
Introducing Binary Decision Diagrams
in the Explicit-State Verification of Java Code

Alexander von Rhein, Sven Apel
University of Passau

Passau, Germany
e-mail: {rhein,apel}@fim.uni-passau.de

Franco Raimondi
Middlesex University

London, UK
e-mail: f.raimondi@mdx.ac.uk

Abstract

One of the big performance problems of software
model checking is the state-explosion problem. Various
tools exist to tackle this problem. One of such tools is
Java Pathfinder (JPF) an explicit-state model checker
for Java code that has been used to verify efficiently a
number of real applications.

We present jpf-bdd, a JPF extension that allows
users to annotate Boolean variables in the system
under test to be managed using Binary Decision Dia-
grams (BDDs). Our tool partitions the program states
of the system being verified and manages one part
using BDDs. It maintains a formula for the values
of these state partitions at every point during the
verification. This allows us to merge states that would
be kept distinct otherwise, thereby reducing the effect
of the state-explosion problem.

We demonstrate the performance improvement of
our extension by means of three example programs
including an implementation of the well-known dining-
philosophers problem.

1. Introduction

Java Pathfinder (JPF) is a Java Virtual Machine
that can be configured as a model checker for Java
programs. In its basic configuration, JPF is a fast,
explicit model checker that explores the whole state
space of a system under test represented by a Java
program, searching for unhandled exceptions, dead-
locks, and data races. JPF executes the program in-
structions and creates a choice point if multiple ex-
ecution paths can be considered, for instance, in the
case of thread interleaving or in non-deterministic
choices. Intuitively, each choice generates a so-called
JPF state. Most programs contain so many possible
states that the exploration of the whole state space

is an extremely, computationally expensive task and
is the main limiting factor in the analysis of systems
using model checkers. JPF implements state-of-the-art
optimization strategies for the exploration of large state
spaces, such as state matching, on-the-fly partial-order
reduction, and it can be extended with a number of
other optimizations such as symbolic execution [1].

Beside improvements of explicit model checkers, a
number of alternative techniques have been investi-
gated to tackle the state-explosion problem, including
the reduction of the model-checking problem to a satis-
fiability problem, the reduction to Boolean formulae to
be manipulated using efficient data structures, etc. With
slight abuse of notation, we call all these approaches
“symbolic” when they do not treat states explicitly.
Symbolic approaches have a computational cost in
addition to the “standard” cost of state exploration,
but in some cases they can dramatically condense the
state space to be explored by merging sets of states in
appropriate ways. Unfortunately, no approach has been
shown to be superior to the others.

With jpf-bdd, we present a novel hybrid approach
to model checking that allows the flexible use of both
explicit and symbolic techniques in the same model
checker. Our idea is to partition each program state
in two parts. The first part of the program state,
called core part, contains all the JPF kernel variables
(program counters, etc.) and all the variables that are
not identified with a special annotation. This part is
handled in a standard way by JPF.

The second part contains the values of a user-defined
set of Boolean variables (identified by a special anno-
tation and called tracked variables); these variables are
represented as Binary Decision Diagrams (BDDs). We
call this second part of the program state the BDD part
and the extension that handles this part jpf-bdd. For
disambiguation, we call the original implementation
jpf-core.

This separation of the program states in a core part
and a BDD part allows JPF to perform a number of
optimizations:
• choose values for tracked variables only if and

when they are used;
• produce a condensed summary of values of the

tracked variables at any point in the program;
• merge program states if they do differ only in the

values of the tracked variables.
In a number of examples, the last optimization leads

to a reduced state space and therefore to a faster veri-
fication process, as we show in Section 4. The choice
of which variables should be treated by the BDD part
is left to the user, thus providing a certain flexibility
by exploiting domain knowledge that otherwise would
not be accessible by the model checker.

Our implementation works with DFS and BFS based
model checking. However with BFS the implemented
optimizations have greater effect, as we explain in the
following sections.

Our approach is inspired by the work of Classen et
al. on symbolic model checking of product lines [2].
They use BDDs to manage variables that activate and
deactivate individual features in Promela programs. We
generalize their approach to arbitrary Boolean vari-
ables in Java programs by allowing users to explicitly
annotate variables to be handled by BDDs (e.g., for
handling lock variables efficiently).

The rest of the paper is organised as follows. In
Section 2, we present background material on JPF and
BDDs. In Section 3, we describe our approach and its
implementation, and we provide experimental results
in Section 4. We discuss related literature in Section 5,
and we conclude in Section 6.

2. Background

2.1. Binary decision diagrams

In this section, we provide a short overview of
Binary Decision Diagrams (BDDs). As an example,
consider the Boolean formula f(x, y, z) = (x∨ (¬x∧
y))∧z, in which x, y, z are Boolean variables. The truth
table of this formula is eight lines long. Alternatively,
one could represent the truth value of f by means of
a diagram with root node x and two outgoing edges
(one representing the value true for x and the other
the value false), each of which leading to a node y,
and similarly with the last variable z. The eight leaves
of this diagram represent the truth values of f . This
diagram can be simplified (i.e., reduced) by merging
redundant nodes and by removing redundant tests.

Figure 1 shows the Reduced Ordered Binary Decision
Diagram (ROBDD) representing f . Notice how the
ROBDD for f only has five nodes (instead of fifteen
for the non-reduced diagram). This reduction in size is
one of the key factors for the efficient manipulation of
Boolean formulas using ROBDDs.

If the order of variables is kept fixed (hence the
“ordered” in the name), it is possible to combine
ROBDDs of different formulae by means of Boolean
operators in polynomial time. We refer to Bryant’s
seminal work [3] for more details on the reduction
algorithm and for other operations on ROBDDs. In
the remainder of the paper, we will use the term BDD
instead of ROBDD, as all the diagrams are considered
to be reduced and ordered.

Unfortunately, BDDs may still have an exponential
size in the number of Boolean variables used, and
finding the best variable ordering is a NP-complete
problem, and similarly for the operation of Boolean
quantification. Nevertheless, it has been shown [4] that
BDDs offer an efficient mechanism for the exploration
of large state spaces in practice.

Figure 1. A BDD that represents the formula
(x∨ (¬x∧y))∧z. The solid (dotted) lines represent
the true (false) values of the variables. All paths
leading to the terminal true are satisfying assign-
ments for the formula.

2.2. Model checking

This section gives a brief overview of the model-
checking techniques used in JPF. Model checking tools
in general work by constructing and exploring a reach-
ability tree. The nodes of the reachability tree represent
program states that the verified program can have
during the execution. These states include the current
program counter (the currently executed statement).
Edges in the tree represent the execution semantics
of the program. A path in the tree corresponds to
one execution of the program as would be done with
simple program testing. In contrast to simple testing,

a b c d

42 false true true
42 false true false
42 false false true
42 false false false

Table 1. Explicit state space

a model checker explores the entire reachability tree
and therefore (theoretically) finds bugs in all possible
execution paths. The model-checking tool generates
this tree from the source code of the program to be
verified. In the case of JPF, the model is given by
the Java byte-code, so byte-code instructions are the
examined statements.

Modern model checkers such as JPF simplify the
reachability tree by merging paths that contain equal
states. This saves the model checker from exploring
equal sub-trees twice. It also transforms the reachabil-
ity tree into a directed acyclic graph (DAG). For sim-
plicity, we will still call the data structure reachability
tree.

As the reachability tree is generated on-the-fly dur-
ing verification, the order in which nodes are explored
is important. Simple exploration strategies are depth-
first search (DFS) and breadth-first search (BFS). JPF
allows a user to configure both DFS and BFS as
exploration strategies, with DFS being the default
configuration. For jpf-bdd, we changed this default
configuration to BFS because this makes our verifica-
tion technique more efficient, as we will explain.

3. Implementation of jpf-bdd

3.1. Motivation

As a motivating example, consider the situation in
which the state space of an application consists of an
integer variable a and three Boolean variables b, c, and
d. Suppose we need to represent the set of four states
listed in Table 1, in which the a takes value 42, b is
fixed to false, and the remaining variables take all
their possible values.

If a BDD is employed to represent the three Boolean
variables, the memory footprint of this state space can
be reduced compared to the explicit variant in Table 1,
as depicted in Figure 2.

In certain circumstances, the BDD representation
can result in a dramatic compression of the state space,
especially when the state space contains states that
differ only for the values of Boolean variables. We
provide examples in Section 4.

a BDD (b, c, d)

42
≡ ¬b

Figure 2. Hybrid state space. The variables b,
c, and d are managed with a BDD. During BDD
reduction, c and d have been eliminated because
they do not influence the formula result. Again,
the solid (dotted) line represents the true (false)
value of variable b. The reduced BDD represents
the formula (¬b∧ c∧ d)∨ (¬b∧ c∧¬d)∨ (¬b∧¬c∧
d) ∨ (¬b ∧ ¬c ∧ ¬d) ≡ ¬b.

3.2. Overview of jpf-bdd

jpf-bdd is implemented as a standard extension
of jpf-core. We refer to the material available on-
line for further details on jpf-core.1 The source
code and installation instructions for jpf-bdd are
also available on-line2; once installed, the user needs to
specify jpf-bdd as an extension when launching the
verification. Additionally, the user needs to annotate
the Boolean variables to be tracked by jpf-bdd with
the annotation @TrackWithBDD (see the examples
available in the source tree).

jpf-core

jpf-bdd

instruction-factorylistener

BDD-
management

BDD_PUTFIELD
BDD_GETFIELD
BDD_PUTSTATIC
BDD_GETSTATIC

Figure 3. Extended JPF architecture

jpf-bdd consists of two main parts: a listener
and a custom instruction factory, as illustrated in Fig-
ure 3. Furthermore, it uses a third-party BDD library
(javabdd3), which is included in the source distribution
of jpf-bdd.

The jpf-bdd listener implements the JPF’s inter-
face SearchListener and maintains the state of the

1. http://babelfish.arc.nasa.gov/trac/jpf/.
2. https://bitbucket.org/rhein/jpf-bdd/
3. http://javabdd.sourceforge.net/

tracked variables as the verification process evolves.
The listener manages a mapping of BDDs to JPF
search states. The BDD is updated according to the
execution of statements in the verification process, and
it holds information about the current values of the
tracked variables (the BDD part of the state). After a
backtracking operation to some JPF state, the BDD that
was mapped to this state is reloaded as the currently
active BDD. After an advance operation from JPF state
x with BDD βx to JPF state y with βy , the new BDD
of state y is set to βx∨βy . We do not prohibit the merge
of unequal states, but merge them into a state with a
new BDD. We discuss this further in Section 3.3.
jpf-bdd uses special byte-code instructions to

maintain information about the value of the tracked
variables during the verification process. These special
instructions are created by a dedicated instruction
factory, which has to be configured in the verification
tool. The instructions take action when the value of a
tracked variable is accessed.

Accesses correspond to the byte-code instructions
GETSTATIC and PUTSTATIC for static variables and
to the instructions GETFIELD and PUTFIELD for
instance variables [5]. In fact, only these instructions
have to be considered by jpf-bdd: if an instruction
does access a non-tracked variable then the handling
of the statement is delegated to jpf-core (the core
part of the state is updated). If an instruction references
a tracked variable then our special instruction factory
creates an instruction that works with the BDDs in the
listener.

In the case an instruction queries the value of a vari-
able (i.e., GETSTATIC or GETFIELD), we determine
which values (true or false) would be possible with
the current BDD. If it is only one value, then that
value will be loaded and normal execution resumes.
If both values are possible, we introduce a Boolean
choice generator that splits the execution path and
forces exploration of both possibilities. The execution
of GETSTATIC instructions is shown in Figure 4
(GETFIELD is treated similarly).

In the case of an assignment instruction
(PUTSTATIC or PUTFIELD), we modify the
BDD accordingly: we first remove the possible
previous values of the variable using an existential
quantification, and then add the new value to the
formula.

As mentioned above, only four byte-code instruc-
tions need to be modified, and a different semantic
is only necessary if these access one of the tracked
variables. This means that the majority of the program
verification remains unchanged.

There are two possible approaches to implement the

push(false) push(true)

push(true)push(false)

...

...

Figure 4. Execution of a GETSTATIC instruction
on the variable foo with jpf-bdd on different
starting states. Circles denote states partially rep-
resented as BDDs. The effect of the instruction is
the value of foo (true or false) being pushed on
the stack and a transition to a (potentially) different
state.

different semantics of the four byte-code instructions.
The first approach is to register an instance of a
listener class that is called on each byte-code instruc-
tion execution. If the instruction requires a changed
semantics, then the listener overwrites the original
semantics. Otherwise the listener does nothing. This
approach means that a method in the listener class (the
executeInstruction method) is called once for
each instruction execution.

The second approach is to modify the semantics
of the byte-code instructions in JPF by defining a
special instruction factory. The factory inspects the
byte-code instructions when JPF parses the program
and, if necessary, replaces the generated byte-code
objects by jpf-bdd byte-code objects that implement
the changed semantics.

We chose to implement the second approach.
This choice is motivated by the fact that method
executeInstruction in the first approach would
be invoked most of the time without any effect. These
unnecessary method calls would have severe conse-
quences for verification performance. As an example,
we employed the dining-philosophers problem given
in Section 4.3: for this medium sized program the
executeInstruction method is called 21 million
times when states are merged using jpf-bdd, and 76
million times when states are treated explicitly. Most
of the times method executeInstruction of the
first approach invokes only the super-class method
because the byte-code does not require a different
semantics, thus resulting in degraded performance of

jpf-bdd even when the state space is significantly
reduced.

In the current implementation, we replaced the
simple listener architecture with the more complex
architecture described above, and only the relevant in-
structions are considered by jpf-bdd. This architec-
ture, however, impacts the compatibility of jpf-bdd
with other JPF extensions. In particular, jpf-bdd is
currently incompatible with any other extension that
needs a special byte-code factory or that tries to access
the actual value of tracked variables in jpf-core4.

3.3. Merging of states

The separation of program states into a core part and
a BDD part allows us to treat these parts individually.
This is important when it comes to state-equality
tests. JPF uses unification of equal states in different
program paths to merge these program paths. This
results in a reduced number of program states and a
reduced number of executed program paths. In turn,
this reduction improves both the total verification run-
time and the memory requirements of the verification
process. For the purposes of our work, we exploit the
fact that the state-equality test and the merging of
program paths can be extended by overriding a method
in JPF listeners. We are using this extension point to
modify the equality test and merge program paths in
the additional situation in which the core part of the
state is equal and the BDD part is different.

An advance from state x to an already known state
y means that jpf-core wants to unify the states be-
cause they are equal from its viewpoint. This equality
does not take into account the values of the variables
in the BDD part of the state, because jpf-core does
not know of their values5. So jpf-core will merge
the states x and y when the core parts of x and y
are equal, regardless of the equality of the BDD part.
We do not prevent the merge of these states but store
βx ∨ βy as new BDD where βx and βy are the BDDs
of the old states, respectively.

This state-merging implementation has two effects:
• It leads to the merging of states that are not equal.

As a consequence, the reachability tree that is
constructed is smaller than before and sub-trees
do not need to be explored twice.6

• It sometimes leads to the elimination of variables
from the BDD formula and therefore to a shorter

4. jpf-bdd provides a function to get the current BDD formula
that contains these values.

5. In our implementation, the values of the variables in
jpf-core are set to constant false.

6. This depends on choosing BFS as tree exploration order.

formula (see the example at the beginning of this
section).

a=t

a=t
b=t

a=t
b=f

a=f
b=t

a=f
b=f

a=f

jpf-core jpf-bdd

A''

Boolean a , b ;

void t e s t () {
i f (a= V e r i f y . getBoolean ()) { . . .}
i f (b= V e r i f y . getBoolean ()) { . . .}
}

@TrackWithBDD
Boolean a , b ;
void t e s t () {

i f (a) { . . .}
i f (b) { . . .}
}

Figure 5. Reachability trees generated by
jpf-core and jpf-bdd on similar pieces of
code. This example depends on the fact that the
bodies of the if statements do not change the
core part of the program state. Both functions are
semantically equivalent. The state marked A′′ is
referred to in the text.

Figure 5 shows a very simple program that spans
a reachability tree when being verified. The figure
also shows how the reachability tree is modified by
jpf-bdd. Both reachability trees are constructed dur-
ing the verification. Figure 5 shows the trees after the
verification is complete.

The verification using jpf-core introduces
Boolean choice generators at both calls of
Verify.getBoolean(). Because the method
is called twice and the return value is saved in the
program state, this results in four different states. If
the program would not terminate here, then the rest
of the program would have to be executed once for
every one of these states.

The verification with jpf-bdd introduces a
Boolean choice generator when the verification reaches
the GETFIELD instruction on variable a. The first
explored value is a= true and this leads to a new
state A (the second state on the right side of the
figure). Because we are using BFS-based verification
the other value for a (a= false) is explored imme-
diately afterwards. This leads to a state A′ that has
the same program counter as A, and every variable in
the core-part of A′ is equal to its counterpart in A.
The only difference in these states is that the BDD
part of A′ has a= false and the BDD part of A has
a= true . So these states are merged with the method

described above. The resulting state is A′′ with the
BDD part a∨¬a= true (this state is shown in the
figure). Afterwards, the same operation is done with
the variable b in the next if statement. So, in the
end, we have one result state. If the program would
not terminate here, then the rest of the program would
only have to be executed once.

The efficiency of this approach relies on the fact that
we are using BFS-based reachability-tree exploration.
In the given example, a state A is merged with state
A′ resulting in A′ being replaced by state A′′. If the
BDD of A′′ is different from the BDD of A′, we have
to re-explore the whole sub-tree of A′ because the
changed BDD might influence the program behavior in
the sub-tree. If we would be using the DFS exploration
strategy, this would result in many re-explorations and
we would waste the key advantage of jpf-bdd.

Notice that the merge of states with jpf-bdd
can result in the elimination of variables from the
BDD, thus resulting in a more compact state-space
representation. In the given example, the variable a
is eliminated when the state A′′ is set to true . In the
following execution paths a is treated as “unknown”
again (as at the start of the verification). Every merge
of BDDs potentially leads to a reduction in the formula
size and therefore makes the further analysis more
efficient. This reduction of the Boolean formula is
performed automatically by the BDD library.

Our changed state-merging algorithm does not vio-
late the correctness of the model-checking algorithm
because both merged paths are represented by the
“new” path (and are therefore explored). If an “un-
known” variable of the BDD part is used as condition
somewhere along the new path, the path will be split
again.

3.4. jpf-bdd and multi-threading

In this section, we provide an overview on the ver-
ification of multi-threaded programs with jpf-core
and jpf-bdd. JPF is able to detect deadlocks and
data races in Java programs. When verifying a multi-
threaded program, naively one would need to execute
every statement in the threads in every possible order.
That means if no synchronization happens between two
threads then every execution order on the (byte-code)
instruction level has to be considered (which leads to
a exponential explosion). JPF uses a technique called
partial-order reduction to overcome this problem. It
combines sets of instructions into transitions. Each
transition ends with a transition breaker. These are
instructions that might influence the behaviour of other
threads and therefore the correctness of the program.

This effectively reduces the practically incomputable
problem to a practical size because only the order of
complete transitions has to be considered.

The correctness of partial-order reduction relies on
the reliable detection of transition breakers. Whether
a statement is a transition breaker is determined dur-
ing the verification at every time the instruction is
executed. If a statement is identified as a transition
breaker, a special choice generator is created that splits
the execution path. Every choice schedules one of the
active threads to be executed next. This method spans
all possible execution orders of all transitions.

The verification process with jpf-bdd relies
mainly on the existing process in jpf-core. So it
was relatively easy to extend jpf-bdd for verification
of multi-threaded programs. Every one of the four
special BDD instructions (Section 3.2) is a potential
transition breaker because the accessed variables might
also be available to other threads. The algorithm used
by jpf-core to identify transition breakers does not
influence the variable value, only the current thread
situation and the variable declaration. So we can reuse
the implemented algorithm to determine whether the
BDD instruction is a transition breaker and issue a
thread-scheduling choice generator if appropriate. Af-
terwards, the normal execution of the BDD instruction
resumes.

Consider, for example, a minimal multi-threaded
program with two threads that share one tracked
Boolean variable. The threads have only one statement
each. One assigns the value true to the variable, the
other thread assigns false . When jpf-bdd verifies
this program each possible execution order is consid-
ered. Depending on the execution order, the variable
(and its BDD value) is first true and then false or vice
versa. When the program terminates, the core parts
of all verification states are equal. So these states are
merged into one state that has the BDD true .

3.5. Detection of errors

JPF is a tool for the detection of defects in Java
programs. These defects can be detected by two means:
• Defects can be reported by listeners that inspect

every generated program state and the path lead-
ing to these states.

• The system under test itself can throw Java ex-
ceptions which will be caught and reported by
JPF.

jpf-bdd does not change the error-handling mech-
anisms in JPF, so the second method works as be-
fore. Whether a jpf-bdd-unaware listener does work

correctly depends on whether it uses values of the
tracked variables. As mentioned above, we are mod-
ifying jpf-core to store a constant false for the
tracked variables, while the real value of the tracked
variables is stored in BDDs. If the listener queries
the variable value from jpf-core, it will get the
wrong value (false) and probably derive false con-
clusions. The real value can be found by fetching
the current BDD from the jpf-bdd listener and
examining it. However, we found that most listeners
do not use concrete variable values but are more
concerned with control flow and variable accesses.
For example, the PreciseRaceDetection listener
works as expected whether the race depends on a
BDD-tracked variable or not.

Notice that particular care should be taken when
using the @FilterField annotation as this interacts
with the state-matching mechanism of jpf-core
and cause jpf-bdd to explore otherwise unreachable
states. We refer to the details available from the Wiki
on jpf-bdd’s Web site about when this situation can
occur.

4. Examples and experimental results

In this section, we present some examples and
experiments that show the performance of jpf-bdd.
We compare the performance of jpf-bdd to the
performance of jpf-core to address exactly the ad-
vantages and disadvantages introduced by jpf-bdd.
We also discuss the issues raised by the comparison
with jpf-symbc in Section 4.3. All given statistics
were collected on a workstation with the characteris-
tics given in Table 2. The information regarding the
performance of the workstation (CPU and reserved
RAM) is only relevant for the last example (Section
4.3) because this is the only example where we are
comparing execution times.

CPU Intel Xeon @2.93GHz (4 cores)
OS Ubuntu 10.10
jpf-core version Mercurial revision 577:7e645ed15e9e
jpf-bdd version Mercurial revision 0:1d365e09f6dc
Java version OpenJDK version 1.6.0 20
Reserved RAM 5120MB

Table 2. Test system

4.1. A simple example

We introduce a very basic example and compare
its verification with jpf-bdd to the verification with

jpf-core. The source code of the example is given
in Figure 6. It is a program that only chooses values
for a set of Boolean variables. The program has no
side effects.

For a meaningful comparison between jpf-bdd
and jpf-core, we need to provide two slightly
different programs. In the jpf-core variant, the
different values of the Boolean variables are generated
with calls to method Verify.getBoolean(). This
method creates a choice generator and forces JPF to
explore both possible values for the variable.

The other version is designed for execution with
jpf-bdd. The Boolean variables are annotated with
@TrackWithBDD to enable their management with
BDDs. When the condition of one of the if statements
is executed, jpf-bdd recognizes that the respective
variable is not contained in the BDD. Therefore, it
creates a choice generator and explores both possible
choices. Up to this point, the behaviour is exactly the
same as in jpf-core.

The difference becomes clear when it comes to
state merging. In jpf-core, states can never be
merged, because the Boolean variables are always
different from one state to another. In jpf-bdd, we
have, in theory, only one state, because the core parts
of the states are always empty and therefore equal.
In practice, the verification with jpf-bdd generates
separate states after each choice generator creation.

boolean a1,a2,a3,a4,
a5,a6,a7,a8;

/ / gb ()== V e r i f y . g e t B o o l e a n ()
void test() {
if(a1 = gb()) {}
if(a2 = gb()) {}
if(a3 = gb()) {}
if(a4 = gb()) {}
if(a5 = gb()) {}
if(a6 = gb()) {}
if(a7 = gb()) {}
if(a8 = gb()) {}

}

@TrackWithBDD
boolean a1,a2,a3,a4,

a5,a6,a7,a8;
void test() {
if(a1) {}
if(a2) {}
if(a3) {}
if(a4) {}
if(a5) {}
if(a6) {}
if(a7) {}
if(a8) {}

}

Figure 6. Simple example. Both code snippets
are functionally equivalent. We have to add some
more code to prevent the compiler from optimizing
and deleting the if statements but that does not
concern the functionality. Method gb returns an
arbitrary Boolean value.

Table 3 shows some statistics comparing the ver-
ification using jpf-bdd and jpf-core. It shows
clearly that jpf-bdd generates a smaller state-
space and executes less byte-code instructions. Specif-
ically, for the given example, the verification with

jpf-core jpf-bdd

States generated 511 17
Backtracked 511 17
Choice generators 512 18
Instructions 9356 3076

Table 3. Statistics of the simple example

jpf-core generates 511 program states. The cor-
responding reachability tree is a perfect binary tree
with a height of 8 (because there are 8 calls to
Verify.getBoolean()). The size of this tree is
28 − 1 = 511. Therefore the size of the reachability
tree in a corresponding example with x variables is
2x − 1.

With jpf-bdd, we have only 17 program states.
The generated reachability tree looks very similar to
the DAG given for jpf-bdd in Figure 5. It is a
chain of nodes with two same-directed edges between
each node. The first node is the starting node. After
every creation of a choice generator by jpf-bdd,
two additional nodes are created (one for each choice).
Because the chosen variable value does not change the
core state, both of the new states representing these
choices are merged. This example contains 8 variables.
Therefore, the state space contains 1 + (2 ∗ 8) = 17
states. The formula for a corresponding example with
x variables is 1 + (2 ∗ x).

Obviously, the size of the reachability tree generated
by jpf-core is exponential in the number of vari-
ables, while the one generated by jpf-bdd is linear.
The number of executed byte-code instructions reflects
this small state space because less edges have to be
explored. Notice that this is a very artificial example
and therefore not generalizable. Furthermore, the cre-
ation and usage of BDDs introduces some overhead,
resulting in jpf-bdd being slower than jpf-core
for small state spaces (the timing statistics for small
problem sizes like x = 8 range in milliseconds and
would therefore not be relevant). Even though this
example is artificial, we want to give an idea of the
performance with bigger problem sizes. With x = 26,
jpf-bdd still completes the task in less than one
second while jpf-core needs nearly two hours (with
DFS) or runs out of memory (with BFS).

4.2. A more complex example

This section reuses the example of the previous
section to construct a more complex example (code is
shown in Figure 7). We introduce an integer variable
i and increment this variable in each body of the if

statements. This creates different integer values and,
more importantly, it creates many states with different
core parts (because i is maintained by jpf-core).
This example also provides many interleavings be-
tween different parts of the reachability tree. For
example, there are 8 different paths resulting in the
integer value 1.

Table 4 contains statistics on the evaluation of this
example. The statistics of jpf-core remain un-
changed except of the number of executed instructions.
This is due to the added integer increments. The gener-
ated reachability tree remains exactly the same because
we had already generated one path per combination
of the Boolean variables in the first example. This
example simply adds an integer value to each of these
paths.

The statistics of the execution with jpf-bdd show
more changes. First of all, the number of states has
changed. The reason for this is that we cannot simply
merge every two states because sometimes they have
different core parts. The generated reachability tree is
a DAG that grows in breadth when more integer values
become possible. The DAG has 8 levels (corresponding
to the number of variables). Each if statement creates
a new level. Each level has as many nodes as integer
values of i are currently possible. The DAG starts with
one node (the starting node) and one possible value for
i (0). The next level has two nodes, one with i = 0
and one with i = 1. In the beginning the third level
has the four nodes ([i = 0]∧¬a1∧a2), ([i = 1]∧a1∧
¬a2), ([i = 1] ∧ ¬a1 ∧ a2) and ([i = 2] ∧ a1 ∧ a2).
Because of the separation of BDD part and core part
we can merge the second and the third state into [i =
1]∧((a1∧¬a2)∨(¬a1∧a2)). Therefore, the third level
has only 3 states. This scheme continues for the next
levels. After each Boolean choice point JPF generates
two new states. In our case, all states of one level
that have the same integer value are merged before the
next level is explored. The merged states do not appear
separately in the DAG, but they are counted as separate
state creations in the statistics. In the end, we have a
state space of size (2 ∗ (

∑8
n=1 n)) + 1 = 73 because

the last level is collapsed to one node by JPF. The
formula for a corresponding program with x variables
is (2 ∗ (

∑x
n=1 n)) + 1. This is still much better than

the exponential complexity of using jpf-core.

4.3. The dining philosophers

This section presents the verification of an imple-
mentation of the dining-philosophers problem. The
problem is situated in a dinner of a number of philoso-
phers. They sit at a round dinner table and have

int i = 0;
boolean a1,a2,a3,a4,
a5,a6,a7,a8;

/ / gb ()== V e r i f y . g e t B o o l e a n ()
void test() {

if(a1 = gb()) {i++;}
if(a2 = gb()) {i++;}
if(a3 = gb()) {i++;}
if(a4 = gb()) {i++;}
if(a5 = gb()) {i++;}
if(a6 = gb()) {i++;}
if(a7 = gb()) {i++;}
if(a8 = gb()) {i++;}

}

int i = 0;
@TrackWithBDD
boolean a1,a2,a3,a4,

a5,a6,a7,a8;
void test() {

if(a1) {i++;}
if(a2) {i++;}
if(a3) {i++;}
if(a4) {i++;}
if(a5) {i++;}
if(a6) {i++;}
if(a7) {i++;}
if(a8) {i++;}

}

Figure 7. More complex example. Both code snip-
pets are functionally equivalent.

jpf-core jpf-bdd

States generated 511 73
Backtracked 511 73
Choice generators 512 74
Instructions 8338 3420

Table 4. Statistics of the more complex example

one fork between each of them. Each philosopher
needs two forks to eat. The problem is that, if each
philosopher picks the fork to his right (or left), then
no philosopher can get the second fork and they cannot
start eating. The dining-philosophers problem is a sim-
ple demonstration of a deadlock between asynchronous
threads in a program (in this case, each philosopher
represents a thread). At a larger scale, this problem
appears, for example, in operating systems, so it has
real-world relevance.

This section compares the performance of
jpf-core and jpf-bdd on the verification of
our Java implementation of the problem, in which
forks are represented by Boolean variables (the full
code is available from the source tree of jpf-bdd).
We concentrate on the time needed for verification.
We are also looking at structural statistics such as
the size of the state space to explain the verification
times.

Both verification approaches find a deadlock after
a few milliseconds, which is obviously too fast for a
meaningful comparison. Therefore, we configure the
verification to search for all deadlocks in the program.
This means that the whole reachability tree has to
be explored, which takes significantly more time. Our
implementation of the philosophers problem is scalable
in the number of philosophers that take part in the
dinner. To optimize the performance of jpf-core
on the example we have configured it to use the BFS

search strategy. BFS causes jpf-core to use more
memory but it also makes the verification much faster.

Table 5 shows the results for the verification using
jpf-bdd and jpf-core. The most important fig-
ures are the times needed to complete the verification
(i.e., to explore the whole reachability tree). We found
that the numbers are quite stable during multiple runs
of the verifications, so we can assume that there is a
relatively small variance. In the more complex exam-
ples, jpf-bdd is faster and consumes less memory
than jpf-core. The speedup of jpf-bdd can be
explained by the generally lower number of executed
instructions. This is due to the smaller reachability
tree (as suggested by the number of generated states).
However, this example and the verification process is
too complex to provide an analytical expression for the
total number of states. The generally very high memory
consumption is caused by the usage of the BFS-search
algorithm. Our experiments showed that the memory
consumption is typically lower when using DFS search
but, in this example, DFS needs much more time to
complete the verification (not shown in the table).

In the experiment with problem size 3, jpf-bdd
consumed slightly more memory than jpf-core.
The reason for this is probably the additional memory
needed for the loading and usage of the BDD li-
brary. In the more complex experiments, the maximum
memory footprint of jpf-bdd is lower than that of
jpf-core. The reason for this difference is twofold:
First, jpf-bdd generates fewer states and therefore
fewer states have to be stored. Second, each state
requires less memory because part of it is stored with
BDDs, which are usually an efficient memory structure
(Section 2.1 gives a intuitive example for the memory-
efficiency of BDDs for Boolean variables.)

Both verification approaches fail to verify the ex-
periment with the problem size 6 because they run out
of memory. This leads to the question of what can be
optimized to further reduce the memory consumption
of jpf-bdd. So far we have not touched the variable
ordering in the BDDs. The ordering is determined
by the variables appearance in the program control
flow. Dynamic variable reordering might improve the
memory consumption and the time needed for every
single BDD operation.

We also verified this example with jpf-symbc,
but we could only verify the examples with 2 and
3 philosophers, running out of memory in the case
of 4 philosophers. jpf-symbc is a JPF extension
that uses symbolic execution of the Java program. In
contrast to our extension, which only abstracts Boolean
values, jpf-symbc abstracts more data types, in-
cluding integers and strings. However, on this exam-

Problem size 3 phil. 4 phil. 5 phil. 6 phil.

Time jpf-bdd 0:00:01 0:00:12 0:01:56 -OOM-
(h:mm:ss) jpf-core 0:00:03 0:00:24 0:04:26 -OOM-

Memory jpf-bdd 150MB 617MB 2,021MB -OOM-
consumed jpf-core 118MB 874MB 2,828MB -OOM-

States jpf-bdd 5,021 67,015 682,195 -OOM-
generated jpf-core 5,505 74,013 762,291 -OOM-

Instructions jpf-bdd 137,855 1,992,917 21,525,880 -OOM-
executed jpf-core 404,748 6,355,377 76,061,181 -OOM-

Table 5. Verification statistics for the philosophers example. The table states some statistical figures for
the verification with jpf-bdd and jpf-core. The problem is scaled in the number of participating
philosopher threads. With a problem size of 6, both approaches were not able to complete the task

because they consumed too much memory.

ple, jpf-symbc needs substantially more time than
jpf-bdd to complete the verification. We have iden-
tified three reasons for the behaviour of jpf-symbc
on this example. First, jpf-symbc cannot benefit
from the symbolic abstraction as Boolean variables
only have 2 values and cannot be further abstracted.
Second, the jpf-symbc listener has a method that
is called once per executed instruction. We discussed
in Section 3.2 why we avoided implementing this
strategy. During verification, JPF executes 100,123
instructions in the example with 3 philosophers before
finding the first deadlock. In comparison, jpf-bdd
executes less than 1,000 instructions before finding
the first deadlock in this example. Third, jpf-symbc
does not allow to use BFS for state-space exploration.
This strategy has been shown to be more efficient on
the example, and jpf-bdd and jpf-core use the
BFS strategy.

5. Related Work

There is a number of related approaches in the field
of (symbolic) verification of software systems. We
focus on approaches that use BDDs for verification.
Various researchers have used BDDs successfully to
verify properties of hardware and software systems.
The main focus is on verification of hardware or
models of hardware. To the best of our knowledge,
verification of programs written in high-level, general-
purpose languages such as Java has not been done with
BDDs so far. Another novelty of our approach is that
we utilize the ability of state merging to gain efficiency.

There are several very mature approaches in the
field of symbolic verification. Examples include the
model checking tools SLAM [6], BLAST [7] and
CPAchecker [8]. Furthermore, jpf-symbc allows the
user to start the symbolic execution of the program

at any point of time during verification. We have not
implemented this functionality in jpf-bdd but it is
technically possible. We refer to Section 4.3 for some
observations about the performance of jpf-symbc
on the dining philosophers example. We note here that
dynamic enabling and disabling of BDD management
of variables might be a future research avenue for
jpf-bdd.

Contemporary symbolic model-checking approaches
have in common that they focus on handling the
whole state-space with symbolic state representation.
In contrast, we are partitioning each state into one part
tracked with symbolic state representation and one part
tracked with explicit representation. This enables us to
do state merges in a simple and flexible way.

There are various approaches that apply BDD-
supported verification to low-level systems or models
of such systems. An example is the tool RABBIT
of Beyer et al. for the verification of real-time sys-
tems based timed automata [9]. During verification,
the variable orderings are optimized to improve BDD
performance. The work of Dill and Hu on BDD-
based verification supports BDD-based verification for
higher language constructs such as arithmetics, sequen-
tial control flow, and complex data structures [10].
They also worked on formal hardware verification with
BDDs [11]. In contrast to these approaches, we are
verifying a complete multiple-purpose programming
language (Java byte-code) including constructs such as
classes, exceptions, and threads.

6. Conclusion

We presented jpf-bdd, a model-checking tool for
Java that uses Binary Decision Diagrams (BDDs) to
represent parts of the program states symbolically.
jpf-bdd is implemented as an extension to the Java

Pathfinder (JPF) model-checking framework.
The main aim of software model checking is the de-

tection of defects in software systems. Unfortunately,
this task is affected by the state explosion problem,
which occurs when all the possible program executions
need to be explored, resulting in long verification times
or high memory costs. Our jpf-bdd tool reduces the
impact of the state explosion problem for a specific
class of Java programs in which Boolean variables play
a role in the control of the program flow.

In this paper, we have made two contributions. First,
we have developed a working model checker for Java
programs that uses BDDs to represent a part of the pro-
gram states. This model checker is faster than normal
JPF and symbolic JPF on a set of example programs.
Additionally, to the best of our knowledge, it is the
first BDD-based model checker for Java applications.

Second, we made a theoretical contribution by pre-
senting a methodology to partition the state space
into one part that is managed by explicit verification
and another part that is manged with BDDs. This
partitioning of the states allowed us to efficiently merge
states and therefore reduce the state explosion problem;
it is applicable to other tools beside JPF.

In addition to the examples presented here, possible
other application scenarios are Java programs that have
a known set of Boolean variables that have impact on
the control flow (e.g., they appear in many if state-
ments) or are changed very often during the program
execution. These variables can be annotated with a
Java annotation provided by jpf-bdd. The annotated
variables make up the BDD-managed part of the state
space.

Concretely, real-world applications where jpf-bdd
can play a key role include applications where the
changing part of the program state mainly consists of
Boolean variables (such as in the philosophers example
described in Section 4.3), or software product lines
where Boolean variables have great impact on which
program statements are executed, while the rest of the
program states remain often equal [2], [12].

We are actively working on improving the perfor-
mance of jpf-bdd and evaluating its performance on
a bigger set of more realistic systems. The optimization
of the variable ordering in BDDs has been identified
as a possible point for improvement.

Acknowledgments

We thank the reviewers for their constructive and
helpful suggestions. This work was partially supported
by Google Summer of Code 2011 and by the German
DFG grants AP 206/2, AP 206/4, and LE 912/13.

References

[1] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape,
“Combining unit-level symbolic execution and system-
level concrete execution for testing NASA software,”
in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA). ACM, 2008,
pp. 15–26.

[2] A. Classen, P. Heymans, P.-Y. Schobbens, and
A. Legay, “Symbolic model checking of software prod-
uct lines,” in Proceedings of the International Confer-
ence on Software Engineering (ICSE). ACM, 2011,
pp. 321–330.

[3] R. E. Bryant, “Symbolic boolean manipulation with
ordered binary-decision diagrams,” ACM Computing
Surveys, vol. 24, pp. 293–318, 1992.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking. Cambridge, Massachusetts: The MIT Press,
1999.

[5] T. Lindholm and F. Yellin, Java Virtual Machine Speci-
fication, 2nd ed. Addison-Wesley Longman Publishing
Co., Inc., 1999, ch. 3.11.5.

[6] T. Ball, V. Levin, and S. K. Rajamani, “A decade of
software model checking with slam,” Communications
of the ACM, vol. 54, pp. 68–76, July 2011.

[7] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar,
“The software model checker BLAST,” International
Journal on Software Tools for Technology Transfer
(STTT), vol. 9, no. 5, pp. 505–525, 2007.

[8] D. Beyer, M. E. Keremoglu, and P. Wendler, “Pred-
icate abstraction with adjustable-block encoding,” in
Proceedings of the International Conference on Formal
Methods in Computer-Aided Design (FMCAD). FM-
CAD, 2010, pp. 189–197.

[9] D. Beyer, C. Lewerentz, and A. Noack, “Rabbit: A tool
for BDD-based verification of real-time systems,” in
Proceedings of the 15th International Conference on
Computer Aided Verification (CAV), ser. LNCS 2725.
Springer, 2003, pp. 122–125.

[10] A. J. Hu, D. L. Dill, A. J. Drexler, and C. Yang,
“Higher-level specification and verification with
BDDs,” in Proceedings of the Fourth International
Workshop on Computer Aided Verification (CAV).
Springer, 1993, pp. 82–95.

[11] A. J. Hu, “Formal hardware verification with BDDs:
an introduction,” in IEEE Pacific Rim Conference on
Communications, Computers, and Signal Processing
(PACRIM). IEEE, 1997, pp. 677–682.

[12] S. Apel, H. Speidel, P. Wendler, A. von Rhein,
and D. Beyer, “Detection of feature interactions us-
ing feature-aware verification,” in Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2011.

