
.A M E C ~ L A / N ~ I C A L L Y C E R T Y F K f] D T H E O R E M A B O U T
O P T I M A L C O N C U R R E N C Y O F S O R T I N G N E T W O R K S

C'hrisSan Lengauer
Chua-Huang Huang

Department of Computer Sciences
The University of Texas at Austin

A b s t r a c t

Our concern is the mechanical certification of t ransformat ions of sequential program executions into
parallel executions with equivalent semantics. The objective of such t ransformat ions is to accelerate the
execution of programs. The result reported here is a mechanically certified theorem of optimali ty. We
present a t ransformat ion which applies to every program in a par t icular p rogramming language, the
language of sort ing networks. This t ransformat ion transforms the sequential execution of any sorting
network into an execution which is as fast or faster than any o ther t ransformat ion which applies to
every sorting network. The theorem is stated formally in a mechanized logic.

1, I n t r o d u c t i o n

A formal semantics can provide an accurate description of a p rogramming language, and program
verif icat ion can establish the correctness or incorrectness of a program precisely. But how can we be
sure tha t an alleged proof of correctness of some semantic proper ty actually is a proof? We have to rely
on our unders tanding of the theory in which the alleged proof is carried out and on our unsusceptibility
to suggestive bu t incorrect arguments.

Compute r programs have been developed that can cheek the val idi ty of proofs. The proposition to
be proved has to be expressed in the "mechanized" logic in which such a program "reasons '). Con-
sequently, we can check proofs of theorems about programming languages and programs by
" implement ing" the formal semantics of the programming language in a mechanized logic and letting
the associated prover cheek our deductions within that semantics. A (correct) mechanical prover is un-
susceptible to suggestive but incorrect deductions. To believe a mechanically checked property, one has
to believe that a correct implementa t ion of the mechanleal prover has been used, that the formal
theorem expresses the desired property, and that no invalid assumptions have entered into the proof.

Under these premisses, one need not understand the details of the proof.

Our concern is the mechanical certification of t ransformations of sequential program executions into
paral]el executions with equivalent semantics. The objective of such t ransformat ions is to accelerate the
execution of programs. We call program executions traces. The result reported here is a mechanically
certified theorem of optimality. We present a trace t ransformat ion which applies ,to every program in a
par t icular p rogramming language. Our theorem is that this t ransformat ion t ransforms the sequential
execution of the program into an execution which is as fast or faster than any other t ransformat ion
which applies to every program in the language. The language of our ehdce is sorting networks. We
present the formal representat ion of the theorem in the mechanized logic in which it has been certified.

Permission to copy wi,hout fee all or part of this material is granted
provided that the copies are not made or c istributed for direct
commercial advantage, the ACM copyright notice and tile title of the
publicatton and its date appear, and notice is given that copying is by
permission of the Association for Computing MachineD. To copy
otherwise, or to republish, requires a lee and/or specific permission.

© 1986 ACM-0-89791-.175-X-t/86-0307 $00,'75

307

2o The Programming L a n g u a g e

Our programn-ihlg language is a refinement language wRh the following features:

, The defhfltion of a re/ir~eme~zt consists of a refinement name with an optional list of formal
parameters, separated by a colon from a refinement body. The following are the only three choices
of refinement body.

* The n~L! s~a~erner~f, s k i p , does nothin&

The basic s~a~e'mer~e is a statement that is not refined any further. We denote our basic statement
cS (i i , i 2) and call it, following Knuth [9], a co'm.para~or ,no&de. Comparator module cs (i i , 22)
accesses an array a [0 o . n] of naturaI numbers. It compares elements a [i i] and a [i 2] and, if
neeessary, interchanges them into order° A simpler verslon of comparator module dea]s wRh adjacent
elements a [i - 1 .] and a [i] . Instead of writing c s (i - i , i) , we shall give s impb eomparator
modules only one argument cs (1)o The comparator module is of imperative nature, i.e., its im-
plementation requires updates.

The cozapoaitfoTz 81 ;82 of refinements S l and 82 applies S2 to the results of el.. Each of 8 i and
S2 can be a reflnement call (ioe~ a refinement namG maybe, with an actual parameter l]st)~ a con>
parator module, or the null statement. Sequences of compositions S1 ; S 2 ; . ° . ;Sn are also per-
tarred. Reflnement calls may be recursive.

Programs in *.his language are called aor~ir W rzetwor,~ [9]o

Example:

The following program represents a network that performs an insertion sort [9]:

s o r t (0) : s k i p
{1>0) s o r t (i) : s o r t (i - i) ; S (1)

S (0) : skip
{ l > 0 } s (i) : c s (1) ; s (i - 1)

For examp]e, if composRion is implemented by execution in sequence, the execution of this program
]s for a six-element array (n=5):

cs (1) ~ c s (2) ~ c s (1)
-~CS (3) eCS (2) -~CS (1)

~cs (4)ecs (3)+cs (2) '÷cs (1)
-~cs (5)+cs (4)-~cs (3)+cs (2)ecs (!)

The arrow denotes sequential executiono If we assert, urlR executAon time for comparator modules, this
trace has execution time n (n + l) / 2 , i.eo, quadratic in the length of the array.

Comparator modules have a usefu~ property that we can exploit to accelerate the execution of the
insertion sort: if they do not access common array elements, their application in commuted order or in
parallel will not affect the resu]t of the program. Simple comparator modules whose arguments differ by
at least 2 do not access common array elements. Thus, we are a]]owed to transform the previous se-
quential trace into the following paraIlel trace by "ravetlhg" eomparator modules:

cs(i)*es(2)*(?+q . c s < s) . /.q / . c s (2) * o s (~)
\ c s (3) / \ e s (4) / \ e s (a) / k e s (4) / \ ¢ s (3) /

Angle brackets denote paraJlei execution. This transformation can be expresse d recursively for arrays of
any length, and is proved by induction on the length of the array. If we assume instantaneous forks
and joins, the parallel trace has execution time 2 n - i , i.e., linear in the length of the array.

(End of Example)

308

We have performed mechanical certifications of individual transformations of three sorting net-
works [12]: the insertion sort, the odd~even transposition sort, and the bitonic sort. The parallel odd-
even transposition sort sorts at double the speed of the parallel insertion sort, but still in linear time.

The bitonic sort is a fancier sorting network with an even faster parallel trace: log 2 in the length of the
array.

3. T h e M e c h a n i z e d Log l c

Most interesting programs contain reeursions or loops. The most effective and practical trace trans-
formations of such programs are also reeurslve, and their proofs of correctness require induction. V/e
use the Boyer-Moore induction prover [2]. It employs a mechanized logic that is particularly suitable for
reasoning about programs [1]. The logic is functional (i.e., predicates are expressed as functions with a
boolean range) and quantifie>free (i.e., free variables are taken as universally quantified). The syntax
that the prover accepts looks very much like LISP, but we shall use here a mixture of infix a n d s -
expression prefix notation that we believe is easier to dedpher. The prover is designed to prove
theorems about reeursive functions but is not an expert on tanguage semantics. We have to "teach" it
our theory of trace transformations by providing appropriate function definitions and having it certify
useful theorems about trace transformations. We call such a collection of functions and theorems the
implementation of our theory, or the mechanized theory. The prover is able to use the func¢ion defini-
tions and theorems of the mechanized theory in the certification of further semantic propositions.
Details of several versions of our mechanized theory and applications in it can be found in [7, 13].

Our approach differs from the approach of verification condition generation [$, 8, 15]. We do not
employ a verification condition generator but make the entire semantic theory available to the prover
directly. Verification condition generators are built to assist in proofs that programs satisfy specifica-
tions but do not support the certification of other theorems about programs and programming lan-
guages~ cog, our theorem of optlmallty. Other mechanized logics in which work similar to ours can be
carried out are PL/CV2 [31 and LCF [5].

4o T h e R e p r e s e n t a t i o n a n d M e a n i n g o f T r a c e s

We represent a trace of comparator modules in the mechanized logic as a multiqevel list. The

atomic elements of the list are pairs of numbers I or, for simple eomparator modules, numbers. Alternate
list]evets represent sequential execution and parallel execution in turn. For instance,]f the top level of
the list is executed in sequence, the sequential trace and parallel trace of the previous insertion sort ex-

ample are represented as

(TAU 5) = "(1 2 1 3 2 1 4 3 2 1 5 4 3 2 1)
(TAU- 5) = °(1 2 (3 1) (4 2) (5 3 1) (4 2) (3 1) 2 1)

The interpretation of these lists as truces of comparator modules is given by a "weakest precon-
dition generator", a function N-CS which expects as paramet, ers: a list L which represents a trace, a
switch FLAG which indicates the modus of execution of the top level of L (FLAG='SEQ for sequential.
FLAG= 'PAR for parallel), and a predicate R which represents a postcondition. N-CS returns a predicate
which represents the weakest precondition of L with respect m R [4]. Essentially, interpreting the atomic
elements of fist L as comparator modules, PI-C8 composes the appropriate meaning of the sequential or
parallel execution of these eomparator modules, as prescribed by L. For parallel execution, compara~or
modules must be independent. Function N-CS has been presented in previous publications [7, 13].
Regarding our theorem of optimality, 1¢1-C8 is a side issue and we shah not define it here. But we must
elaborate on the interpretation of the atomic list elements as comparator modules.

We express the semantics of the comparator module by a function that expects an atomic list ele-

ment I and a predicate R:

1With atomic we mean not further decomposable by list accessing operations. Numbers can be extracted from pairs but

not by list accessing operations.

3 0 9

Unspecified F u n c t i o n (CS t R)

\Ve intend (CS i R) to stand for the weakest precondition of comparator module c s (i i , i 2) , where
the pair (l i , i 2) is encoded in parameter I , with respect to posteondition R. But instead of denning
function (CS I R) we leave it unspecified. We shah not reason about the actual semantics of a trace
but only about the preservation of this semantics. It turns out that we onty need to assert one property
of comparator modules. As any language statement, comparator modules must obey the Law of the Ex-
cluded Miracle [4]:

A x l o m CS-IS-NOT-MIRACLE: (CS I F) = F

F denotes the constant "false",

We are interested ~n the execution times of traces, Function (EXEC-TINE FLAG L) computes the
execution time of trace L whose modus of executlon is determined by FLAG (sequential if' FLAG= 'SEQ,
and parallel if FLAG= ' PAR). In accordance with our trace representatiorb FLAG alternates for successive
levels of L:

Function (EXEC-TINE FLAG L)

(IF (NLISTP L)
(IF L=NIL

0
i)

(IF FLAG= "PAR
(MAX (EXEC-TI~E "SEQ (CA~R L))

(EXEC-TIN~ "PAR (CDR L)))
(PLUg (E0(EC-TIME "PAR (CAR L))

(EXEC-TIMff~ 'SEQ (CDR L)))))

NLISTP is the negation of recognizer LISTP. The value of (I F % %1 t 2) is that of t 2 if t : F and that
of %i otherwise. Recall that we assume unit execution time of comparator modules, and instantaneous
forks and joins for parallel execution.

5o T h e T r a n s f o r m a t i o n o f T r a c e s

Trace transformations are justified by certain semantic properties, so~called semantic relation8
f10, 11], that comparator modules may or may not satisfy:

(a) A comparator module that is idempotent can be executed once or any number of thnes con-
seeutively with identical effect..

(b) Two cornparator modules that are commutative can be executed in any order with identical
effect°

(e) Two comparator modubs that are independent can be executed in parallel and in sequence
whh identical effect~ Independence implies eommutat ivi ty but, in general, not vice versa.

In the mechanized logic, the idernpotenee, eommutat]vity~ and independence of comparator modules
are expressed by the following functions:

Unspec i f i ed r eunc t ion (IDEN I)

Unspec i f i ed F u n c t i o n (COM I J)

UnspecHied F u n e g l o n (IND I J)

Parameters I and J s tand for pairs of numbers (representing eomparator module@ Just as we charac-
terize the weakest precondition of comparator modules, we also characterize their semantic relatlons
only in part, First of all, we must identify all semantic relations as predicates:

Axiom IDFM-IS-PREDICATE: (OR (TRO~EP (IDEN l)) (FALSEP (IDEN I)))

Axiom COM-IS-PREDIC~.TE: (OR (TRWWJP (COM I J)) (FALSEP (COM I J)))

3 1 0

Axiom IND-IS-PREDICATE: (OR (TRUEP (IND I J)) (FALSEP (IND I J)))

TRUEP and FALSEP recognize the truth values T and F, respectively. More importantly, we assert that
idempotenee and commutativRy can be exploited in traces as follows (for a proof see [11], Sect. 5.2):

A x i o m IDEM-ELIMINATES-CS: (IDEM I) ~ ((CS Z (CS I R)) = (CS I B))

Axiom COM-SWAPS-CS: (C0~{ I J) ~ ((CS J (CS I R)) : (CS I (CS Y R)))

Additionally, we assert the following properties of commutatlvity and independence:

Axlom IND-INPLIES-COM: (IND I J) ~ (CON I J)

A×~om COM-IS-SYMMETRIC: (COM I J) =.~ (COM J I)

Axiom IND-IS-SYNMETRIC: (IND I J) --~ (IND J I)

Comparator modules that are supposed to be executed]n parallel must pass the test of indepcndence~ 2

IDEN, COM, and IND relate single comparator modules. There are functions that build on them and
relate traces of comparator modules° In this paper, we shall require (IS - IND I L) which establishes
the independence of comparator module I with every eomparator module in trace L, and (ARE-IND Li
L2) which establishes the mutual independence of eomparator modules in trace L i with comparator
modules in trace L2° To establish independence, we need to took only at the sets of comparator modules
in the traces, not at the traces' structure. Function (ALL-ATOMS L) returns the set (actually, the bag)
of eomparator modules of trace L. Arguments of IS-IND and ARE-IND must be processed by
ALL-ATOMS. Consult the appendix for formal definitions of these functions.

go T h e S p a c e o f T r a n s f o r m a t i o n s o f a S e q u e n t i a l T r a c e

In order to establish the optimality of a transformation of some sequential trace Lt, we establish
the space of legal transformations L2 of L1 and then prove the optimality of one of these transfor-
mations. The legal transformations of L1 are recognized by a function (TRANSFORMABLE LI L2).
This function expects a sequential trace L1 and a feasible trace L2 of eomparator modules and es-
tablishes whether trace L2 can he derived by correct exploitations of idempotence, eommutativRy, and
independence of individual eomparator modules from trace L1. A sequential trace may not contain
parallel commands, and a feasible trace may not contain parallel commands with dependent elements.
If Li and L2 satisfy (TRANSFORNABLE L1 L2), L2 must be obtained from L1 by adding, deleting,
commuting, or parallel merging comparator modules in L1. We need not consider commutations other
than those implied by independence. The only situation where two eomparator modules are commuta-
tive but not independent is when both are identical. The according commutation is the identity trans-

formation. For example, with sequential trace ' (1 3 5 I 2 4 6)~, the following traces are accepted
by TRANSFORNABLE:

(1) ' (i S S 2 4 6)
{one occurrence of 1 is deleted because it is idempotent and can be commuted with 3 and 5}

(2) ° ((1 3 5) 3 1 (2 4) 6)
{one occurrence of 3 is added and commuted, and two parallel commands ' (i 3 5) and

" (2 4) are generated}

(3) " ((1 3 5) ((t 2) 4 6))
{the second top-level element contains a sequential subtrace ' (1 2) which iS parallel
to 4 and G}

but the following traces are not:

2This is part of the definition of N-CS.

3For clarity of exposition, example traces in this paper contain only simple compara~or modules.

311

(4) ' (s s 2 4 8)

(g~) "(s (i s 2) 4 6)

{1 b missing}

{wo~Jd be accepted b) TI:heNSF0:~ABLE, but is not a fe~4ble trace}

{2 cannot be commuted with 3}

In order ~,o 0revent f ~ h y applie>~don~, ~ in cause (5), we need to check that the arguments of
TRANSFOR}0L4.BLE meet the requirements hnpo:,ed on them, Function SEQUENTIAZ, recognizes the se~
quendality of' a trace. I-t checks dT~at the elements of the list that represents the trace a~°e proper
representations of comparator moduhs:

g u n c t l o n (SEQUENTIAL L)

(IF (NLISTP L)
L:NIL
(AND (C0}4P-MOD (CAR L))

(SEQUENTIAL. (CDR L))))

For simple compar:aA.or networks, recognizer COlt&w-NOD is NUI,~BERP, the recognizer for numbers; ~or
generat eomparator netv, orks, COMP-MOD is PAIRP, the recognizer for pairs of numbers°

F'unction FEASIBLE recognizes the feasibility of a trace. A feasible trace must consist of corn-,.
p~trator modules, and elements of paralbi commands in the trace must be independent:

Fumct lon (FEASIBLE FLAG L)

(i F (NLISTP L)
L=NiL
(i F FLAG= ° PAR

(IF (M~E-tND (ALL-ATOMS (CAR L))
(.~Z,L--ATOMS (CDR L)))

(i F (NLISTP (CAR L))
(AND (COMP-MOD (CAR L))

(FEASIBLE 'PAR (CDR L)))
(AND (FEASIBLE "SEQ (CAR L))

(FEASIBLE 'F~9 (CDR L))))
F)

(iF FLAG: ~ SEQ
(IF (NLISTP (C.QF~ L))

(AND (CO~TPP-MOD (CAR L))
(FEASIBLE 'SEQ (CDR L)))

(AND (FEASIBLE 'PAR. (CTgt L))
(FEASIBLE "SEQ (CDR L))))

F)))

The co-ncept of trar:,sformabiiity rests on the notion of reachabiJity, A eomparator module I is
rec~c4a~8/e in ~ l.raee L if" it occurs at leafs[once in L and ti~e first occurrence can be eommuted with
ever)" comparasor modub prior to it. in L. Function REACHABLE recognizes reachabilhy:

Fumct[o~~ (RffLACHA.BLE t L)

(IF (NLtSTP L)
F
(IF ((LIST I) = (ALL-ATObfS (CAR L)))

T
(IF (M~D4BER I (ALL-ATObIS (CAF: L)))

(REACHABLE I (CAR L))
(AND (IS-IND I (~aJLL-ATOMS (CAR L)))

(REACF~Ai94.E I (CDR L))))))

3 t 2

TRANSFOPM~ABLE uses a helping function (REMOVE I L) that removes the first occurrence of ele-
ment I from list Io and, if I is the single element of a lis% ioe., (I) , or ((I)) , or (((I))) , etc . it
removes also the resulting empty lists (see appendix)o Here is, finally, the formal definRion of
TRANSFOFfMABLE, followed by an exptanatlon:

Function

0)
(2)
(3)
(4)
(~)
(6)
(7)
(s)
(9)
(lo)
(11)

(TRANSFORMABLE LI L2)

(IF (NLISTP L i)
L2:NIL
(IF (REACHABLE (CAR Li) L2)

(IF (IDEM (CAR L i))
(IF (REACHABLE (CAR Li)

F))

(CDB Li))
(TRANSFORMABLE (CDR Li) L2)
(IF (REACHABLE (CAR Li) (REMOVE (CAR Li) L2))

(TRANSFORNABLE LI (REMOVE (CAR Li) L2))
(TRANSFORNABLE (CDR Li) (REMOVE (CAR Li) L2))))

(TRANSFORMABLE (CDR Li) (RFCNOVE (CAR LI) L2)))

L2 is recognized as transformable from L1 in one of the following eases: first, if L1 is the null trace L2
must be null, too (lines i and 2 of the function body). If Li is not null, then the first comparator

module of Li~ (CAR L i) , 4 must be reachable in L2 (line 3); otherwise, it is either not part of L2 or it is
commuted with a dependent comparator module and, therefore~ L2 cannot be legally derived from Li.
So, let us assume the first comparator module of Li is reachable in L2. Then, if it is an idempotent
comparator module (line 4), it might be elimlnated or duplicated to derive L2. To be eliminated from
Li, (CAR Li) must be reachable in (CDR Li) (line 5). Then, transformabilRy of (CDR L i) into L2 is
tantamount to the el]mlnation of (CAR Li) from Li (line 6). For the purpose of transformability,
duplleadon in Li is the same as elimination from L2. To be eliminated from L2, (CAR Li) must be
reachable in L2 without the first occurrence of (CAR Li) (line 7). Then, transformability of Li into L2
without the first occurrence of (CAR Li) is tantamount to the e|irnination of (CAR Li) from L2 (line
8). Otherwise, transformability of (CDR Li) into L2 without the first occurrence of (CAR Li) is tan-
tamount to not exploring the idempotenee of (CAR Li) in the derivation of L2 (line 9). Idempotence
is also not explored if (CAR L i) is not even idempotent (line 10)°

(TRANSFORMABLE L1 L2) recognizes all legal exploitations of idempotence and commutatlvity in
trace Li . Independence is not addressed in TRANSFORMABLE, since TRANSFORMABLE expects a sequen-
tial trace for Li and a feasible trace for L2o Independence is not an issue in sequential traces and is
checked in function FEASIBLE. We have mechanically certified that (TRANSFORMABLE Li L2)
guarantees the semantic identity (i.e., the identity of the weakest preconditions) of traces Li and L2.

Y, The Optimal Transformation

We define a trace transformation (TRANSFORM L) whlch takes a sequentiM trace L of comparator
modules and yields another trace which may or may not contain parallelism. (TRANSFORM L) is L
"ravelled" into concurrency, if possible. TRANSFORM transforms a single-level sequential trace into a
two-level trace that contains only parallel commands. A parallel command with only one member
means sequential execution. The main work is performed by a helping function (RAVEL I L) which
adds a eomparator module I to a two-level trace L. We define RAVEL first and then explain it:

Function (RAVEL I L)

(I) (IF (NLISTP L)
(2) (LIST (LIST I))
(3) (IF (AND (IDEM I)
(4) (REACHABLE I L))

(5) L
(6) (IF (IS-IND I (ALL-ATONS (CAR L)))
(7) (IF (OR (NLISTP (CDR L))

4Remember that Li is sequential

313

(8) (NOT (IS- IND I (ALL-ATOMS (CADR L)))))
(9) (CONS (CONS I (CAR L)) (CDR L))
(10) (CONS (CAR L) (RAVEL I (CDR L))))
(11) (CONS (LIST I) L))))

If L is empty, the result of (RAVEL I L) is ' ((I)) (lines 1 and 9 of the function body). For non-
empty L, if I is idempotent and occurs in L with only" comparator modules independent from I to its
left (lines 3 and 4), then I is discarded and the result is L (line 5). Otherwise. if I can be commuted
into L (line 6), it is (line t0), until L is exhausted or one eomparator module in the parallel commat~d to

1% right depends on I (tines 7 and 8), and then I is merged with the parallel command to its]eft 5 (line
9), tf I cannot be commuted into L, then (RAVEL I L) adds a single-member parallel-command ' (I)
to the front of L (line 11). Here are some applications of RAVEl_,:

(~) (RAVEL 1 ML) = " ((1))
{NIL represents the empty trace}

(e) (RAVEL 3 *((i S S) (2 4 8))) : "((i S S) (2 4 6))

{S]s [dempoten% independent with i and occurs in ' ((1 S 5)
therefore, it is discarded}

(2 4 8)) ;

(3)

(4)

(RAVEL 8 ' ((1 S 5) (2 4 0))) : " ((1 S 5) (8 2 4 8))
{8 commutes to the end of the trace and then merges with ° (2 4 6)}

(RAVEL 7 ' ((1 3 5) (2 4 8))) = ' ((7 i 5 5) (2 4 8))
{7 is independent with parallel command ' (1 S 5), but not with "(2 4 8)}

(5) (RAVEL 2 " ((1 S 5) (2 4 6))) = ' ((2) (i S 5) (2 4 6))
{2 is not independent with i or S}

Function (TRANSFORM L) ravels trace L element after element:

F u n c t i o n (TRANSFORM L)

(IF (NLISTP L)
NIL
(RAVEL (CAR L) (TRANSFOP~.,I (CDR L)))))

Examples of TRANSFORM are:

(t) (TRANSFORM ' (S 4 S 2 1)) = " ((5) (4) (S) (2) (1))

(9) (TRANSFOPd4 ' (1 S S 2 4 6)) : ' ((i S 5) (2 4 8))

{sequential execution}

(3) (TRANSFORM " (I 2 4 6 4 2 1)) : ° ((1) (2) (8 4 1))

(4) (TRANSFORM ' (1 2 I 3 2 1 4 3 2 t 5 4 5 2 1)) {]nsertlon sort: (TAU 5)}
= " ((1) (2) (1 3) (2 4) (1 3 5) (2 4) (1 3) (2) (1))

8. The Theorem of Optimality

The following theorem states that. (TRANSFORM L) is a feasible trace and a legal transformation of
sequential trace L:

Theore~.~ TKANSF ORJM- I S-FEAS I BLE-~2ND- TP~ANSFO~LE :

(SEQUENTIAL L)
(AND (FEh~SIBLE *SEQ (7~tANSFOP~ L))

(TRANSFOPd4A~dBLE L (TRANSFORM L)))

Given that TRANSFORM defines a legal transforraation of its sequential argument, the theorem of op-

:~Remember tha,~ any two corapara~r modutes that can be comrau~ed can be merged, since our criterion for either is
independence,

3 1 4

dma/ity states t, hat tiffs transformation, yields an execution that is faster than or as fast as any other
legal transformation:

T h e o r e m OPTIMALITT :

(AND (SEQUENTIAL Li)
(FEASIBLE FLAG L2)
(TRANSFORMABLE Li L2))

=~ ((EXEC-TINfE °SEQ (TRANSFORM LI)) g (EXEC-TINE FLAG L2))

We have certified both theorems with the Boyer-Moore prover.

We look at TRANSFORM as a mapping or dcvcription of traees~ not as an algorithm or prescription
for the derivation of traces. While the mapping is perfectly well-defined for unbounded traces, an ex-
ecution of TRANSFORM for an unbounded trace would never terminate.

TRANSFORM yields the fastest executions that can be obtained by exploiting the afore-mentioned
semantic relations of indivldual eomparator modules, the basic building blocks that make up every sort-
ing network° It may be possible to improve the execution of a particular network further by a transfo>
mation that exploits semantic relations of compositions of comparator modules specific to that one net-

work.

To apply TRANSFORM to a particular sorting network, we must check the conditions under which
comparator modules are idempotent, eommutatlve, or independent: with the refinement of cs in Sect.
4, every comparator module is idempotent and eomparator modules with disjoint arguments are inde-
pendent (and therefore eommutatlve). Thus, all we have to do is to replace the test of idempotenee
IDEM in function TRANSFORM by vacuous tests T, and the tests of independence IND by tests of non-

overlap of pairsfi

The transformations of the sequential traces of the insertion, odd-even transposition, and bltonlc
sort alluded to in Seet. 2 differ slightly from what TRANSFORM would yield, but have the same execu-
tion time° We have not certified thls conjecture mechanleally, but could do so with the present im-
plementation of our theory. For a proof that the three transformations cannot be improved in-
dividually, we would require notions of transformability that include also network-specific transfor-

mations.

Let us summarize again the properties of our programming language which enter into our result:

(1) The language consists of the null statement, one or more basle statements, composition, and

recursive refinement.

(2) The basic sr, a~ements are of imperative nature and are expressed each by a name and a list

of arguments. We use one basic statement, the compara~or module, name it cs, and provide

two natural numbers as arguments (or one natural number for the simple comparator

module).

(3) Each basic statement obeys the Law of the Excluded Miracle and takes unit execution time.

(4) The conditions under which basic statements satisfy the various semantic relations are
phrased solely in terms of" their arguments (for compara~or modules it is the true condition
for idempotenee, and the condition of non-overlap for commutativity and independence).

(5) All interesting eommutativity is implied by independence.

Our result ean be applied to any programming language with these characteristics.

6Two pairs do no1 overlap if all of their elements are mutually distinct. The representation of pairs and their non-overlap
in the Boyer-Moore logic is described in [7].

3 1 5

9o Conelus{ons

Published proofs of any appreciable depth will always resort to '~handwavlng", ioe., slip into infof
reality. However, while conventional proofs stop there, we have eonth~ued the formalizatlon of our proof
to the point where it has been accepted by a mechanical prover that believes only the most primitive

axioms r (plus the axiomatic assumptions that we have provided in addRion, all of which are reported
here). With the authority of a mechanical prover on our side, we have focussed on the precise state-
ment of the theorem, An extended version of this paper includes also a description of the mechanical
proof I14]o The futl extent of our proof ~s documented in a tog of the proof sessiom it is is a good deal
more involved than a conventional proof would have been. But~ if you believe the soundness of the
theorem proving program, it is very easy to catch potential cheating when inspecting a mechanical
proof: just search the proof log for additional axioms that you have not been told about°

A c k n o w l e d g e m e n t s

Thanks to Ernie Cohen %r several helpful discussions in the early stages of the pK×)f. The AI Lab
of our department donated computing time for the mechanical proof. Partial support for this research
was provided by the Lockheed Corporation, Grant No. 26-7803-a8.

A p p e n d i x

Function

F u n c t i o n

Function

Function

(IS-IND I L)

(IF (NLISTP L,)
T
(AND (INn I (CAR L))

(IS- tND I (CDR L))))

(ARE-IND L1 L2)

(IF (NLISTP L!)
T
(AND (IS-IND (CAR LI) L2)

(.ARE-IND (CDR Li) L2)))

(ALL-ATOMS L)

(IF (NLISTP L)
(iF L:NIL

NIL
(LIST L))

(APPEND (ALL-ATOMS (CAR L))
(ALL-ATOMS (CDR h))))

(RE~0VE I L)

(IF (NLISTP L)
NIL

(I F ((LIST I) • (ALL-ATOMS (CAR L)))
(CDR L)
(IF (bfFi~fBER I (ALL-ATOMS (CAR L)))

(CONS (REMOVE I (CAR L)) (CDR L))
(CONS (CAR L) (REMOVE I (CDR L))))))

7The Boye>Moore logic is buiR on the axioms of mathematical induction and Peano, recursive function theory, proposi-
tional !ogle, and eq*.mlity {1 i.

318

R e f e r e n c e s

1. Boyer, R. S., and Moor% J So A Computational Logic. Academic Preset 1979.

2o Boyer~ R. S, and Moor% J S. A Theorem Prover for Recursive Functions, a User's Manual. Com-
puter Science Laboratory, SRI International, 1979.

3. Constable, Ro Lo, Johnson, S. D., and Eichentaub, C. D. An Introduction to the PL/CV2 Program~
ruing Logic. Lecture Notes in Computer Science 135~ Springer Verlag~ 1982.

4. Dijkstra~ E. W. A Discipline of Programming. Series in Automatic Computation, Prentice-HalL
1976.

5. Gordon, M. J. C., Milner, A. J., and Wadsworth, C. P. Edinburgh LCF. Lecture Notes in Corn°
puter Science 78, Springer Verlag~ 1979.

g. Good, D. i. Mechanical Proofs about Computer Programs. In Mathematical Logic and Program-
ming Languages, Co A. Ro Hoare and J. S. Sheperdson, Eds, Series in Computer Science, Prentlce-HMl
Int., 1985, pp~ 55-75.

7. Huang, C.-H., and Lengauer, C. The Automated Proof of a Trace Transformation for a Bitonic
Sort. TR-84-30, Department of Computer Sciences, The University of Texas at Austin, Oct., 1984.

8. Igarashi, S., London, R. L., and Luekham, D. C. "Automatic Program Verification I: A Logical
BaMs and its Implementation". Acts Informatiea ~ (1975), t45-182.

9. Knuth, D. E. The Art of Computer Programming, VoI. 8: Sorting and Searching. Addison=Wesley,
1973. Sect. 5.3.4.

10. Lengauer, C., and Hehner, E. C.R. "A Methodology for Programming with Concurrency: An In-
formal Presentation". Science of Computer Programming 2, 1 (Oct. 1982), 1-18.

ii. Lengauer, C. ~'A Methodology for Programming with Concurrency: The Formalism". Science of
Computer Programming 2, 1 (Oct. 1982), 19-52.

12. Lengauer, C., and Huang, C.-H. The Static Derivation of Concurrency and Its Mechanized Cer-
tification. Proe. NSF-SERC Seminar on Concurrency, Lecture Notes in Computer Science, Springer-
Verlag, t984. To appear.

13. Lengauer, C. "On the Role of Automated Theorem Proving in the Compile-Time Derivation of
Concurrency". Journal of Automated Reasoning 1, 1 (1985), 75101.

14to Lengauer, C., and Huang, C.-H. A Mechanically Certified Theorem about Optimal Concurrency of
Sorting Networks, and Its Proof. TR-85~23, Department of Computer Sciences, The University of Texas

at Austin, 1985.

15. Potak, W. Compiler Specification and Verification. Lecture Notes in Computer Science 124.
Springer-Vertag, 1981.

317

