(msg){

10 i f (msg instanceof EncryptedMessage) {
11 msg = Encrypter.decrypt ((EncryptedMessage)msg);
12 }
13 proceed(msg);
14 }
15 }

Fig. 3 Implementing Encryption as an aspect

1 pointcut send(Message msg) :
2 (execution(void Server.broadcast(Message) ||
3 execution(void *.send(Message)) && args(msg) &&
4 !cflow(execution(void Server.broadcast(Message)));

Fig. 4 Capturing join points based on the control flow

the join points associated with the execution of the methods
send and handleMsg. Two pieces of advice execute the
actual encryption code when a message is sent (Lines 6–8)
and received (Lines 9–14). Both advise two join points each,
which is achieved with a wildcard (‘*’) for classes in the
pointcut expressions.

Additionally, ALs provide several sophisticated language
mechanisms for expressing where, when, and how an aspect
affects a base program. Notice that in our original source
code a message broadcasted by the server is encrypted sep-
arately for every individual client. Instead we could already
encrypt the message in the server’s broadcast method.
However, then we would have to encrypt the message that
was denied by the server in the class Connection some-
how differently (Fig. 1, Line 69). Using the pointcut cflow
available in several ALs, we can implement an alternative
solution by modifying the pointcut send, as shown in Fig. 4.
The pointcut matches either the broadcast method, or all
sendmethods. To avoid encrypting a method twice, cflow
excludes all executions of the method send that occur in the
control flow of the method broadcast and that have been
encrypted already.

4 Collaboration languages

Much like ALs, CLs are considered aspect-oriented lan-
guages. However, they offer alternative mechanisms to mod-
ularize crosscutting concerns: (1) a class refinement (a.k.a.
refinement) extends an existing class by new members
and declarations and (2) a collaboration module (a.k.a.
collaboration) groups multiple refinements (and further
classes), thus modularizing a crosscutting concern.

A refinement is a unit of change that can be applied to
a given class. A refinement introduces new members to this
class and/or extends existing methods by method overriding

123

284 S. Apel et al.

Fig. 5 Implementing the chat
application with collaborations

(a.k.a. method extension). There are several techniques for
implementing class refinements, e.g., mixins [10,14], class-
boxes [9], virtual classes [23], or nested inheritance [27].

For example, in our chat application the concern Encry-
ption extends two classes at four places and adds a further
class Encrypter. These changes could be implemented
by refinements. In Fig. 5 we depict the collaboration-based
design of our chat application. We implemented Authen-
tication, Encryption, and History each with a collab-
oration that contains multiple classes and refinements. The
base program consists of the three classes Server, Con-
nection, andClient. Authentication applies a refine-
ment to each class of the base program, thereby injecting
code for client authentication. Encryption refines Client
andConnection and introduces a new classEncrypter.
History applies only a single refinement to Client.

In Fig. 6 we show Authentication implemented in
Jak [8], a CL for Java which we picked because of its sim-
plicity. In Jak refinements are declared using the keyword
‘refines’. The refinement of Client adds a new method
login (Lines 5–7) and refines the constructor of Client
(Lines 2–4). The refinement of Server adds a field auth-
Cons (Lines 10) and a methodlogin (Lines 14–18) as well
as extends the method remove (Lines 11–13). The refine-
ment of Connection extends the methods send (Lines
21–24) and handleMsg (Lines 25–33).4

4 Note that in our example the collaborations are not expressed explic-
itly in the program text but implicitly by storing classes and refinements
in directories [8]. The classes and refinements found inside a directory
belong to the same collaboration. Alternatively, in Jak, much like in
other collaboration languages [7,9], there are keywords that declare
which classes and refinements belong to which collaboration.

1 refines class Client (){
2 public Client(String host , int port) {
3 super(host , port); login ();
4 }
5 private void login () {
6 send(new AuthMessage("user", "pwd"));
7 }
8 }

9 refines class Server {
10 private Set authCons = new HashSet ();
11 public void remove(Connection con) {
12 authCons.remove(con); super.remove(con);
13 }
14 public boolean login(Connection con , String user ,
15 String pwd) {
16 boolean res = checkLogin(user , pwd);
17 i f (res) authCons.add(con); return res;
18 }
19 }

20 refines class Connection {
21 public void send(Message msg) {
22 i f (server.authCons.contains(this))
23 super.send(msg);
24 }
25 protected void handleMsg(Message msg) {
26 super.handleMsg(msg);
27 i f (msg instanceof AuthMessage) {
28 AuthMessage amsg = (AuthMessage) msg;
29 i f (server.login(this , amsg.user , amsg.pwd)) {
30 server.broadcast(name + " authenticated");
31 } else { send(new TextMessage("denied")); }
32 }
33 }
34 }

Fig. 6 Implementing Authentication as a collaboration

In this example we can observe that our crosscutting con-
cerns extend several places of a program and collaborations
encapsulate the necessary changes in form of refinements
and classes.

123

Pointcuts, advice, refinements, and collaborations: similarities, differences, and synergies 285

5 Classification of crosscutting concerns

In order to explore the differences between ALs and CLs
and their performance with respect to the modularization of
different crosscutting concerns, we classify the nature of
crosscutting. First, we distinguish between homogeneous and
heterogeneous crosscutting concerns [11]. Homogeneous
crosscutting concerns affect multiple join points and apply
one piece of code, i.e., the same extension to all join points.
In AOP terminology this is called quantification [13]. By
contrast, heterogeneous crosscutting concerns apply differ-
ent pieces of code to different join points. In our initial
implementation, Encryption is a homogeneous crosscut-
ting concern since it extends the methods send and hand-
leMsg in Client and Connection by the same piece
of code. In contrast, Authentication is a heterogeneous
crosscutting concern since it extendsClient,Server, and
Connection, all with different pieces of code (cf. Fig. 1).

A further way to distinguish crosscutting concerns is
regarding the point in time at which they affect a program [24].
Static crosscutting concerns affect the static structure of a
program by adding new classes and interfaces, by injecting
new methods or fields, and by declaring new super-classes
and interfaces [26]. Dynamic crosscutting concerns cross-
cut the dynamic computation of a program and thus can be
defined in terms of events and actions. The events are also
called dynamic join points [36], e.g., invocation of a method,
assignment of a field, or throwing of an exception. A defined
action is executed when a corresponding event occurs that
implements the desired extension to the base program.

In our example, Authentication adds a new class and
injects three new members, which is a static crosscutting
concern. Authentication is also in parts a dynamic cross-
cutting concern since it extends the executions of the meth-
ods handleMsg, broadcast, and remove, which can
be understood in terms of events and actions.

6 Comparison and programming guidelines

The classification of crosscutting concerns as heterogeneous
and homogeneous or as static and dynamic allows us to com-
pare ALs and CLs.

With regard to homogeneous crosscutting concerns ALs
perform better than CLs since they provide mechanisms for
capturing multiple join points and applying a single exten-
sion. For example, the aspect Encryption extends two
methods in two classes by the same code (Fig. 3). In a col-
laboration-based solution both classes would be extended by
a distinct refinement, which leads to code replication (Fig. 7).

Both ALs and CLs can express heterogeneous crosscutting
concerns. For example, Authentication is heterogeneous
and is implemented with a collaboration of three refinements

1 refines class Client {
2 void handleMsg(Message msg) {
3 i f (msg instanceof EncryptedMessage) {
4 msg = Encrypter.decrypt ((EncryptedMessage)msg);
5 }
6 super.handleMsg(msg);
7 }
8 void send(Message msg) {
9 msg = Encrypter.encrypt(msg);

10 super.send(msg);
11 }
12 }

13 refines class Connection {
14 void handleMsg(Message msg) {
15 i f (msg instanceof EncryptedMessage) {
16 msg = Encrypter.decrypt ((EncryptedMessage)msg);
17 }
18 super.handleMsg(msg);
19 }
20 void send(Message msg) {
21 msg = Encrypter.encrypt(msg);
22 super.send(msg);
23 }
24 }

Fig. 7 Implementing Encryption as a collaboration

and one class in Fig. 6. In an AL solution one (or more)
aspect(s) would bundle a set of inter-type declarations, point-
cuts, and pieces of advice, as shown in Fig. 8. Notice that,
in the case of heterogeneous crosscutting concerns, there are
no advantages regarding code replication. So it seems that
both the AL and the CL solution are equivalent. However,
especially in larger programs, there is a difference: since an
AL solution merges all individual extensions to the target
classes arbitrarily and implicitly, the resulting program is
difficult to comprehend [32]. The straightforward mapping
between classes and refinements in the CL solution facilitates
a better program comprehension [32]. Even though argu-
ments regarding comprehension are difficult to prove [6],
recent work supports this hypothesis [2,3,16,26,32].

With regard to static and some dynamic crosscutting con-
cerns ALs and CLs perform similarly. They can both be used
to inject any kind of member to existing classes, to declare
super-classes and interfaces, and to extend existing meth-
ods. The difference lies in the constructs used. A refinement
encapsulates all new elements to be applied to a class. An
aspect injects several new elements into a class by a set of
inter-type declarations. A collaboration introduces simply a
new class or interface, while an AL solution would require to
use static inner classes or external workarounds [22], because
otherwise the association between a crosscutting concern and
a single aspect would be lost. Furthermore, method exten-
sions are implemented with method overriding in CLs, while
the AL solutions use advice, which advises a method’s execu-
tion. CLs enforce a mapping between classes an their refine-
ments which helps to understand the source code, while ALs
allow one to specify all extensions to multiple classes inside a
single aspect. Finally, we argue that CL constructs are easier
to use because their syntax is usually more concise and close
to what is known from OOP. ALs achieve exactly the same

123

286 S. Apel et al.

1 privileged aspect Authentication {
2 after(Client c) : this(c) && execution(Client.new(String , int) {
3 c.login ();
4 }
5 private void Client.login () {
6 send(new AuthMessage("user", "pwd"));
7 }
8 private Set Server.authCons = new HashSet ();
9 before(Server s, Connection con) : this(s) && args(con) && execution(void Server.remove(Connection)) {

10 s.authCons.remove(con);
11 }
12 public boolean Server.login(Connection con , String user , String pwd) {
13 boolean res = checkLogin(user , pwd);
14 i f (res) authCons.add(con); return res;
15 }
16 void around(Connection con) : this(con) && execution(void Connection.send(Message)) {
17 i f (con.server.authCons.contains(con)) proceed(con);
18 }
19 after(Connection con , Message msg) :
20 this(con) && args(msg) && execution(void Connection.handleMsg(Message)) {
21 i f (msg instanceof AuthMessage) {
22 AuthMessage amsg = (AuthMessage) msg;
23 i f (con.server.login(con , amsg.user , amsg.pwd)) {
24 con.server.broadcast(name + " authenticated");
25 } else { con.send(new TextMessage("denied")); }
26 }
27 }
28 }

Fig. 8 Implementing Authentication as an aspect

effect, but with a verbose new syntax. This becomes apparent
when comparing the two variants to implement Authenti-
cation in Figs. 6 and 8.

However, ALs provide sophisticated mechanisms to
implement dynamic crosscutting that are not available in
CLs. For example, several ALs provide mechanisms to imple-
ment a crosscutting concern dependently on the runtime con-
trol flow. This allows the programmer a view on the dynamic
structure of a program. We call those dynamic crosscuts that
go beyond method extensions advanced dynamic crosscuts.
Advanced dynamic crosscuts are supported only by (some)
ALs. An example for an advanced dynamic crosscut is the
enhanced variant of Encryption described earlier (Fig. 4),
which uses cflow to advise code based on the program con-
trol flow. CLs do not support such advanced dynamic cross-
cutting concerns. To implement an equivalent extension with
CLs would result in a workaround with additional parameters
or methods.

From the above discussion we conclude that AL mecha-
nisms are more suitable for homogeneous and CLs for heter-
ogeneous crosscutting concerns. Furthermore, ALs perform
well for concerns that demand a dynamic join point model,
while CLs are more suitable for the introduction of new clas-
ses and interfaces and for simple dynamic crosscutting con-
cerns that aims only at method extensions.

Due to the complexity and problems introduced by point-
cuts, advice, and quantification [1,16,33,34], it is reasonable
to use ALs only for what they are really beneficial. Of course,
the choice of a programming language depends on many fac-
tors, but based on these observations we can assist with a pro-
gramming guideline regarding the crosscutting nature of the
problem to solve: (1) use pointcuts and advice for homoge-
neous and advanced dynamic crosscutting concerns (2) use
refinements and collaborations for heterogeneous crosscut-
ting concerns and method extensions.

This programming guideline reflects the different capa-
bilities of ALs and CLs with respect to the modularization of
different kinds of crosscutting concerns. Choosing the right
mechanisms is crucial for software modularity, but also for
software complexity. The guideline takes the complexity of
AL mechanisms into account and suggests to use them only
when they are necessary. Applications with high reliability
and quality standards require a proper modularity, but they
should remain manageable.

7 Aspectual feature modules

Our programming guideline implies that a programmer
requires different aspect-oriented mechanisms in the imple-
mentation of a program or software system. What follows
is that the programmer needs to combine pointcuts, advice,
refinements, and collaborations within one programming
language or environment. Several languages support such
a combination following our guideline, e.g., CaesarJ [7] and
FeatureC++ [4]. In this article we use a combination of Jak
and AspectJ to illustrate how to implement aspectual feature
modules (AFMs) [5], an approach which integrates collabo-
rations and aspects.

AFMs follow the concepts of collaborations but addition-
ally integrate aspects beside classes and refinements. In Fig. 9
we show the collaboration-based design of our chat applica-
tion, but now Encryption is implemented with an aspect and
a class. This example illustrates that an AFM encapsulates a
collaboration of classes, refinements, and aspects, which is
not possible with either only an AL or only a CL. The aspect
is used to implement a homogeneous crosscutting concern,
which otherwise leads to code replication (cf. Fig. 7), and
a dynamic crosscutting concern, which otherwise requires a
workaround (cf. Fig. 4).

123

Pointcuts, advice, refinements, and collaborations: similarities, differences, and synergies 287

Fig. 9 Implementing the chat application with aspectual feature modules

8 Case studies

In a first case study, we applied the combination of AL und
CL mechanisms implemented in AspectJ and Jak to a non-
trivial medium-sized software project: a framework for peer-
to-peer overlay networks (FrameP2P) [3]. It was developed
by the first author in the course of a project that aims at
variability and customizability in distributed systems and at
advanced overlay network features.

The framework implementation consists of 6,426
lines of code (LOC) implementing 113 concerns. Ninety-
nine of the 113 concerns were implemented completely with
collaborations—without aspects. Fourteen concerns were
implemented with a combination of refinements and aspects,
including pointcuts and advice. This imbalance comes from
our programming guideline, which defines what mechanism
is used for which kind of crosscutting concern. We found
14 concerns that are advanced dynamic and homogeneous.
The remaining 99 concerns were heterogeneous, so that
refinements and collaborations were sufficient. Though we
could have implemented the 14 aspects with collaborations
as well, this would have resulted in code replication, scatter-
ing, and tangling. Also we could have implemented the 99
collaborations with aspects, but this would have destroyed
the object-oriented structure of the framework, which would
have decreased program comprehension.

We have observed that the code associated with advanced
AL mechanisms for homogeneous and advanced dynamic
crosscuts sums up to only a minor fraction of the code base
of the framework (6% aspects, 46% refinements, 48% clas-
ses). At the same time, 17% of the framework’s code base

are simple method extensions and 77% are pure static cross-
cuts, i.e., the introduction of new structural elements. This
result is remarkable since it shows that, following our pro-
gramming guideline, pointcuts and advice have only a small
impact on the development of the framework for peer-to-peer
overlay network. Nevertheless, by using aspects for homo-
geneous crosscutting concerns, we reduced the code size by
5%, which by itself is a notable result.

Once we had finished our case study and stumbled onto the
disproportion between AL and CL mechanisms, we became
interested in how other programmers use CLs and ALs. In
several studies we and others analyzed to what extend CL
and AL mechanism have been used in programs and what
their benefits are.

A study of our own revealed that in ten analyzed AspectJ
programs (1–130 thousand LOC) only 2% of the code is
associated with AL mechanisms and 12% with CL mecha-
nisms [2]. The remaining code (86%) is purely object-
oriented. Studies conducted by others who analyzed and
compared programs written in ALs and CLs revealed similar
proportions [19–21,37].

9 Concluding remarks

In this article we have illustrated that aspect-oriented lan-
guages based on advice and pointcuts (ALs) and languages
based on refinements and collaborations (CLs) are comple-
mentary. Our classification of crosscutting concerns revealed
that the strengths of one approach map roughly to the

123

288 S. Apel et al.

weaknesses of the other approach. We used this complemen-
tarity to establish a guideline for programmers: (1) use point-
cuts and advice for homogeneous and advanced dynamic
crosscutting concerns and (2) use refinements and collabora-
tions for heterogeneous crosscutting concerns. In a case study
we showed that a combination of AL and CL mechanisms in
form of AFMs along with our guideline are applicable to a
non-trivial medium-sized software project. We noticed that
AL and CL mechanisms have been used to different extents
(6% aspects, 46% refinements, 48% classes), which is also
supported by other studies.

We conclude that crosscutting modularity is crucial for
the development of maintainable and reliable software, e.g.,
as for applications in the NASA environment. Our guideline
helps developers to choose the right mechanism for a given
problem while balancing software modularity and software
complexity.

Acknowledgments We would like to thank Don Batory and Christian
Lengauer for fruitful comments on earlier drafts of this paper.

References

1. Alexander R (2003) The real costs of aspect-oriented program-
ming. IEEE Softw 20(6):92–93

2. Apel S (2007) The role of features and aspects in software devel-
opment. PhD thesis, School of Computer Science, University of
Magdeburg

3. Apel S, Batory D (2006) When to use features and aspects? A
case study. In: Proceedings of the international conference on gen-
erative programming and component engineering (GPCE), ACM
Press, New York, pp 59–68

4. Apel S, Rosenmüller M, Leich T, Saake G (2005) FeatureC++:
on the symbiosis of feature-oriented and aspect-oriented program-
ming. In: Proceedings of the international conference on generative
programming and component engineering (GPCE), Lecture Notes
in Computer Science, vol 3676. Springer, Heidelberg, pp 125–140

5. Apel S, Leich T, Saake G (2006) Aspectual mixin layers: aspects
and features in concert. In: Proceedings of the International con-
ference on software engineering (ICSE), ACM Press, New York,
pp 122–131

6. Apel S, Kästner C, Trujillo S (2007) On the necessity of empir-
ical studies in the assessment of modularization mechanisms for
crosscutting concerns. In: ICSE workshop on assessment of con-
temporary modularization techniques (ACoM’07)

7. Aracic I, Gasiunas V, Mezini M, Ostermann K (2006) An overview
of CaesarJ. Transactions on aspect-oriented software development
I. Lect Notes Comput Sci 3880:135–173

8. Batory D, Sarvela JN, Rauschmayer A (2004) Scaling step-wise
refinement. IEEE Trans Softw Eng (TSE) 30(6):355–371

9. Bergel A, Ducasse S, Nierstrasz O (2005) Classbox/J: controlling
the scope of change in Java. In: Proceedings of the international
conference on object-oriented programming, systems, languages,
and applications (OOPSLA), ACM Press, New York, pp 177–189

10. Bracha G, Cook WR (1990) Mixin-Based Inheritance. In: Proceed-
ings of the international conference on object-oriented program-
ming, systems, languages, and applications (OOPSLA) and the
European conference on object-oriented programming (ECOOP),
ACM Press, New York, pp 303–311

11. Colyer A, Rashid A, Blair G (2004) On the separation of concerns in
program families. Tech Rep COMP-001-2004, Computing Depart-
ment, Lancaster University

12. Dijkstra EW (1976) A discipline of programming. Prentice Hall,
Englewood Cliffs

13. Filman RE, Friedman DP (2005) Aspect-oriented programming
is quantification and obliviousness. In: Aspect-oriented software
development, Addison-Wesley, Reading, pp 21–35

14. Flatt M, Krishnamurthi S, Felleisen M (1998) Classes and Mixins.
In: Proceedings of the international symposium on principles
of programming languages (POPL), ACM Press, New York,
pp 171–183

15. Hilsdale E, Hugunin J (2004) Advice weaving in AspectJ. In: Pro-
ceedings of the international conference on aspect-oriented soft-
ware development (AOSD), ACM Press, New York, pp 26–35

16. Kästner C, Apel S, Batory D (2007) A case study implementing
features using AspectJ. In: Proceedings of the international soft-
ware product line conference (SPLC)

17. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes CV,
Loingtier JM, Irwin J (1997) Aspect-oriented programming. In:
Proceedings of the European conference on object-oriented pro-
gramming (ECOOP), lecture notes in computer science, vol 1241.
Springer, Heidelberg, pp 220–242

18. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold
WG (2001) An overview of AspectJ. In: Proceedings of the Euro-
pean conference on object-oriented programming (ECOOP), lec-
ture notes in computer science, vol 2072. Springer, Heidelberg,
pp 327–353

19. Liu J, Batory D, Lengauer C (2006) Feature-oriented refactoring
of legacy applications. In: Proceedings of the international confer-
ence on software engineering (ICSE), ACM Press, New York, pp
112–121

20. Lopez-Herrejon R (2006) Understanding feature modularity. PhD
thesis, Department of Computer Sciences, The University of Texas
at Austin

21. Lopez-Herrejon R, Batory D (2006) From crosscutting concerns
to product lines: a function composition approach. Tech Rep
TR-06-24, Department of Computer Sciences, The University of
Texas at Austin

22. Lopez-Herrejon R, Batory D, Cook WR (2005) Evaluating support
for features in advanced modularization technologies. In: Proceed-
ings of the European conference on object-oriented programming
(ECOOP), lecture notes in computer science, vol 3586. Springer,
Heidelberg, pp 169–194

23. Madsen OL, Moller-Pedersen B (1989) Virtual classes: a power-
ful mechanism in object-oriented programming. In: Proceedings
of the international conference on object-oriented programming,
systems, languages, and applications (OOPSLA), ACM Press,
New York, pp 397–406

24. Masuhara H, Kiczales G (2003) Modeling crosscutting in aspect-
oriented mechanisms. In: Proceedings of the European conference
on object-oriented programming (ECOOP), lecture notes in com-
puter science, vol 2743, Springer, Heidelberg, pp 2–28

25. McDirmid S, Flatt M, Hsieh WC (2001) Jiazzi: New-age
components for old-fashioned Java. In: Proceedings of the inter-
national conference on object-oriented programming, systems,
languages, and applications (OOPSLA), ACM Press, New York,
pp 211–222

26. Mezini M, Ostermann K (2004) Variability management with fea-
ture-oriented programming and aspects. In: Proceedings of the
international symposium on foundations of software engineering
(FSE), ACM Press, New York, pp 127–136

27. Nystrom N, Chong S, Myers AC (2004) Scalable extensibility via
nested inheritance. In: Proceedings of the international conference
on object-oriented programming, systems, languages, and applica-
tions (OOPSLA), ACM Press, New York, pp 99–115

123

Pointcuts, advice, refinements, and collaborations: similarities, differences, and synergies 289

28. Odersky M, Zenger M (2005) Scalable component abstractions.
In: Proceedings of the international conference on object-oriented
programming, systems, languages, and applications (OOPSLA),
ACM Press, New York, pp 41–57

29. Parnas DL (1972) On the criteria to be used in decomposing sys-
tems into modules. Commun ACM (CACM) 15(12):1053–1058

30. Rajan H, Sullivan KJ (2005) Classpects: unifying aspect- and
object-oriented language design. In: Proceedings of the interna-
tional conference on software engineering (ICSE), ACM Press,
New York, pp 59–68

31. Spinczyk O, Lohmann D, Urban M (2005) AspectC++: an AOP
extension for C++. Softw Developer’s J, 68–74

32. Steimann F (2005) Domain models are aspect free. In: Proceedings
of the international conference on model driven engineering lan-
guages and systems (MoDELS/UML), lecture notes in computer
science, vol 3713. Springer, Heidelberg, pp 171–185

33. Steimann F (2006) The paradoxical success of aspect-oriented
programming. In: Proceedings of the international conference on

object-oriented programming, systems, languages, and applica-
tions (OOPSLA), ACM Press, New York, pp 481–497

34. Störzer M, Graf J (2005) Using pointcut delta analysis to sup-
port evolution of aspect-oriented software. In: Proceedings of the
international conference on software maintenance (ICSM), IEEE
Computer Society, pp 653–656

35. Tarr P, Ossher H, Harrison W, Stanley M Sutton Jr (1999) N degrees
of separation: multi-dimensional separation of concerns. In: Pro-
ceedings of the international conference on software engineering
(ICSE), IEEE Computer Society, pp 107–119

36. Wand M, Kiczales G, Dutchyn C (2004) A semantics for advice
and dynamic join points in aspect-oriented programming. ACM
Trans Program Lang Syst (TOPLAS) 26(5): 890–910

37. Xin B, McDirmid S, Eide E, Hsieh WC (2004) A comparison of
Jiazzi and AspectJ for feature-wise decomposition. Tech Rep
UUCS-04-001, School of Computing, The University of Utah

123

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

