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Abstract 

Different techniques of automated formal reasoning are described and their performance 
and requirements on the human user are evaluated. The main trade-off is between autonomy 
and flexibility in conducting proofs. Examples of the use of techniques and existing systems 
are given, but not attempt of an exhaustive overview is made. The goal is to provide the 
reader with an idea of what to look for when selecting an approach for his/her application. 
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1. Introduction 

We use computers  because we expect them to assist us in tackling problems. 
No matter  what particular task we want the computer  to assume, we expect it to 
increase the precision, or the speed, or the convenience with which we treat a 
problem. Frequently, we have several of  these expectations at the same time. 

Computers  are electronic automata.  As such, they are inherently formal. They 
are most  reliably described and used in a formal  manner.  Humans  are not  
automata or, if they are, the formal rules by  which they operate are beyond our 
comprehension. Humans  feel most  comfortable  with informal  treatments.  

How can we consolidate the different natures of the computer  and the human? 
(1) We can either 'cater to the human,  and permit  h i m / h e r  to deal with the 

computer  in an informal manner,  even though it is an automaton.  The 
consequence is a loss of precision, because the formal  rules by  which the 
computer  operates are not  understood. But we hope  for a gain in conveni- 
ence. 

(2) Or we can cater to the computer  and force the human  to deal with it 
completely formally. The consequence is a loss of  convenience. But we hope  
for a gain in precision. 
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Let us now constrain ourselves to the particular application of interest: 
automated reasoning. Our previous contemplations lead to two alternative routes 
of attack: 
(1) Informal reasoning. This approach tries to assist the human in dealing with 

the computer in informal terms. Examples are techniques of machine learn- 
ing, natural language understanding, and expert systems. 

(2) Formal reasoning. This approach tries to assist the human in dealing with the 
computer in formal terms. It employs formal logics in which propositions can 
be expressed and reasoned about in a precise manner. These logics are 
implemented as model checking, proof checking, or theorem proving pro- 
grams. Theorem proving programs can, again, be viewed as expert systems. 

What do we want the computer to enhance-precision or convenience? Let us 
proceed on the assumption that precision is far more important to us than 
convenience, and that the problem at hand can be expressed in a formal logic. 
Then the approach we would choose is formal reasoning. We offer a brief survey 
of different techniques available today by which a computer can assist a human 
in justifying a formal claim, i.e., in proving a theorem. 

2. Automated formal reasoning 

Formal reasoning is the deduction of formally expressible propositions from 
other formally expressible propositions by way of formal inference rules. 1 In 
automated formal reasoning, these inference rules are applied by a computer 
program, a formal reasoning system. 2 We desire two properties of a formal 
reasoning system: 

(1) Consistency. Only valid propositions can be proved. 
(2) Completeness. All valid propositions can be proved. 

A proposition is valid if it is a theorem in every model of the logic that the 
formal reasoning system implements. Consistency is absolutely essential. If the 
truth and untruth of one proposition cannot be distinguished, the truth and 
untruth of any proposition cannot be distinguished. Completeness is not as 
essential, and is often not attained by formal reasoning systems. 

Model checking is a simple version of proving. Model checking means certify- 
ing the validity of a proposition in a proposed model. Proving means certifying 
the validity of a proposition independently of the model, i.e., in all possible 
models. For applications that are tied to specific models of interest, model 

This does not mean that propositions have to reflect facts that are known with certainty. Special 
logics that can express beliefs permit reasoning with uncertainty [19,24,33]. 
We refer with the word "system" always to an implementation. 
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checking may be preferable to proving, because it can usually be made completely 
autonomous. For example, model checking has become popular for certifying 
claims in temporal or dynamic logics [7,14]. 

We shall here focus on proving and disregard model checking. Bundy [5] 
provides a good first introduction to automated theorem proving. 

3. Proof procedures 

At first sight, the best of all systems seems to be one that is consistent, 
complete, and entirely autonomous. We call such a system a proof procedure. 
Proof procedures are especially attractive for certain very limited application 
domains. For more general domains, they tend to be inefficient, because there is 
no freedom of choice in proof strategies-every proof is approached in the saine 
way. To avoid such inefficiencies, one would need to take the particular nature of 
the proposition at hand into account. This is called natural deduction and is the 
topic of the next section. 

We discuss, by example, two proof procedures: resolution, the (proof by) 
refutation procedure for first-order predicate logic, and Wu's Algorithm, a proof 
procedure for a part of elementary geometry. 

3.1. RESOLUTION 

Resolution is a consistent and complete proof procedure for first-order predi- 
cate logic. It is based on the principle of refutation: inferring a contradiction from 
the negation of the proposition to be proved. 

3.1.1. Example s 
Consider the following claim. Accepting the following hypotheses, 

(1) whoever can read is literate, 
(2) dolphins are not literate, 
(3) some dolphins are intelligent, 
we would like to conclude that 
(4) some who are intelligent cannot read. 
Our first step is to formalize the proposition in first-order predicate logic. We 
define four predicates: 
R(x) means x can read, 
L(x) means x is literate, 
D(x) means x is a dolphin, 
l(x) means x is intelligent. 

s Borrowed from [20]. 
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The logical 

(1) (Vx: 

(2) (w: 
(3) (3x: 
(4) (:Ix: 

formulas that correspond to our four propositions are: 

R(x) = L(x)), 
D(~)  = -~Z(x)), 
D(x) A I(x)), 

The claim is [(1)A (2)/X (3)] ~ (4). Resolution works by refutation, that is, 
attempts to derive a contradiction from the negated claim [(1) ^ (2) A (3) A --,(4)]. 
Let us spell out the negation of (4): 

(4') (Vx: --,I(x) V R(x)). 

Resolution can deal only with propositions that are in a syntactic normal form, 
the so-called conjunctive normal form or clausal form. A predicate in clausal form 
consists of groups of literats. A literal is a predicate symbol, or a negated 
predicate symbol. A group of literals is called a clause. Within each clause, literals 
are composed by disjunction (v ) .  Clauses are composed by conjunction (A). 
Any first order predicate can be put into clausal form. 4 Converting our proposi- 
tions into clausal form yields: 

(1) -~R(x) v L ( ; ) ,  

(2) 
(3a) D(a), 
(3b) I ( a ) ,  

(4') , I ( x )  v R(x). 

Imagine an unwritten A between any two neighboring clauses. Imagine also a 
(Vx: ... ) around every clause that mentions x. a denotes an arbitrary constant in 
the range of variable x. A constant like a that is used to eliminate existential 
quantifiers is called a skolem constant. 

To expose a contradiction in these five clauses, we employ the principle of 
resolution to derive new clauses. Take, for instance, clauses (1) and (2). They 
contradict each other in the validity of predicate L(x). By the Law of the 
Excluded Middle, exactly one of L(x) and ~L(x)  must be valid. If --,L(x) is 
valid, then the validity of clause (1) requires the validity of ~R(x). If L(x) is 
valid, then the validity of clause (2) requires the validity of --,D(x). Hence, 
clauses (1) and (2) let us infer the new clause: 

(5) 
The continuation of this resolution process is depicted as a layered graph whose 
nodes are clauses (fig. 1). The top layer of the graph contains the input clauses. 
Input clauses have no predecessors (nodes in higher layers). Each subsequent 

4 An algorithm to that effect is presented in [20]. 
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(i) ~x) v L(:) (2) ~D(:) V ~L(:) (3a) D(.) (Sb) I(~) (¢) ~I(=) v R(:) 

(io) m 

Fig. 1. A (partial) resolution graph. 

layer contains the clauses obtained by resolving clauses of higher layers with each 
other. Each derived clause has two predecessors: the clauses it is derived from. 

Clause (1) cannot be resolved with clauses (3a) or (3b) because it does not 
share literals with them, but clauses (1) and (4') lead to the new clause (6). Clause 
(2) resolves with clause (3a) to clause (7). To derive clause (7), we must restrict 
the range of x to a. This process is called unification. Clause (2) does not resolve 
with clauses (3b) or (4'). Clause (3a) does not resolv, e with clauses (3b) or (4'). 
Clause (3b) resolves with clause (4') to clause (8). At this point, we have resolved 
all input clauses against each other, i.e., we have completed the layer below the 
input clauses. We now proceed to resolve input clauses against derived clauses. 
Clauses (1) and (2) do not resolve with clause (5), but clause (3a) resolves with 
clause (5) to clause (9). At this point, we recognize a contradiction between the 
two most recent clauses and, resolving them, derive the empty clause (10). This 
terminates the proof. 

Note that we proceeded top-down or breadth-first in the graph, resolving 
clauses with low ordinals before clauses with high ordinals. 5 Contradictions are 
derived much faster depth-first, resolving in every step the most recently derived 
clause with some other clause. The depth-first resolution proof of the previous 
claim requires only four steps. Unfortunately, depth-first resolution is not neces- 
sarily complete: we might get caught in a loop and bypass the contradiction by an 
infinite derivation of clauses. 

5 We made an exception in the last step to prevent the proof exposition from dwelling on. 
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3.1.2. Assessment 
Resolution was the first popular method of automated theorem proving and a 

very promising start. It was invented by Robinson [25]. Unfortunately, resolution 
suffers from some major drawbacks-apart from the fact that the principle of 
proof by refutation is still debated in the mathematics community. 

A resolution proof does not apply domain-dependent knowledge or exploit the 
structure of the proposition to be proved. In fact, its first move is to get rid of the 
structure by converting the proposition into clausal form. For instance, if a 
contradiction is found, resolution cannot reveal whether the contradiction arose 
between the hypotheses and the conclusion or already in the hypotheses them- 
selves. 6 This obliteration of structure provides for little documentary value 
should the proof ever fail. 

A proof by resolution does not proceed in a goal-directed manner. It simply 
amasses clauses that can be inferred from previous clauses. It is easy to generate a 
lot of clauses that will not contribute to the detection of a contradiction. To avoid 
that, a great number of control strategies and constrained resolution principles 
have been proposed [30]. Breadth-first and depth-first are examples of control 
strategies. 

The resolution prover AURA (AUtomated Reasoning Assistant) of Wos and 
his colleagues incorporates many of these principles and strategies and a large 
number of switches with which the program can be "retuned" between proofs. 
AURA has helped in the solution of open problems in various fields of mathe- 
matics, logical circuit design, and chemical synthesis [28,29,31]. AURA's way to 
attack the efficiency problems of proof procedures is, essentially, to give the user 
a choice among several proof procedures. In the next subsection, we surmount the 
same problems by restricting the application domain. 

3.2. wu's METHOD 

Hilbert [15] based elementary geometry on five groups of axioms: 
(1) existence and incidence, 
(2) order, 
(3) congruence (or motion), 
(4) parallelism, 
(5) continuity. 
Tarski [26] provided a proof procedure for propositions in elementary geometry, 
but it is hopelessly inefficient. The Chinese mathematician Wu [32] was able to 
devise a practical proof procedure by eliminating axioms (2) and (5). In his 
restricted version of elementary geometry, one can talk about circular or straight 

6 In other words, resolution is refutation-complete, i.e., it win expose a contradiction if there is one, 
but it is not deduction-complete, i.e., it cannot determine whether one proposition is the logical 
conclusion of a set of other propositions [30]. 
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(us, u6) A 

Fig. 2. A parallelogram. 

c (,,~,.) 

lines and cross or end points, but one cannot talk about positions on lines 
between cross or end points. Chou [6] has implemented Wu's algorithm and 
obtained a system that can efficiently and independently prove non-trivial 
theorems in elementary geometry. 

3.2.1. Example 7 
Let us convey the geometrical situation that we consider by a picture (fig. 2). 

Our claim is about the points of a parallelogram. We claim that the length of the 
line from point A to point O equals the length of the line from point C to point 
O, i.e., I A O I  = I COI.  The parallelogram is positioned arbitrarily on the plane. 
Its position is determined by the coordinates of any three points that are not on 
the same line, here, A, B, and C. 

Wu's idea was to transform geometrical situations into polynomial equations, s 
For example, our geometrical situation is expressed by the following equations: 

f l :  (x 1 -  u3)(u 5 -  u , ) -  (x 2 -  u2)(u 6 -  u4) = 0 
A = B  or C =  D or ABIICD 

f2 :  (x 1 - u6)(u 2 - u,) - (x 2 - us)(u 3 - u4) ~--- 0 
A = D or B = C or AD 11 BC 

f3 :  (x z -  u4)(x 3 -  u z ) -  (x 2 -  ul)(x 4 -  u4) = 0 
O is on BD 

f4:  (u 3 -  us)(x  3 -  us) - (u 2 -  us)(x 4 -  Ur) = 0 
0 is on A C. 

The claim is represented by the quadratic polynomial equation: 

g: ( x 3 - u s ) 2 + ( x , - u 6 ) 2 - ( u 2 - x 3 ) 2 - ( u 3 - x , ) 2 = O  ]AO[=ICOI .  

The proof of the claim is established by solving f l ,  f2 ,  f3,  f4, and g as 
polynomials in the variable coordinates of D and O. More precisely, f4,  f3 ,  f2 ,  
and f l  are, in this order, divided into g. We can choose the coordinates of A, B, 

Borrowed from [6]. 
8 This forced him to eliminate axiom groups (2) and (5). They would have introduced inequalities 

in the polynomial representation. 
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and C to simplify the solution. For example, [6] chooses the origin for A, i.e., 
u5 = 0 and u 6 = 0, and the horizontal axis of the coordinate system for the line 
AB,  i.e., u 4 = 0. The division process imposes restrictions on the remaining 
coefficients. The details are too involved to be reproduced here; see [6]. We arrive 
at the following restrictions: 

(1) ul 4= 0 A D  and B C  are not the same line, 

(2) u 3 4= 0 A B  and CD are not the same fine, 

(3) u a 4:0 and u 3 4~ 0 A C and B D are not parallel, 

(4) u2 4= 0 C is not on the vertical axis. 

3.2.2. Assessment 
Wu's method is an especially successful proof procedure. Complicated theo- 

rems are proved independently in seconds. Chou's system might be viewed as the 
start of a MACSYMA [18] for elementary geometry. 

The similarity to resolution is striking. In Wu's method, polynomials assume 
the role of clauses in resolution: the polynomials representing the hypotheses are 
"resolved" with the polynomial representing the conclusion. Coefficient restric- 
tion assumes the role ~f unification. Again, the structure of the proposition is 
eliminated. Independence, together with the ability to provide a qualified answer 
to a claim, make implementations of resolution and Wu's method useful tools for 
answering questions. 9 Used in this mode, their proponents claim, these systems 
can effectively assist the human in identifying and solving problems. 

4. Natural deduction 

A natural deduction system is composed of two components: 
(1) The deductive component comprises the set of consistent inference rules by 

Which new propositions are derived from previous propositions. 
(2) The cognitive component comprises decision strategies that determine which 

inference rule is applied at some proof step. 

The deductive component is essential and can be found in each natural 
deduction system. It is largely responsible for the consistency of the system. The 
cognitive component is not essential. It may be very primitive, or it may be very 
sophisticated. The cognitive component approximates completeness. Its purpose 
is to minimize the need for human intervention in the mechanical proof. Typi- 
cally, applications that require little human intervention are called theorem 

9A programming language, for question answering, based on the principle of resolution, is 
PROLOG [8]. 
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proving, and applications that require a lot of human intervention are called proof 
checking. Where the borderline between the two lies depends on the good will of 
the user. It must be noted, however, that the degree of autonomy of the natural 
deduction system and, therefore, its classification as a proof checker or prover 
may depend on the problem at hand. Various natural deduction systems can 
perform, without aid, "small" proofs or proofs that rest on a theory in which they 
are an expert. But they need help with "bigger" proofs or proofs that rest on 
theories in which they are not an expert. A system with a strong cognitive 
component will be more autonomous but also less flexible, because proofs are 
forced to comply with the strategies of the cognitive component. Proof checking 
and proving are relatively general-purpose approaches. For restricted problem 
domains, the autonomy of proof checking and proving can be enhanced by an 
automatic generation of most or all of the input to the proof checker or prover. 
This approach, proof script generation, is also discussed in this section. 

4.1. PROOF CHECKING 

We give an example of a natural deduction system with a very primitive 
cognitive component. The system is called PRL (Proof Refinement Logic, read 
"pearl") and has been developed by Constable and his group [1]. PRL is a 
descendant of Edinburgh LCF (Logic for Computable Functions) [13]. Recently, 
the PRL system has been expanded and given a new name: Nupd (read "new 
pearl") [10]. 

4.1.1. Example 1o 
The claim to be proved is: 

(Vx, y ~ Int: (3z ~ Int: z = max(x, y))) .  

A transformation of the expression z = max(x, y)  into logic yields: 

(Vx, y ~  Int: (3z ~ Int: ( x < y = , z = y ) A  (x>~y=z=x))) .  

Let us sketch the proof of the proposition with ~ proof tree (fig. 3). The nodes of 
the tree are subgoals to be proved. The arcs are labelled with the PRL deduction 
rules that are applied to derive the subgoals. The human inputs the claim and the 
rules to be applied. The system automatically selects the target operator of each 
rule (in the figure, stated in parentheses beside the rule) and prompts the next 
subgoals. Let us explain informally the rules used in this example, level by level: 
(1) The first rule, "consequence" (seq), applies the principle of divide-and-con- 

quer. The human proposes the consideration of two cases, x < y and x >t y. 
(2) The validity of the introduced prerrfi'ss must be substantiated; this is done by 

a proof procedure for equality, lists, and integer arithmetic (arith). Also, the 

l°Adapted from [23]. 
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arith / 
l~ru¢ 

(3z~Int: (z<$1 =~ z=y) A (x>y =~ z=x))) 

(vx,~Int: (3zelnt: (z<y =* z=u) ^ ( x > y  ~ z=z) ) )  

(Vz,y~Int: (x<y V x>y)) (Vx,~Int ( z<y  V x ~ y  =* 

(Vx,y~Int: x<y ~ (Vz,~Int: x>y ~ 

(3zElnt: (x<y  =~, z=y) A (x>y ~ z~x))) 

/ 
intro y (some) / 

/ 
(Vx,~Int: z<y 

( ( ~ < y  ~ z=y)  A (~_>y = ~ ) ) )  

{Vz,~Int: x<y (Vz,~Int: x<y 

( ~ < y  ~ y=y))  = (~>_y ~ ~=~)1 

~ intro z (some) 

(Vx,~Int: x>_y 

(Vz,~Int: z~y (Vz,~Int: x>y 

( x < y  ~ x=y))  = (z>_y . . . .  )) 

intro (imp) 

arith 

intro (imp) intro (imp) 

arith arith 

intro (imp) 

arith 

[rue trtt¢ t rue t rue 

Fig. 3. A PRL proof tree. 

two cases are split. The according rule is "elimination" (dim); the system 
autonomously identifies the v in the premiss as the operator to be eliminated. 

(3) The existence claims in the two subgoals are satisfied by proposing specific 
values for z via the "introduction" rule (intro). 

(4) Introduction is applied, again, to split the conjuncts in the conclusion, 
generating four new subgoals. 
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(5) Introduction is applied, once more, to simplify the implications, and, finally, 
the proof procedure for arithmetic establishes the claimed equalities. 

4.1.2. Assessment 
The human largely has control over the proof (though, in the case of PRL, not 

completely, since the system selects the target operators of rules). The top-down 
proof log, which is produced with minimal input from the human, is of great 
documentary value. In the example, only system-defined rules were applied, but 
PRL also gives the human the choice of defining new rules in terms of previously 
defined rules. Such user-defined proof strategies are called tactics. Tactics are 
guaranteed safe because they are coded in a language, ML (the MetaLanguage), 
that does not introduce inconsistencies when combining consistent rules. Of 
course, tactics are not guaranteed to be useful. A good description of the use of 
tactics in PRL can be found in [9]. 

The main difference between PRL and its predecessor in spirit, LCF, is that 
the PRL system can automatically extract programs from proofs of propositions 
of the form: 

(g inputs: (3 outputs: predicate(inputs, outputs))). 

The program extracted from the proof of our proposition is: 
if x < y then z := y else z := x. 

Large proofs that have been certified in this style deal with denotational 
semantics, functional programs, and digital circuits [21]. LCF and PRL can be 
viewed as kits for building programs that mechanically trace proofs: primitive 
deduction rules, like the ones applied in our example, are the basic building 
blocks and ML, the programming language for tactics, is the tool for building 
new blocks. Whereas proof checkers, like LCF and PRL, are tool kits for 
individual assembly, theorem provers, to be discussed in the next section, are 
already assembled tools. 

4.2. THEOREM PROVING 

We give an example of a natural deduction system with a significant cognitive 
component that is especially effective at performing induction proofs. It is called 
THM, or the Boyer-Moore prover, named after its two creators. The Boyer-Moore 
prover [2] employs several powerful heuristics: simplification by substituting 
equals for equals (using previously proved lemmas as rewrite rules), formula 
normalization (replacing destructors by constructors), "cross-fertilization" 
(eliminating equalities from the hypothesis after using them in the conclusion), 
induction (derived from an inspection of the recursive terms in the proposition), 
and-only after the first induction has been performed-a rather adventurous 
heuristic: generalization of the claim to be proved (replacing a term by a 
variable). The human interacts with the prover by 
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(1) submitting functions that enter in the formulation of a proposition, 
(2) submitting axioms, i.e., propositions for whose validity he / she  takes the 

responsibility, or 
(3) submitting lemmas, i.e., propositions for proof by the system. 
If a function is defined recursively, it will only be accepted if the prover can 
establish that the recursion is admissible, i.e., cannot lead to an infinite regress. 
The prover reports the progress of the proof through a natural language interface. 
When the proof is going badly, the human must abort it and try to steer the 
prover into another direction either by asking it to prove auxiliary propositions or 
by supplying specific proof hints like. variable substitutions, specific lemmata 
already proved, induction schemes, etc. 

4.2.1. Example 
The Boyer-Moore mechanical logic is a functional logic. Predicates are func- 

tions with a boolean range. The most basic data structure is the list. Therefore, let 
us describe the proof of a simple property of lists. An s-expression is recursively 
defined as follows: 
(1) An atom is an indestructible s-expression. It is denoted by some identifier. 
(2) An ordered pair is a combination of two s-expressions x and y. It is denoted 

by (x.y). A constructor function, cons, combines two s-expressions to an 
ordered pair; two extractor functions, car and cdr, extract the left and right 
element of an ordered pair, respectively. 

A list is represented as an ordered pair whose left element is the first (left-most) 
element of the list, and whose right element is the list without its first element. 
For example, the list (a b c) is represented is (a.(b.(c.0))). Every proper list must 
be a nested s-expression whose inner-most right element is 0- (a.(b.(c.d))) is not 
a proper list. 

We can define two different functions that append s-expressions. The first 
function only appends proper lists properly: 11 
append(x, y)  = if -~listp ( x ) 

then y 
else cons(car(x), append ( cdr ( x ) , y ) ) 

The functional predicate listp returns true if its argument is an ordered pair, and 
false otherwise. If  the first argument is not a proper list, its inner-most right atom 
is dropped in the result, e.g., append((a.b), (c.d))= (a.(c.d)). The following 
function works for all s-expressions: 
append2 ( x, y)  = if --,listp ( x ) 

then if x -- 0 
then y 
else cons (x, y) 

else cons(car(x), append( cdr( x ), y ) ) 

11 This is the traditional LISP append function [27]. 
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For example, 
is: 

plistp(x) = if 

append2(( a. b), ( c. d)) = ( a.( b.( c. d))). A recognizer for proper lists 

- listp ( x ) 

then x -- 0 

e l se  plistp ( cdr ( x ) ) 

Plistp returns true if its argument is a proper list, and false otherwise. Finally, let 
us define a function, all-atoms, that eliminates the nesting structure of an 
s-expression. All-atoms returns a list that enumerates all atoms of its argument 
left to right: 

all-atoms (x)  = if --1 listp (x)  

then if x = 0 

then 0 

e lse  list ( x ) 

else  append ( all-atoms ( car ( x ) ), all-atoms ( cdr ( x ) ) ) 

For example, the results of all-atoms(a), all-atoms((a)), and all-atoms(((a))) are 
all (a).  When the Boyer-Moore prover admits a function definition, it already 
remembers certain facts that it has discovered in the process of admission. For 
instance, when admitting function all-atoms, the prover stores for future refer- 
ence that the result is either a literal atom (not a number) or an ordered pair. 
However, it is. not clever enough to realize at this point that the ordered pair 
always represents a proper list. 

Our claim is that all-atoms distributes over append2: 

all-atoms( append2( x, y ) ) = append2( all-atoms( x ), all-atoms(y)) 

The claim is in terms of the more general append function, append2. However, 
since all-atoms constructs proper lists only, the simpler append suffices in its 
definition. We will have to exploit the similarity of append and append2. We 
make the Boyer-Moore prover aware of this fact by asking it to prove two 
auxiliary propositions. 

The first property is the identity of append and append2 when their first 
argument is a proper list: 

plistp(x) ~ ( append2(x, y ) =  append(x, y))  

The proof succeeds immediately by an induction (on the structure of append2). 
The second property, that all-atoms returns proper lists only, enables the 

exploitation of the first property: 

plistp ( atl-atoms( x ) ). 

The proof proceeds, again, by induction (on the structure of all-atoms). But, in 
the course of the induction step, the prover discovers (by generalization) another 
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required property: that append of two proper lists returns a proper list. It proves 
this property autonomously with a second induction (on the structure of plistp). 

With help of these two properties, the prover reduces our original claim to: 

all-atoms (append2 ( x, y ) ) = append ( all-atoms ( x ), all-atoms ( y ) ) 

and then proceeds to prove this proposition independently. This proof is even 
more elaborate. Via two inductions (and generalizations), the prover works its 
way to the central property: the associativity of append, which it then proves with 
a third induction. Again, no intervention of the human is required. 

4.2.2. Assessment 
This is the Boyer-Moore prover in all its glory. The prover is not always as 

lucky at identifying appropriate inductions-and hardly ever at identifying ap- 
propriate generalizations. Even in this example, the two auxiliary lemmas are 
crucial. There are two ways of identifying needed intermediate lemmas: by 
working the proof on paper or by watching the prover go and stray. Typically one 
employs a mixture of both. 

More involved claims quickly make the Boyer-Moore prover a lot more 
dependent on the human. Proofs often run into tens of auxiliary functions and 
hundreds of auxiliary lemmas. The prover has certified substantial claims in a 
variety of areas from elementary mathematics and metamathematics (including 
Goedel's incompleteness theorem), over real-time control, to the verification of 
software and hardware [4]. In all these proofs, the Boyer-Moore prover plays the 
role of a persistent and incorruptible colleague. Despite its sophistication, it 
requires a lot more precision and constructive input than a fellow human would 
expect. 

4.3. PROOF SCRIPT GENERATION 

Natural deduction proving requires a substantial amount of interaction with 
the human. This flexibility is much appreciated by people that conduct auto- 
mated proofs. But sometimes, when we conduct many different proofs within the 
same confined theory, we would like our natural deduction system to be more 
independent. We might then elect to strengthen the heuristics of the system by 
adding a proof script generator: a preprocessor that converts our propositions into 
a sequence of commands for the proof system. Hopefully, this proof script will be 
complete enough to make any intervention during the mechanical certification 
unnecessary. 

The most wide-spread application of this mechanical proof technique is 
oerification condition generation. It is employed in the mechanical verification of 
programs. In this application, a proposition is of the form "'program satisfies 
specification", where the program is expressed in some conventional pro- 
gramming language, and the specification consists of an annotation of the 
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program. The annotation consists of logical assertions about the program's 
variables. Assertion A placed before (after) statement S expresses that the values 
of the program's variables before (after) execution of statement S must satisfy 
condition A. Typically, a verification condition generator requires 
(1) one assertion, the precondition, before the program statement that is to be 

executed first, 
(2) one assertion, the postcondition, after the program statement that is to be 

executed last, and 
(3) one assertion, the loop invariant, with every loop. 

4. 3.1. Example 
We formulate the proposition that an iterative program returns the factorial of 

its input, n, as output, z. We denote the precondition by keyword pre, the 
postcondition by post, and the loop invariant by inv: 
pre n >1 0 
z : = l ;  
if ,7 ~ 0 

then i := 1; 
inv z = i !  A i >  0 
whi le  i ~ n 

do 
i : = i + 1 ;  
z:=z * i 

od 
fi 
post z = n ! 
The verification conditions are generated by symbolic execution of the program 
code. In this example, four conditions are generated. The precondition and the 
negated condition of the if-statement must, when the value of z is 1 as the 
assignment preceding the if-statement specifies, imply the postcondition: 

(1) 
The precondition and the condition of the if-statement must, when the values of z 
and i are 1, imply the loop invariant: 

(2) ( n > O A n - - / = O A z = l A i = l ) = ( z = i ! A i > O )  
The loop invariant and the condition of the while-loop must, after execution of 
the loop body, again establish the loop invariant: 

(3) ( z = i ! A i > O A i ~ n ) = ( z ( i + l ) = ( i + l ) ! A i + l > O )  
And the loop invariant together with the negated condition of the loop must 
establish the postcondition: 

(4) ( z = i ! A i > O A i = n ) ~ ( z = n ! )  
These four propositions are submitted to the natural deduction system. 
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4.3.2. Assessment 
We have come full circle: after first considering totally autonomous and 

inflexible proof techniques, we turned to elaborate dialogue and high flexibility, 
and then traced our steps back again to more and more autonomy and less 
flexibility. We have now gained back all the disadvantages with which we started 
out: proofs with no documentary value and no choice in proof strategy. We had 
better insist on high autonomy if we want to make the price worth-while! The 
success of proof script generation depends intimately on the type of propositions 
and the natural deduction system for which proof scripts are generated. Proposi- 
tions must be easily decomposable. The behavior of the natural deduction system, 
at least in the domain for which proof script generation is contemplated, must be 
predictable enough to generate all required input. 

While other attempts of proof script generation are rare, 12 verification condi- 
tion generation has led to significant successes. Polak [22] specified formally the 
compilation problem for a Pascal-like language and employed verification condi- 
tion generation to prove that his implementation observes the specification. Boyer 
and Moore have developed a generator of verification conditions in their logic for 
(a respectable subset of) FORTRAN programs [3]. Gypsy [12], a language for 
distributed programs, comes with a verification condition generator that can be 
backed up by a variety of theorem provers. The Gypsy environment has been 
used to verify several reasonably large programs, among them the most complex 
distributed program that has been verified to date: a special interface for the 
Arpanet [11]. This program is actually in use. Proofs with verification condition 
generation are typically based on a large set of axioms that describe basic 
properties of the programming language. This axiom set could be reduced by 
using an automated theorem prover to deduce some of the axioms from others, 
but builders and users of verification condition generators shy away from this 
time-consuming and tedious task. The verification condition approach really pays 
off, when the logical foundations on which it rests can be kept small. 

5. Conclusions 

Research efforts in formal automated reasoning focus primarily on two aspects: 
the efficiency and autonomy of the certification process, and the effectiveness and 
convenience of the dialogue between the human and the system. Roughly, formal 
automated reasoning is where electronic computing used to be 35 years ago: a 

12 For example, [17] exposes the so-called Knuth-Bendix Problem [16] as a potential hazard to proof 
script generation. A fact whose logical representation involves several functions can be expressed 
in many different ways depending on which function calls are expanded. Some of those 
representations will match hypotheses of rules or theorems known to the prover, others will not. 
The absence of human control in proof script generation makes it especially difficult to walk the 
tightrope of the prover's knowledge. 
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number of specialists can make very effective use of it, but it is not yet accessible 
to the general public. However, recent developments indicate a promising future. 
The technology of formal automated reasoning has already matured to the point 
of practical relevance for present-day applications. For example, the Department 
of Defense of the United States of America requires contract programming of a 
certain criticality to be certified by any one of a fist of formal reasoning systems. 
The Gypsy verification environment is on that list, and the Boyer-Moore prover 
is part of another integrated system on that list. 

It is not surprising that, so far, much of automated formal reasoning has been 
concerned with properties of computer software and hardware. Mechanical logics 
are nothing else but very restrictive and mathematically managable programming 
languages. For example, (depth-first search) resolution is, essentially, applicative 
PROLOG, and the Boyer-Moore logic is, essentially, applicative LISP. However, 
there is strong evidence, that formal automated reasoning can be applied to other 
formalizable domains as well. We have attempted to provide, in the previous 
sections, pointers to the relevant literature. 

Often, the question is posed: "How can we trust the programs that check our 
proofs?" To date, no verified implementation of a formal reasoning system exists, 
but efforts are made to build these systems in layers, as is now common practice 
in operating system design. Each layer would be proved correct, assuming the 
layers below are correct. This way, only the most primitive layer must be trusted. 
Still, one should not expect infallibility from a formal reasoning system, but 
subject everyone of its claims to critical scrutiny. Here, natural deduction systems 
fare better than proof procedures, because of their more comprehensible proof 
documentation. Even if the implementation of a natural deduction system should 
commit an error-the decomposition of proofs into precise and, usually, small 
steps makes it likely that the human will catch it. 

In the past, automated formal reasoning systems have been used mostly by the 
groups that built them or by their friends and associates. The question which 
approach to take did not arise. One chose the one that one had available. As 
relationships and trade-offs between different approaches emerge and systems 
become better documented and available on a larger variety of computers, one 
might attempt a more independent selection: 
(1) Properly identify the problem domain. Take care to exclude irrelevant aspects. 

They could complicate reasoning unnecessarily. 
(2) Try to develop a proof procedure that is efficient enough to be practical. 
(3) If that does not succeed, try to find a formal reasoning system whose 

cognitive component is tailored towards your application. For example, if 
your proofs rely a lot on mathematical induction, you might select the 
Boyer-Moore prover. Try proof script generation. 

(4) If you find that heuristics get in your Way, tuna to a formal reasoning system 
without cognitive component, like PRL. Tailor it for your specific purposes 
by incorporating your own tactics. Again, try proof script generation. 
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