
Noname manuscript No.
(will be inserted by the editor)

Tradeoffs in Modeling Performance of
Highly-Configurable Software Systems

Sergiy Kolesnikov · Norbert Siegmund ·
Christian Kästner · Alexander Grebhahn ·
Sven Apel

Received: date / Accepted: date

Abstract Modeling the performance of a highly-configurable software system
requires capturing the influences of its configuration options and their inter-
actions on the system’s performance. Performance-influence models quantify
these influences, explaining this way the performance behavior of a config-
urable system as a whole. To be useful in practice, a performance-influence
model should have a low prediction error, small model size, and reasonable
computation time. Because of the inherent tradeoffs among these properties,
optimizing for one property may negatively influence the others. It is unclear,
though, to what extent these tradeoffs manifest themselves in practice, that
is, whether a large configuration space can be described accurately only with
large models and significant resource investment.

By means of 10 real-world highly-configurable systems from different do-
mains, we have systematically studied the tradeoffs between the three prop-
erties. Surprisingly, we found that the tradeoffs between prediction error and
model size and between prediction error and computation time are rather
marginal. That is, we can learn accurate and small models in reasonable time,
so that one performance-influence model can fit different use cases, such as
program comprehension and performance prediction.

We further investigated the reasons for why the tradeoffs are marginal. We
found that interactions among four or more configuration options have only a
minor influence on the prediction error and that ignoring them when learning
a performance-influence model can save a substantial amount of computa-
tion time, while keeping the model small without considerably increasing the
prediction error. This is an important insight for new sampling and learning
techniques as they can focus on specific regions of the configuration space and
find a sweet spot between accuracy and effort.

S. Kolesnikov, University of Passau, Germany · N. Siegmund, Bauhaus-University Weimar,
Germany · C. Kästner, Carnegie Mellon University, USA · A. Grebhahn, University of Pas-
sau, Germany · S. Apel, University of Passau, Germany

2 Sergiy Kolesnikov et al.

We further analyzed the causes for the configuration options and their
interactions having the observed influences on the systems’ performance. We
were able to identify several patterns across subject systems, such as dominant
configuration options and data pipelines, that explain the influences of highly
influential configuration options and interactions, and give further insights into
the domain of highly-configurable systems.

Keywords performance-influence models · highly-configurable software
systems · performance prediction · feature interactions · variability · software
product lines · machine learning

1 Introduction

Highly-configurable software systems have become ubiquitous in many appli-
cation domains, such as server software, system tools and utilities, software
libraries, and embedded systems. By means of configuration options, users
can tailor functional and non-functional properties of a system to their needs.
For example, the Linux kernel has over 13 000 compile-time configuration op-
tions,1 and can be configured to accomplish a large set of different tasks on
different devices, ranging from embedded systems through desktops to clusters.
Despite the apparent benefits of configurability, each of the 13 000 configura-
tion options may influence the kernel’s performance in unknown ways and,
therefore, hinder the understanding of the system’s performance behavior.

One way to describe the performance behavior of a configurable software
system as whole (and not just as an individual configuration) is to build a
performance-influence model, which describes how individual configuration op-
tions and their interactions influence performance. In previous work, different
machine-learning techniques have been used to learn such models from sample
measurements (Siegmund et al, 2012; Guo et al, 2013; Siegmund et al, 2015;
Sarkar et al, 2015). To be practically useful, an ideal performance-influence
model should exhibit the following properties:
1. Low prediction error (i.e., be as accurate as possible), such that it accu-

rately describes the system’s behavior and can be used as a predictor,
2. Small model size, such that it is understandable by developers for a wide

variety of tasks involving human judgment, such as debugging, and
3. Short computation time, such that constructing the model is feasible in

practice.
It is well known in the machine-learning community that there are tradeoffs

among prediction error, model size, and computation time (Domingos, 2000;
Sammut and Webb, 2011; James et al, 2013). Partly, they are known under the
term bias-variance tradeoff and the curse of dimensionality, which we discuss
in more detail in Section 2.2. Ultimately, we cannot generally have an accurate
model that is easy to compute and easy to interpret. Hence, optimizing for
one property may negatively influence the others. For example, to get more

1 http://kernel.org/

http://kernel.org/

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 3

accurate results, we might need to invest more time into learning, which also
tends to lead to larger and more complex models. More importantly, different
stakeholders may have different priorities: For predicting the performance of a
configuration, one might prefer the most accurate model, whereas, for gaining
an initial understanding, a quick and approximate overview that characterizes
the main effects (but ignores interactions among configuration options) may be
sufficient, favoring short computation time and model simplicity. In discussions
with four experts from the high-performance computing domain, who intend
to use performance-influence models in their daily work, we have identified two
common use cases and corresponding preferences for the performance-influence
models (see Section 2.1).

The goal of this work is to explore whether the described tradeoffs are
practically relevant for performance-influence models in the domain of highly-
configurable software systems and how significant they are. This is important,
because based on the knowledge about the relevance of the tradeoffs, novel
modeling, learning, and sampling approaches can be developed and existing
approaches can be improved. Furthermore, we may gain new insights as to
whether a large configuration space inevitably leads to large (and complex)
models, which are often infeasible to compute due to the exponential complex-
ity of the problem and which are also hard to comprehend if human judgment
is required. To this end, we systematically study the tradeoffs among predic-
tion error, model size, and computation time of performance-influence models
learned from performance benchmark measurements. Basically, we want to
know whether the models can satisfy the use cases identified in our discus-
sions with domain experts (Section 2.1). Technically, we use a state-of-the-
art machine-learning algorithm based on forward feature selection and mul-
tivariate linear regression to automatically learn performance-influence mod-
els (Siegmund et al, 2015). A particular advantage of linear regression in our
setting is that the resulting performance-influence models clearly state the in-
fluences of individual configuration options and their interactions on systems’
performance (Section 2), which we use to explain the tradeoffs and gain fur-
ther insights into the domain of highly-configurable systems (Section 3.5). To
this end, we have studied the properties of models learned for a set of 10 real-
world highly-configurable software systems. Based on the results of this study,
we analyze the tradeoffs among the properties of the models and discuss their
applicability in common practical use cases.

In a nutshell, our results show that, although, the tradeoffs among the
different model properties technically exist, their effect is surprisingly low, so
that they have effectively no negative influence for practical purposes. For most
of the subject systems that we studied, we could quickly learn performance-
influence models with small model sizes (covering the main effects and in-
cluding interactions only among few configuration options) that are usable for
understanding and debugging tasks. These models tend to be already fairly
accurate (> 80-95 % accuracy), and investing further learning effort would
reduce the prediction error only marginally, but would significantly increase
model size and computation time. These results are important in two ways:

4 Sergiy Kolesnikov et al.

First, they demonstrate that one learning approach can be used for different
real-world application scenarios, which is crucial for practicality. Second, they
demonstrate that the domain of configurable software systems exhibit specific
properties (e.g., the distribution of interactions) that make circumventing the
tradeoff problem possible, allowing researchers and practitioners to develop
efficient learning approaches by concentrating on a few important configura-
tion options and their low-order interactions (i.e., interactions involving only
a small number of configuration options, in our case, two or three).

The contributions of this work are the following:

– Using a machine learning technique based on multivariate linear regression,
we systematically studied and analyzed the tradeoffs among prediction
error, model size, and computation time of performance-influence models
for 10 real-world highly-configurable systems from different domains.

– We found that the low influences of the aforementioned tradeoffs allow us
to build models that fit typical use cases, such as program comprehension
and performance prediction. Often, the tradeoffs are so marginal that the
same model is suitable for both use cases.

– We found that the reason for the marginal tradeoffs lies in the prevalence
of low-order interactions among configuration options (i.e., interactions
among two or three configuration options) that have a strong influence on
performance, which is the case for all our subject systems.

– We investigated the causes for the configuration options and their inter-
actions having the observed influences on the systems’ performance, and
we identified reoccurring patterns in the systems’ architecture and in the
dependencies among configuration options that explain these influences.

All experimental data and analysis scripts are available on a supplementary
Web site.2

2 Motivation and Research Questions

In the domain of highly-configurable systems, we lack empirical understand-
ing of how strong the tradeoffs among prediction error, model size, and com-
putation time of performance-influence models are. That is, while learning
performance-influence models for real-world highly-configurable systems, we
do not know for which combinations of these properties we are able to effec-
tively optimize. Our goal is to quantify these tradeoffs by means of a series
of experiments and to gain insights in to the characteristics of the configura-
tion spaces of highly-configurable software systems, for example, such as the
relevance of different kinds of interactions and their influences on performance.

To illustrate the properties of performance-influence models and the trade-
offs among them, we will use two simple models, as shown in Figure 1a.
These models describe the request throughput (requests per second, req/s)
of the Apache Web server for a fixed standard benchmark. They are slightly

2 http://fosd.net/tradeoffs/

http://fosd.net/tradeoffs/

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 5

(a) Two performance-influence models for the Apache Web server.

Model A:

1000 − 250 ·AccessLog − 150 ·HostnameLookups

Model B:

1000 − 250 ·AccessLog − 150 ·HostnameLookups + 100 ·AccessLog·HostnameLookups + . . .

+ 2 ·AccessLog·EnableSendfile·KeepAlive + 1 ·EnableSendfile·FollowSymLinks·Handle

(b) Performance values predicted by the models.

Measured Predicted Value
Configuration Value Model A Model B

1 A 750 750 750
2 H 850 850 850
3 H,T 850 850 850
4 H, I 950 850 850
5 A, H 700 600 700
6 A, E, K 752 750 752
7 A, E, F, n 751 750 751
...

...
...

...
...

Fig. 1: Two examples of performance-influence models for the Apache Web
server and the corresponding predicted performance values. The underlined
letters in the option names are used as abbreviations in the table (e.g., A
stands for AccessLog). The slanted letters in the table denote configuration
options that are not covered by either model. The predicted values that match
the actually measured values are shaded in green, those that do not match are
shaded in red.

simplified versions of the real models that we learned during our evaluation.
The variables in the models represent configuration options of the Web server
(AccessLog, HostnameLookups, etc.), which can be either enabled or disabled
(values 0 or 1). To predict the request throughput for a given configuration
we set the variables to 0 or 1 according to the configuration and evaluate the
expression. For example, if AccessLog is enabled and HostnameLookups is dis-
abled then for Model A we get the expression 1000 − 250 · 1 − 150 · 0, which
evaluates to 750 (req/s).

It is important to note that both models in Figure 1a describe the same
system, but have different size and prediction error. The table in Figure 1b lists
the actual performance measurements of the Web server next to the predic-
tions for the corresponding configurations using either Model A or Model B.
Both models describe the main effects of the configuration options strongly
influencing the system: In its default configuration (with all options disabled),
the server can process 1000 req/s. However, with option AccessLog enabled, the
throughput is decreased by 250 req/s. Enabling option HostnameLookups de-
creases the throughput by further 150 req/s. Both models accurately describe
the performance of the first two configurations with one or the other option

6 Sergiy Kolesnikov et al.

enabled (configurations 1 and 2 in Figure 1b). The third configuration contains
the configuration option TypeConfig, which is not covered by the two models.
Nonetheless, both models predict the configuration’s performance accurately,
because the configuration option has no measurable influence on performance.
In contrast, configuration option InMemory in the fourth configuration has a
substantial influence on the performance, and its absence in both models leads
to prediction errors.

The two models differ in how they characterize minor variations and inter-
actions among configuration options. By the individual influences of 250 req/s
and 150 req/s of the options AccessLog and HostnameLookups, we could expect
a combined performance penalty of 400 req/s, when both options are enabled,
and in fact the first, simpler model assumes that. In practice though, we ob-
served that both options interact, and their combined penalty is only 300 req/s
(see Figure 1b, configuration number 5). This is an example of a positive in-
teraction between configuration options (Apel et al, 2013). By studying the
system’s documentation, we found that both options partially use the same
data retrieved from a request, so the data are retrieved only once, but used
by both options, and this reuse results in a higher throughput. While the
first model produces an inaccurate prediction by ignoring this interaction, the
second model covers this interaction (term AccessLog ·HostnameLookups) and
yields accurate predictions for more configurations, but at the cost of a more
complex model (5 model terms instead of 2) and increased computation time.

Clearly, interactions can be important for prediction accuracy, but not
all interactions may have a substantial influence on performance. The second
model includes several interaction terms that only slightly alter the predicted
performance by 2 or 1 req/s (e.g., EnableSendfile·KeepAlive), resulting in a
relative accuracy improvement of at most 0.3 % and 0.1 % (compare the pre-
dicted values for configurations number 6 and 7). If we are fine with accepting
such small prediction errors, we could ignore these interactions and work with
smaller and simpler models. Note that such small-influence terms may be an
indication for model overfitting, that is, the model describes measurement
noise more than actual influences, at the cost of significant computation time
and complexity of models.

2.1 Use Cases of Influence Models – A Discussion with HPC Experts

In an attempt to better understand requirements and use cases of performance-
influence models regarding prediction error, model size, and computation time,
we had several discussions with four of our collaborators from the HPC do-
main. The discussions constitute a basis for a lightweight explanatory anal-
ysis rather than a deep study in itself. Still, the discussions are informative
enough to guide our analysis. All four HPC experts develop, analyze, and
work with performance-critical applications on an everyday basis in areas, such
as image and signal processing, automatic code generation, and differential-
equations solvers, having 10 to 20 years of experience in the corresponding

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 7

areas. They are working with the following systems: DUNE (Bastian et al,
2006), HSMGP (Kuckuk et al, 2013), HIPACC (Membarth et al, 2012), and
SaC (Grelck and Scholz, 2006) (DUNE and HSMGP being also subject sys-
tems in our experiments; see Section 3).

To anchor our discussions with concrete data, we learned performance-
influence models for the systems with which the experts were deeply familiar.
Specifically, we took models at an early, intermediate, and late stage of the
incremental learning process (described in Section 3.1): The early models were
smaller, but more inaccurate (like Model A in Figure 1) than those in the
later stages of the learning process (like Model B in Figure 1). We presented
the models3 to the experts explaining their general structure and asked the
following questions:

1. What are use cases for the presented performance-influence models that
you can think of?

2. What are acceptable tradeoffs among prediction error, model size, and
computation time of a model with respect to these use cases?

The use cases mentioned by the experts can be grouped in two categories:

1. Performance prediction. Performance-influence models can help stakehold-
ers of a system find the system’s optimal configuration (for a give set-
ting). For example, the SaC compiler has a default configuration that may
have suboptimal performance for some hardware platforms. Learning a
performance-influence model for each target platform allows developers to
find the optimal configuration for each of them.

2. Program comprehension and debugging. Among the important program
comprehension tasks, the experts named (1) confirming or disproving ex-
isting assumptions about influences of individual configuration options and
(2) gaining new insights and deeper understanding of the performance of
the system. For example, the HIPACC expert was surprised to see that
pixelsPerThread configuration option had only a small influence on system
performance.

All experts stated that the decision about which model to chose or which
property to optimize would depend on the given use case. For example, a
model with the lowest prediction error is needed for performance prediction,
whereas the model size and the computation time would be less important. For
confirming a theoretical assumption about the influence of a certain configu-
ration option, a simple model without interaction terms that is fast to learn
could suffice. All experts were ready to accept the model with the highest pre-
diction error (among the provided models), which was smaller and therefore
easier to comprehend. For gaining deeper insights, such as finding and debug-
ging unexpected interactions, all experts said that they required a model with
interaction terms, but still of a tractable size. For debugging purposes, com-
putation time becomes important too, and the experts were ready to accept

3 The models used in the discussions can be found on the supplementary Web site.

8 Sergiy Kolesnikov et al.

a model with a high prediction error if they could save a considerable amount
of computation time during debugging.

The use cases identified in our discussions map very well to the model prop-
erties that we study in this work. Therefore, we are confident that exploring
the tradeoff space spanned by these properties has an immediate practical use.

2.2 Tradeoffs in Machine Learning

The tradeoffs between prediction error, model size, and computation time are
well known in the machine-learning community: A key concept is the bias-
variance tradeoff (Domingos, 2000; Sammut and Webb, 2011), which refers to
the tradeoff between the size and prediction error of a model. Bias refers to
the prediction error one encounters for a model with a fixed size and all data
that is available. That is, for a small and simple model, the bias error may
be high, because the model potentially does not explain the observed data
to a full extent. Variance refers to the sensitivity of the model to the noise
in the training data (such as measurement errors). More complex and larger
models tend to fit the noise in the learning set, so that one may encounter
large prediction errors when the model is applied to new data. So, learning
a larger model may reduce its prediction error, but, at the same time, may
complicate its understandability, simply because of its large size. Therefore,
one of the main goals in machine learning is to find the sweet spot between
underfitting (i.e., too simplistic models) and overfitting (i.e., too complicated
models). However, often the search for this sweet spot is primarily driven by the
minimization of the prediction error and does not take the comprehensibility
of the resulting model into account.

Researchers in software engineering often apply machine learning without
specifically considering the possible effects of the tradeoffs, or they just op-
timize for one criterion (e.g., prediction error) until other criteria leave the
acceptable value ranges. For example, genetic algorithms have been used for
multi-objective optimization to find configurations of configurable systems
that satisfy multiple quality requirements (Sayyad et al, 2013). However, they
trade computation time for prediction error, because most of these configu-
rations are not valid. Other approaches aim solely at reducing the prediction
error using classification and regression trees (Guo et al, 2013; Sarkar et al,
2015), but produce models that are hard to comprehend for humans. The goal
of the mentioned approaches was never to balance or even explore the trade-
offs, but to optimize only for one property and ignore the others. As pointed
out by our experts (Section 2.1), such approaches are only of limited practi-
cality, because a different use case may require a different approach with yet
another tool. We aim at filling this gap.

Notably, recent research in the performance-engineering community recog-
nized the importance of the tradeoffs. In their recent work, Brosig et al (2015)
explore alternative stochastic performance-modeling approaches regarding sev-
eral low-level properties, such as the capability of handling loops in the ana-

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 9

lyzed software system. While we concentrate on regression models and more
general properties, their work clearly connects to ours in showing that different
stochastic models are suitable for different use cases and that it is important
to have this information before performance analysis.

2.3 Research Questions

Our overarching goal is to explore the tradeoffs during the learning process of
performance-influence models and gain insights into the performance behavior
of highly-configurable systems. For the purpose of our study, we use a state-
of-the-art learning technique that is based on multivariate linear regression
learning and forward feature selection (Chandrashekar and Sahin, 2014). We
specifically aim at answering two research questions:

– RQ1: How significant are the tradeoffs among prediction error, model size,
and computation time of the performance-influence models of real-world
highly-configurable systems?

– RQ2: Can these tradeoffs be balanced, such that the resulting models
can be applied in different use cases, as identified by our discussion with
experts?

3 Empirical Study

To answer our two research questions, we conducted an empirical study in
which we created and compared different performance-influence models for
10 real-world highly-configurable software systems. Next, we describe how we
learned performance-influence models for our subject systems and how we
analyzed their properties.

3.1 Learning Performance-Influence Models

For our experiments, we use a learning algorithm based on multivariate linear
regression and forward feature selection, which we developed and evaluated
in our previous work. It has proved to be accurate and effective for learning
performance-influence models of real-world highly-configurable systems (Sieg-
mund et al, 2015). During the learning process, we learn increasingly accurate
models and keep track of the prediction error, model size, and computation
time of each intermediate model, so that we can study how the properties
evolve and how significant the tradeoffs among them are. Note that it is not
our primary goal and contribution to invent a new technique for learning
performance-influence models, but to use an established technique to study
and leverage the tradeoffs among the three properties.

In a nutshell, the algorithm begins with calculating a set of candidates
that can be included in the model to reduce its prediction error. A candidate

10 Sergiy Kolesnikov et al.

is either a single or a combination of configuration options.4 For example, Ac-
cessLog (a single configuration option) and AccessLog ·HostnameLookups (an
interaction between two configuration options) in Figure 1a are two candidates
that have been eventually added to the model as new terms. The algorithm
iterates over the set of candidates and selects the one that explains the perfor-
mance variation in the measurements best; that is, the candidate that, when
incorporated into the model, yields the model’s lowest prediction error. The
accuracy improvement for each candidate (i.e., the score of a candidate) is
calculated by refitting a linear model over all model terms, including the new
candidate, and then comparing the model’s prediction error with the model’s
prediction error without the candidate. The prediction error of a model is
calculated by comparing the predicted performance values for the system con-
figurations with the values that we actually measured on a sample set of con-
figurations. The selection of candidates continues until either the accuracy,
specified by a parameter, is reached or all candidates that could reduce the
prediction error of the model have been considered. For a detailed description
of the algorithm, we refer the reader to Siegmund et al (2015).

3.2 Measurement Procedure

To answer our research questions, we need to quantify the prediction error, size,
and computation time of performance-influence models and tradeoffs among
them. For this purpose, we define a number of measures.

3.2.1 Measuring Model Properties

The prediction error of a performance-influence model Π is the mean relative
prediction error over the set of system configurations C:

error(Π,C) =
1

|C|
∑
c∈C

∣∣∣∣Π(c)−measure(c)

measure(c)

∣∣∣∣ ,
where c ∈ C is a system configuration, measure(c) is the performance of the
configuration actually measured, and Π(c) is the performance of the configu-
ration predicted by the model Π. For example, for Model B of Figure 1a and
the set of configurations number 1 through 7 in Figure 1b, the prediction error
is 0.03 (or 3 %), mainly because the model wrongly predicts the performance
value for the configuration number 4.

We define the model size as the number of configuration options in every
term of the model. The model size of a performance-influence model Π and
its set terms(Π) of terms is defined as follows:

modelSize(Π) =
∑

t∈terms(Π)

size(t),

4 Only valid combinations (i.e., those that respect dependencies among configuration op-
tions) are considered.

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 11

where t ∈ terms(Π) is a term of the model Π and size(t) is the number of
configuration options in t. For example, Model B in Figure 1a has a size of 2,
because it contains two terms and each term consists of only one configuration
option.

The computation time of a model is equal to the CPU time used by the
algorithm to learn the model.

3.2.2 Measuring Tradeoffs

To characterize the tradeoffs between the three properties quantitatively, we
use the Area Under the Curve (AUC) measure. To calculate the AUC for a
tradeoff between two properties, we plot one property against another and
calculate the integral of the resulting curve. The integral value is the corre-
sponding AUC. We normalize the property values in the range [0, 1] before
calculation, therefore, the corresponding AUC is a value in the same range.

Figure 2 illustrates three example tradeoff curves and the corresponding
AUC values for different kinds of tradeoffs between computation time and
prediction error properties.5 If the two properties are in inverse relationship
(Figure 2a), then a relatively large (small) positive change in one property al-
ways results in a relatively large (small) negative change in the other property.
That is, the tradeoff between these two properties is balanced. The AUC value
for a balanced tradeoff like this is close to 0.5.

AUC values that are smaller that 0.5 indicate a shift to a marginal trade-
off (Figure 2b), which is favorable in our setting: A small initial increase in
computation time already leads to a large initial decrease of prediction error.
Conversely, a large initial decrease in prediction error requires only a small
increase in computation time. A marginal tradeoff would allow us to learn
smaller and more accurate models faster.

AUC values that are larger than 0.5 indicate a shift to a significant tradeoff
(Figure 2c), which is unfavorable in our setting: A large initial increase in
computation time would lead to a small initial decrease in prediction error.

5 The tradeoffs for other property pairs are calculated in the same way.

(a) Balanced tradeoff

0.0 0.5 1.0
computation time

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ic
tio

n
er

ro
r

AUC = 0.5

(b) Marginal tradeoff

0.0 0.5 1.0
computation time

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ic
tio

n
er

ro
r

AUC = 0.05

(c) Significant tradeoff

0.0 0.5 1.0
computation time

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ic
tio

n
er

ro
r

AUC = 0.95

Fig. 2: Example tradeoff curves and corresponding AUC values.

12 Sergiy Kolesnikov et al.

A significant tradeoff means that we would have to invest much computation
time or accept large model sizes if we want to learn a model with low prediction
error.

By calculating the AUC values for each subject system and each pair
of model properties, we can determine which kinds of tradeoffs—balanced,
marginal, or significant—are present in the subject systems.

3.3 Subject Systems and Experimental Setup

As subject systems, we selected 10 real-world highly-configurable software sys-
tems of different sizes, complexities, and from different application domains,
as summarized in Table 1. The systems differ in the number of configura-
tion options as well as in the number of resulting configurations. They are
implemented in different programming languages and support configuration
at compile time, load time, or both. We used the systems’ documentation to
determine which configuration options may have influence on performance.

For each subject system, we measured performance of all valid6 configura-
tions (whole-population analysis) using standard benchmarks for the respec-
tive domain. We repeated the measurements multiple times to control for the
measurement noise (see Section 3.6, for more detail). Based on the benchmark
data, we learned performance-influence models of the subject systems using
the machine-learning algorithm described in Section 3.1. In practice, one would
not measure all configurations but only a sample, due to time constraints when
gathering a learning set for the machine-learning process, which we demon-
strated in prior work (Siegmund et al, 2015). However, for the purpose of our
study, we were specifically interested in exploring the full range of tradeoffs,
meaning that we were also interested in the maximum possible accuracy of the

6 Not all combinations of configuration options are valid system configurations, because
of dependencies among the configuration options.

Table 1: Subject systems; |O|: number of configuration options, |C|: number
of configurations. The number of configurations is less than |O|2 because of
dependencies among configuration options.

System Domain |O| |C| Performance metric

AJStats Static analysis 20 30 256 Analysis time
Apache Web server 9 192 Response rate
BDB-C DBMS 18 2 560 I/O time
BDB-J DBMS 26 180 I/O time
Clasp ASP solver 19 700 Solving time
DUNE Stencil code 31 2 304 Solving time
HSMGP Stencil code 32 3 456 Solving time
LLVM Compiler 11 1 024 Optimization time
Lrzip Archiving tool 19 432 Compression time
x264 Video codec 16 1 152 Encoding time

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 13

resulting performance-influence models (to see the maximum possible extent
of the corresponding tradeoffs). So, we used the benchmark results for all con-
figurations as the learning set. The usage of the largest possible learning set
also neutralizes one of the possible reasons for overfitting: non-representative
sampling of the learning set.

The learning procedure was conducted on a dedicated server with an Intel
Xeon E5-2609, 2.5 GHz and 128 GB RAM, running Ubuntu 14.04. To obtain
accurate models, but not to run the computation indefinitely, we terminated
the learning procedure as soon as the score of the current candidate fell below
0.05 (see Section 3.1). From our experience, this ensures that we learn all
actually existing performance influences, but largely avoid measurement errors
manifesting in the model (i.e., overfitting). If we had continued learning, we
would have essentially learned the measurement error.

After each iteration of the learning algorithm, we saved the current model
(see Section 3.1) to study the evolution of the model properties. For each
model, we calculated the prediction error, its size, and the computation time.
To rule out the time measurement bias caused by warm-up effects and compu-
tation-setup overhead, we subtracted the time of the first learning round from
the elapsed-time measurement. Considering that the initial learning rounds are
the fastest, this subtraction does not introduce any relevant deviation from the
actual computation time.

3.4 Results

For most subject systems, we obtained highly accurate models at the end of
the learning procedure. The largest prediction error is 6.25 % for BDB-C.
In Figure 3, we show how the prediction errors evolve during the learning
process (the solid blue line). The AUC lies in the range between 0.07 and 0.29,
indicating a marginal tradeoff between computation time and prediction error.
That is, we may be able to to learn more accurate models faster.

The size of the learned models varies substantially from system to sys-
tem: Among the models with the highest prediction accuracy, the smallest
model has the size of 12 (BDB-J) and the largest model has the size of 544
(DUNE). In Figure 4, we show how the model size evolves for each system
during learning.

Due to the dependency between computation time and model size, the
tradeoff between model size and prediction error is similar to the tradeoff be-
tween computation time and prediction error, as we show in Figure 5, with
similar AUC values between 0.13 and 0.29. As one would expect, more accu-
rate models have larger sizes and, conversely, smaller models have a higher
prediction error.

14 Sergiy Kolesnikov et al.

80 16
0
24

0
32

0
40

0
48

0
56

0
64

0
72

0

1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80

AUC = 0.25

AJStats

0.0
0
0.0

3
0.0

6
0.0

9
0.1

2
0.1

5
0.1

8
0.2

1
0.2

4
1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2
8.0

AUC = 0.16

Apache

0.0 1.5 3.0 4.5 6.0 7.5 9.010
.5
12

.0
13

.5

15
30
45
60
75
90

105
120

AUC = 0.12

BDBC

1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2
0
3
6
9

12
15
18
21
24
27

AUC = 0.29

BDBJ

0 2 4 6 8 10 12 14 16 18
0
3
6
9

12
15
18
21
24

AUC = 0.11

Clasp

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
2
4
6
8

10
12
14
16

AUC = 0.07

DUNE

0
80

0
16

00
24

00
32

00
40

00
48

00
56

00
2
4
6
8

10
12
14
16
18
20

AUC = 0.09

HSMGP

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4

AUC = 0.09

LLVM

0.0
0

0.1
5

0.3
0

0.4
5

0.6
0

0.7
5

0.9
0

1.0
5

0
15
30
45
60
75
90

105

AUC = 0.14

Lrzip

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

1.5
3.0
4.5
6.0
7.5
9.0

10.5
12.0
13.5
15.0

AUC = 0.18

x264

computation time (minutes)

pr
ed

ic
tio

n
er

ro
r

(%
)

Fig. 3: Time–error tradeoff.

80 16
0

24
0

32
0

40
0

48
0

56
0

64
0

72
0

3
6
9

12
15
18
21
24
27

AJStats

0.0
0
0.0

3
0.0

6
0.0

9
0.1

2
0.1

5
0.1

8
0.2

1
0.2

4

8
16
24
32
40
48
56
64

Apache

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10
.5
12

.0
13

.5
4
8

12
16
20
24
28
32

BDBC

1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2
4
5
6
7
8
9

10
11
12

BDBJ

0 2 4 6 8 10 12 14 16 18

5
10
15
20
25
30
35
40
45

Clasp

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
0

60
120
180
240
300
360
420
480
540

DUNE

0
80

0
16

00
24

00
32

00
40

00
48

00
56

00
0

40
80

120
160
200
240
280
320
360

HSMGP

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

5
10
15
20
25
30
35
40
45

LLVM

0.0
0

0.1
5

0.3
0

0.4
5

0.6
0

0.7
5

0.9
0

1.0
5

4
8

12
16
20
24
28
32
36

Lrzip

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
3
6
9

12
15
18
21
24
27

x264

computation time (minutes)

m
od

el
 s

iz
e

Fig. 4: Time–size dependency.

3 6 9 12 15 18 21 24 27

1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80

AUC = 0.29

AJStats

8 16 24 32 40 48 56 64
1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2
8.0

AUC = 0.21

Apache

4 8 12 16 20 24 28 32

15
30
45
60
75
90

105
120

AUC = 0.20

BDBC

4 5 6 7 8 9 10 11 12
0
3
6
9

12
15
18
21
24
27

AUC = 0.20

BDBJ

5 10 15 20 25 30 35 40 45
0
3
6
9

12
15
18
21
24

AUC = 0.13

Clasp

0 60 12
0
18

0
24

0
30

0
36

0
42

0
48

0
54

0
2
4
6
8

10
12
14
16

AUC = 0.14

DUNE

0 40 80 12
0
16

0
20

0
24

0
28

0
32

0
36

0
2
4
6
8

10
12
14
16
18
20

AUC = 0.17

HSMGP

5 10 15 20 25 30 35 40 45

1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4

AUC = 0.13

LLVM

4 8 12 16 20 24 28 32 36
0

15
30
45
60
75
90

105

AUC = 0.18

Lrzip

3 6 9 12 15 18 21 24 27

1.5
3.0
4.5
6.0
7.5
9.0

10.5
12.0
13.5
15.0

AUC = 0.20

x264

model size

pr
ed

ic
tio

n
er

ro
r

(%
)

Fig. 5: Size–error tradeoff.

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 15

3.5 Discussion

3.5.1 Research Questions

Our results confirm that there is, as expected, a tradeoff between computation
time and prediction error: investing more time reduces the prediction error.
However, our results also show that this tradeoff is rather marginal, with AUC
smaller than 0.3, for all systems. This insight is surprising and is good news for
the domain of highly-configurable systems, because it means that it is possible
to efficiently learn relatively accurate models. In Figure 3, we can observe how
the prediction error drops quickly to a certain level early on in the learning
process, whereas later the accuracy improvement saturates.

Between model size and computation time, we observe a strong positive
dependency instead of a tradeoff. This result was to be expected due to the
incremental nature of our algorithm, which monotonically increases model size
by learning an additional term in each round. In fact, most machine learning
mechanisms operate iteratively to incrementally approximate an optimal solu-
tion, simply out of necessity to handle the complexity of the huge search space
(for |o| options, there are |o| possible main influences, |o| · (|o| − 1)/2 possible
pairwise interactions, and an exponential number of higher-order interactions
among more than two options). With this huge search space, it is generally
not feasible to use an exact, analytical approach.

Due to the strong positive dependency between computation time and
model size, we see also a marginal tradeoff between model size and prediction
error, much like we saw it between computation time and prediction error.
While, again, we can learn more accurate models that are larger, the increased
accuracy benefits are small. The fairly small models, early in the learning pro-
cess, can characterize the performance of highly-configurable software systems
already fairly accurately.

So, with respect to the first research question (RQ1), we conclude that, for
learning performance-influence models for highly-configurable software sys-
tems, the tradeoffs between computation time and prediction error and be-
tween model size and prediction error are marginal; furthermore, model size
and computation time have a strong positive dependency. What this means
for practice is that learning simple models can be suitable to serve multiple
or even all use cases, as identified in our discussions with experts (RQ2). This
is an important insight for the research community: Although, the tradeoffs
are known in the machine-learning literature, it was previously unclear to
what extend they affect learning performance-influence models for software
systems, that is, whether a large configuration space can only be accurately
described with complex models learned with significant resource investment.
Fortunately, we were able to show that this worst-case scenario is not the rule
for real-world software systems.

16 Sergiy Kolesnikov et al.

3.5.2 Understanding the Tradeoffs: Influence of Interactions

A followup question that arises from our results is why the tradeoffs are so
marginal. That is, why are accurate models also simple and can be learned
in feasible time in this domain? To answer this question, we additionally an-
alyzed our experiment’s data for the role of interactions. A hypothesis is that
the tradeoffs are marginal because performance in software systems can be
described with few main effects, whereas many options and most potential
interactions do not affect performance much.

Specifically, we analyzed what kinds of terms are learned in each round and
how do they contribute to the accuracy of the model. We distinguish between
influences of individual options (term size 1), influences of interactions between
two options (term size 2), influences of interactions among three options (term
size 3), and so forth. We plot our observations in Figure 6. Each plot shows
how with additional time (left to right) additional terms are learned and how
the prediction error is reduced. We specifically distinguish terms of different
sizes using different background colors. For example, for AJstats, the model
with the prediction error of 1.7 % (bottom x-axis) contains four model terms
representing the influence of only individual options (i.e., four model terms of
terms size 1 each). Then, during the learning process, a fifth term is added
describing an interaction among four options, decreasing the prediction error
to 1.6 %. Note that prediction error and computation time share an axis, but
the scales are independent: prediction error reduces linearly, but computation
time grows superlinearly. So, the final marginal reductions in prediction errors
typically require significant investment in computation time.

Figure 6 reveals that few mostly small model terms are sufficient to build
relatively accurate models. Considering interactions among options is impor-
tant to achieve accuracy, but high accuracy can be reached without considering
a huge number of interactions among many configuration options. For the most
of the systems, 10 model terms with size 3 or lower are sufficient to build a
model with a prediction error of under 5 %. Adding more interaction terms of
larger size later in the learning process results in marginal improvements only.
This explains why we did not observe strong tradeoffs among prediction error
and computation time earlier. In fact, the substantial increase of the share of
larger model terms and the simultaneous growth of the total number of model
terms needed for very high accuracy may be an indication for the overfitting
effect. These additional model terms may describe measurement noise rather
than the actual performance behavior of the system.

Note that the measured computation times should be considered in rela-
tion to the corresponding prediction errors and not as absolute values. Consider
the Apache case study, which is one of the smallest in terms of configuration
options (9) and in terms of configurations (192). To calculate a performance-
influence model with 3 % prediction error for this system takes about 3 seconds.
But calculating a slightly more inaccurate model with 7 % prediction error is
6 times faster. So the developer can save relatively much time by stopping
the learning process at earlier stages. We have a similar picture for one of the

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 17

1.41.451.51.551.61.651.71.751.81.85
prediction error (%)

0

2

4

6

8

10

12

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2
 3

 4

te
rm

 s
iz

e

AJStats

71554042723914612094704644
computation time (minutes)

1.62.43.24.04.85.66.47.28.0
prediction error (%)

0
4
8

12
16
20
24
28
32

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 5

te
rm

 s
iz

e

Apache

0.20.0840.0420.0290.0210.0150.0100.010.004
computation time (minutes)

0.015.030.045.060.075.090.0105.0120.0135.0
prediction error (%)

0
2
4
6
8

10
12
14
16

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 5

te
rm

 s
iz

e

BDBC

13.45.52.71.71.20.930.780.630.480.47
computation time (minutes)

0.03.06.09.012.015.018.021.024.027.030.0
prediction error (%)

0

1

2

3

4

5

6

7

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3

te
rm

 s
iz

e

BDBJ

7.54.44.13.83.53.12.82.42.01.61.4
computation time (minutes)

0.03.06.09.012.015.018.021.024.0
prediction error (%)

0
3
6
9

12
15
18
21
24

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 4

te
rm

 s
iz

e

Clasp

18.35.52.71.91.40.90.70.50.4
computation time (minutes)

2.04.06.08.010.012.014.016.0
prediction error (%)

0
20
40
60
80

100
120
140
160

nu
m

be
r

of
 m

od
el

 te
rm

s

 1
 2

 3

 4

 5

te
rm

 s
iz

e

DUNE

36314421103416831
computation time (minutes)

2.04.06.08.010.012.014.016.018.020.0
prediction error (%)

0
15
30
45
60
75
90

105
120
135

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3

te
rm

 s
iz

e

HSMGP

57881904487180672711743
computation time (minutes)

0.81.21.62.02.42.83.23.64.04.4
prediction error (%)

0

3

6

9

12

15

18

21

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 4

te
rm

 s
iz

e

LLVM

2.590.750.390.260.170.090.070.060.050.04
computation time (minutes)

0.015.030.045.060.075.090.0105.0
prediction error (%)

0

3

6

9

12

15

18

21

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

te
rm

 s
iz

e

Lrzip

1.050.450.200.0830.0530.0440.0340.026
computation time (minutes)

0.01.53.04.56.07.59.010.512.013.515.0
prediction error (%)

0

2

4

6

8

10

12

14

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 4

te
rm

 s
iz

e

x264

3.21.81.21.00.690.410.250.200.170.130.11
computation time (minutes)

Fig. 6: Shares of interactions of different size in performance-influence models
and their influence on the prediction error.

18 Sergiy Kolesnikov et al.

largest systems, HSMGP, with 32 configuration options and 3456 configura-
tions. For this system, we can compute a performance-influence model with
7 % prediction error 13 times faster than a model with 3 % prediction error
(which needs 3 days to compute). The same pattern applies to all our subject
systems irrespective of their size: The time needed to achieve an acceptable
prediction accuracy of the model is always multiple times less than the time
needed for further marginal increases of the prediction accuracy. These results
suggest that the same may apply for very large configuration spaces.

We conclude that the marginality of the tradeoffs can be explained by the
fact that interactions among three or more configuration options have only a
low influence on the performance of highly-configurable software systems. Note
that our result regarding interactions primarily describes a characteristic of
performance in highly-configurable software systems, not of machine learning
in general.

Finally, the results of our analysis have implications for sampling and learn-
ing algorithms. For example, if an algorithm considers interactions among con-
figuration options, it can concentrate on interactions among three configura-
tion options and fewer. Excluding interaction of larger size reduces the search
space and may improve the performance of the algorithm without sacrificing
accuracy. The reduction of the search space may be substantial if we consider
that the number of potential interactions grows exponentially with the number
of configuration options. Already for 10 optional configuration options without
additional constraints we get 1018 (210−6) potential interactions. Considering
the emergent nature of interactions, we have to admit that any of these po-
tential interactions may actually exist. But, as our results show, for real-world
highly-configurable systems, the number of actually relevant (i.e., those that
have influence on performance) interactions is much smaller than the number
of potential interactions. For example, for the smallest subject system Apache
with 9 configuration options (which, according to Apache’s documentation,
all may have influence on performance), the number of potential interactions is
124 (considering the dependencies among the configuration options). By con-
sidering only 3 interactions of 124, we already can learn a relatively accurate
performance-influence model with only 4 % prediction error. That is, only 2 %
of all potential interactions do actually exist and have relevant influence on
performance of the Apache system.

3.5.3 Analysis of the Influence of Configuration Options and their
Interactions

To identify commonalities among the influential configuration options and
their interactions across the subject systems, we conducted an exploratory
analysis by reading the systems’ documentation and the source code to build
hypotheses, and talking to the systems’ developers in unclear cases. We pro-
ceeded iteratively until we were able to explain the influences. Finally, we
formulated the commonalities as patterns that explain the influences, such as,
dominant configuration option, data pipeline, and workload tuning. A complete

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 19

overview of the analyzed configuration options and their interactions is given
in Appendix A on page 25.

Dominant Configuration Option. During our analysis, we found that the most
influential configuration option for Apache is KeepAlive, which has an influ-
ence of 876.61, on average. This value denotes that enabling KeepAlive in-
creases the response rate of the Web server by, on average, 876.61 responses
per second (cf. performance metric in Table 1). That is, enabling this config-
uration option increases the performance of the Web server. The performance
increases, because this configuration option enables the persistence connection
functionality of the HTTP 1.1 protocol, which enables sending multiple re-
quests over the same TCP connection. This functionality saves the overhead
of establishing a separate connection for each request. Note that the influence
of KeepAlive is larger than the sum of absolute influences of the next three
most influential options. So, KeepAlive is a dominant configuration option,
which largely determines the performance of the system and, consequently,
the prediction error of the corresponding performance influence model. We
found that such dominant configuration options are also present in other sub-
ject systems: S1MiB in BDB-J, heuristicUnit in Clasp, Smoother GSACBE
in HSMGP, etc. We also observed that the dominant configuration options
interact with other configuration options in highly influential interactions in
all subject systems (except for x264). Some dominant configuration options
can be identified based on domain knowledge and documentation. For exam-
ple, the Apache documentation states that enabling KeepAlive can result in
almost 50 % speedup.7 As our data suggests, knowing the dominant configu-
ration options from the documentation, we can also assume that they interact
with other configuration options.

Data Pipeline. Regarding the most influential interactions, we found that, for
Clasp, DUNE, HSMGP, LLVM, and x264, the interactions arise due to the
architecture of the systems that prescribes which system modules/algorithms
(enabled through the configuration options) supply input data to other system
modules/algorithms. That is, the architecture constitutes a data pipeline, and
the parts of this pipeline are determined by configuration options. For example,
in the Clasp solver, the options eq and satPreproYes enable preprocessing
steps that can reduce the initial problem, such that the solving algorithm
can find a solution for this problem faster. Therefore, the most influential
interactions for this system are among the preprocessing options and solver
heuristics, for example, eq · heuristicUnit.

We observe a similar picture for DUNE and HSMGP. These systems are
built such that the input data are preprocessed before they reach a solver, and
the output of the solver is post-processed. The corresponding configuration
options (pre* 8 and post* for DUNE; numPre* and numPost* for HSMGP)

7 https://httpd.apache.org/docs/2.4/mod/core.html#keepalive
8 pre* denotes all configuration options starting with “pre”.

https://httpd.apache.org/docs/2.4/mod/core.html#keepalive

20 Sergiy Kolesnikov et al.

define the number of these pre- and post-processing steps (e.g., if pre1 is
enabled, one preprocessing step is made). Each pre- and post-processing step
introduces a computational overhead, which increases the solution time. There-
fore, we observe that the most influential interactions of these systems include
pre-, post-processing and solver-related (or smoother-related in the case of
HSMGP) configuration options.

Data pipelines also explain why larger interactions include partly the same
configurations options as smaller interactions. That is, why for a set of inter-
acting options there exist interactions for its respective subsets. The reason is
that smaller interactions describe smaller parts of the pipelines and larger in-
teractions include these smaller parts. For example, this is the case in DUNE
with cells*, pre*, and post* options, and configuration options for solvers,
which build up data pipelines (and, consequently, interactions) of size up to 5.

We assume that, in the case of a data-pipeline architecture, developers
can deduce from the system’s architecture which configuration options are
likely to interact. Therefore, identifying these interactions using performance-
influence models can be seen as a sanity check or regression test if parts of the
architecture are changed. This use case corresponds to program comprehension
and debugging as described in Section 2.1.

Workload Tuning. Furthermore, we found configuration options that adjust
the workload by tuning the main data processing algorithm of the system.
These tuning configuration options often interact with configuration options
denoting processing algorithms. Configuration options level* in Lrzip, for
example, determine the compression level for the data compression algorithms.
With a growing compression level the compression time grows too. Therefore,
interactions among configuration options that specify the compression level
and the compression algorithm arise.

Domain-Specific Interactions. Other interactions that we analyzed had a more
domain-specific nature. For example, the interaction between inline and licm
configuration options, which enable code optimizations in the LLVM com-
piler. The inline optimization inlines code of methods at the call sites and
licm moves code out of loops. The peculiarity of LLVM is that these opti-
mizations can be executed in arbitrary order (determined by the order of the
corresponding command line parameters). If inlining is performed before loop
optimization (which was the case in our experiment) there may be some code
that gets inlined into loops. Consequently, the loop optimization has more code
to process and, consequently, requires more computation time. As a result, we
observe a performance interaction between inline and licm.

Another example of a domain-specific interaction is an interaction in x264
between no fast pskip, which disables Fast-P-Skip optimization, and ref 9,
which sets the number of reference frames. Both configuration options tune
the main encoding algorithm, but Fast-P-Skip optimization is more effective
with more reference frames. This dependency between the two configuration
options induces an interaction between them.

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 21

The two examples of the interactions show that their domain-specific na-
ture does not allow us to describe them in general terms (like data pipelines)
and requires deep understanding of the system’s workings to explain their
influences.

Summary. Based on domain knowledge, systems’ documentation, and infor-
mation provided to us by systems’ developers, we were able to explain the
most influential configuration options and interactions of the subject system.
Furthermore, we identified several interaction patterns across multiple sub-
ject systems providing further insights in the domain of highly-configurable
systems.

3.6 Threats to Validity

Internal Validity. To learn a performance-influence model, we rely on bench-
mark measurements that are susceptible to measurement errors. There is a
threat that these measurement errors may bias the results of the learning
procedure, such that the resulting model may not properly characterize the
actual performance of the system. To investigate the potential influence of
measurement errors on the prediction error of a performance-influence model,
we conducted a separate experiment. We added random noise (representing
measurement errors) to the original measurements for our subject systems9

and repeated the learning process. Then, we compared the prediction error
of the noisy models to the prediction error of the original models to see the
potential influence of measurement errors.

A noise value was computed for each original measurement value by ran-
domly sampling a value from a normal distribution. The parameter σ of the
normal distribution specified the standard deviation of the noise values: the
larger σ, the larger the noise value can be (i.e., the larger the measurement
error). We set the initial value of σ to 0.75 (the average standard deviation
of the original measurement values of our subject systems). For each subject
system, we doubled σ and repeated the learning process five times to simulate
the influence of increasing measurement errors.

Analyzing the noisy models, we found that most of them had approxi-
mately the same prediction error as the original models until σ (i.e., potential
magnitude of the simulated measurement errors) reached a value of 6 (i.e., the
potential errors were 8 times larger, than the errors of our original measure-
ment). From this result, we can conclude that the learning algorithm that we
used is robust against realistic measurement errors. The data of the experiment
is available on the supplementary Web site.

Our simple model size measure (Section 3.2.1) could be further refined to
reflect the complexity of the model more accurately, for example, by consider-
ing the number of the interaction terms. We decided against this refinement,

9 We excluded HSMGP, because conducting this additional experiment with the system
would have taken several months of computation time.

22 Sergiy Kolesnikov et al.

because we do not have enough empirical evidence to quantify the influence of
the interaction terms on the complexity of a model. Still, our interviews (Sec-
tion 2.1) indicate that our simple model size measure quantifies the complexity
of the models rather well.

External Validity. Our results are not automatically transferable to larger
models or other subject systems. However, to increase the external validity
of our study, we collected 10 real-world systems of different sizes, complexi-
ties, and from different application domains. Furthermore, the subject systems
differ in the number of configuration options and in the number of resulting
configurations. They are implemented in different programming languages and
support configuration at compile or load time, or both. As we observed differ-
ing results regarding the number of interactions, but found a similar picture
regarding the model properties, we gain some confidence that our results are
general to a certain extent, because our selection of subject systems covers
heterogeneous systems of important domains.

The use of a particular machine-learning technique, namely multivariate
linear regression with forward feature selection, may limit the generalizability
of our results.

4 Related Work

Our goal was not to propose a certain machine-learning technique for learn-
ing performance-influence models of configurable systems, but to explore the
design space of performance-influence models with respect to prediction er-
ror, computation time, and model size. Next, we discuss learning techniques,
feature-interaction-detection approaches, and model-size definitions related to
our study.

Learning. There are a number of machine-learning techniques that can be
used to learn performance-influence models. Classification and regression trees
represent a successful method to learn prediction models from a learning
set (Steinberg and Colla, 2009). Guo et al (2013) applied this technique to
highly-configurable software systems. They required only a limited computa-
tion time and achieved a high prediction accuracy. However, decision trees and
the related forests (Liaw and Wiener, 2002) have two drawbacks: First, they
model variants and not configuration options and their interactions, which
hinders comprehension in that the influence of individual configuration op-
tions and their interactions on performance is not explicitly denoted; Second,
decision trees are unstable in that even small changes in the training set can
lead to vastly different models (in contrast, we did not observe the instability
problem with linear regression in our experimental setting). Other learning
techniques using support vector machines (Steinwart and Christmann, 2008),
Bayesian networks (Ben-Gal, 2007), evolutionary algorithms (Simon, 2013),

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 23

or Fourier transforms (Zhang et al, 2015) trade off even more comprehensi-
bility of the underlying prediction models in return for prediction accuracy
or focus more on finding the fastest configuration or reducing the number of
samples instead of quantifying the influence of individual configuration options
and their interactions on performance. Hence, there is only a limited choice of
techniques that let us explore the tradeoffs among prediction accuracy, com-
putation time, and model size of performance-influence models. Brosig et al
(2015) study stochastic performance models acquired with different model gen-
eration approaches, but the main focus lies on the accuracy and efficiency of
the generation approaches and the corresponding tradeoffs. Furthermore, the
applicability of the models with regard to their complexity is not considered.

Performance Engineering. The field of performance engineering aims at mod-
eling non-functional properties of a system to evaluate if these properties sat-
isfy a given set of requirements (Balsamo et al, 2004; Brunnert et al, 2013;
Pooley, 2000). We do not focus on a single system, but on a potentially ex-
ponential number (in the number of configuration options) of system config-
urations, which lifts the problem to a higher level of complexity. But what
is more important, we are primarily concerned with presenting the influence
of the system’s configuration options and their interactions on the system’s
performance to a user in a concise and understandable way without sacrificing
the model’s prediction accuracy.

Feature Interactions. Interactions among configurations options are the key
to learning accurate performance-influence models. Nhlabatsi et al (2008) and
others as well as Calder and Miller (2006) surveyed detection mechanisms for
feature interactions. Other approaches focus on properties such as semantic
correctness (Classen et al, 2010; Apel et al, 2011) and global system behav-
ior (Prehofer, 2004) in the presence of feature interactions. Zhang et al (2016)
propose a mathematical model of performance-relevant feature interactions
and describe two algorithms to automatically detect them and quantify their
influence. In our own previous work, we proposed a number of techniques
for finding performance interactions using sampling heuristics in combina-
tion with linear programming (Siegmund et al, 2012, 2013). Here, we focus
not on detecting interactions, but on the effect of interactions on model size,
computation time, and prediction error of the learned performance-influence
model. We are not aware of any other studies that explore the properties of
performance-influence models of highly-configurable systems in this way.

Model Complexity. There is no single accepted definition and measure for
model complexity. One approach is to define model complexity through its
size. The larger the model the more difficult it is to comprehend and to use.
Several measures have been proposed to measure such model size: Schruben
and Yucesan (1993) proposed a measure based on McCabe’s software com-
plexity measure, Wallace (1987) defined a similar measure. Although the given

24 Sergiy Kolesnikov et al.

definition of complexity is similar to ours, the proposed measures cannot be ap-
plied to our models, because they have been developed for graph-based model
representations. Another approach is to define the size of a model through its
susceptibility for overfitting, that is, the more complex a model, the higher
its ability to fit random noise in the data (Myung and Pitt, 2004). Although
this definition describes an important property of a model, it does not fit the
research questions that we addressed in this work.

5 Conclusion

Performance-influence models help developers and users to better understand
performance characteristics of complex configurable software systems. An ideal
performance-influence model should have low prediction error, short computa-
tion time, and small model size. However, there are usually tradeoffs between
these properties that do not allow to optimize for all of them at once. In our
discussions with four domain experts, we identified two important practical use
cases for performance-influence models: performance prediction and program
comprehension. Performance prediction would require a model with the low-
est possible prediction error; program comprehension would require a model
of small size and short computation time.

Since it is unclear to what extent the tradeoffs among prediction error,
model size, and computation time affect the applicability of performance-
influence models in these two use cases, we conducted an empirical study
with the goal of systematically exploring the properties of the configuration
spaces of 10 real-world highly-configurable software systems. Our results show
that there are indeed tradeoffs between prediction error and model size and
between prediction error and computation time. However, we found that these
tradeoffs are rather marginal, such that accurate and also simple performance-
influence models can be learned in feasible time, which is surprising and good
news.

To further understand why efficient learning is possible, we analyzed the
learned performance-influence models regarding the influences they capture.
We found that individual configuration options and interactions between, at
most, three options explain most of the performance variances. That is, iden-
tifying and learning the influence of interactions between more than three op-
tions will likely improve the prediction accuracy only by a tiny fraction, but will
still increase computation time and model size considerably. Our research pro-
vides a foundation for many approaches in the area of performance-influence
modeling and learning of configurable software systems, as it shows, for the
first time, how the important properties of accuracy, model size, and compu-
tation time influence each other and that learning methods concentrating only
on a subset of options and interactions are viable.

To gain further insights into the domain of highly-configurable systems
we investigated why the systems’ configuration options and their interactions
have that particular influence on performance which we observed in the ex-

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 25

periments. We traced the reasons for the observed influences back to the ar-
chitecture of the systems and interdependencies among system components.
Therefrom, we extracted general patterns, such as dominant configuration op-
tion and data pipeline, which, when discovered in a systems, hint at which
configuration options of this system are likely to interact. Identifying these
expected interactions using performance-influence models can be also seen as
a sanity check or regression test if parts of the architecture are changed.

Acknowledgements Kolesnikov’s, Grebhahn’s, and Apel’s work has been supported by
the German Research Foundation (AP 206/5, AP 206/6, AP 206/7, AP 206/11) and by
the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) project
No. 849928. Siegmund’s work has been supported by the German Research Foundation
under the contracts SI 2171/2 and SI 2171/3. Kästner’s work has been supported in part
by the National Science Foundation (awards 1318808, 1552944, and 1717022), the Science
of Security Lablet (H9823014C0140), and AFRL and DARPA (FA8750-16-2-0042).

Appendices

A Influence of Configuration Options and their Interactions

Table 2: A list of the most influential configuration options and interactions
grouped by subject system. For each configuration option and interaction, we
indicate its influence on performance and give a description. We also denote if
the configuration option (if enabled) or interaction (if present) increases (↑)
or decreases (↓) the performance of the system.

№ Config. Option/ In-
teraction

Influence Description

Apache
1 KeepAlive 876.61 ↑ Allow multiple requests over the same TCP

connection; speeds up transmission
2 HostnameLookups -233.61 ↓ Perform a DNS lookup for every request; causes

communication overhead
3 InMemory 197.48 ↑ Copy specified files into RAM on startup; re-

duces I/O
4 AccessLog -116.80 ↓ Log every request in the logfile on disk; causes

I/O overhead
5 InMemory ·KeepAlive 166.87 ↑ Files cached in RAM are served over the same

connection; speeds up transmission
6 AccessLog ·KeepAlive -157.49 ↓ Disk I/O induced by logging reduces perfor-

mance even if KeepAlive is enabled

AJStats
1 CodeFormatter 3048.44 ↓ Preprocess code for parsing; avoids unnecessary

parsing
2 Interfaces -304.99 ↑ Disable interfaces statistics; speeds up process-

ing
3 ClassMethods -198.27 ↑ Disable calls-methods statistics; speeds up pro-

cessing

26 Sergiy Kolesnikov et al.

4 ClassConstructors ·
CodeFormatter

-664.49 ↑ Disable constructor statistics; the effect is in-
creased in the presence of CodeFormatter

BDB-C
1 PS16K -1.10 ↑ Set page size to 16 K; read longer portions of

data from the disk and speed up data retrieval
2 PS32K -1.06 ↑ Same as 1
3 HAVE CRYPTO ·

HAVE HASH ·PS32K
43.29 ↓ Hash data structure performs poorly if the

stored data is encrypted
4 HAVE CRYPTO ·

HAVE HASH ·PS16K
16.73 ↓ Same as 3, but the performance decrease is

smaller with smaller page size

BDB-J
1 S1MiB 44078 ↓ Sets recovery log size to 1 MB (default is

100 MB); increases I/O overhead
2 Finest ·S1MiB 222790 ↓ Save maximum possible recovery information in

multiple small recovery log files; increases I/O
overhead

Clasp
1 heuristicUnit 345493 ↓ Enable Unit heuristic with an expensive Looka-

head operation
2 eq -92677 ↑ Enable preprocessing that may reduce the

problem and speed up solving
3 heuristic -35218 ↑ Enable Berkmin-Heuristic; faster than Unit-

heuristic
4 satPreproYes 19959 ↓ Enable SatElite-like preprocessing that may

reduce the problem; preprocessing introduces
overhead

5 eq · heuristicUnit -163900 ↑ The heuristic works on the reduced problem
and can solve it faster

6 heuristicUnit ·
satPreproYes

-148980 ↑ The problem is reduced through preprocessing
and solved faster by the Unit heuristic

DUNE
1 post0 2793.76 ↓ Disable postprocessing steps; without postpro-

cessing the main algorithm requires more time
to calculate a solution, which results in a de-
creased performance

2 cells50 -1605.82 ↑ Set the size of the computation domain (work-
load) to 50 (the smallest workload)

3 CGSolver · post0 · pre1 17946.17 ↓ The interaction describes a data pipeline in-
cluding a solver, a post, and a pre-processing
step

4 CGSolver · cells55 ·
post0 · pre1

12810.57 ↓ The interaction describes a data pipeline as in
3 plus the cells55 option, which sets the highest
workload for the pipeline

HSMGP
1 Smoother GSACBE 4669.89 ↓ Enable the GSACBE smoother, which is an

essential part of the multigrid algorithm;
GSACBE is one of the slower smoothers

2 Smoother GS -513.12 ↑ Enable the GS smoother, which is faster than
GSACBE

3 Smoother GSACBE ·
numPost 0 ·numPre 1

-4976.29 ↑ The interaction denotes a data pipeline with a
pre, post-processing, and a smoother

4 Smoother GSACBE ·
numPost 0 ·numPre 2

-3377.14 ↑ Same as in 3, but increasing the number of pre-
processing steps reduces performance compared
to 3

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 27

LLVM
1 gvn 24.27 ↓ Enable Global Value Numbering optimization;

introduces computational overhead
2 instcombine 17.61 ↓ Enable combining of redundant instructions;

introduces computational overhead
3 inline 10.67 ↓ Enable code inlining; introduces computational

overhead
4 inline · licm 31.57 ↓ More code is inlined in the loops that are pro-

cessed by licm, introducing more computation
overhead and decreasing performance

Lrzip
1 compressionZpaq 2032161.26 ↓ Enable ZPAQ compression (slower than the de-

fault BZip2)
2 compression 193262.66 ↓ Enable the default BZip2 compression
3 compressionZpaq ·

level9
3433850.93 ↓ The interaction describes the influence of ZPAQ

algorithm with the highest compression level 9
on performance

4 compressionZpaq ·
level8

3415670.93 ↓ Same as in 3, but a lower compression level re-
sults in a slightly increased performance com-
pared to 3

x264
1 ref 1 -349.61 ↑ Set the number of reference frames to 1 (the

default is 9); less reference frames means less
workload and higher performance

2 ref 5 -178.68 ↑ Same as in Line 1, but the increase in perfor-
mance is twice as less as in Line 1 because of
more reference frames

3 no fast pskip · ref 9 110.22 ↓ Fast-P-Skip can increase encoding speed; it is
more effective with more reference frames; dis-
abling Fast-P-Skip with 9 reference frames de-
creases performance

References

Apel S, Speidel H, Wendler P, von A Rhein, Beyer D (2011) Detection of feature interac-
tions using feature-aware verification. In: Proceedings of the International Conference on
Automated Software Engineering (ASE), IEEE, pp 372–375

Apel S, Kolesnikov S, Siegmund N, Kästner C, Garvin B (2013) Exploring feature inter-
actions in the wild: The new feature-interaction challenge. In: Proceedings of the 5th
International Workshop on Feature-Oriented Software Development (FOSD), ACM, pp
1–8

Balsamo S, Di Marco A, Inverardi P, Simeoni M (2004) Model-based performance pre-
diction in software development: A survey. IEEE Transactions on Software Engineering
30(5):295–310

Bastian P, Blatt M, Engwer C, Dedner A, Kuttanikkad S, Ohlberger M, Sander O (2006) The
distributed and unified numerics environment (Dune). In: Proceedings of the Symposium
on Simulation Technique in Hannover, pp 12–14

Ben-Gal I (2007) Bayesian networks, Wiley Online Library
Brosig F, Meier P, Becker S, Koziolek A, Koziolek H, Kounev S (2015) Quantitative evalu-

ation of model-driven performance analysis and simulation of component-based architec-
tures. IEEE Transactions on Software Engineering 41(2):157–175

Brunnert A, Vögele C, Krcmar H (2013) Automatic Performance Model Generation for Java
Enterprise Edition (EE) Applications, Springer, pp 74–88

Calder M, Miller A (2006) Feature interaction detection by pairwise analysis of LTL prop-
erties—A case study. Formal Methods in System Design 28(3):213–261

28 Sergiy Kolesnikov et al.

Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Computers &
Electrical Engineering 40(1):16–28

Classen A, Heymans P, Schobbens P, Legay A, Raskin J (2010) Model checking lots of sys-
tems: Efficient verification of temporal properties in software product lines. In: Proceed-
ings of the International Conference on Software Engineering (ICSE), ACM, pp 335–344

Domingos P (2000) A unified bias-variance decomposition. In: Proceedings of International
Conference on Machine Learning (ICML), Morgan Kaufmann, pp 231–238

Grelck C, Scholz SB (2006) SaC—A functional array language for efficient multi-threaded
execution. International Journal of Parallel Programming 34(4):383–427

Guo J, Czarnecki K, Apel S, Siegmund N, Wasowski A (2013) Variability-aware perfor-
mance prediction: A statistical learning approach. In: Proceedings of the International
Conference on Automated Software Engineering (ASE), IEEE, pp 301–311

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning,
vol 112. Springer

Kuckuk S, Gmeiner B, Köstler H, Rüde U (2013) A generic prototype to benchmark algo-
rithms and data structures for hierarchical hybrid grids. In: Parallel Computing: Accel-
erating Computational Science and Engineering (CSE), IOS Press, pp 813–822

Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22
Membarth R, Hannig F, Teich J, Körner M, Eckert W (2012) Generating device-specific

GPU code for local operators in medical imaging. In: Proceedings of the International
Parallel & Distributed Processing Symposium (IPDPS), IEEE, pp 569–581

Myung J, Pitt M (2004) Model comparison methods. Methods in Enzymology 383:351–366
Nhlabatsi A, Laney R, Nuseibeh B (2008) Feature interaction: The security threat from

within software systems. Progress in Informatics 5:75–89
Pooley R (2000) Software engineering and performance: A roadmap. In: Proceedings of the

Conference on The Future of Software Engineering, ACM, pp 189–199
Prehofer C (2004) Plug-and-play composition of features and feature interactions with stat-

echart diagrams. Software and Systems Modeling 3(3):221–234
Sammut C, Webb GI (2011) Encyclopedia of machine learning. Springer
Sarkar A, Guo J, Siegmund N, Apel S, Czarnecki K (2015) Cost-efficient sampling for perfor-

mance prediction of configurable systems. In: Proceedings of the International Conference
on Automated Software Engineering (ASE), IEEE, pp 342–352

Sayyad A, Ingram J, Menzies T, Ammar H (2013) Scalable product line configuration:
A straw to break the camel’s back. In: Proceedings of the International Conference on
Automated Software Engineering (ASE), IEEE, pp 465–474

Schruben L, Yucesan E (1993) Complexity of simulation models a graph theoretic approach.
In: Proceedings of the Conference on Winter Simulation, ACM, pp 641–649

Siegmund N, Kolesnikov S, Kästner C, Apel S, Batory D, Rosenmüller M, Saake G (2012)
Predicting performance via automated feature-interaction detection. In: Proceedings of
the International Conference on Software Engineering (ICSE), IEEE, pp 167–177

Siegmund N, Rosenmüller M, Kästner C, Giarrusso P, Apel S, Kolesnikov S (2013) Scalable
prediction of non-functional properties in software product lines: Footprint and memory
consumption. Information and Software Technology 55(3):491–507

Siegmund N, Grebhahn A, Apel S, Kästner C (2015) Performance-influence models for
highly configurable systems. In: Proceedings of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), ACM, pp 284–294

Simon D (2013) Evolutionary optimization algorithms. John Wiley & Sons
Steinberg D, Colla P (2009) CART: Classification and regression trees. The top ten algo-

rithms in data mining 9:179
Steinwart I, Christmann A (2008) Support Vector Machines. Springer
Wallace J (1987) The control and transformation metric: Toward the measurement of simu-

lation model complexity. In: Proceedings of the Conference on Winter Simulation, ACM,
pp 597–603

Zhang Y, Guo J, Blais E, Czarnecki K (2015) Performance prediction of configurable soft-
ware systems by Fourier learning. In: Proceedings of the International Conference on
Automated Software Engineering (ASE), IEEE/ACM, pp 365–373

Tradeoffs in Modeling Performance of Highly-Configurable Software Systems 29

Zhang Y, Guo J, Blais E, Czarnecki K, Yu H (2016) A mathematical model of performance-
relevant feature interactions. In: Proceedings of the International Systems and Software
Product Line Conference, ACM, pp 25–34

	Introduction
	Motivation and Research Questions
	Empirical Study
	Related Work
	Conclusion
	Influence of Configuration Options and their Interactions

