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Abstract 

A programming calculus is presented which will yield programs with simple, 

suitable, and safe concurrency. 

The program design consists of three steps: 

(i) specification of a finite problem by a pre/post condition pair 

(2) formal refinement of a totally correct solution which can be implemented 

sequentially 

(3) declaration of program properties which allow relaxations in sequencing 

(+ concurrency) 

For infinite problems programs can be executed repeatedly without correctness 

problems. For the choice of refinement formal guidelines can be used. 

The derived solutions have the following properties: 

(a) dynamic concurrency - processes do not have to be statically declared 

(b) only correct concurrency can be specified - exclusion is not explicitly programmed 

(c) conditional concurrency - no conditional delays 

(d) stepwise proofs of parallel correctness without auxiliary variables 

(e) simply derived freedom from deadlock and starvation without appealing to a fair 

scheduler 
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1 Introduction 

The last decade has brought considerable advances in the field of programming 

methodology, in general, and in the understanding of concurrency and its problems, 

in particular. 

The popular technique for programming concurrency is to define in a special 

kind of statement a set of concurrent units, processes, and to control their inter- 

action by some means of synchronization. The first language constructs proposed in 

the sixties, fork and join for processes [Con63] and semaphores for synchronization 

[Dij68], were intuitive but difficult to formalize. However, the invention of formal 

methods for the specification of program semantics [Hoa69] increased our understan- 

ding and ability to handle process programs. According to [OwGr76a, Lam77], 

(a) we first verify all processes separately as if they were sequential programs, 

(b) we then prove the correctness of their interactions on shared data by a 

so-called non-interference argument. 

A good example is the proof of a concurrent garbage collector [Gri77]. 

There are, of course, problems which have partly been pointed out by the inven- 

tors themselves. The most striking one is that the complexity of proofs explodes with 

increasing concurrency. This is blamed on the necessity to argue non-interference. 

To prevent interference one can either impose restrictions on concurrency features 

in the language [OwGr76b] or eliminate process interaction on shared variables al- 

together [Hoa78, GCW79]. 

Another problem is the lack of support for a suitable design of algorithms. One 

has to understand all process interactions in their entirety in order to arrive at a 

correct solution and can only learn from the experience gained in previous unsuccess- 

ful attempts of verification. 

Our goal is a programming methodology that can handle concurrency. In addition 

to a formally defined language in which one can communicate algorithms to the com- 

puter, we aim at methods for a correct and suitable development of such algorithms. 

We want to be problem-oriented, i.e., build algorithmic solutions to programming 

problems without regard to implementational considerations not specified in the 

problem. Such solutions will suggest a suitable machine rather than being adapted 

to an available machine, but will be executable on real machines. 

Finally, there are the obstacles of deadlock and starvation. Deadlock, the situ- 

ation where the concurrent execution cannot proceed, can occur in terminating as well 

as non-terminating applications. Criteria for the absence ot avoidance of deadlock 

have been investigated [Ho172, OwGr76b, Lam77]. For terminating programs total correct- 

ness implies absence of deadlock. Starvation, the situation where some action concur- 

rent with others can in theory be activated but actually never is, can only occur in 
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non-terminating programs. To avoid starvation, one often appeals to a fair scheduler. 

We shall show that the generalization from terminating to non-terminating algorithms 

does not have to pose additional concurrency problems. All algorithms derived with 

our methodology will be implicitly free from deadlock and starvation. 

2 Devising a Methodology 

We split the development of a program into three phases: 

(I) Specification of a finite problem by a pre/post condition pair. 

Because we aim at total correctness, we exclude the false postcondition. This 

restricts the range of specifiability to finite problems, those which have termina- 

ting solutions. But infinite problems can also be solved: we can specify pre- and 

postconditions for finite subproblems and execute their solutions repeatedly. 

Solutions cannot contain event-driven activities but might be part of a system 

with real-time constraints. In such a case we may specify additional execution speed 

requirements but will not do so in this paper. We may also specify subproblems and add 

concurrency requirements for their solutions. 

(2) Formal refinement of a totally correct solution which can be implemented 

sequentially. 

We will use refinement methods which can, if used correctly, only produce correct 

results. There will also be some help for a suitable choice of correct refinement. 

(3) Declaration of program properties which allow relaxations in sequencing 

(+ concurrency). 

We will define semantic relations between program components and provide rules 

for their declaration. 

In the remainder of the paper we give a formal description of the methodology 

and an illustration with programming examples. The examples are given without formal 

proofs, but their correctness is simple and can be understood informally. 

3 The Refinement Language 

We use the weakest precondition calculus to describe the semantics of programs. 

The weakest precondition for statement S with respect to postcondition R (written 

wp(S,R) in [Dij76]) is here denoted S{R}. 

We use the logical symbols T (true), F (false), A (and), v (or), ~ (not), 

(implies), and the quantifiers A (for all i) and y (there exists i). 
1 1 

is R with free of variable E. every occurrence replaced x by expression 

S{R}~ {} is S{R} as derived when P is used in place of the weakest precondition for 

substatement s. 
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The central feature of our refinement language is a built-in refinement mechanism 

[Heh79]. Statements may be refined, or basic (not refined). A refined statement is an 

invented name, say S. Its meaning is conveyed by a refinement, S: SL , relating the 

name to a refinement list SL. Refinements may be indexed, e.g., Sj: SL , where j is 

a variable referenced in SL. An index is a primitive form of value parameter. 

To ensure correctness, refinements can onl~ be defined according to four refine- 

ment rules: 

Consider a problem specification (P,R). To obtain a totally correct refinement 

named S such that PmS{R} we may choose one of the following: 

(RI) 

(R2) 

(R3) 

continuance: if P~R then choose S: skip 

replacement: if P~REX then choose S: x:=E 

divide-2: if v v P~SI{Q}, Q~S2{R} then choose: S: SI;S2 
Q Si,$2 

A divide-n is easily formulated and comprises n-I divide-2 in one refine- 

ment step. A special case of divide-n is the for loop. We have a special nota- 

5 
tion: for example, ; Si stands for SI;$3;$5. 

i=1,2 

(R4) case analysis: if v v (P~ Blv...VBn ^ i~IPABi~Si{R} ) 
BI,..Bn SI,..Sn = 

then choose S: if BI÷SI ~ ... ~ Bn+Sn fi 

The construct Bi~Si is called a guarded command [Dij 76]. Bi is guard for 

alternative Si. We write if B then S fi for if B÷ S 0 ~B÷skip fi. 

Rules (R3) and (R4) ask for further refinements. For more details on their proper 

choice see the notion of progress in [Heh79]. 

Five language rules define the features which may be used in a refinement: 

For all predicates R, 

(LI) null: 

(L2) assignment: 

(L3) concatenation: 

(L4) alternation: 

(L5) refinement call: 

skip{R} = R 

X 
x:=E{R} = R E 

SI;S2{R} = SI{S2{R}} 

v~i ^ ~(Bi~Si{R}) __if BI+SI D ... D Bn÷Sn f~i{R} = i 

for refinement S: SL, 

non-recursive: S{R} = SL{R} 

(singly) recursive: 

SLrest denotes that part of the refinement which succeeds the recur- 

sire call (i.e., in a proof for SL the precondition of SLrest is po~tcon- 

dition of S). With 

(a) 

(b) 
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A 
k>O 

A 
ke0 

i~0 k~0 

the axiom states 

Q0 = R 

Qk = SLrest{Qk-l} 

S0{Q k} = F 

Si{Q k} = SL{Qk}~I}I{Qk+I } . _  

S{R} = ~ 0  Si{Q0} 

This subsumes the tail recursion rule of [Heh79] (which subsumes 

Dijkstra's do...od repetition rule [Dij76]): for tail recursion, all 

Qk are R. 

For indexed refinements we use a simple substitution rule: with formal 

index list y and actual index list ~, 

S~{R} = S~{R}~ 
e 

To avoid proving a refinement for different postconditions R, ealls can be 

related to a single refinement proof for, say, postcondition Q (Q should not 

refer to indices or local variables of S): if z is the list of global variables 

of S and u ranges over the values of E which establish Q, 

(Z=R~)) m S~{R} (S~{Q}~ A ~A Q~ 

For more de ta i l s  and a s t i l l  simpler ca l l  rule see [GrLe80]. 

Language rules (LI) to (L4) are taken from [Dij76, Heh79]. Rule (L5) is a for- 

malization of some remarks in [Heh79]. 

4 The Semantic Relations 

We define one unary and three binary relations for program components, specifi- 

cally, statements or guards. Components in general are denoted with the letter C, 

statements in particular with S, and guards with B. R ranges over all predicates but 

may be restricted to just the predicates of a particular proof which are relevant: 

(a) idempotence (permits variation of the number of executions) 

idem B iff T 

idem S {ff S{R} = S;S{R} for all R 

(b) commutativity (permits arbitrary order of execution) 

B1 com B2 iff T 

S com B iff BAS{R} = S{BAR} for all R 

S1 com $2 iff SI;S2{R} = S2;SI{R} for all R 
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(c) 

(d) 

full commutativity (permits interleaved execution) 

CI fcom C2 iff cl com c2 for all components cl of CI and c2 of C2 

independence (permits concurrent execution) 

CI ind C2 iff CI fcom C2 and CI+/+C2 

where we choose as operational requirement for non-interference, under the 

assumption of memory interlock [Gri77], 

CI+/+C2, read: (the executions of) C1 and C2 do not interfere 

iff any expression E in C1 contains at most one reference to at most one 

variable changed in C2; 

if C1 contains x:=E and C2 references x, then E does not refer to x 

nor to any variable changed by C2; 

and vice versa. 

Examples: 

(!) S: collect_garbage, idem S 

(2) S: x:=y, B: x=3, ~(S com B) 

(3) SI: x:=3, S2: y:=x+l, ~(SI com S2) 

(4) S: swap(p,q), B: pVq, S com B, ~(S ind B) 

(5) SI: x:=x+a, S2: x:=x+b, S1 com $2, ~(SI ind $2) 

(6) S: c:=F, B: aAb, S ind B 

(7) Sl: u:=f(w), S2: v:=g(w), Sl ind S2 

5 The Semantic Declarations 

A semantic relation is declared by stating the relation. Relations which hold 

always, such as between guards, do not have to be declared. (In this category belong 

also relations involving skip, and relations between S and ~B if already declared 

between S and B. Therefore the hidden guarded command in an if-then can be neglected 

for semantic declarations.) 

A set (or complex) declaration, e.g., 

{SI,$2} ind {TI,T2} 

comprises declarations between all set members, in this case, 

SI ind TI, SI ind T2, $2 ind TI, $2 ind T2 

A flrst-order predicate qualifying the range of index values may be used to define 

the sets involved. For example, 

~ pred(i,j): Si ind Sj 

stands for the set of declarations Si ind Sj such that i and j satisfy pred(i,J). 

A set index in a complex declaration is passed on to all set members. For instance, 

the independence of turn signals of different cars in a traffic system may be 
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declared as 

~ i~j: {left,right} i ind {left,right}j 

Semantic declarations define additional implementable computations for the re- 

finement they augment. The effect can here be only informally described: 

The proof for a refinement S yields a set of sequential computations. The seman- 

tic declarations extend this set as follows: take some computation t for S, then 

(a) idem C adds computations with instances C-~C replaced by C, or vice versa, 

(b) C1 com C2 adds computations with instances CI~+C2 or C2-~CI swapped, 

(c) C1 fcom C2 adds computations with instances CI-~C2 or C2-~CI interleaved, 

(d) C1 ind C2 adds computations with instances CI~+C2 or C2-~CI in parallel. 

Where further computations can be obtained, the same declarations extend the 

computation set thus derived, etc. (transitive closure). 

Note that semantic relations, although valid, may not be exploitable (i.e., may 

not generate new computations) in the refinement they are declared for. We advise to 

declare all concurrency that can be proved whether or not it is exploitable. 

6 The Sieve of Eratosthenes 

The odd prime numbers less than a given integer, N, are to be determined by 

rectifying the initial assumption that all odd numbers are prime. We specify: 

sieve.pre: A prime[i] 
ieM 

sieve.post: ^ (prime[i] ~ i is prime) 
i£M 

where M = { i I 3~i<N, i odd } 

This example demonstrates how the concurrency permitted in an algorithm can be 

declared. We refine a solution proposed by Knuth [KnuII,p.360]: 

sieve: i=~, 2 if prime[i] then elim mults of i fi 

ellm mults of i: mi:=i2 ; elim mults of i from m i on 

elim mults of i from m i on: prlme[mi]:=F ; mi:=mi+2i ; 

if m.<N then elim mults of i from m i 

^ i~j: elim mults of i ind elim mults of j (1) J 

^ i~j: prime[i]:=F ind prime[j] (2) J 

(3) ~ ^ {mi:=i2 mi:=mi+2i} ind prime[j] j 

(4) ~ idem prime[j]:=F 

on fi 

% Computations may contain statements and guards with -~ as sequencing operator. 
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According to (2) and (3) guard "prime[j]" and statement "elim mults of i" are 

independent unless j happens to be a multiple of i. Because of this exclusion (see 

the qualifying predicate of (2)) executions must maintain an order, introduced by the 

refinement, in which guard "prime[j]" appears only where its truth ensures that j is 

prime: no execution will call "elim mults of i" for non-prime i. 

Note that there is no limit to the number of concurrent activities. (Compare 

Hoare's attempt of a parallel solution with a concurrent statement defining processes 

[Hoa75].) 

7 Producing and Consuming 

An arbitrary finite number, M, of items are to be produced and consumed. 

This example demonstrates how concurrency requirements can be made for an oper- 

ating systems application. We break the problem down into subproblems: 

prodi.pre: T consi.pre: item i produced 

prodi.post: item i produced consi.post: item i produced and consumed 

stream.pre: T 

stream.post: all M items produced and consumed 

stream.con: at any time, at least k prod/cons pairs proceed concurrently 

(or all pairs left to be executed, if less than k) 

The assignments in the solution are left incomplete because we do not want to 

regard the nature of the items, only their transfer. We presume items are independent. 

M-I 
stream: ; [ prod i ; cons i 

i=O 

prodi: buf[i]:= 

consi: :=buf[i] 

(i) iA Ĵ  i~j: prod i __ind consj 

(2) iA JA i~j: prod i __ind prod.] 

(3) ~ ~ i~j: cons i ind consj 

To satisfy a concurrency requirement one has to declare independence and show 

that it is exploitable. This program satisfies stream.con for every k>0 : all declared 

independence is exploitable. 

To permit concurrency, the refinement decouples different prod/cons pairs by 

giving them separate variables for communication. We employed the following refine- 

ment guideline: 

To render two components independent without appealing to any 

hardware support, let neither access any variable the other changes. 
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For an implementation we must assume a bound, say n, on the number of variables. 

We modify the previous solution by indexing modulo n. This requires a new proof and 

new semantic declarations: 

M-I 
stream: ; [ prod i ; cons i 

i=0 

prodi: buf[iln]:= 

consi: :=buf[iln] 

(i) ~ ~ (i~j)In: prod i ind consj 

(2) ~ ~ (i~j)In: prod i ind prodj 

(3) ~ 9 (i~j)In: cons iind consj 

As long as n ak, stream.con remains satisfied. 

The development reflects that the synchronization on "buffer empty" is problem- 

inherent, whereas a synchronization on "buffer full" arises out of a need for a buffer 

bound in an implementation. The concurrency structure of our solutions is problem- 

oriented: prod/cons independence is on the same level as prod/prod and cons/cons 

independence, in contrast with process solutions [OwGr76a]. 

8 The Dining Philosophers 

Five philosophers, sitting at a round table, alternate between eating and thinkin~ 

When a philosopher gets hungry, he picks up two forks next to his plate and starts 

eating. There are, however, only five forks on the table, one between each two phi- 

losophers. So a philosopher can only eat when neither of his neighbours is eating. 

When a philosopher has finished eating, he puts down his forks and goes back to thinkin~ 

This example demonstrates how the methodology can be used to build never-ending 

algorithms. For the problem specification we give the philosophers a finite life of N 

eating sessions: 

lives.pre: T 

lives.post: every philosopher has eaten N times during his life 

We model the lives with basic statements "uPi" and "downi" for a movement, i.e., 

seizure and release of fork i, and "earl" for an eating session of philosopher i%: 

N 4 
lives: ; [ ; phil i ] 

1 i=O 

phili: uP i ; uPi® 1 ; eat i ; down i ; downie I 

% 
• denotes addition modulo 5 
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^ j~i: phil com phil (i) ~ j i -- j 

(2) ~ jA jmi®l,i,i@l: eat.l ind eat.3 

(3) ~ ĵ  j~i,iel: eat.l --ind {up,down}j 

(4) ~ ~ j~i: {up,down} i ind {up,down}j 

Thinking sessions are not included. Thinking philosophers do not interact with 

the rest of the system. Consider the lag time between two activations of "phili" as 

thinking ~ . 

This solution lets the philosophers properly compete for their share of the meal 

and eventually die. The declarations state that philosophers may eat in different 

intervals according to their hunger (i), non-neighbours may eat at the same time (2), 

forks that are presently not used for eating may be moved (3), and different forks 

may be moved in parallel (4). 

The total correctness of the refinement guarantees that the system cannot get 

stuck. None of the four semantic declarations invalidates total correctness, and 

therefore the concurrent program is deadlock-free. We do not need additional proof, 

but to help the reader being convinced, here is a reasoning especially tailored for 

this algorithm: a situation where every philosopher has one fork and waits for the 

other cannot arise because in the refinement philosopher i lets no neighbour access 

the forks next to him once he prepares for eating, and none of the declarations per- 

forms commutations which would lift this restriction. The key is that (3) does not 

commute eating sessions and the movement of forks for neighbours. 

For a never-ending program, a solution to the infinite problem, the finite "lives" 

may be called repeatedly. The user of our finite algorithms is responsible for a me- 

chanism for infinite repetition, and we refuse to add it to our notation . But we 

guarantee that, if the problem specification allows infinite repetition of the solu- 

£ion, all algorithmic properties except termination are preserved. The user can rely 

on partial correctness, absence of deadlock, and absence of starvation. 

Our solutions may be slightly more restrictive than non-terminating solutions 

have to be. We do not allow unbounded non-determinism, not even for unbounded activ- 

ities. In this example, the table is cleared completely in arbitrarily long intervals, 

whereas it is not n~cessary for all philosophers to leave (or, in our terminology, 

die). 

A solution which models thinking sessions exists but has more complicated semantic 
declarations. 
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9 Conclusions 

The actions executed concurrently in our programs have not much in common with 

those in process programs. They are not static: because an independence declaration 

may remain unexploited in some computation it only suggests that some action may or 

may not be involved in a concurrent execution. Also, there is no bound on the number 

of actions concurrent with each other. 

The reader might feel that starting with the definition of processes helps 

structuring a program, and that a refinement without immediate regard to concurrency 

forces us to artificially order logically separate tasks. We believe there is a sepa- 

ration of concerns: modularity structures the problem solution, concurrency speeds 

its execution up. Our methodology yields modularity by way of refinement (as part of 

the language!) and concurrency by way of semantic declarations. A change in the re- 

finement is likely to affect the semantic declarations for it (but an extension does 

not). Concurrency works bottom-up and is therefore susceptible to top-down design 

changes. But we insist the solutions are modifiable; they only put concurrency in 

its proper place. 

Concurrent actions are not synchronized by conditional delay but by conditional 

concurrency. The solutions are the same, but our methodology prevents overdefinition 

and subsequent restriction of concurrency. The definition of concurrency proceeds 

stepwise on semantically correct territory, successive declarations yielding faster 

and faster executions . Exclusion is not explicitly programmed. A process design ap- 

proaches a solution from incorrect territory by trying to exclude wrong concurrency. 

Finally (although not demonstrated in this paper), in our methodology proofs do 

not require auxiliary variables in the algorithms [OwGr76a,76b]. 

i0 Further Research 

The presented material is only a fragment of the topics considered in the first 

author's Ph.D. thesis to appear. 

Semantic declarations global to a program are too restrictive for many applica- 

tions. More involved definitions exist which tie semantic relations to specific post- 

and preconditions. The effects of semantic declarations on the set of computations for 

a refinement are being formalized, and ways of selecting a fast computation are being 

investigated. 

A more powerful methodology that handles problem specifications with execution 

speed requirements is also in preparation. 
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