A MECHANICALLY CERTIFIED THEOREM ABOUT
OPTIMAL CONCURRENCY OF SORTING NETWORKS

Christian Lengauer
Chua-Huang Huang
Department of Computer Sciences
The University of Texas at Austin

Abstract

Our concern is the mechanical certification of transformations of sequential program executions into
parallel executions with equivalent semantics. The objective of such transformations is to accelerate the
execution of programs. The result reported here is a mechanically certified theorem of optimality. We
present a transformation which applies to every program in s particular programming language, the
language of sorting networks. This transformation transforms the sequential execution of any sorting
network into an execution which is as fast or faster than any other transformation which applies to
every sorting network. The theorem is stated formally in a mechanized logic.

1. Introduction

A formal semantics can provide an accurate description of a programining language, and program
verification can establish the correctness or incorrectness of a program precisely. But how can we be
sure that an alleged proof of correctness of some semantic property actually is a proof? We have to rely
on our understanding of the theory in which the alleged proof is carried out and on our unsusceptibility
to suggestive but incorrect arguments.

Computer programs have been developed that can check the validity of proofs. The proposition to
be proved has to be expressed in the "mechanized” logic in which such a program "reasons”. Con-
sequently, we can check proofs of theorems about programming languages and programs by
"implementing” the formal semantics of the programming language in a mechanized logic and letting
the associated prover check our deductions within that semantics. A (correct) mechanical prover is un-
susceptible to suggestive but incorrect deductions, To believe 2 mechanically checked property, one has
to believe that a correct implementation of the mechanical prover has been used, that the formal
theorem expresses the desired property, and that no invalid assumptions have entered into the proof.
Under these premisses, one need not understand the details of the proof.

Our concern is the mechanical certification of transformations of sequential program executions into
parallel executions with equivalent semantics. The objective of such $ransformations is to accelerate the
execution of programs. We call program executions traces. The result reported here is a mechanically
certified theorem of oplimality. We present a trace transformation which applies to every program in a
particular programming language. Our theorem is that this transformation transforms the sequential
execution of the program into an execution which is as fast or faster than any other transformation
which applies to every program in the language. The language of our choice is sorting networks. . We
present the formal representation of the theorem in the mechanized logic in which it has been certified.

Permission to copy without fee all or part of this material’is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice'is given'that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a-fee andjor specific permission:

© 1986 ACM-0-89791-175-X-1/86-0307 $00.75

307

2. The Programming Language
Our programming language is 2 refinement language with the following features:

» The definition of a refinement consists of a refinement name with an optional list of formal
parameters, separated by a colon from a refinement body. The following are the only three choices
of refinement body.

» The null statement, skip, does nothing.

s The basic statement is a statement that is not refined any further. We denote our basic statement
cs{11,12) and call it, following Knuth [9], a comparator module. Comparator module cs(11,12)
accesses an array al{0..n] of natural numbers, It compares elements all1] and ali2] and, if
pecessary, interchanges them into order. A simpler version of comparator module deals with adjacent
elements a{i-1] and al1]. Instead of writing e©s{1-1,1), we shall give simple comparator
modules only one argument ¢s(1). The comparator module is of imperative nature, i.e., its im-
plementation reguires updates.

e The composition 81:82 of refinements $1 and 82 applies 82 to the results of 81. Each of 81 and
5% can be a refinement call {i.e., a refinement name, maybe, with an actual parameter list), a com-
parator module, or the null statement, Sequences of compositions 81;8%;...;8n are also per-
mitted. Refinement calls may be recursive.

Programs in this language are called sorting networks {9].

Example:

The following program represents a network that performs an insertion sort [8]:

sort(0): skip

{150 sortv(1): sort(i-i1): S5{i}
8(0): skip
{1>0} 5(1): cs(1); s(1-1D

For example, if composition is implemented by execution in sequence, the execution of this program
is for a six-element array (n=5):

es{1)»cs(2)»cs (1)
»cs(3)»es(2)»ca (1)
»es{4)»ce(B)2cs(2)»cs (1)
ses(B)»es{4)~es (B)»cs(2)»es (1)

The arrow denotes sequential execution. If we assert unit execution time for comparator modules, this
trace has execution time n{n+1)/2, Le., quadratic in the length of the array.

Comparator modules have a useful property that we can exploit to accelerate the execution of the
insertion sort: if they do mot access common array elements, their application in commuted order or in
parallel will not affect the result of the program. Simple comparator modules whose arguments differ by
at least 2 do not access common array elements. Thus, we are allowed to transform the previous se-
quential trace into the following parallel trace by “ravelling” comparator modules:

cs (1) es(2) cs(i} cs(2) cs (1)
c&fj,}»{*s(:’a)» »{ (3} -+ »e8(2)+es (1)
cs{4) cg{B)/ cs (43 cg{3)

Angle brackets denote parallel execution. This transformation can be expressed recursively for arrays of
any lengih, and is proved by induction on the length of the array., If we assume instantaneous forks
and joins, the parallel trace has execution time 2n-1, Le., linear in the length of the array.

{End of Example)

308

We have performed mechanical certifications of individual transformations of three sorting net-
works [12]: the insertion sort, the odd-even transposition sort, and the bitonic sort. The parallel odd-
even transposition sort sorts at double the speed of the parallel insertion sort, but still in linear time.

The bitonic sort is a fancier sorting network with an even faster parallel trace: log2 in the length of the
array.

3. The Mechanized Logle

Most interesting programs contain recursions or loops. The most effective and practical trace trans-
formations of such programs are also recursive, and their proofs of correctness require induction. We
use the Boyer-Moore induction prover {2]. It employs a mechanized logic that is particularly suitable for
reasoning about programs [1]. The logic is functional {i.e., predicates are expressed as functions with a
boolean range) and quantifier-free (i.e., free variables are taken as universally quantified). The syntax
that the prover aceepts looks very much like LISP, but we shall use here a mixture of infix and s
expression prefix notation that we believe is easier to decipher. The prover is designed to prove
theorems about recursive functions but is not an expert on language semantics, We have to "teach” it
our theory of trace transformations by providing appropriate function definitions and having it certify
useful theorems about trace iransformations. We call such a collection of functions and theorems the
implementation of our theory, or the mechanized theory. The prover is able to use the function defini-
tions and theorems of the mechanized theory in the certification of further semantic propositions.
Details of several versions of our mechanized theory and applications in it can be found in |7, 13].

Our approach differs from the approach of verification condition generation [6, 8, 15]. We do not
employ a verification condition generator but make the entire semantic theory available to the prover
directly. Verification condition generators are built to assist in proofs that programs satisly specifica-
tions but do not support the certification of other theorems about programs and programming lan-
guages, e.g., our theorem of optimality. Other mechanized logics in which work similar to ours can be
carried out are PL/CV2 [3] and LCF [5].

4. The Representation and Meaning of Traces

We represent a trace of comparator modules in the mechanized logic as a multi-level list. The
atomic elements of the list are pairs of numbers! or, for simple comparator modules, numbers. Alternate
list levels represent sequential execution and parallel execution in turn. For instance, if the top level of
the list is executed in sequence, the sequential trace and parallel trace of the previous insertion sort ex-
ample are represented 2s

(TAU B) = (1 21 321 4321 542321
(TAU™ &) 123 1) (42 B3 G2 BL 2L

t
i

The interpretation of these lists as traces of comparator modules is given by a "weakest precon-
dition generator”, a function M-C8 which expects as parameters: a list . which represents a trace, a
switch FLAG which indicates the modus of execution of the top level of L (FLAG="SEQ for sequential,
FLAG="PAR for parallel), and a predicate R which represents a postcondition, M~CS returns a predicate
which represents the weakest precondition of L with respect to R [4]. Essentially, interpreting the atomic
elements of list L as comparator modules, M-CS composes the appropriate meaning of the sequential or
parallel execution of these comparator modules, as prescribed by L. For parallel execution, comparator
modules must be independent. Function M~CS has been presented in previous publications 17,.13].
Regarding our theorem of optimality, ¥~CS is a side issue and we shall not define it here. But we must
claborate on the interpretation of the atomic list elements as comparator modules.

‘We express the semantics of the comparator module by a function that expects an atomic list ele-
ment I and a predicate R: :

Iwith atomic we mean not further decomposable by list accessing operations. Numbers can be extracted from pairs but

not by list accessing operations.

309

Unspecified Function (C8 I R)

We intend (CS I R) to stand for the weakest precondition of comparator module ¢s(11,42), where
the pair (11,12) is encoded in parameter I, with respect to postcondition R. But instead of defining
function (C8 I R) we leave it unspecified. We shall not reason about the actual semantics of 2 trace
but only about the preservation of this semantics. It turns out that we only need to assert one property
of comparator modules. As any language statement, comparator modules must obey the Law of the Ex-
cluded Miracle [4];

Axiom CS-IS~NOT-MIRACLE: B IF) =F

F denotes the constant "false®,

We are interested in the execution times of traces. Function (EXEC-TIME FLAG L) computes the
execution time of trace L whose modus of execution is determined by FLAG (sequential if FLAG=’SEQ,
and parallel if FLAG='PAR). In accordance with our trace representation, FLAG alternates for successive
levels of L:

Function (EXEC-TIME FLAG LD

(IF (NLISTP L)
(IF L=NIL
0
1
{IF FLAG='PAR
(MAX (EXEC~TIME *SEQ (CAR L))
{(FEXEC~TIME °PAR (CDR L))
(PLUS (EXEC-TIME °PAR (CAR L))
(EXEC-TIME °SEQ (CDR L)))))

NLISTP is the negation of recognizer LISTP, The value of (IF t ©1 ©2) is that of £2 if t=F and that
of t1 otherwise. Recall that we assume unit execution time of comparator modules, and instantaneous
forks and joins for parallel execution.

-

5. The Translormation of Traces

Trace transformations are justified by certain semantic properties, so-called semantic relations
{10, 11}, that comparator modules may or may not satis{y:

{a) A comparator module that is fdempotent can be executed once or any number of times con-

secutively with identical effect.

{b) Two comparator modules that are commutative can be executed in any order with identical
effect,

{¢) Two comparator modules that are independent can be executed in parallel and in sequence
with identical effect. Independence implies commutativity but, in general, not vice versa.

In the mechanized logic, the idempotence, commutativity, and independence of comparator modules
are expressed by the following functions:
Unspecified Function (IDEM I3
Unspecified Function (COM I D
Unspecified Fanction (IND I 1)

Parameters I and J stand for pairs of numbers {representing comparator modules), Just as we charac-
terize the weakest precondition of comparator modules, we also characterize their semantic relations
only in part. First of all, we must identify all semantic relations as predicates:

Axiom IDEM-IS-PREDICATE: (OR (TRUEP (IDEM 1)) (FALSEP (IDEM I)))
Axiom COM-IS-PREDICATE: (OR (TRUEP (COM I J)) (FALSEP (COM I RORY

310

Axiom IND-IS-PREDICATE: (OR (TRUEP (IND I J)) (FALSEP (IND I J)))

.TRUEP and FALSEP recognize the truth values T and F, respectively. More importantly, we assert that
idempotence and commutativity can be exploited in traces as follows (for a proof see [11], Sect. 5.2):

Axiom IDEM-ELIMINATES~CS: (IDEM I) = ((CS T (CS I R))

i

(€8s I R))
Axiorn COM-SWAPS-CS: (COM I J) = ({C8 J (€8 I R)) €8 1 (8 J R
Additionally, we assert the following properties of commutativity and independence:

Axiom IND-IMPLIES-COM: (IND I J) == (COM I 1)

4

Axiom COM-IS-SYMMETRIC: (COM I 1) = (COM J D)
Axiom IND-IS-SYMMETRIC: (IND I J) == (IND J 1)

Comparator modules that are supposed to be executed in parallel must pass the test of '1ndependemce.2

IDEM, COM, and IND relate single comparator modules. There are functions that build on them and
relate traces of comparator modules. In this paper, we shall require (IS-IND I L) which establishes
the independence of comparator module I with every comparator module in trace L, and (ARE-IND L1
L2)> which establishes the mutual independence of comparator modules in trace L1 with comparator
modules in trace L2. To establish independence, we need to look only at the sets of comparator modules
in the traces, not at the traces’ structure. Function (ALL~ATOMS L) returns the set (actually, the bag)
of comparator modules of trace L. Arguments of IS-IND and ARE~IND must be processed by
ALL~ATOMS. Consult the appendix for formal definitions of these functions.

6. The Space of Transformations of a Sequential Trace

In order to establish the optimality of a transformation of some sequential trace L1, we establish
the space of legal transformations L2 of L1 and then prove the optimality of one of these transfor-
mations. The legal transformations of L1 are recognized by a function (TRANSFORMABLE L1 L2).
This function expects a sequential trace L1 and a feasible trace L2 of comparator modules and es-
tablishes whether trace L2 can be derived by correct exploitations of idempotence, commutativity, and
independence of individual comparator modules from trace L1. A sequential trace may not contain
parallel commands, and a feasible trace may not contain parallel commands with dependent elements.
If L1 and L2 satisfy (TRANSFORMABLE L1 L2), L2 must be obtained from L1 by adding, deleting,
commuting, or parallel merging comparator modules in L1. We need not consider commutations other
than those implied by independence. The only situation where two comparator modules are commuta-
tive but not independent is when both are identical. The according commutation is the identity trans-
formation. For example, with sequential trace (1 3 5 1 2 4 63, the following traces are accepted
by TRANSFORMABLE:

(1)°(1 852 4 8
{omne occurrence of 1 is deleted because it is idempotent and can be commuted with 3 and 5}

(2y"({1 38) 31 (24) 6
{one occurrence of 3 is added and commuted, and two paraliel commands.’ (1 3 B) and
* (2 4) are generated}

(3)"C(1 38 (1 2) 46

{the second top-level element contains a sequential subtrace * (1 2) which is parallel
to 4 and 6}

but the following traces are not:

2This is part of the definition of M~CS.

3For clarity of exposition, example traces in this paper contain only simple comparator modules.

311

(4) B B 2 4 8) {1 is missing}

(5) (5 (1 3 2) 4 8 {would be accepted by TRANSFORMABLE, but is not a feasible trace}

(6 * ({1 8) 2 3 (4 8)) {2 cannot be commuted with 3}

In order to prevent faulty applications, as in case {5), we need to check that the arguments of
TRANSFORMABLE meet the requirements imposed on them. Function SEQUENTIAL recognizes the se-
quentiality of a trace. It checks that the elements of the list that represenis the trace are proper
representations of comparator modules:

Funcilon (SEQUENTIAL LD
(IF (NLISTP LD
L=NIL
{AND (COMP-MDD (CAR LJD
{BEQUENTIAL (CDR L)2))

For simple comparator networks, recognizer COMP-MOD is NUMBERP, the recognizer for numbers; for
general comparator networks, COMP-MOD is PAIRP, the recognizer for pairs of numbers.

Function FEASIBLE recognizes the feasibility of a trace. A feasible trace must consist of com-
parator modules, and elements of parallel commands in the trace must be independent:

Function (FEASIBLE FLAG L)
(IF

LAG="PAR

IF (ARE-IND (ALL~ATOMS (CAR L))
(ALL-ATOME {(CDR L3))

NLISTP (CAR L)

AND (COMP-MOD (CAR L)
{(FEASIBLE °'PAR (CDR L))

(AND (FEASIBLE °"SERQ (CAR L)
(FEASIBLE "PAR (CDR L3JJ)

=it
]
o~

{IF

(
(

)
(IF FLAG="SEQ
{IF (WLISTP (CAR L)
(AND (COMP-MOD (CAR L))
(FEASIBLE 'S8EQ (CDR L))
(AND {(FEASIBLE "PAR {(CAR L))
{FEASIBLE 'SEQ {CDR L)J3>
F323

The concept of transformability rests on the notion of reachability. A comparator module I is
reachable in s trace L il it occurs at least once in L and the firsi occurrence can be commuted with
every comparator module prior fo it in L. Function REACHABLE recognizes reachability:

Function (REACHABLE I LD

(LIBT 1) = (ALL-ATOMS (CAR L))

IF (MEMBER T (ALL-ATOMS (CAR LD))
(REACHABLE I (CAR L))
(AND (IS~IND I (ALL-ATOMS (CAR L))
(REACHABLE I {CDR L)J33))

312

TRANSFORMABLE uses a helping function (REMOVE I L) that removes the first occurrence of ele-
ment I from list L and, if T is the single element of a Hst, i.e., (I), or ({1}, or (({I2)), ete., it
removes also the resulting empty lists {see appendix). Here is, finally, the formal definition of
TRANSFORMABLE, followed by an explanation:

Function (TRANSFORMABLE L1 L2)

(1) (IF (NLISTP L1D

2) L2=NIL

(3) (IF (REACHABLE (CAR L1) L)

(4) (IF (IDEM (CAR L1))

(5) (IF (REACHABLE (CAR L1) (CDR L1))

(6) (TRANSFORMABLE {CDR L1) L2

() (IF (REACHABLE (CAR L1) (REMOVE (CAR L1) L2))
(8) (TRANSFORMABLE L1 (REMOVE (CAR L1) L2))
(9) (TRANSFORMABLE (CDR L1) (REMOVE (CAR L1) L2))))
{(10) (TRANSFORMABLE (CDR L1) (REMOVE (CAR L1} L23))
{11) F))

L2 is recognized as transformable from L1 in one of the following cases: first, if L1 is the null trace L2
must be null, too {lines 1 and 2 of the function body). If L1 is not null, then the first comparator
module of L1, (CAR Ll),4 must be reachable in L2 {line 3); otherwise, it is either not part of L2 or it is
commuted with a dependent comparator module and, therefore, L2 cannot be legally derived from L1.
So, let us assume the first comparator module of L1 is reachable in L2. Then, if it is an idempotent
comparator module (line 4), it might be eliminated or duplicated to derive L2. To be eliminated from
Li, (CAR L1) must be reachable in (CDR L1) (line 5), Then, transformability of (CDR L1) into L2 is
tantamount to the elimination of (CAR L1) from L1 (line 6). For the purpose of transformability,
duplication in L1 is the same as elimination from L2. To be eliminated from L2, (CAR L1) must be
reachable in L2 without the first occurrence of (CAR L1) (line 7). Then, transformability of L1 into L2
without the first occurrence of (CAR L1) is tantamount to the elimination of (CAR L1) from L2 (line
8). Otherwise, transformability of (CDR L1) into L2 without the first occurrence of (CAR L1) is tan-
tamount to not exploiting the idempotence of (CAR L1) in the derivation of L2 (line 9). Idempotence
is also not exploited if (CAR L1) is not even idempotent (line 10).

(TRANSFORMABLE L1 L2) recognizes all legal exploitations of idempotence and commutativity in
trace L1. Independence is not addressed in TRANSFURMABLE, since TRANSFORMABLE expects a sequen-
tial trace for L1 and a feasible trace for L2. Independence is not an issue in sequential traces and is
checked in function FEASIBLE. We have mechanically certified that (TRANSFORMABLE L1 L2)
guarantees the semantic identity (i.e., the identity of the weakest preconditions) of traces L1 and L2,

7. The Optimal Transformation

We define a trace transformation (TRANSFORM L) which takes a sequential trace L of comparator
modules and yields another trace which may or may not contain parallelism. (TRANSFORM L) is L
nravelled” into concurrency, if possible. TRANSFORM transforms a single-level sequential trace into a
two-level trace that contains only parallel commands. A parallel command with only one member
means sequential execution. The main work is performed by 2 helping function (RAVEL I L) which
adds a comparator module I to a two-level trace L. We define RAVEL first and then explain it:

Function (RAVEL I L)

(IF (NLISTP L)

(1)

2 (LIST (LIST I

(3) (IF (AND (IDEM ID

(4) (REACHABLE T L))

(5) L ,

{8) (IF (IS-IND T (ALL-ATOMS (CAR L)3)
(N (IF (OR (NLISTP (CDR L))

4Remember that L1 is sequential.

313

(8) (NOT (IS-IND I (ALL-ATOMS (CADR L)))))
(9) (CONS (CONS I (CAR L)) (CDR L))

(10) (CONS (CAR L) (RAVEL I (CDR L))

{11) (CONS (LIST 1) L))))

If L is empty, the result of (RAVEL I L) is " ({I)) (lines 1 and 2 of the function body). For non-
empty L., il T is idempotent and occurs in L with only comparator modules independent from I to its
left (lines 3 and 4), then I is discarded and the result is L (line 5). Otherwise, if T can be commuted
into L {line 8), it is (line 10), until L is exhausted or one comparator module in the parallel command to

I’s right depends on I (lines 7 and 8), and then I is merged with the parallel command to its left® (line
9). If I cannot be commuted into L, then (RAVEL I L) adds a single-member parallel-command * {1)
to the front of L {line 11). Here are some applications of RAVEL:

(1) (RAVEL 1 NIL) = *((1))

{NIL represents the empty trace}

(2) (RAVEL 3 *((1 3 B) (2 4 8))) = ({1 3 6) (2 4 6))
{3 is idempotent, independent with 1 and occursin " ({1 3 B5) (2 4 6));
therefore, it is discarded}

(3)(RAVEL 8 ({1 35) (24 8))) = ({1 35) (824 8))
{8 commutes to the end of the trace and then merges with " (2 4 8)}

(4) (RAVEL 7 *((1 3 B) (2 4 6))) = *((7 1 3 8) (2 4 6))
{7 is independent with parallel command (1 3 5), but not with " (2 4 8)}

(5) (RAVEL 2 "((1 3 B) (2 4 6))) = "({2) (1 3 B) (2 4 86))
{2 is not independent with 1 or 3}
Function {TRANSFORM L) ravels trace L element after element:

Function (TRANSFDORM L

(IF (NLISTP L)
NIL
(RAVEL (CAR L) (TRANSFORM (CDR L))

Examples of TRANSFORM are:
(1) (TRANSFORM " (5 4 3 2 1)) = *((5) (4) (3) (2) (1)) {sequential execution}
(2) (TRANSFORM "(1 3 5 2 4 6)) = *({1 3 8) (2 4 6))
(3) (TRANSFORM *(1 2 4 6 4 2 1)) = *((1) (2) (6 4 1))
{4) (TRANSFORM *{1 21 321 4321 54321 {insertion sort: {TAU B)}
= (1) (@) (1 8) (2 4) (138) (24) (13 (2> (1
8. The Theorem of Optimality

The following theorem states that {TRANSFORM L) is a feasible trace and a legal transformation of
sequential trace L:

Theoremn TRANSFURM-IS-FEASIBLE-AND-TRANSFORMABLE:

(SEQUENTIAL L)
=+ (AND (FEABIBLE *SEf (TRANSFORM L))
(TRANSFURMABLE L (TRANSFORM L)))

Given that TRANSFORM defines a legal transformation of its sequential argument, the theorem of op-

5 i ; . .
Remember that any two comparator modules that can be commuted can be merged, since our criterion for either is
independence,

314

timality states that this transformation yields an execution that is faster than or as fast as any other
legal transformation:

Theorem OPTIMALITY:

(AND (SEQUENTIAL L1)
(FEASIBLE FLAG L2)
(TRANSFORMABLE L1 1L2))
= ((EXEC~-TIME °S8Ef (TRANSFORM L1)) € (EXEC-TIME FLAG L2))

We have certified both theorems with the Boyer-Moore prover.

We look at TRANSFORM as a mapping or description of iraces, not as an algorithm or preseription
for the derivation of traces. While the mapping Is perfectly well-defined for unbounded traces, an ex-
ecution of TRANSFORM for an unbounded trace would never terminate,

TRANSFORM yields the fastest executions that can be obtained by exploiting the afore-mentioned
semantie relations of individual comparator modules, the basic building blocks that make up every sort-
ing network. It may be possible to improve the execution of a particular network further by a transfor-
mation that exploits semantic relations of compositions of comparator modules specific to that one net-
work.

To apply TRANSFORM to a particular sorting network, we must check the conditions under which
comparator modules are idempotent, commutative, or independent: with the refinement of cs in Sect.
4, every comparator module is idempotent and comparator modules with disjoint arguments are inde-
pendent (and therefore commutative). Thus, all we have to do is to replace the test of idempotence
IDEM in function TRANSFORM by vacuous tests T, and the tests of independence IND by tests of non-

overlap of pairs.6

The transformations of the sequential traces of the insertion, odd-even transposition, and bitonic
sort alluded to in Sect. 2 differ slightly from what TRANSFORM would yield, but have the same execu-
tion time. We have not certified this conjecture mechanically, but could do so with the present im-
plementation of our theory. For a proof that the three transformations cannot be improved in-
dividually, we would require notions of transformability that include also network-specific transfor-
mations.

Let us summarize again the properties of our programming language which enter into our result:
(1) The language consists of the null statement, one or more basic statements, composition, and

recursive refinement.

(2) The basic statements are of imperative nature and are expressed each by a name and a list
of arguments. We use one basic statement, the comparator module, name it ¢s, and provide
two natural numbers as arguments (or one natural number for the simple comparator

module).

(3) Each basic statement obeys the Law of the Excluded Miracle and takes unit execution time.

(4) The conditions under which basic statements satisfy the. various semantic relations are
phrased solely in terms of their arguments {for comparator modules it is the true condition
for idempotence, and the condition of non-overlap for commutativity and independence).

(5) All interesting commutativity is implied by independence.

Our result can be applied to any programming language with these characteristics.

brwo pairs do not overlap if all of their elements are mutually distinet. The representation of pairs and their non-overlap
in the Boyer-Moore logic is described in (7].

315

9. Conclusions

Published proofs of any appreciable depth will always resort to "handwaving”, Le., slip into infor
mality. However, while conventional proofs stop there, we have continued the formalization of our proof
to the point where it has been accepted by a mechanical prover that believes only the most primitive
axioms’ {plus the axiomatic assumptions that we have provided in addition, all of which are reported
here)., With the authority of a mechanical prover on our side, we have focussed on the precise state-
ment of the theorem. An extended version of this paper includes also a description of the mechanical
proof {14]. The full extent of our proof is documented in 2 log of the proof session; it is is a good deal
more involved than a conventional proof would have been. But, if vou believe the soundness of the
theorem proving program, it is very easy to catch potential cheating when inspecting a mechanical
proof: just search the proof log for additional axioms that you have not been told about.

Acknowledgements

Thanks to Ernie Cohen for several helpful discussions in the early stages of the proof. The Al Lab
of our department donated computing time for the mechanical proof. Partial support for this research
was provided by the Lockheed Corporation, Grant No. 26-7603-35.

Appendix
Function (IS-IND I L)

(IF (NLISTP L)
T
(AND (IND I (CAR L))
(IS~IND I (CDR L)D))

Function (ARE-IND L1 L2D
(IF (HLISTP LU
T
(AND (IS-IND (CAR L1) L2
(ARE-IND (CDR L1) L2)M)

Function (ALL-ATOMS L)
{IF {NLISTP L)
(IF L=NIL
NIL
(LIST L)
(APPEND (ALL~ATOMS (CAR L)D
(ALL~ATOMS (CDR L))

Function (REMDVE I L)
(IF (NLISTP L)
NIL
(IF ((LIST I) = (ALL-ATOMS (CAR L)))
{CDR L)
(IF (MEMBER I (ALL-ATOMS (CAR L)))
(CONS (REMOVE I (CAR L)) (CDR L))
(CONS (CAR L) (REMOVE I (CDR L))))))

' The Bﬁyes~Mocre logic Ais built on the axioms of mathematical induction and Peano, recursive function theory, proposi-
tional logic, and equalivy 1.

316

References

1. Boyer, R. 8., and Moore, J 8. A Computational Logic. Academic Press, 1079.

2. Boye.r, R. 8., and Moore, J 8. A Theorem Prover for Recursive Functions, a User’s Manual. Com-
puter Science Laboratory, SRI International, 1979.

3,' Constf.%bie,' R. L., Johnson, 8. D., and Fichenlaub, C. D. An Introduction to the PL/CV2 Program-
mang Logic. Lecture Notes in Computer Science 135, Springer Verlag, 1982.

4. Dijkstra, E. W. A Discipline of Programming. Series in Automatic Computation, Prentice-Hall,
1976.

5. Gordon, M. J. C., Milger, A. J., and Wadsworth, C. P. Edinburgh LCF. Lecture Notes in Com-
puter Sclence 78, Springer Verlag, 1979,

8. Good, D. 1. Mechanical Proofs about Computer Programs. In Mathematical Logic and Program-
ming Languages, C. A. R. Hoare and J. 8. Sheperdson, Eds., Series in Computer Science, Prentice-Hall
Int., 1985, pp. 55-75.

7. Huang, C.-H., and Lengauer, C. The Automated Proof of a Trace Transformation for a Bitonic
Sort. TR-84-30, Department of Computer Sciences, The University of Texas at Austin, Oct., 1984.

8, Igarashi, S., London, R. L., and Luckham, D. C. "Automatic Program Verification I: A Logical
Basis and its Implementation”. Acta Informatica 4 (1975), 145-182.

9. Knuth, D. E. The Art of Computer Programming, Vol. 8: Sorting and Searching. Addison-Wesley,
1973. Sect. 5.3.4.

10. Lengauer, C., and Hehner, E. C. R. "A Methodology for Programming with Concurrency: An In-
formal Presentation®. Seience of Computer Programming 2, 1 {Oct. 1982), 1-18,

11. Lengauer, C. "A Methodology for Programming with Concurrency: The Formalism®. Science of
Computer Programming 2, 1 (Oct. 1982), 19-52,

12. Lengauer, C., and Huang, C.-H. The Static Derivation of Concurrency and Its Mechanized Cer-
tification. Proc, NSF-SERC Seminar on Concurrency, Lecture Notes in Computer Science, Springer-
Verlag, 1984. To appear.

13. Lengauer, C. "On the Role of Automated Theorem Proving in the Compile-Time Derivation of
Concurrency”. Journal of Automated Reasoning 1, 1 (1985), 75-101.

14. Lengauer, C., and Huang, C-H. A Mechanically Certified Theorem about Optimal Concurrency of
Sorting Networks, and Its Proof. TR-85-23, Department of Computer Sciences, The University of Texas

at Austin, 1885,

15. Polak, W. Compiler Speci fication and Ver fication. Lecture Notes in Computer Science 124,
Springer-Verlag, 1981.

317

