A SYSTOLIC PROGRAM
FOR GAUSS-JORDAN ELIMINATION

Duncan Hudson and Christian Lengauer

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188, U.S.A.

TR-89-07 March 1989

Abstract

A scheme for the compilation of imperative or functional programs into sys-
tolic programs is used to derive an occam program for Gauss-Jordan elimi-
nation from a Pascal-like program. The correctness of the output program
is guaranteed by the correctness of the input program and the compilation
scheme. The novelty of this example is that the compilation scheme has been
applied for the first time to a systolic array that is described by piecewise
linear, not linear distribution functions.

Keywords: Algebraic Path Problem, code generation, compilation, Gauss-
Jordan elimination, occam, systolic array.

This research was supported in part by the National Science Foundation

under Contract DCR-8610427.

1 Introduction

A systolic array is a distributed processor network with a particularly regular structure that can
process large amounts of data quickly by accepting streams of inputs and producing streams of
outputs [5]. The regularity of the systolic array enables an automated synthesis from a more
abstract description which essentially amounts to an imperative or functional program and which
does not address the issues of communication or concurrency. In the past, systolic arrays have
mostly been realized in hardware, but they can also be realized in software — in fact, this can
provide a convenient and powerful way of programming distributed computers. We call the process
of transforming an imperative or functional program into a systolic program systolizing compilation.
It consists of two phases:

Systolic Design: the development of a systolic array from the input program. The description of
the systolic array is in terms of distribution functions of the program’s operations in time and
space. If a fixed problem size is proposed, a picture and graphical simulation of the behavior
of the systolic array can be generated from the distribution functions.

Code Generation: the generation of a systolic program from the distribution functions that specify
the systolic array. Loops must be reintroduced, since the distribution functions are not in a
recursive form. If the distributed computer at hand does not offer the processor layout and
interconnections that the systolic program prescribes, adjustments have to be made to the
program.

The purpose of this paper is to illustrate the feasibility and usefulness of systolizing compilation
on one problem: Gauss-Jordan elimination.

Recently, systolic solutions of the algebraic path problem [12] have been investigated. The algebraic
path problem subsumes all problems whose solution is Gauss-Jordan elimination. It is specified in
terms of an abstract semi-ring; proposing different concrete semi-rings yields problems like matrix
inversion, shortest paths and reflexive transitive closure, all of which are solved by Gauss-Jordan
elimination. First systolic designs were proposed informally [10, 11], but with formal systolic design
methods [2, 8] they were soon recast in a formal framework and a large space of systolic solutions
was generated and reviewed [3, 9].

We shall take the best of these solutions and present a systolic program that implements it. The
program is written in the programming language occam [4], but the use of occam is not essential.
The technique by which the systolic program is derived is an extension of a mechanical systolizing
compilation scheme for simpler problems like matrix composition or decomposition [6].

2 The Specification

A weighted graph G is a triple (V, E, w), where V = {7 | 0 < i < n} is a set of vertices, E CV xV
is aset of edges, and w : E — H is a function whose codomain is a semi-ring (H, ®, ®) of weights.
A path p is a sequence of vertices (vg, vy, ...,), where 0 < [and (v;i—1,%;) € E. The weight of path
p is defined as:

wip)=w @ wy @ ... 0 w;

where w; is the weight of edge (v;_y, v;). The algebraic path problem specifies the following matrix:

dij = D w(p)

pis a path from to 7

That is, we are asked to compute the sum of the weights of all paths from vertex ¢ to vertex 7, for
all pairs (7, 7).

3 The Input Program

The graph is represented by an n X n matrix ¢ such that, for 0 < 4,5 < n, matrix element

¢ ;= w((i,j)) if (i,7) € E and ¢;; = 0 otherwise. The program employs four different computa-
tions (here, phrased imperatively):

A(,5,k) =i D ek ® ek,
BO(i,7) = ciji=c5 Q¢
Bi(i,5) =i ®cj,

C(i) = Ciyi 1= ¢}y

Here, * =13 cP (c@¢)B(c®c®c)P ..., where 1 is the identity element of the semi-ring. If ¢* is
not defined, the algebraic path problem has no solution. Note that the parameters of the program
operations are matrix indices. Since the matrix is fixed, it suffices to refer to its elements by indices
only. Here is the Gauss-Jordan elimination algorithm as a Pascal-like program; n refers to the size
of the square input matrix:

Phase 0:
for i from 0 ton —~ 1 do
for j from 0 ton—1do
for k from 0 to min(¢,7) do

k0 i FEATEE— AL 7 R)
0i>jAj=k— Boij)
li=jAni=k—CH)

TR 0 else — skip
1:7:k:0 a
Phase 1: . e . .
for i from 0 ton —1do wjikel o lf?¢;?’\€ #k“’A(ﬁ{%_k)
for j from 0 ton— 1 do where B@<3A3f§”‘>§f(%5)
for k from min(s, j) to max(i, j) do Di<jni=k— Bi(i])
ikl [l else — skip
ik s
Phase 2:

k2 ifiFkEAjFEE— A4, k)
Di>jNni=k— Bi(i,j)
[else — skip
fi

for i from 0 ton —1 do

for j from 0 to n— 1 do

for k from max(¢,j)to n— 1 do
1:9:k:2

This program is a simple transformation of the one proposed in [11]. In general, enforcing our
requirements on the input program may require non-trivial program transformations.

We call the iteration steps 2:7:£:0, i:7:k:1 and 4:7:k:2 the basic operations of the program.

4 The Systolic Design

In order to obtain a systolic design, we need to modify and enhance the program’s operations to
account for reflections in data propagation (for the details of the derivation, we refer to [3]). Since
data will travel in three different directions on their way through the systolic design, we need three
different matrices — one for each direction. We name them a, b and ¢. The operations must copy
elements from one to another matrix appropriately. To accomplish this, the existing computations
must be modified and new ones must be added:

A(l?37k) NG =L & gk ® bk,ja

BO(i,7) = aij =i @by

B](i?j) : Cij = G5 ® bz'ﬂj‘,

C(i) = bii = ¢t

Do(i,j) b= e,

DI1(i,) ¢ = a;,

E(i) = ai; = b
The basic operations of the three phases are then extended as follows:
1:9:k:0 = 1kl t:7:k:2 ‘
ifi£knj#k— A4, 4, k) ifi#kANj#E— A(,J,k) ifi£FkAN]#Ek— A, 5,k)
li>jnj=k— BO(j) Di<jAj=k— B0(j) Di>jAi=k— BI(i,j)
li=jAt=k— C(i) Di<jAhi=k— BIi(ij) Di<jnj=k— DI(i,j)
li<jnit=k— DOi,j) Di>jAi=k— DO, j) fi
fi 0é>jAj=k— Difi,j)
ﬁ’e;:j/\izk—-—‘rE(é)
fi

The optimal systolic solution has n? + n processors (we call them also cells), laid out in a rhombic
shape with horizontal and vertical channel connections [3, 10]; stream ¢ moves up, b moves right
and @ is stationary. Figure 1, generated by our implementation of the imperative method, displays
the layout of the processors and the arrangement of the data at the first execution step, Figure 2
at the 14th step (out of 18 steps). Different symbols represent different computations. Input cells
must be imagined below the array where the matrix is injected and output cells above the array
where the matrix is ejected; they are not depicted in the figures. Data items will change their
relative positions during the systolic execution, but the configuration of the ejected stream is the
same as that of the injected stream.

The systolic design is specified by the following distribution functions:

step(i:7:k:0) = i+ji+k
step(i:j:k:l) = i4+j+k+n
step(i:j:k2) = i+j+k+2n
place(i:7:k:0) = (i, k)
k) = @GR i>kAj<k
place(i:j:k:1) = { (i+n,k) if i<kAj>k

place(i:5:k:2) = (i+n,k)

Step maps the program’s basic operations into time, and place maps them into two-dimensional
space (the integer plane). Step and place of the second and third phase can be computed from
their choice for the first phase.

5 The Code Generation

In [6], a systolizing compilation scheme is presented that can handle input programs of the following
form:

for z¢ from lbg by sip to rbg do
for 21 from by by sty to rb; do

for z,_; from [b,_1 by st,_1 to rb,_; do
Toidyr s paat

with a basic operation of the form:

zo:zyie - =&p—1 ¢ if Bo(zo, 21, -+, &r—1) — So
0 Bi(zo, 21,5 Tr1) — 51

0 Bi—i{zo, 1,5 r-1) — St
fi

The bounds rb; and Ib; are integer expressions in the loop indices zg to ;-1 (0 < ¢ < r); the steps
st; are constants. The conditions B; (0 < j < t) must be side-effect-free. The 5; (0 < j < t) are
functional or imperative programs, possibly, with composition, alternation, or iteration but without
non-local references. Of a subscripted variable in 5;, each subscript must be a distinct argument
of the basic operation, and there must be either » — 1 or r subscripts.!

The code generation proceeds by building loop constructs, so-called repeaters, from the data struc-
tures on which the graphical representation of the 4 X 4 array is based (chiefly step and place and
other functions derived from them). A repeater represents a finite sequence by a triple {fst, cnt,
inc}, where fst is the first element in the sequence, cnt is the number of elements in the sequence,
and inc is the increment by which an element is derived from its predecessor. If e¢nt = 1, any
inc may be specified. Repeaters must be generated for the computation cells and for the input
and output cells that inject and extract the matrix. Each set of repeaters is then homogenized,
yielding one repeater that is parameterized by the cell identifiers. In a last step, the repeaters are
generalized from a fixed size (here 4 x 4) to the variable-size (n X n) problem. For more details,
see [6].

Each phase of the Gauss-Jordan elimination program adheres to the previously stated input format.
But we have to account for the composition of the phases. During the generation of repeaters, we
would like to keep distinct phases separate; that is, no repeater should be part of more than
one phase (this leads to a clearer loop structure). To sensitize the repeater generation algorithm
accordingly, we must identify one of the arguments of the basic operation as the phase indicator;
in our case, it is the fourth argument. With this additional provision, the systolizing compilation
works also for multi-phase input.

1 The proofs of some theorems become more complex if the format of subscripted variables is relaxed as follows:
the subscripts of variables in the .S, must be linear expressions in the z: (0 < ¢ < r), and their coefficient matrix
must be of rank 7 — 1 or v [1]. This extended format covers, for example, convolution [7].

With knowledge of the phase indicator, our repeater generation algorithm produces for the 4 x 4
problem the repeaters displayed in Table 1. The layout of the computation repeaters matches the
layout of the computation cells in the figures; each cell is assigned a pair of repeaters, except for
the lower left corner of the array which is assigned one repeater only. The repeaters for the stream
input and output are also given in the table — at the point where the input and output cells must
be imagined.

We shall illustrate the homogenization and generalization technique for the repeater counts. The
other repeater components (the indices of stream elements, arguments of basic operations and
increments) are homogenized and generalized similarly; in this example, the repeater increments
are unaffected by the homogenization and generalization process.

5.1 Homogenization

Homogenization of the stream repeaters (the repeaters for the i/o of stream ¢) follows from the
solution of a pair of linear equations for each repeater component. The linear equations for the
repeater count (the second component) of the input repeaters, say, are of the form:

ent(col) = - col + 8

Two linear equations are obtained by filling in the information for two distinct columns, and then
the systems of equations are solved to obtain values for @ and 3, for example:

Stream I/0 (up):

ent(0)=pF=4

= =4 t(col) =
ent(1) = o+ f =4 = a=0,0 = cni(col)
In general, the repeaters for the input and output of the stream ¢ must be considered separately in
multi-phase systolic designs, since they connect to different phases. In our example, the repeater
counts for input and output happen to be identical. For the variable indices, the story is more
complicated: their expressions are different for input and output.

The homogenization of the computation repeaters proves to be more difficult. We obtain three
linear equations in two arguments:

ent(col,row) = a-col + B - row +

The three equations for the first computation repeaters are obtained by filling in the information
for three computation cells, for example, at the points (0,0), (1,0) and (1,1):

Computation (first repeater):

ent(0,0) =v =4
ent(1,0)=a+v=4 = a=0,8=-1,v=4 = ent{col,row)=4— row
ent(l,)=a+8+v7=3

When we attempt to perform the same procedure for the second computation repeaters, we discover
that we do not obtain a solution that provides a correct value of cnt for each computation cell.
However, it is possible to obtain consistent solutions by partitioning the computation cells into cells
in columns col < row + 1 and cells in columus col > row + 1, for example:

Computation (second repeater):

ent(1,0)=a+vy=1
ent(2,0)=2a+v =1 = a=0,8=1,v=1 = ecnt(col,row)=row+1
ent(2,1)=2a+B+v=2

ent(1,0)=a+y=1
ent(l,)=a+8+7=1 = a=1,8=0v=0 = cnt(col,row) = col
ent(2,1)=2a+B+v=2

Then, by observing that the minimum of the two solutions forms a consistent solution for all second
computation repeaters, we obtain the final solution:

Computation (second repeater):
ent(col, row) = min(col, row + 1)

Remember the repeater structure {fst,ent,inc}. For the computation repeaters, we choose to
comment also on the homogenization of component fst, the basic operation; we consider the first
argument. As is the case for ent, the expression we compute does not apply to all repeaters.
However, consistent solutions can be obtained a partitioning of the repeaters by phase (the fourth
argument). We group together repeaters in columns 0 to 3 (col < 4) and repeaters in columns 4 to
7 (col > 4). We obtain:

arg1(0,0) =y =0
argl(l,l)=a+f+7=1 = a=1,8=0,vy=0 = argl{col,row) = col
argl(1,0)=a+v=1

arg1(4,0) =4a+v=10
argl(4,1)=4a+B8+7=0 = a=1,0=0,7v=-4 = argi(col,row) = col —4
argl(5,1)=5a+ B3 +y=1

We then observe that these two solutions can be combined to:

argl(col,row) = col mod 4

5.2 Generalization

Once we have homogenized the repeaters, generalization proceeds much more easily. Similar pro-
cedures are used for the stream ¢ repeaters and the first and second computation repeaters. Let us
demonstrate, again, with the repeater count. We simply solve a system of two linear equations of
the form:

ent(n)=a-n+f

We obtain the linear equations by filling in values for two distinct problem sizes. Solving these
systems of equations produces the generalized count. For example, for problem sizes 4 and 5, we
obtain:

Stream I/0 (up):

ecnt(d)=a-4+8=4

Cnt(5):a-5+ﬁ:5 = a=10=0 = cnt(n):n

Computation (first repeater):
= a=1,4=—-row = cni(n)=n-row

Computation (second repeater):

ent(4) = a -4 + f = min(col, row + 1)

ent(5) = a -5+ B = min(col, row + 1) = a=0, 8 =min(col,row+ 1)

= ent(n) = min(col, row + 1)

The other repeater components are derived similarly. The homogenized and generalized set of
repeaters is:

Stream I/0 (up):

input-cell(col) {eot0 7 (0,+1)}
output-cell{col) = {ccoi-no 7 (0,+1)}

Computation:

{(col mod n):row:row:(ecol divn) n—row (0,+1,0,0)}
{(col mod n):0:row:((col div n) + 1) min(col,row+ 1) (0,+1,0,0)}

cell(col, row)

Note that the range of the index col of the input and output cells ig restricted; in other words, not
every column has an input and output cell. This can be determined mechanically from an inspection
of the data layout before the first step (Figure 1) and after the last step of the execution. Similarly,
not every point of the rectangular layout space holds a computation cell, due to the rthombic shape
of the systolic array.

For this example, the homogenization and generalization have been performed by hand.

6 The Output Program

We have performed the translation to occam by hand. The translation of repeaters to occam loops
is straight-forward:

, . SEQ i = [0 FOR cnt]
st, cnt, ine becomes

{fst, } 7 fat+{ixinc)

The other main task in the translation to occam (or any other target language) is the appropriate
choice of variable and channel declarations.

In the following occam program, which corresponds to the previous set of repeaters, the pre- and
postprocessing phases are omitted (and indicated by a doubly-quoted insert). Except for that and

the definition of a process Min(i, j,min) that returns in min the minimum of i and j, the program
is executable. The constant n defines the problem size and must be assigned a value at compilation
time. Note the limitations of the original version of occam [4]: only one-dimensional arrays, no
floating-point arithmetic (we use a floating-point package)? and full parenthesization of expressions.

We have specified process SKIP for every point in the layout space that does not hold a computation
cell. We have determined the guard for SKIP by observation.

Process BasicOp represents the basic operation. Remember that the basic operation is constructed
from seven other operations (we called them previously “computations”): A, B0, Bi, C, D0, D1,
and F. Each computation has a set of one to three input variables on the right-hand side of the
assignment operator, each from a different data stream. A given computation reads exactly from
those streams corresponding to its input variables. Output is performed on the same streams,
except that a reflection may be involved. A reflection is identified by matching the indices of the
target variable with an input variable. For example, A reflects nothing; it must input and output
a, b, and c¢. BQ reflects ¢ into a; it must input b and ¢ and output & and e. C reflects b into ¢; it
must input b and output ¢, and so on [3]. If one represents communications of stationary streams
by local reassignment (as we do) the input/output commands for stationary stream (in our case,
a) are omitted.

6.1 The Program

VAR cIn[n*n], cOut[n*n]:
CHAN Up[2xn*(n+1)], Right[((2%n)+1)*n]:

SEQ
“"read in input matrix®
PAR

PAR col = [0 FOR n]
SEQ row = [0 FOR n]
UpL[((n+1)*col)+0] ! cIn[(n*col)+row]

PAR col = [0 FOR 2%n]
PAR row = [0 FOR n]

IF
{col<row) OR (col>(n+row))
SKIP

TRUE
VAR min:
SEQ
Min(col, row+l, min)

SEQ j = [0 FOR n-row]
BasicOp(col\n, row+j, row, col/n,
Up[{((n+1)*col)+rowl, Up[((n+1)*col)+row+i],
Right[(n*col)+row], Right[(n*(col+1))+row])

“Read Reallp(z.x,0p,y) as z :=x Op y

SEQ j = [0 FOR min]
BasicOp(colln, 0+j, row, (col/n)+i,
Up[((n+1)*col)+rowl, Up[((n+1)*col)+row+i],
Right[(n*col)+row], Right[(n*(col+1))+rowl)

PAR col = [0 FOR n]
SEQ row = [0 FOR nl
Up[((n+1)*(n+col))+n] 7 cOut[(n*col)+row]

"read out output matrix"

6.2 The Basic Operation
PROC BasicOp(VALUE i, j, k, p, CHAN UpIn, UpOut, RightIn, RightOut) =

VAR aElement, bElement, cElement, tmp:

SEQ
IF
- A(i,J 9k>
(k<>i) AND (k<>3)
SEQ
PAR

RightIn 7 bElement

UpIn 7 cElement
RealOp(tmp, aElement, Mul, bElement)
RealOp(cElement, cElement, Add, tmp)
PAR

RightOut ! bElement

UpOut ! cElement

-- BO(i,3)

((p=0) AND (j<i) AND (j=k)) OR ((p=1) AND (i<j) AND (j=k))
SEQ
PAR
RightIn 7 bElement
Upln 7 cElement
RealOp(aElement, bElement, Mul, cElement)
RightOut ! bElement

-- B1(i, i

((p=1) AND (i<j) AND (i=k)) OR ((p=2) AND (j<i) AND (i=k))
SEQ
RightIn 7 bElement
RealOp{cElement, aElement, Mul, bElement)
UpOut ! cElement

-- CG(1)

(p=0) AND (i=j) AND (i=k)
SEQ
UpIn 7 cElement
RealOp{tmp, One, Sub, cElement)
RealOp(bElement, One, Div, tmp)
RightOut ! bElement

- Do(isj)

((p=0) AND (i<j) AND (i=k)) OR ((p=1) AND (j<i) AND (i=k))
SEQ
UpIn 7 cElement
bElement := cElement
RightOut ! bElement

-- D1{i,3)
({p=1) AND (j<i) AND (§=k)) OR ((p=2) AND (i<=j) AND (j=k))
SEQ
cElement := aElement

UpOut ! cElement
-~ E(i)

(p=1) AND (i=j) AND (i=k)

SEQ
RightIn 7 bElement
aElement := bElement :

7 Conclusions

The occam program is interesting in its own right, but more important is its derivation. At present,
some steps (the ones that introduce functions min, mod, div and comparators) involve human
observation, but every step is a calculation. The beauty of the output program is a by-product
of the systolizing compilation, which already requires a streamlined input program (a single basic
operation per phase). The complexity is absorbed inside the basic operations, which may contain
many alternative computations. But even the the basic operations can be translated mechanically,
including the augmentation with communications.

& References

[1] C.-H. Huang, “The Mechanically Certified Derivation of Concurrency and its Application to
Systolic Design”, Ph. D. Thesis, Department of Computer Sciences, The University of Texas
at Austin, Aug. 1987,

[2] C.-H. Huang and C. Lengauer, “The Derivation of Systolic Implementations of Programs”,
Acta Informatica 24, 6 (Nov. 1987), 595-632.

16

[3]

[10]

[11]

[12]

C.-H. Huang and C. Lengauer, “Mechanically Derived Systolic Solutions to the Algebraic Path
Problem”, TR-86-28, Department of Computer Sciences, The University of Texas at Austin,
Dec. 1986; extended abstract in VLSI and Computers (CompEuro 87), W. E. Proebster and
H. Reiner (eds.), IEEE Computer Society Press, 1987, 307-310.

INMOS Ltd., occam Programming Manual, Series in Computer Science, Prentice-Hall Int.,
1984.

H. T. Kung and C. E. Leiserson, “Algorithms for VLSI Processor Arrays”, in Introduction to
VLSI Systems, C. Mead and L. Conway (eds.), Addison-Wesley, 1980, Sect. 8.3.

C. Lengauer, “Towards Systolizing Compilation: An Overview”, Proc. Conf on Parallel Ar-
chitectures and Languages in Europe (PARLE 89), June 1989, to appear as Springer-Verlag
Lecture Notes in Computer Science.

P. Quinton, “The Systematic Design of Systolic Arrays”, Tech. Report 193, Publication Interne
IRISA, Apr. 1983; also: TR84-11, The Microelectronics Center of North Carolina, May 1984.

P. Quinton et al., “Designing Systolic Arrays with DIASTOL”, in VLST Signal Processing II,
S5.-Y. Kung, R. E. Owen, and J. G. Nash (eds.), IEEE Press, 1986, 93-105.

P. Quinton, “Mapping Recurrences on Parallel Architectures”, in Supercomputing ’88 (ICS 88),
Vol. ITII: Supercomputer Design: Hardware & Software, L. P. Kartashev and S. I. Kartashev
(eds.), Int. Supercomputing Institute, Inc., 1988, 1-8.

Y. Robert and D. Trystram, An Orthogonal Systolic Array for the Algebraic Path Problem”,
Computing 39, 3 (1987), 187-199.

G. Rote, “A Systolic Array Algorithm for the Algebraic Path Problem (Shortest Paths; Matrix
Inversion)”, Computing 34, 3 (1985), 191-219.

U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structures,
Annals of Discrete Mathematics 10, North-Holland Publ. Co., 1981; Sect. 8.

11

Besign: appl, Refinenent call: {app 4), OCurrent step: 2
Surrant parallal cemmand: ({0 8))
Ed B 3 Bd k4
E] » = B %
] Ed Ed L4 @
@ Ed B Ed E
>
<
8,8
»
o! of
8,1t 1.8
-
2! o of
8.2 1,1 2,8
4 -
o N of o
5,2 L2 2.1 3,8
CT CT CT
1,3 2.2 3 4
. »
o o
2,3 3,2
T
2,2

Rz Forward one step

| Lz Hackward one step, M: Choose menu,

[Fm’ 28 fApr 11:96:81] chris "~ CL USER: Userlnput Hardoopy: sendl page bffers

Figure 1: 4 x 4 Gauss-Jordan Elimination — The Optimal Systolic Design, 1st Step

Design: appl, Refinement call: {app 4}, Current step: 13
Zurrent parallz] command: ({E 3} (R 8 2 3) {81123 (D1 1 2)¢n23%3 (B2 i3

oF
5.8
cgz cje
ERl a’’ &
o, ab, iah
B R R ST
CT CT C"r
8.2 Jhi e
1.2 2,2
[N E A b, pa
2,
B A ki q 1
N k| 4 A 4

| Li Backward one 'step, M: €hoose menu, H: Fogwar& one step

[Fri 28 Apr 11:55:18] chris €L USER: T User Input Hardcopy: sending page buffers

Figure 2: 4 X 4 Gauss-Jordan Elimination — The Optimal Systolic Design, 14th Step

13

sioyeedoy] 91, — UOTIBRUTWII[Y] WRPIOP-SSTRY) § X ¥ (T o[qR],

)e e

{loto1+0) ¢ mziorz} {00 ‘T

{(1-+0) ¥ 0%} {(1+°0) ¥ 010}

0 01 {(0‘0‘1+"0)
‘0) ¢ vt {(ofo 1+ 0) ¢ Tk {(o‘0 T+ D)

+) ¢ zzott{{o0 1+
{lo‘o‘t+'0) z twziz} {(0‘0“1+0) ¢ T:z:zt} {(0°0 T+ ‘0)

{(1+0) ¥ ve2} {{1+0) ¥ oe0} {(1+) ¥ o0} HEE

“ona M||||’|l
:0:0:0} {(0 0T+ ‘0)

o3

{———— 1
{{oo‘T+0) ¥

ol

¢ oo} {{o‘s 1+ 0)

) & zzo:0} {(0°0 1+ 0)
T +0

)

o3

zeo} {(0°0T+0) ¥ zeont {(00°T+0) ¥ zrei0i0} {(0°0 T+ ‘0)
nggg) { ———— 1 gt} { ———— 1 Tigeigio} {

{(1+0) % 000}

T
¥

£

((dn) gndug wweag

Leeg) { ~——— 1 1:0:0:8} { ——— T L:0:0:T}
o:0:0°¢} {{0°0 T+ 0} ¥ 0:0:0:z} {(0°0°T+0) ¥ 0:0:0: T} {{00 T+ 0) F 0:0:0:0)

rrogr{{o‘o‘r
0

+9) 7 o} { ————— 1 T}
ol {(0fo‘T+0) ¢

0T LT} {00 T+ 0) ¢ 0TI

14

1:z:00} {00 T+ ‘0)
ogze} {{001+) 7 0:zizir)

o
i
Pt
&

o

1igi0ie}
orggie}

wonmndiio)

((dn) anding wiveuyg

