
Journal of Automated Reasoning 1 (1985) 75-101. 0168-7433/85/0011-0075504.05 75
�9 1985 by D Reidel Publishmg Company.

On the Role of Automated Theorem Proving in
the Compile-Time Derivation of Concurrency

C H R I S T I A N LENGAUER
Department of Computer Sciences, The University of Texas at Austin, Austin,
TX 78712-1188, U.S.A. (ARPA : cs.lengauer@utexas-20)

(Recewed 10 February 1984)

Abstract. A recent trend m program development is to derive correct implementations from program
specifications by the application of a formal calculus, a 'programming methodology'. The application
of formal rules lends itself to automation. We investigate the automation of one part of a methodology
for programming with concurrency. In this methodology, concurrency is derived by transforming the
sequential execution of a program into an equivalent concurrent execution on the basis of formal
transformation rules. Such rules can be interpreted as theorems of semantic equivalences. The mech-
anical certification of these theorems would significantly enhance the reliability of the methodology.
The following is an initial exploration of this problem applied to a certain class of programs: sorting
networks. We present an implementation of a part of the underlying semantic theory in Boyer and
Moore's mechanized logic, and report on the mechanical proof of a transformation that derives con-
currency for an insertion sort.

Key words: Automated program synthesis and validation, concurrency, program transformation.

1. I n t r o d u c t i o n

In the last decade, few 'buzzwords' have gained as much popularity in computing as

structured programming [6]. It refers to a disciplined approach to program development

by a set of informal derivation rules (stepwise refinement, divide-and-conquer, case

analysis, data abstraction, etc.). The application of such rules is encouraged by suitable

programming constructs in 'structured' programming languages. Structured programming

(a more appropriate term is 'disciplined' programming) aims to provide guidance and

diminish the need for intuition during the process of programming.

The reliability of disciplined programming methods is greatly enhanced when they can

be applied on a formal basis. Program verification [8, 12] refers to formal methods of

proving properties of programs, most importantly, that the program conforms to its speci-

fications. Program verification provides an exact description of programs and thereby of

their correctness or incorrectness. But it does not support correct program development.

Programming methodology [7, 10, 11] is a new area of research that attempts to merge

structured programming and program verification. A programming methodology is a set

of formal program development rules, a 'programming calculus', that can be applied to

76 CHRISTIAN LENGAUER

transform the specification of a program into a correct implementation. It replaces some

of the programmers' intuition by formal guidance.
Unfortunately, we cannot trust programmers' formal program derivations any more

than their informal program derivations. Formal derivation rules are often difficult to

apply and then just as prone to error as informal derivation rules. However, formal

derivation rules can be made precise enough to be mechanically certified. And we have
considerably more trust in a mechanical than a human certification. We are therefore

interested in a connection between programming methodology and automated theorem
proving [5], the mechanical application of formal logics.

Concurrency is the execution of several program parts in parallel. Rigor in program
development is especially desirable in the presence of concurrency. If the input data are

known, the outcome of an execution that performs (deterministic) operations in some

defined sequence is totally predictable. But the outcome of an execution that performs

operations concurrently depends on the unpredictable order of its concurrent activities.

Such dependencies may be buried deep inside the program's operations, or may even be

determined by the architecture of the machine on which the program is executed. Simple
inspection of the program text cannot reveal them. In addition, the number of possible

orders explodes exponentially with the number and length of concurrent activities. To
describe the properties of a concurrent execution, a formal treatment is absolutely essen-

tial. The verification of programs with concurrency is now quite well developed [18, 23,
25]. However, programming methodologies are only just emerging.

The following section deals with one such methodology [19]. Section 3 briefly
discusses our approach to the mechanical support of (a part of) that methodology, and
Section 4 provides the technical details. This description of our work is aimed at the
automated reasoning community. See [22] for a less technical and more recent assess-
ment of our approach to the automation of the static derivation of concurrency from the

viewpoint of formal semantics and verification.

2. A M e t h o d o l o g y for P rog ramming with Concu r r ency

Our goal is to mechanize parts of a particular methodology for the derivation of con-

currency in programs [19]. This section describes that methodology.
Two different motives may lead to the application of concurrency:

(1) The desire for a specific program behavior. For instance, one might wish to run an

experiment which involves certain processes executed by designated processors that
communicate and synchronize with each other in some fashion. Such applications are to
ensure the correct functioning of some machine configuration with a specific concurrency
structure. Examples are distributed or operating systems.

(2) The desire for fast program results. For instance, one might wish to execute a
numerical or data processing algorithm with concurrency in order to obtain a result
faster. Such applications do not refer to a specific machine configuration or concurrency
structure, but only to some relation of input and output values. Examples are numerical
and sorting algorithms.

THE ROLE OF AUTOMATED THEOREM PROVING 77

The programming methodology described here takes the second approach: concurrency

is viewed as a tool for accelerating the acquisition of results, not as a basic characteristic

of a program. Consequently, concurrency will not be part of the problem specification,

but will be derived after the development of the program. We would like to certify this
derivation mechanically.

The specification of a programming problem has three parts:

(a) the input constraints under which the program shall operate,

(b) the results which the program is supposed to achieve, and

(c) the time limit imposed on the program's execution.

The program development then proceeds along the following lines:

(1) Perform a formal stepwise refinement of a program that achieves the desired

result under the given input constraints. The program does not address the

question of execution order. It may not require its operations to be applied in

total order, but an easy sequential execution can, at this point, serve as a first
execution time estimate.

(2) Declare simple relations between program components, so-called 'semantic

relations', that allow relaxations in sequencing, e.g., concurrency. Do so until

the execution time of the program satisfies the specified time limit.

A refinement is, for instance, C1;C2. This refinement says that program componentC2

is applied to the results of program component C1. The semicolon denotes 'application'.

It may be implemented by executing C1 and then C2, but need not be in all cases.

Semantic relations are, for instance, the commutativity of the components c1 and

C2 (written c1~c2), and the independence of Cl and C2 (written el I IC2). Cl and C2 are

commutative, i.e., C1~C2 may be declared if the execution of C1 and then C2 has the same

effect as the execution of C2 and then C1. If Cl1~C2 is declared, C1 ; C2 may also be imple-

mented by executing C2 and then C1. C1 and C2 are independent, i.e., Cl11C2 may be

declared if the execution of Cl and C2 in parallel kas the same effect as their execution in

order. If Cll 1C2 is declared, Cl;C2 may also be implemented by executing C1 and C2m
parallel. Independence implies commutativity.

Let us illustrate the use of this methodology with an example.

EXAMPLE: Sorting. The problem is to sort an array a [O.. n] of real numbers into ascend-

ing order in time O(n). Our refinement is an insertion sort adapted from Knuth [16]:

(i>O)

sort(n): for i:=1 to n do S(i) od
S (0) : skip
S(i) : es(1); S(1-1)

I i - j l > l ~ cs(1) I I es(])

Statement cs (i) represents a restricted version of Knuth's 'comparator module' [16]:

cs(l)compares adjacent array elements a[1-1] and a[1] and, if necessary, swaps them

78 CHRISTIAN LENGAUER

into order. Knuth's comparator module can deal with not only adjacent but any two array
elements. Knuth calls programs whose primitive components are comparator modules
sorting networks. Let us call our restricted version simple sorting networks.

For I i - j I >l, i.e., if 1 and J are not 'neighbors', cs (1) and cs (j) are disjoint: they do
not share any variables. Components that do not share variables may be declared indepen-
dent. (For the underlying theory see [20].)

For, say, a six-element array (n=5), the refinement has the following sequential exe-

cution, if we interpret iteration (denoted by ' for ') and composition (denoted by ' , ') as
execution in order (denoted by '-,') and expand components S (i) of s o r t (5):

tau(5) = cs(1)~cs(2)*cs(1)
~cs (3)*CS (2)*cs (I)

~cs (4)~cs (3) ~cs (2) ~cs (I)
~cs (5)~cs (4) ~cs (3)~cs (2) ~cs (i)

If we count the number of comparator modules cs, tau(5) has length 15. In general,
tau(n) has length n (n+ l) /2 , i.e., is quadratic in n. To derive a linear execution, we have

to exploit the independence declaration for s o r t (n) a n d compress tau(n) into a trace
with concurrency. We have already laid out the sequential trace tau(5) in a form which
suggests how this can be done. Remember that independence implies commutativity. We

commute comparator modules in tau(5) left, and then merge adjacent modules whose

indices differ by 2 into a parallel command (denoted by angle brackets):

tau- (5) =
/cs(1)\ /cs(2)\ /cs(1)\ /cs(2)\ Ics(1)\

\cs(3)/ \cs(4)/ \cs(5)/ \cs(4)/ \cs(3)/

This execution is of length 9. In general, tau-(n) is of length 2n-l, i.e., linear in n. The
degree of concurrency increases as we add inputs. We are not limited to a fixed number of
concurrent actions. However, if only a fixed number k of processors is available, the
independence declaration may be exploited only to generate a concurrency degree of

k or less. (End of Example.)

To declare semantic relations for some refinement, one does not need to understand

the refinement as a whole. A local understanding of the components appearing in the
declared relation is sufficient. Note also the simplicity of concurrency: there is no need
for synchronization of concurrent components other than at the point of termination.

Most semantic declarations come easily to mind and have a simple proof.
But the foremost benefit of this approach to the derivation of fast programs is that the

more important and better understood question of program refinement is resolved before
the less important and more complex question of concurrency arises. Concurrency is
later added in isolated steps (by invoking semantic relations) without changing the
approved meaning of the program. Thus the development of programs with concurrency

is divided into two stages:

THE ROLE OF AUTOMATED THEOREM PROVING 79

Stage 1 : The development and formal semantic description of a program that achieves

the desired result. This requires a formal refinement and the declaration of semantic

relations. Programs are composed with ' ; ' and 'fo__2_r'.
Stage 2: The derivation of a fast execution of the program produced at Stage 1. (An

execution of a program is also called a trace). This is conceptually simple but compu-
tationally complex. It involves the computation of execution times and the invocation of
semantic relations to transform traces and improve execution time. Traces are composed
with '-,' and '< >'.

We call Stage 1 the refinement calculus and Stage 2 the trace calculus. Either of the

two stages has the potential for automation. Automation of Stage I would yield a mech-
anical system for program refinement. Research along these lines is under way elsewhere

[2, 24]. Automation of Stage 2 would yield a very powerful optimizing compiler (since

we view concurrency as optimization). Early work in this area [17] has been without a
formal semantic basis. At that time, formal semantics was in its infancy. Our interest is

the mechanical support of Stage 2 on a formal semantic basis.
The most common approach to programming in which the derivation of concurrency

is divorced from the derivation of the program is data flow programming [1]. A data

flow program makes no explicit reference to the order of execution. It is executed on a

special machine architecture that follows the sequencing imposed by the data depen-

dencies of the program's variables. Data flow languages are 'referentially transparent':
they do not permit the re-assignment of variables. This simplifies the identification of

data independencies so much that, commonly, no programmer assistance is needed

to identify concurrency. Our approach is 'referentially opaque', i.e., permits the re-
assignment of variables and, consequently, requires a more complicated data flow analysis.

We have to explicitly declare and subsequently exploit data independencies (in our
fomalism, semantic relations).

The vast majority of software that exists today and is currently being produced is

referentially opaque. The vast majority of today's machine architectures support the
referentially opaque programming style. While we must strive for new programming

styles and machine architectures, we must also continue to increase our understanding of
the present technology.

3. On the Mechanical S u p p o r t o f Trace T r a n s f o r m a t i o n s

We shall focus on the mechanical support of the trace calculus. (For initial ideas see Sec-
tion 6.2.1 of [21].) Let us consider the previous example s o r t (n). We derived a parallel

trace t au - (n) that satisfies the execution time limit from sequential trace tau (n) that is

suggested by the refinement of s o r t (n)and does not satisfy the execution time limit. The
semantic equivalence of tau(n) and tau- (n) ensures that the meaning of the program is
preserved. The equivalence is proved by a recursive application of a sequence of trace
transformations that exploit no semantic relations other than those declared for s o r t (n).
Although such transformations are in many cases, as in this one, quite simply described in
Lnformal English (see Section 2), their formal application is extremely tedious (see

80 CHRISTIAN LENGAUER

Section 5.4 of [21].) We do not want to rely on the informal description but would like
some mechanical aid in the formal application.

We might be tempted to view a trace transformation as an algorithm. For our example

we would need an algorithm, say, t r a a s (n) that transforms tau(n) into t a u - (n) b y

appropriately commuting and merging tau 's comparator modules. The algorithm we pro-
pose uses commands:

e o m u t e x l e f t to identify the next trace element of form x to the right of the current

cursor position and commute it with its left neighbor, and

merge x l e f t to identify the next trace element of form x to the right of the current

cursor position and merge it and its left neighbor into a parallel

command.

Let us assume that, at the start of any transformation, the cursor is placed at' the left

end, i.e., the head of the trace to be transformed. For the following algorithm, t r a n s (n),

the cursor is initially placed at the head of trace tau (n):

t r a n s (n) : f o r t : = 3 t o n
do f o r j:=O t o i - 3

do f o r k := / t o i - 3 - j
do commute cs(l-]) l e f t od;

merge c s (i - j) l e f t
od

od

t r a n s (n) derives t a u - (n) in one left-to-right pass of right-to-left commutations and

merges in cubic time (O(n) for every nested for) . For n<3, t au (n) = tau - (n) and t r a n s (n)
does nothing.

This approach has the problem that if the refinement contains a recursion (or repe-

tition), as s o r t (n)does, the transformation algorithm refers to the depth of the recursion:
for fixed input n , t r a n s (n) will make s o r t (n) linear, but not s o r t (n + l) . Traces of a

recursive refinement are unbounded, and an algorithm like tra.ns (n) cannot completely
transform an unbounded trace in finite time.

A better approach is to treat trace transformations as theorems, not algorithms. In

particular, recursive transformations are inductive theorems. For our transformation of

so r t (n) , the theorem is:

TAU.MAIN: For a l l n>O, t a u - (n) - tau(n)

where ' - ' denotes semantic equivalence. The proof essentially rewrites one side of the

equation into the other. Because it uses induction (on n), it can deal with unbounded
traces in finite time.

With this view, the automation of trace transformations constitutes a system that,
following a set of heuristics and, most likely, with the help of some interactive dialogue,
identifies valid and useful transformation theorems. Our present approach is to split this
task into two parts:

THE ROLE OF AUTOMATED THEOREM PROVING 81

(a) the identification and (recursive) formulation of trace transformations, and

(b) the proof of the corresponding (inductive) theorems,

and, presently, concentrate on the automation of step (b). Note that we prove single trace
transformations correct. Once we have a set of heuristics that identify trace transfor-

mations, i.e., perform step (a), we may want to establish the correctness of these
heuristics rather than verifying their output individually. But, for the time being, we

prefer to deal with the simple semantics of traces, not with the more complicated
semantics of heuristics for the transformation of traces.

More often than not, mechanical proofs are messy and full of hints to the theorem

prover, e.g., hints about the use of specific lemmas, induction schemes, or variable instan-

tiations. These hints are supplied by the user in an interactive dialogue with the theorem
prover. For the proof of an isolated theorem, this is an acceptable course of action. Any

(correct) tricks are welcome to make the prover succeed. However, for highly automated

proofs of many similar theorems, a simple representation of the theory in the mechanized

logic is of overriding concern. We must structure the path of intermediate lemmas that
leads to the main theorem. We must minimize proof hints and keep those hints that are

indispensible systematic. The following section develops the theory of simple sorting
networks and one example proof in more detail and, at the end, reflects on our efforts
to keep things clean.

4. Proving the Seman t i c Equiva lence o f T w o Traces

We are applying Boyer and Moore's mechanical treatment of recursion and induction
[3]. This section describes the implementation of the part of the semantic theory that
is necessary to prove theorem TAU.MAIN in Boyer and Moore's logic, and the proof of

TAU.HAIN. For newcomers to Boyer and Moore's logic, Section 4.1 provides an introduc-
tion adapted from [26]. Appendix A explains the types of commands (so-called 'events')
that formed the proof session and contains a transcript of all functions, axioms, and
lemmas established during the session. Appendix B elaborates on the central steps of the
mechanical proof.

Boyer and Moore express terms functionally in a LISP-like prefix notation. To be

shorter, we shall, in this document, keep basic arithmetic and logical operations in
traditional infix notation.

4.1. BOYER AND MOORE'S MECHANIZED LOGIC

In Boyer and Moore's mechanized logic, as described in [3], proofs are constructed in
a quantifier-free logical theory which is built on the propositional calculus with equality,

variables, and function symbols. The basic theory includes four functions:
�9 TRUE and F~_~E are both functions of zero arguments. The constants (TRUE) and

(FALSE) are abbreviated T and F, respectively. The axiom TgF allows them to be
considered as distinct truth values.

82 CHRISTIAN LENGAUER

�9 F_J~AL is a function of two arguments, ax!omatized to require that (EI~IJAL 1 r) have the
value T or F, depending on whether 1--r.

�9 IF is a function of three arguments. Axioms ensure that the value (IF t u v) is that of

v if t,=F and that of u otherwise.

The function IF allows the use of conditionals in axioms which define new functions,

as in the definition

(AND P ~) = (IF P (IF Q T F) F)

A function capturing the semantics of each of the other logical connectives is similarly

defined. Thus, corresponding to any formula $, a term p can be constructed such that the

formulas p#F and $ have the same truth values. In this situation, the term p is said to be a

' theorem' if $ is a theorem. All formulas may thus be represented as terms.

The theory also includes

�9 a principle which permits the introduction of axioms specifying new types of induc-

tively constructed objects,

�9 a principle for admitting axioms which define new recursive functions,

�9 a principle of induction (a rule of inference) based on the notion of a well-founded

relation which is well-suited for inferring theorems about these objects and functions.

Two types of inductively constructed objects are relevant to the proofs presented in

this paper:

�9 The natural numbers are formalized by the type 'number' . Peano arithmetic is realized

through axioms about the functions ~IMBERP, ADDI,b~JB1, and the constant O. h~BERP

is the 'recognizer' for this type, i.e., (~KII4BI~ t' t)returns T or F depending on whether

the value of term t is a number./~D1 is the usual successor function, and bnJB1 is its

inverse function.

�9 Ordered pairs are formalized by the type 'list'. The functionsCONS,C/~, and CDFt are

axiomatized to have the properties of the familiar LISP functions, and LISTP is the

recognizer for this type. Finite sequences are represented by means of CONS and the

special constant NIL; the sequence of terms t l , t2,. . . , tnis represented by the term

(CONS t l (CONS t2 (. . . (CONS tn NIL) . . .)))

which is abbreviated (LIST t l t g . . . , tn) .

The theorem proving program naturally relies heavily on induction. Several heuristics
are employed to formulate induction schemes based on analysis of the structure of the
recursive function definitions and the inductively constructed types which are involved

in a conjecture. A proof by induction is only attempted, however, after a simplification
procedure has been followedand has failed to establish the theorem.

Every conjecture which is presented to or generated by the theorem prover is first

written as a single term and then represented internally as a conjunction of simpler
'clauses', each of which is a disjunction of atomic formulas called 'literals'. In order to

THE ROLE OF AUTOMATED THEOREM PROVING 83

establish a clause, the prover first at tempts to simplify each of its literals in turn, assum-

ing the others to have the value F. A variety of heuristics is employed including the use of

previously proved lemmas as rewrite rules. A term 1 is replaced by the term r if a rewrite

rule of the form

(IMPLIES h (EI~AL 1 r))

is encountered and the hypothesis h can be established. The manner of use of a lemma

therefore depends on its precise syntactic form.

In this paper (except Appendix A), we write (F_~AL 1 r) as l--Tand (IMPLIES h c) as

h ~ c . We also write U~DI n) as n+l , and (SUB1 n)as n-1 and, occasionally, (CONS t l t2)

a s (t l . t 2) .

4.2. TRACE REPRESENTATION

Our goal is to prove the semantic equivalence of traces t au (n) and t a u - (n). E.g., for n=5,

tau(5) = cs(1)*cs(2)*cs(1)
*cs (3)~cs (2)*cs (1)

*es (4)*es (3) ~es (2)*es (1)
*es (5) ~es (4) ~es (3) ~es (2) ~cs (1)

must prove semantically equivalent to

t a u - (5) =
/ c s (1) \ / c s (2) \ / C S (1) \ / C s (2) \ / c s (1) \

\cs(4)/ \cs(5)/ \cs(4)/ \cs(3)/

We represent a trace by a list. The elements of the list are executed in sequence. If a

list element is itself a list, it is called a 'parallel command' and its elements are executed

in parallel. If an element of a parallel command is again a list, its elements are executed in

sequence, etc. Thus, a trace is a multi-level list whose odd levels reflect sequential execution,

and whose even levels reflect parallel execution. In the realm of simple sorting networks,

we can represent traces as multi-level lists of integers. For example,

(TAU 5) = ' (I 2 1 3 2 1 4 3 2 1 5 4 3 2 1)
(TAU- 5) = "(1 2 (3 1) (4 2) (5 3 1) (4 2) (3 1) 2 1)

Note that the parallel trace TAW has a phase T1- of growing concurrency,

(T1- 5) = "(1 2 (3 1) (4 2))

followed by a phase T2- of shrinking concurrency,

('1~- 53 = " ((5 3 1) (4 2) (3 1) 2 1)

84 CHRISTIAN LENGAUER

In our formalism [20], paraUel commands are binary, i.e., can have at most two parallel
components. An n-ary parallel command is expressed as nested binary parallel commands.

This coincides with Boyer and Moore's representation of a list as a nesting of pairs, as
explained in the previous section. For example, the parallel command ' (5 3 l) of trace
(TAO" 5) is really' (5 . (3 . (l . NIL))).

4.3. TRACE SEMANTICS

Traces have weakest precondition semantics [20]. Since a weakest precondition is a func-

tion from programs and predicates to predicates [7], the weakest precondition calculus

can be directly implemented in Boyer and Moore's logic.

Our methodology divides the development of programs into two stages. Stage 1, the

refinement calculus, is concerned with the derivation of program semantics, i.e., the

derivation of a refinement. Stage 2, the trace calculus, is concerned with the preservation
of program semantics, i.e., the transformation of sequential executions into concurrent

executions. Consequently, we need not implement a complete weakest precondition

generator in order to implement Stage 2. We are only interested in the equality of

weakest preconditions, not in their actual values. A weakest precondition that is not

affected by the trace transformations need not be spelt out but may be provided as a

'black box'. In Boyer and Moore's logic, a black box is represented by a function that has

been declared (without a function body) rather than defined (with a function body). The

primitive components of sorting networks are comparator modules. For the purpose of

trace transformations, we are not i'nterested in the inside of a comparator module. There-

fore we declare the weakest precondition of comparator module cs (i)as a function

DECLARED FUNCTION: (CS I S)

where S denotes the postcondition (or 'poststate'). Since function CS is declared, not

defined, we must provide by axiom some essential information about CS that is not

evident from the declaration. We add two axioms. One restricts the domain of comparator
modules to numbers:

AXIOM cs . TAKES. NUMBERS: (NOT (NUMBERP I)) ~ ((CS I S) = F)

Axiom CS. TAKES. NU/4BERS states that the prestate of CS for any non-number and postu-

late is false, i.e., that such a CS is not permitted. The other axiom expresses the "rule of

the excluded miracle" (Dijkstra's first healthiness criterion [7]) for comparator modules:

AXIOM cs. IS.NOT.MIRACLE: (CS I F) = F

Axiom CS. IS. NOT.MIRACLE states that the prestate of any CS with false poststate is false,

i.e., comparator modules cannot establish 'false'.

To determine the weakest precondition of some trace L that is composed of com-
parator modules CS for poststate S, we define a 'cs-machine', a function

THE ROLE OF AUTOMATED THEOREM PROVING 85

DEFINED FUNCTION: (M.CS FLAG L S)

that composes calls to CS as prescribed by trace L. Besides L and S, M.CS takes a FLAG

that signals whether the trace is to be executed in sequence (FLAG='SEq) or in parallel

(FLAG='PAR). In accordance with our trace representation, FLAG='SEtlin top-level calls and
FLAG alternates with every recursive call.

When FLAG='PAR, the trace represents a parallel command and its elements must be

checked for independence. We can make use of the semantic declarations provided at

Stage I. The smallest component that a semantic declaration for a sorting network will

mention is the comparator module. We may therefore, from Stage 1, assume knowledge

about the independence of comparator modules and may express this knowledge by a

declared function

DECLARED FUNCTION: (IND.CS I J)

that evaluates the independence of comparator modules es (1)andes Q). We then define
a function

DEFINED FUNCTION: (ARE. IND.CS L1 L2)

that uses IND. CS to determine the mutual independence of all atoms of trace L1 with all

atoms of traceL2. ARE. IND.CSis only interested in the atoms of a trace, not in the trace's

structure. Therefore, ~RE.II~.CS expects traces in a flattened form. The flattening is
performed by function AI_.L.ATOI~, for example,

(ALL.ATOMS (TAU- 5))
= ' (1 2 3 1 4 2 5 3 1 4 2 3 1 2 1)

If the two members of a parallel command (remember the restriction to binary parallel

commands) pass test ARE. IND. CS their execution has identical semantics in parallel as in

sequence - only the execution time differs.

The execution time of traces plays a role in the selection of proper transformation

theorems. At present, we take transformation theorems as given and only prove them by

mechanical means. Therefore, execution time is left out of the current implementation.

The semantic equivalence of t a u - a n d t a u , which we denoted by t au - - tau , is thus in

Boyer and Moore's logic expressed by the term

(M.CS 'SEQ (TALl- N) S) = (M.CS "SEQ (TALl N) S)

4.4. TRACE COMPOSITION

For the composition of lists, we provide two functions: APPEND andAPPEND2. APPEND is
the regular LISP (and Boyer and Moore) append function. It handles lists that end with

NIL. However, we do not require a trace to end with NIL; it may end with any atom. If

trace L1 does not end with NIL, (APPEND L1 L2) drops the last atom of L1, whereas
(APPEND2 L1 L2) picks it up. For example,

86 CHRISTIAN LENGAUER

(APPEND "(I . 2) "(3 . 4)) = "(I 3 . 4)
(APPEND2 ' (1 . 2) "(3 . 4)) = "(1 2 3 . 4)

Therefore traces are composed with APPEND2 not with APPF_/ID.

The following theorem expresses the composition rule for weakest preconditions [7]:

LEMMA M. CS. APPEND2. SEQ:
(FLAG=" SEQ)

((M.CS FLAG (APPEND2 Lt L2) S)
= (M.CS FLAG LI (M.CS FLAG L2 S)))

We subsume M. CS.APPEND2. SEQ by a more general theorem (M. CS. APPEND2).

4.5. TRACE TRANSFORMATIONS

Independence declarations are exploited via transformation rules that express commu-

tations and parallel merges of independent program components.

The theorem for parallel merges corresponds to rule (G3i)in Section 5.2 of [20]:

LEMMA G3i: (ARE.IND.CS (ALL.ATOMS LI) (AIL.ATOMS L2))
((M.CS "PAR (CONS L1 1.2) S)
= (M.CS "SEQ (APPEND2 L1 (LIST L2)) S))

To express commutations, we must be more specific about the meaning of 'indepen-

dence'. The declaration of IND.CS does not provide any clues. We do not need to know

everything about independence; otherwise we would define, not declare IND. CS. But we

must be able to conclude that independent comparator modules may be commuted. As

we did with CS, we characterize IND. CS by axiom:

AXIOM GLOBAL. IND. CS:
(IND.CS I J)

((cs J (cs I s)) = (cs I (cs J s)))

If we instantiate both FLAG1 and FLAG2 to "SEQ, the following theorem enables commu-

tations:

LEMMA ARE. IND. CS. IMPLIES. COMMUTATIVITY:
(ARE. IND. CS (ALL.ATOMS LI) (ALL.ATOMS L2))

((M.CS FLAG1 LI (M.CS FLAG2 L2 S))
= (M.CS FLAG2 L2 (M.CS FLAGI L1 S)))

4.6. NON-NEIGHBORS

Stage 1 establishes that, in simple sorting networks, non-neighboring comparator modules

are independent. We may provide this known fact by axiom:

AXIOM NON. NEIGHBORS.ARE. IND. CS :
(NON.NEIGHBORS I J) ~ (IND.CS I J)

THE ROLE OF AUTOMATED THEOREM PROVING 87

where function NON. NEIGHBORS identifies non-neighbors. NON. NEIGHBORS is defined while

IND.CS is declared. With IND.CS alone we could not decide the independence of anything;

with this axiom we can decide the independence of comparator modules. We may, for

example, apply theorem G3i with 5 for L1 a n d ' (3 1) for L2, since 5 is not a neighbor of

3 and 1 :

(M.CS "PAR '(5 3 1) S) = (M.CS "SEQ "(5 (3 I)) S)

Two more applications of G3i, exploiting also the non-neighborhood of 3 and I, yield:

(M.CS "PAR '(5 3 I) S) = (M.CS "SEI~ '(5 3 I) S)

This formula expresses the equivalence of the parallel and sequential execution of

comparator modulescs (5)~ cs (3), and cs (I).

4.7. SEMANTIC EQUIVALENCE OF TAU AND TAU-

The formal derivation of TAW from TAt/ requires three inductions on the length of the

trace. The main induction transforms TALl and TAW as described in Section 2:

LEMMA TAU.MAIN: 0<N ~ ((M.CS 'SEq (TAU- N) S)
= (Id.CS "SEQ (TAU N) S))

Notice the premise that trace argument tl 'makes sense', i.e., is a number other than 0.

(A further theorem, TAU./~AIN.O3MPLETE , extends the result to meaningless N.) The

prover must be made aware of the induction scheme by a hint (function RAVEL). Let us

explain the induction with an example. For N=5, the following traces are semantically

equivalent:

(TAU5) = "(1 2 1 3 2 1 4 3 2 1 5 4 3 2 1)
- "(1 2 (3 I) (4 2) (3 1) 2 1 5 4 3 2 I) (ind. hyp.)
- "(1 2 (3 1) (4 2) (5 3 1) (4 2) (3 1) 2 1) (ind. step)
= (TAW" 5)

The induction hypothesis is that (TAU 4) is equivalent to (TALl- 4). The induction step

'ravels' the remaining sequential tail (SEQJ 5) to the left into(TAW 4). Note that the only

part of TALl- affected by this transformation is the part of shrinking concurrency, T2".

Thus we may disregard TI- in the further proof of the induction step. To perform the

transformation of the induction step, we need two more inductions. The first, named

TALI.RAVELI, uses commutations (ARE. IND. CS. IMPLIES. COMMUTATIVITY) to place com-

parator modules beside the parallel command that they then join (G31)by the second

induction, named TAU.RAVF.J.2. The intermediate stagc of the trace has name UNRAVEL. T2-.

LEMMA TALl. RAVEL1 :
I<N

LEMMA TAU. RAVEL2:
0<N

((M.CS 'SEQ 0JNRAVEL.T2- N) S)
-- (M.CS "SEI~ (,APPEND2 (T2- N-2) (SEQJ N)) S))

((M.CS 'SE{~ (T2- N) S)
= (M.CS 'SE{~ (UNRAVEL.T2- N) S))

For example, for N=5, the following traces are semantically equivalent:

88 CHRISTIAN LENGAUER

(APPEND2 (T2- 3) (SF_~J 5))
= " ((3 1) 2 1 5 4 3 2 1)
- (UNRAVEL.TO.- 5) (by TAU.RAVF_~I)
= ' (5 (3 1) 4 (2) 3 (1) 2 1)
= (T2- 5) (by TAU.RAVEL2)
= ' ((5 3 1) (4 2) (3 1) 2 1)

This concludes the main part of the proof. However, the prover needs some preliminary

information to succeed. To enable the application of our general transformation rules

G3i and ARE.II~ID.CS.IMPLIES.COMbIUTATIVITY, we have to establish their hypotheses:

the independence of certain trace parts. We also have to advise the prover of some trace

identities that it cannot determine simply by opening functions. The interested reader is

referred to Appendices A and B.

4.8. EVALUATION

The main objective of the mechanical proof of theorem TAU. MAIN has been to substantiate

that the trace calculus of [20] has a natural representation in Boyer and Moore's logic.

The functions, axioms, and theorems of this representation falls into two classes:

(a) the basic semantic theory that will be required in the proofs of many different

trace transformation theorems, and

(b) the functions and lemmas pertaining to the proof of one specific transformation

theorem.

To prove TAU.MAIN, we had to develop a part of the theory of sorting networks (the

theory of simple sorting networks, where comparator modules deal only with adjacent

elements). It includes the semantics of traces of comparator modules, the general trace

transformation rules, and the theory of non-neighbors. While the basic semantic theory is

constant, the theory specific to the transformation of T^U, based on the definitions of

TAU and TAIY" and culminating in theorem TAU.MAIN, will recur in modified form in other

trace transformations.

In the original calculus, a transformation sequence starts with a sequential trace and

ends with a parallel trace. In Boyer and Moore's logic, we rewrite in the reverse direction,

from parallel to sequential, in order to avoid implementation problems. We need not be

aware that the prover actually transforms TALl- and TAU, not vice versa. The direction of

transformation is of no consequence to the proof of a semantic equivalence.
Because we aim at a 'methodology of proving', we are especially interested in a simple

representation of the theory and in simple proof strategies. Let us explain our efforts to
proceed in the most straight-forward manner.

We have reduced the number of intermediate stages of T^U's transformation to a

minimum: just one intermediate stage between a step of recursive commutations and a
step of recursive parallel merges. Boyer and Moore's prover cannot be expected to per-
form a particular succession of inductions without advice. We had to communicate three
traces to the prover; the initial trace TAU, the final trace TAU-, and the intermediate trace

THE ROLE OF AUTOMATED THEOREM PROVING 89

~ V E L . 1"2-. The prover must also be made aware of the substitutions in the main induc-
tion scheme (by hint P&VEL).

Further we had to provide the prerequisites for the transformation, and some trace

identities used in its proof. Say, we want to apply some theorem with certain instan-
tiations of its variables. In Boyer and Moore's logic, we can

(a) prescribe the use of the theorem with appropriate variable instantiations as a
hint for the proof in which it is needed, or

(b) provide the hypothesis of the theorem with appropriate variable instantiations as a
separate lemma.

Because it is easier to establish facts independently than to tie them to specific proofs, we

prefer (b) and establish as lemmas the hypotheses of the general transformation theorems

being used, where free trace variables are instantiated by the particular trace parts that are

subject to the transformation. We have to establish precisely these hypotheses, or the

prover will not invoke the transformation theorems. For the same reason, the trace

identities are expressed as semantic identities (withM.CS), although they hold even as

literal identities (without M. CS). The prover would not be able to use the literal identities,

because the theory deals with trace semantics, not with traces per se.

This problem is known as the 'Knuth-Bendix' problem [15]. A fact appears in Boyer

and Moore's logic as a composition of functions. The same fact may be represented in

many different ways depending on which function calls are opened up. Some of those

representations will match hypotheses of theorems known to the prover, others will not.

We have to choose a representation that is useful to the prover.

The Knuth-Bendix problem appears again in the proofs of the actual transformation

theorems for TAU. The prover must be prevented from opening functions beyond the level

at which the prerequisites are expressed, or it will not establish a match. In addition, since

at points where a parallel merge may be applied a commutation applies as well, we have

to disable the application of the first transformation (TAU.RAVELI) in the proof of the
second (TAU. RAVF.T 9.).

The worst consequence of the Knuth-Bendix problem in the proof of TAU.,VAIN is

our only 'dirty' lemma: CLOSE.SFLIJ. This lemma is not relevent to our theory, but it is

needed to make the prover at a specific point in the proof of TAU.RAVELI 'close' an

expansion of function SF_~J (see Appendix B). To deal wlth problems like the necessity

of lemma CLOSE. SE~J will be one of the challenges of advancing the automation of proofs
in our theory.

We required two declarations and four axioms to express the knowledge inherited

from Stage I. Of course, they are all part of the basic theory. Relative to that theory, the
transformation of TALl is completely defined and certified.

5. Conclusions

Today, theorem provers are already helping to certify the mass of relatively trivial verifi-

cation conditions that are generated by current mechanical program verification systems

90 CHRISTIAN LENGAUER

for example [9, 14]). We study the mechanical treatment of more complicated verifi-
cation conditions, conditions that are expressed recursively and proved by induction.

The goal of any research of this kind is to shift the responsibility for program develop-
ment and certification from humans to expert programs. We are exploring the usefulness
of techniques in automated theorem proving for the formal derivation of programs,

specifically, the derivation of concurrency in programs.
At present we are focussing on a very specific class of programs: sorting networks. We

chose sorting networks for three reasons. First, they are well-suited for our methodology:

they terminate and only their results, not their behaviors matter. Second, they have a

simple semantic structure with only one basic component: the comparator module.

Third, they are extensively researched [16] and of more than academic interest: many

data processing applications require sorting.
We have developed a weakest precondition generator function ~r for programs written

in the language RL of our original methodology [19, 20]. The implementation of the

semantic theory of RL (with function ~) would be significantly more complex than that
of sorting networks presented here (with function M. CS). We want to assess the practicality
of our approach in a well-understood problem domain with a simple semantic theory

first.
Recently, we have extended the mechanical theory to general sorting networks with

comparator modules that deal with arbitrary rather than adjacent elements. In that
theory, traces are composed of pairs of integers, not single integers. We have obtained a

mechanical proof of a transformation of Batcher's bitonic sort [13] and plan to continue

our study of trace transformations of sorting networks. We are looking for heuristics that

make our mechanical proofs depend less on interaction with the user. Essentially, we
must make Boyer and Moore's prover an expert in trace transformations of sorting net-
works, by enriching the basic semantic theory and providing mechanical aids in the

generation of intermediate lemmas.
Proving that a given trace cannot be derived is equally interesting as proving that

it can be derived. For example, TAW does not represent the fastest execution that sorts
in place. There are sorts with sorting networks that perform in linear time with a

smaller constant and even in sublinear time [16]. However, these executions cannot
be derived from TAt/by the given independence declaration. The proof would have to
resort to a meta theory about semantic declarations and the trace transformations they

permit.
Rather than building our own structural induction prover, we decided to work

with Boyer and Moore's mechanized logic. The power of Boyer and Moore's prover
gives us a lot of flexibility. We can easily change the programming language that we
want to work with. And we can also deal mechanically with the mathematical theory
in which we qualify our semantic declarations. In the case of the insertion sort, this

theory, the theory of non-neighbors, is quite simple. In other examples it may be more
involved (see, for instance, the bitonic sort [13]). The structure and user-friendliness
of Boyer and Moore's prover makes it a suitable tool for the development of mechanized

theories.

THE ROLE OF AUTOMATED THEOREM PROVING

Append ix A: Events o f P r o o f Session

91

This appendix presents all events in the order in which they have been accepted by the

theorem prover. We use four kinds of events: declaration of a function, definition of a

function, addition of an axiom, and proof of a lemma. We shall briefly review the input

command format of each. The User's Manual [4] explains how to run proof sessions, in
general.

(1) Function Declaration: (DCL name args)

DCL declares name to be an undefined function with formal arguments args.

(2) Function Definition: (DEFN name args body hints)

DEFN defines a function named name with formal arguments args and with body

body. Before admission of the function, the prover attempts to certify its termi-

nation by identifying a well-founded relation such that some measure ofargs gets

smaller in every recursive call. In some cases, this relation and measure must be
provided in the fourth argument hints.

(3) Add Axiom: (ADD.AXIOMname types term)

ADD.AXIOM adds a new axiom. The name of the axiom is name, types specifies

the ways in which the axiom is used by the prover, and the statement of the

axiom is term. All of our axioms are of type REWRITE, i.e., are used as rewrite rules.
(4) Prove Lemma: (PROVE. LEMMA name types term hints)

PROVE.IEMMAattempts to prove the conjecture term and remember it as a

lemma named name. Only successfully proved lemmas are admitted as events.

Lemma name will be used according to types. Our lemmas are all used as rewrite

rules. The fourth argument hints may contain several kinds of directives to aid the
proof. We use the following:

(INDUCT(nameargs)) Use the induction scheme reflected by the recursive

definition of function (name args),

(DISABLE ev I . . . evn) Prevent the use of events evl to evn in the proof.

The following list of events contains: 2 declared functions, 22 defined functions,
4 axioms, and 39 lemmas, i.e., 67 events in all.

SEMANTIC THEORY OF SIMPLE SORTING NETWORKS

Trace Composition

(DEFN APPEND (X Y)
(IF (NLISTP X)

Y
(CONS (CAR X) (APPEND (CDR X) Y))))

(DEFN APPEND2 (X Y)
(IF (NLISTP X)

(IF (EQUAL X NIL)
Y
(CONS X Y))

(CONS (CAR X) (APPEND2 (CDR X) Y))))

92

(PROVE. [,EMMA APPEND2. NIL (REWRITE)
(AND (IMPLIES (NOT (E~AL X NIL))

(NOT (EC~UAL (APPEND2 X Y) NIL)))
(IMPLIES (NOT (EQUAL Y NIL))

(NOT (E~AL (APPEND2 X Y) NIL)))))

(DEFN PLISTP CX)
(IF (NLISTP X)

(EQUAL X NIL)
(PLISTP (CDR X))))

(PROVE. LEMMA PLISTP .APPEND (REWRITE)
(IMPLIES (AND (PLISTP X) (PLISTP Y))

(PLISTP (APPEND X Y))))

(PROVE.I..E~ APPEND2.APPEND (REWRITE)
(IMPLIES (PLISTP X)

(EQUAL (APPEND2 X Y) (APPEND X Y))))

CDEFN ALL.ATOMS (L)
(IF (LISTP L)

(IF (E~AL (CDR L) NIL)
(AI/,.ATOMS (CAR L))
(APPEND (ALL.ATOMS (CAR L))

(ALL.ATOMS (CDR L))))
(IF (Ef~AL L NIL)

NIL
(LIST L))))

(PROVE. LEMMA ALL.ATOMS. PLISTP (REWRITE GENERALIZE)
(PLISTP (ALL. ATOMS L)))

(PROVE.LEMMA AI.~.ATOMS.APPEND2 (REWRITE)
(F_~/AL (ALL.ATOMS (APPEND2 X Y))

(APPEND2 (ALL.ATOMS X) (ALL.ATOMS Y))))

CHRISTIAN LENGAUER

Trace Seman tics

(DCL CS (I S))

(DCL IND.CS (I J})

(DEFN IS. IND.CS (I L)
(IF (NLISTP L)

T
(AND (IND. CS I (CAR L))

(IS.IND.CS I (CDR L)))))

(PROVE. 12_MMA IS. IND. CS .APPEND (REWRITE)
(F_J~AL (IS. IND. CS I (APPEND L1 L2))

(AND (IS.IND.CS I L1) (IS.IND.CS I L2))))

(DEFN ARE. IND. CS (LI L2)
(IF (NLISTP L1)

T
(AND (IS. IND.CS (CAR L1) L2)

(ARE.IND.CS (CDR LI) L2)}))

THE ROLE OF AUTOMATED THEOREM PROVING

(PROVE.II.MMA APE. IND.CS.APPEND.RIGHT (REWRITE)
(F~AL O~X. IND.CS U (APPEND Le L3))

(AND (ARE. IND. CS LI I,,9) (ARE. IND. CS LI L3))))

(l ~ . I 2 _ J 4 ~ AIE. IND.CS.APPF_JO.LEFT (REWRITE)
(~ A L (ARE. IND.CS (APPEND L1 12,) I.,3)

(AND (ARE. IND. CS L1 12) (ARE. IND. CS L2 L3))))

(PROVE. I ~ ARE. IND. CS. NIL (REWRITE)
(ARE. IND. CS L NIL))

(DEFN M. CS (FLAG L S)
(IF (NLISTP L)

(IF (FI~UAL L NIL) S (CS L S))
(IF (E~AL FLAG "PAR)

(IF (F_~AL (CDR L) NIL)
(M.CS "SE~ (CAR L) S)
(IF (AP~.IND.CS (ALL.ATOMS (CAR L))

(ALL.ATDMS (CDR L)))
(X. cs 'SF_a

(CAR L)
(M.CS 'PAR (CDR L) S))

F))
(M.CS 'PAR

(CAR L)
(IF (F_~AL (CDR L) NIL)

S
(M.CS "SF_.Q (CDR L) S))))))

(ADD, AXIOM CS. TAKES. NUMBERS (REWRITE)
(IMPLIES (NOT (NUMBERP I))

(F_~AL (CS I S) F)))

(ADD.AXIOM CS. IS. NOT. MIRACLE (REWRITE)
(~ A L (CS I F) F))

(PROVE. l ~ ~. CS. IS. NOT. MII~CLE (REWRITE)
(FI~JAL (M.CS FLAG L F) F)
((INDUCT (M. CS FLAG L S))))

(PROVE. LEMMA M. CS. IDENTITY (REWRITE)
(FA~JAL (M.CS FLAG (LIST (LIST L)) S)

(M.CS FLAG L S)))

(PROVE. Lm4MA M. CS. CONS (REWRITE)
(IMPLIES (AND (NUMBEP2 I)

(OR (FaUm~ FLAG "SE~)
(AND (FaUAL FLAG "PAR)

(IS.IND.CS Z (ALL.ATOMS L)))))
(FaUAL (M.CS FLAG (CONS I L) S)

(CS I (M.CS FLAG L S)))))

(P~[FCE.I.~ M.CS.APPEND2.NIL (REWRITE)
(F_I~UAL (M. CS FLAG (j%PPF_~2 L NIL) S)

04.CS FLAG L S))
((INDUCT (M.CS FLAG L S}}})

93

94

(P R O V E . I . ~ M.CS.APPF_..~2 (REWRITE)
(IMPLIES (OR (~ A L FLAG "SF_.~)

(Am) (EffJAL HAG "PAR)
0mE.IND.CS (ALL.ATOmS m)

(aLL.ATOms 12))))
(F_~UAL (M.CS FLAG (APP.2 LI L2) S)

(M. CS FLAG LI (M. CS FLAG L2 S))))
((INDUCT (M.CS FLAG L1 S))))

CHRISTIAN LENGAUER

Trace Transformation Rules

(PP, OVE.~ G3i (REWRITE)
(IMPLIES (ARE.IND.CS (ALL.ATOmS LI) (ALL.ATOmS L2))

(F_~AL (M.CS "PAR (CONS LI L2) S)
(M. CS ~ (APPEND2 LI (LIST L2)) S))))

(PROVE.LE~ G311 (REWRITE)
(IMPLIES (AND (NOT (~AL L NIL))

(ARE.IND.CS CAIJ_..ATOmS Li) ~.ATOmS L2)))
(F_~UAL (M.CS "PAR (CONS (APPFJ~2 LI L) L2) S)

(M.CS "S~ (APPEND2 LI (LIST (CONS L L2))) s)))
((INDUCT (APPEND2 hl L))))

(ADD.AXIOM GL0~L.IND.CS (REWRITE)
(IMPLIES (IND.CS I J)

(F_J~UAL (CS J (CS I S))
(CS I (CS J S)))))

(PROVE.1.EMMA IS. IND. CS. IMPLIES. COI~ATIVlTY (REWRITE)
(IMPLIES (IS.IND.CS I (ALL.ATOmS L))

(FaUAL (CS I (M.CS FLAG L S))
(M.CS FLAG L (CS I s))))

((INDUCT (M.cs FLAG L S))))

(PROVE.[Y_MMAAKE.IND.CS.IMPLIES.COMMUTATIVITY (REWRITE)
(IMPLIES (ARE.IND.CS (ALL.^TOmsLi) (ALL.ATOmS[a))

(E~JAL (M.CSFLAGi LI (M.CS FLAG2L2S))
(M.CSFLAG2L2 (M.CSFLAG! LI S))))

((INDUCT (M.CS FLAGI LI S))))

Theory of Maximum

(DEFN MAX (L)
(IF (NLISTP L)

0
(IF (LF~SP (CAR L) (MAX ((DR L)))

(MAX CCDR L))
(CAR L))))

(DEFN h:JI~ER. LISTP (L)
(IF (ULISTP L)

(Fs L NIL)
(AND (I~JMBERP (CAR L))

(I~o~BER. LISTP (CDR L)))))

(PROVE. ~ NUMBER. LISTP. PLISTP (REWRITE)
(IMPLIES (NUNBER. LISTP X) (PLISTP X)))

THE ROLE OF AUTOMATED THEOREM PROVING 95

(PROVE. I21dMA MAX. NUMBER. LISTP (REWRITE)
(IMPLIES (NUMBER. LISTP L) (NUMBERP (MAX L))))

(PROVE. LEMMA MAX.APPEND (REWRITE)
(IMPLIES (AND (NUMBER. LISTP X) (NUMBER. LISTP Y))

(EC~'tJAL (MAX (APPEND X Y))
(MAX (LIST (MAX X) (MAX Y))))))

(PROVE.~ NUMBER.LISTP.APPEND (REWRITE)
(IMPLIES (AND (PLISTP X) (PLISTP Y))

(E~UAL (NUMBER. LISTP (APPEND X Y))
(AND (NUMBER, LISTP X) (NL~4BER. LISTP Y)))))

Theory of Non-Neighbors

(DEFN NON. NEIGHBORS (I J)
(AND (NUMBERP I)

(IfdMB~P J)
(NOT (EQUAL I J))
(NOT (EQUAL I (ADD1 J)))
(NOT (EQUAL (ADD1 I) J))))

(ADD .AXIOM NON. NEIGHBORS .ARE. IND. CS (REWRITE)
(IMPLIES (NON. NEIGHBORS I J) (IND. CS I J)))

(DEFN HAS. NO. NEIGHBOR (I L)
(IF (NLISTP L)

T
(AND (NON. NEIGHBORS I (CAR L))

(HAS.NO.NEIGHBOR I (CDR L)))))

(PROVE. LEMMA HAS. NO. NEIGHBOR. IS. IND. CS (REWRITE)
(IMPLIFZ (}{AS. NO. NEIGHBOR I L) (IS. IND. CS I L)))

(DEFN HAVE. NO. NEIGHBOR (LI L2)
(IF (EISTP LI)

T
(AND (HAS.NO.NEIGHBOR (CAR LI) L2)

(HAVE. NO. NEIGHBOR (CDR LI) L2))))

(PROVE. L ~ HAIE. NO. ~ E I (~ .ARE. IND. CS (REWRITE)
(IMPLIES (HAVE. NO. NEIGHBOR LI L2.) (ARE. IND. CS LI L~)))

(PROVE. L ~ MAX. NON. NEIGHBOR (REWRITE)
(IMPLIES (AND (NUMBER.LISTP L)

(LESB-~ (ADD1 (MAX L)) I))
(E~AL (HAS. NO. NEIGHBOR I L)

(NON. NEICE~BORS I (MAX L)))))

96

APPLICATION: EQUIVALENCE OF TAU AND TAU~

Trace Definitions

(DE.FN SEL~J (K)
(IF (ZI~2qOP K)

NIL
(CONS K (SF_.QJ (SUB1 K)))))

(D~N SzqIa (K)
(IF (ZEROP K)

NIL
(APPFAID2 (SEQIJ (SUB1 K)) (SF~J K))))

(DEFN TAU (N) (SEQIJ N))

(DEFN PARI (K)
(IF (~P K)

NIL
(IF (EQUAL K 1)

(LIST 1)
(CONS K (PARI (SUBI (SUB1 K)))))))

(DEFN T1- (I)
(IF (ZEROP I)

NIL
(APPEND2 (T1- (SUB1 I)) (LIST (P ~ I I)))))

(DEFN T2- (I)
(IF (ZEROP I)

NIL
O~PPEND2 (LIST (P~uRI I)) (I"2- (b-~Bl I)))))

(DEFN TALl- (N)
(APPEND2 (TI- (SUB1 N)) (I"2- N)))

(DEFN UNRAVEL.PARI (K)
(IF (ZE2ROP K)

NIL
(IF (EtJJAL K I)

(LIST I)
(IF (E~AL K 2)

(LIST 2)
(CONS K (LIST (PARI (SUB1 (SUB1 K)))))))))

(DEFN UNRAVEL.T2- (I)
(IF (ZEROP I)

NIL
(APPEND2 (UNP~VEL.PARI I)

(tmRAVZL.T2- (stml I)))))

CHRISTIAN LENGAUER

Trace Transformation Prerequisites

(PROVE. ~ {@JMBER. LISTP.PARI (REWRITE)
(NUMBEXR.LISTP (AI_L.ATO~ (PARI K))))

(PROVE. ~ IdAX.PARI (REWRITE)
(INPLI~ (NUMIBERP K)

(E~;Um. (NLJ, X (~.A~ (P~I K))) K)))

THE ROLE OF AUTOMATED THEOREM PROVING

(PROVE. LF_MMA IND. PARI (REWRITE)
(IMPLIES (LESSP 1 K)

(HAIE.NO.NEIGHBOR (aU.I..A'IIJ~ K)
(ALL.ATDMS (PARI (SUB1 (SUB1 K)))))))

(PROVE. LEMMA NUMBER. LISTP. T2- (REWRITE)
(NUMBER.LISTP (ALL.ATOMS (T2- I))))

(PROVE. LD4MA MAX. T2- (REWRITE)
(IMPLIES (NIgBERP I)

(FINAL (MAX (ALL.ATOllS (T2- I))) I)))

(PROVE. LEMMA IND. T2- (REWRITE)
(IMPLIES (LESSP I I)

(HAVE.N0.NEIGHBOR (ALL.ATOMS I)
(ALL.ATOMS (2"2- (SUB1 (SUB1 I)))))))

Trace Identities

(PROVE. LEMMA T2-. SHIFT (REWRITE)
(IMPLIES (LESSP 2 N)

(FaUAL (M.CS "SEQ
(UNRAVEL. PARI N)
(M.CS "s~ (T2- CSUBI (SUBI (SUBI N)))) S))

(CS N (M.CS "SEQ (T2- (SUBI (SUBI N))) S)))))

(PROVE. LEMMA TAU-. SHIFT (REWRITE)
(IMPLIES g.w.qSP 0 N)

(FaUAL (M. CS "SFa
(TI- N)
(M.CS "SF~ (1"2- (SUB1 N))S))

(M. c s "SF~
(T1- (SUBI N))
(M.CS "SEQ (T2- N) S)))))

97

Trace Transformations

(PROVE. LEMMA CLOSE. SEQJ (REWRITE)
(IMPLIES (NUMBERP N)

(E{~JAL (CS (ADD1 N) (M.CS "SE~ (SF_J~J N) S))
(M.CS "SE~ (SEQJ (ADD1 N)) S))))

(PROVE. LFh94A TAU.RAVEL1 (REWRITE)
(IMPLIES g.F.~SP 1 N)

(F~AL (M.CS "sy_~ (U~AVEL.T2- N) S)
(M. c s "SF~

(APPEND2 (1"2- (SUB1 (SUB1 N))) (SF_QJ N))
s)))

((DISABLE SF_~J PARI I"2- UNRAVEL. PARI)))

(PROVE. LEMMA TALl. RAV~.W.~ (REWRITE)
(IMPLIES (LESSP 0 N)

(EC]UAL (M.CS "SF~ (1"2-N) S)
(M.CS "SEQ (UNRAVEL.T2-N) S)))

((DISABLE SEQJ TAU.RAVELI)))

98

(DEFN I~VEL (N S)
(IF (OR (ZERDP (SUB1 N))

(NOT (NUMBERP N)))
T
(I~VEL (SUB1 N)

04. CS "SF__~ (SF~J N) S))))

(PROVE. ~ TAU. MAIN (REWRITE)
(IMPLIES (LF~SP 0 N)

(EQUAL (M. CS "SEQ (TAU- N) S)
(M. CS "SEQ (TAU N) S)))

((DISABLE CLOSE.SF__~J SF__~J T2- UI~VEL.T2-)
(INDUCT (RAVEL N S))))

CHRISTIAN LENGAUER

Extension o f TAU. MAIN to the Empty Trace

(PROVE. ~ TAU-. NIL (REWRITE)
(IMPLIES (NOT (LESSP 0 N))

(EQUAL (TAU- N) NIL)))

(PROVE. L E ~ TAU. MAIN. COMPLETE (REWRITE)
(E~IJAL (M.CS 'SEQ (TAU- N) S)

(M.CS "SF_Q (TAU N) S))
((DISABLE TAb'-)))

A p p e n d i x B: P r o o f Out l ine o f T A U ' s T r a n s f o r m a t i o n

Each transformation theorem expresses an identity of twoM. CS function calls. We sketch
each proof by presenting the major rewrites of the left M.CS call - these rewrites are
named L1 to Lm, and the right M.CS call - these rewrites are named R1 to Rn. Lm and

Rn yield matching calls.

TAU. RAVEL1

(M. CS "SE~ (~WL. T2- N) S)
(L1) = (M.CS 'SEQ (UNRAVEL.PARI N)

(M.CS 'SFA~ CU~VEL.T2- N-l) S))
(L2) = (M.CS "SEQ CONRAVEL.PhRI N)

(M.CS "SEQ (APPEND2 (T2- N-3)
(SF~J N-D) S))

(L3~ = (M.CS 'SEQ (UNRAVEL.PhRI N)
(M. CS "b-~ (T2- N-3)

(M.CS " b ~ (b-~J N-I) S)))
(L$} = (CS N (M.CS 'SE~ (1"2- N-2)

(M.CS "SFAI (SEQJ N-I) s)))
(L5) = (M.CS 'SE{~ (T2- N-2)

(cs N (M.CS 'SE~ (SE~J N-l) S)))
(L6) = (M. CS "SE~ (]2- N-2)

(M.CS "SE~ (SEQJ N) S))

THE ROLE OF AUTOMATED THEOREM PROVING 99

(M. CS "SEQ (APPEND2 (2"2- N-2) (SEQJ N)) S)

(RI) = (M. CS 'SEQ (T2- N-S)
(M. CS "SEQ (SEaJ N) S))

(L1) by UNRAVEL.T2- and M.CS.APPEND2
(1,2) by induction hypothesis for N-1
(L3) by M. CS.APPENDS
(L4) by T2-. SHIFT
(1,5) by IND. T2- and IS. IND. CS. IMPLIES. COMMUTATIVITY
(L6) by CLOSE. SEQJ
(RI) by M. CS.APPEND2

TAU. RAVEL2

(M.CS 'SE~ (T2-N) S)
(L1) = (M.CS 'PAR (PARI N)

(M.CS 'SYa (T2- N-I) S))
(1,2) = (M.CS 'PAR (PARI N)

(M.CS "SEq CONRAVEL.T2- N-I) S))
(LS) = (M.CS "PAR (CONS N (PARr N-S))

(M.CS 'SEQ (UNP, AVEL.T2- N-l) S))

(L4) = (M.CS "SE~I (CONS N (LIST (PARI N-2)))
(M.CS 'SEq (UNP, AVEL.T2-N-I) S))

(M.CS "SEq COI~VEL.T2-N) S)
(R1) = (M.CS 'SE~I (UNRAVEL.PARI N)

(M.CS "SEQ (UNRAVEL.T2-N-I) S))
(R2) = (M.CS 'SEq (CONS N (LIST (PARI N-S)))

(M.CS "SF_.Q (UI~VEL.T2- N-l) S))

(1,1) by T2-, M.CS, and M.CS.APPENDS
(L2) by induction hypothesis for N-1
(1,3) by PARI
[L~) by IND.PARI, G31, and APPENDS
(R1) by UNRAVEL.TS- and M.CS.APPEND2
(Re) by UNRAVEL. PARI

TAU. MAIN

(M.CS "SEQ (T^U-N) S)
(LU = (M.CS "SEQ (T1- N-I)

(M.CS " s ~ (T2-N) S))
([,2) = (M.CS "SEQ (TI- N-l)

(M.CS 'SE~ g.maAVEL.T2-N) S))
(LS] = (M.CS "SEQ (T1- N-I)

(M. CS "SEQ (I"2- N-2)
(M. CS 'SF~ (SF~J N) S)))

(1,4) = (M.CS "SEa (TI- N-2)
(M.CS "SF_a (T2- N-D

(M.CS "~_~ (SEqJ N) S)))
(I , 5) = (M.CS "SF~ (SE~tZJ N-l)

(M.CS "SF~ (S~J N) S))

100 CHRISTIAN LENGAUER

(R1)
(M. CS "SEQ (TALl N) S)
(M.CS "SEQ (S ~ I J N - l)

(M.CS 'SEQ (SEQJ N) S))

(L1)
(Le)
(LS)
(L~)
(LS)
(R1)

by TAU- and M.CS.APPEND2
by TAU. RAVEL2
by TAU.RAVEL1 and 14.CS.APPEND2
by TAW'. SHIFT
by induction hypothesis for N - l , TAU,
by TAU and SEQIJ

and TAW

Acknowledgement

This research was partially supported by a Summer Research Award of the University
Research Institute of the University of Texas at Austin. I am indebted to J Moore and
Bob Boyer who responded patiently to my countless questions about their prover.
J Moore really bore the burden of introducing me to automated theorem proving. He
also helped me getting started with the implementation of my theory.

References

1. Ackerman, W. B., 'Data-flow languages', Computer 15, 15-25 (1982).
2. Bates, J. L. and Constable, R. L., 'Proofs as programs', Tech. Rept. TR 82-530, CorneU University

(1982).
3. Boyer, R. S. and Moore, J S.,A ComputationalLogic, Academic Press, New York (1979).
4. Boyer, R. S. and Moore, J S., 'A theorem prover for recursive functions, a user's manual', Com-

puter Science Laboratory, SRI International (1979).
5. Chang, C. and Lee, R. C., Symbolic Logic and Mechanical Theorem Proving, Series in Computer

Science and Applied Mathematics, Academic Press, New York (1973).
6. Dahl, O. -J., Dijkstra, E. W., and Hoare, C. A. R., Structured Programming, A.P.I.C. Studies in

Data Processing, Vol. 8, Academic Press, New York (1972).
7. Dijkstra, E. W., A Discipline of Programming, Series in Automatic Computation, Prentice-HaU,

Englewood Cliffs (1976).
8. Floyd, R. W., 'Assigning meanings to programs', Proc. Amer. Math. Soc. Symposia in Applied

Mathematics, Vol. 19, pp. 19-32 (1967).
9. Good, D. I., 'The proof of a distributed system in Gypsy', Tech. Rept. #30, Institute for Com-

puting Science, The University of Texas at Austin (1982).
10. Gries, D., The Science of Programming, Texts and Monographs in Computer Science, Springer-

Verlag, New York (1981).
11. Hehner, E. C. R., 'do considered od: A contribution to the programming calculus', Acta lnfor-

matica 11,287-304 (1979).
12. Hoare, C. A. R., 'An axiomatic basis for computer programming', Comm. ACM 17, 576-580,583

(1969).
13. Huang, C. -H. and Lengauer, C., 'The automated proof of a trace transformation for a bitonic

sort', Tech. Rept. TR-84-30, Department of Computer Sciences, The University of Texas at
Austin (1984).

14. Johnson, S. and Nagle, J., 'Automatic program proving for real-time embedded software', Proc.
lOth Ann. ACM Symp. on Principles of Programming Languages, Association for Computing
Machinery, pp. 48-58 (1983).

15. Knuth, D. E. and Bendix, P., 'Simple word problems in universal algebras, in Computational
Problems in Abstract Algebra, (ed. J. Leech), Pergamon Press, London (1970).

16. Knuth, D.E., The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-
Wesley, Reading, Mass., Sect. 5.3.4 (1973).

THE ROLE OFAUTOMATEDTHEOREM PRO~NG 101

17. Kuck, D. J., 'A survey of parallel machine organization and programming', Computing Surveys 9,
29-59 (1977).

18. Lamport, L., 'The "Hoare logic" of concurrent programs', Acta Informatica 14, 21-37 (1980).
19. Lengauer, C. and Hehner, E. C. R., 'A methodology for programming with concurrency: an

informal presentation', Science of Computer Programming 2, 1-18 (1982).
20. Lengauer, C., 'A methodology for programming with concurrency: the formalism', Science of

Computer Programming 2, 19-52 (1982).
21. Lengauer, C., 'A methodology for programming with concurrency', Tech. Rept. CSRG-142,

Computer Systems Research Group, University of Toronto (1982).
22. Lengauer, C. and Huang, C. -H., 'The static derivation of concurrency and its mechanized certifi-

cation', Proc. NSF-SERC Seminar on Concurrency, Lecture Notes in Computer Science, Springer-
Verlag, New York (1984). To appear.

23. Manna, Z. and Pnueli, A., 'Temporal verification of concurrent programs: the temporal frame-
work for concurrent programs', in The Correctness Problem in Computer Science, (eds. R.S.
Boyer and J S. Moore), International Lecture Series in Computer Science, Academic Press, New
York (1981), pp. 215-273.

24. Manna, Z. and Waldinger, R., 'A deductive approach to program synthesis', ACM TOPLAS 2,
90-121 (t980).

25. Owacki, S. S. and Gries, D., 'An axiomatic proof technique for parallel programs', Acta Infor-
mattca 6, 319-340 (1976).

26. Russinoff, D. M., An experiment with the Boyer-Moore program verification system: a proof of
Wllson's theorem', Tech. Rept. #38, Institute for Computing Science, The University of Texas at
Austin (1983).

