Static Type Checking of Hadoop MapReduce Programs

Jens Dorre
University of Passau
Germany

ABSTRACT

MapReduce is a programming model for the development of Web-
scale programs. It is based on concepts from functional program-
ming, namely higher-order functions, which can be strongly typed
using parametric polymorphism. Yet this connection is tenuous.
For example, in Hadoop, the connection between the two phases
of a MapReduce computation is unsafe: there is no static type
check of the generic type parameters involved. We provide a static
check for Hadoop programs without asking the user to write any
more code. To this end, we use strongly typed higher-order func-
tions checked by the standard Java 5 type checker together with the
Hadoop program. We also generate automatically the code needed
to execute this program with a standard Hadoop implementation.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—distributed applications; D.3.3 [Programming
Languages]: Language Constructs and Features—data types and
structures, frameworks, inheritance, input/output

General Terms
Design, Languages, Reliability

Keywords
MapReduce, Hadoop, generic types, static type checking

1. INTRODUCTION

MapReduce has proved to be a practical programming model for
cluster computing. Its first promoter, Google, uses it, for example,
for building its Web search index [2]. There are many other uses.
For example, it can be used for image processing in astronomy [[11]]
and for the analysis of spatial data from sensor networks [5].

MapReduce is a flexible model that allows to combine functions
at run time to a MapReduce program. One may even create a work-
Sflow consisting of multiple MapReduce jobs, each implemented as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MapReduce’l1, June 8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0700-0/11/06 ...$10.00.

Sven Apel
University of Passau
Germany

17

Christian Lengauer
University of Passau
Germany

a different MapReduce program. For example, Google uses a se-
quence of over twenty MapReduce jobs to build its search index.

Still, this flexibility comes at a price. In many MapReduce im-
plementations, MapReduce programs are not type checked at com-
pile time. Imagine a programming error in the midst of all the pro-
grams used in the Google workflow: you will not notice it until you
can schedule the workflow for execution on a cluster, the computa-
tions are halfway done, and the MapReduce job affected has started
to run. Then you hurry to fix the error, because the second half of
the computations need to complete. So, we face the problem of
how to detect errors in MapReduce programs as early as possible.

We restrict ourselves to the subproblem of intra-job type safety:
we consider errors inside a single MapReduce job, but not between
multiple jobs. Nevertheless, a solution to this problem will prove
more useful for larger workflows than for single MapReduce jobs:
we can use it to check every MapReduce program in a workflow
prior to running any one. Then we can fix the error(s) found, val-
idate that no other bugs have been introduced, and prepare to run
the complete workflow.

In Section 2l we provide an introduction to MapReduce, how
it executes jobs in phases, and to one of its many implementa-
tions: Hadoop. We also introduce our running example: a program
for solving a shortest path problem. Then, in Section 3] we state
the problem of type checking Hadoop programs. In Section] we
present a solution: a static type checker for Hadoop. In Section
we go into more technical detail of type checking, the chaining
combinators we use in it, and how we generate legacy Hadoop pro-
grams. In Section[6] we present an extension of our type checker
for subtyping of function types. Section[Zlcontains a brief overview
of related work. Finally, in Section[§] we draw some conclusions
and give a prospect of further work.

2. MAPREDUCE

Technically, a MapReduce system is a framework for processing
data in chunks. A framework is a collection of functions that can be
called by user code, and that may also call user-defined functions,
which are then named callback functions. A MapReduce system
has the following properties:

1. The format of the input data can be chosen freely.

2. The output data consist of pairs of arbitrary keys and values.

3. Processing happens in two consecutive phases, using two
user-defined functions: mapper and reducer.

4. The mapper function creates intermediate results (pairs of

keys and values of arbitrary type each) from each input chunk.

5. The reducer function is applied in unison to all intermedi-

ate results with the same key, and produces arbitrarily many
final results.

Additionally, there is a main function in a MapReduce frame-

master

3 worker —p» \

worker —Jpp»
— worker —Pp
worker —>
\T worker —p» /'
Input data Map Intermediate Reduce Output data

data

Figure 1: Schematic overview of MapReduce processing.

original map phase

Pt —(12)—~(Epli2)—»(EortA)—~Combind

original reduce phase|

Figure 2: Phases and subphases in MapReduce processing.

work that has to be called by the user to specify the MapReduce
program to be run as a job: which mapper and reducer func-
tion to execute and which data to process. MapReduce employs
multiple used-defined functions operating on arbitrary data types.
For a MapReduce program to be correct, the types of the data items
and of the functions need to be compatible with each other.

This compatibility can be expressed as type correctness if we
have a means of typing all the data and functions involved. It
turns out that we can order them by the complexity of typing: or-
dinary data items have simple types, callback functions have first-
order function types (they consume and produce data items), and
the main function is higher-order, as it takes callback functions as
parameters. As a consequence, we need generic types (to take ad-
vantage of parametric polymorphism [9])) if we want to type check
a MapReduce program.

2.1 Phases

MapReduce owes its name to the two main phases into which
its execution can be divided: the Map phase (in which mainly the
mapper function executes) and the Reduce phase (executing the
reducer function). This is illustrated in Figure[Il Rectangles rep-
resent chunks of distributed (input, intermediate, and output) data,
and ovals labelled “worker” represent nodes executing user-defined
functions. In each phase, processing can happen in parallel. In
contemporary applications, the computation is typically distributed
over a cluster of hundreds to thousands of worker nodes, controlled
by a single master node. In this distributed setting, large sets of
data have to be serialized (converted to a representation suitable
for transport over a network), communicated over the network, and
deserialized during a MapReduce computation. As this may incur
huge communication costs, MapReduce also contains a feature that
optimizes locality in the Map phase: the mapper function, oper-
ating on a particular chunk of input data, is typically computed on
the same node on which the chunk is stored.

There is an extension to MapReduce that allows to reduce com-
munication even further: the combiner function. A combiner
function is a third user-defined function that processes the inter-

18

mediate data after the mapper function has produced it, and that
is executed on the same node using the data in memory [2]. This
leads us to subdivide the two phases of a MapReduce computation
further, as illustrated in Figure 2l The outer rectangles represent
the two phases and the inner ovals subphases in the execution of a
distributed MapReduce program with combiner function.

In the Map phase, the input is split up into chunks (split1), which
are fed to the mapper function (map). The intermediate results
produced are then split up again (split2; this is needed to create the
partitioning desired for the final output) and sorted (sortA) to guar-
antee a deterministic order of processing. All intermediate results
stored on one node can then be pre-reduced (a.k.a. combined by the
combiner function, combine), which may reduce the size of the
data to be sent over the network.

In the Reduce phase, the prereduced intermediate results received
by a node have to be sorted (or merely merged, sortB) to establish
the desired order, and can then be processed by the reducer func-
tion (reduce), which in turn produces a partition of the final output.

To make use of this optimization, the programmer has to write a
third function besides a mapper and a reducer function. Since
it has been noted that the reducer function can often be reused
as the combiner function in the same MapReduce program [2],
additional code might not be necessary.

2.2 Hadoop

There are many implementations of MapReduce in various pro-
gramming languages. We look at Apache’s Hadoop MapReduceE]
a widely used framework for MapReduce, whose Java source code
is freely available. For serialization, it uses an interface (called
Writable) to which all data types must adhere.

In Hadoop, there is no explicit representation for MapReduce
programs; one can only create jobs (class Job) to be submitted
to a Hadoop installation for execution. We call the sequence of
Java statements that create a job the main program. Jobs are rep-
resented as a combination of byte code (the user-defined functions)
and XML data or simple strings (the glue “code”). Thus, user-
defined functions are written in Java, while the glue code is either
written in XML, given as string parameters, or written in Java using
a thin layer that encapsulates the XML data in a Java data type (a
class called Configuration, which stores a job’s data).

2.3 An Example

A running example shall serve to illustrate where type errors can
occur in Hadoop programs, and how to correct them. This example
is not construed; we wrote the program for another purpose and
were surprised by the run-time type error, which motivated us to
address this research question in the first place.

We want to use Hadoop to compute the shortest paths in a large
undirected graph. Our solution makes use of two different Map-
Reduce programs: the first program forms new paths by concate-
nating any two shortest paths of which the end of one is the start
of the other, while the second program removes paths that are not
shortest. Jobs from the two programs are created and executed in
alternation until all shortest paths have been computed.

We discuss only the second program. Input are paths that may or
may not be shortest. Only the shortest paths are output. Paths are
represented as pairs of keys (the source node) and values (the list
of nodes on the path, including the source and target node).

Let us specify the two user-defined functions.

e The mapper function computes, for each path in its input, a

"http://hadoop.apache.orqg/mapreduce/; we use ver-
sion 0.20.2.

http://hadoop.apache.org/mapreduce/

1
2
3
4
5

7
8
9

11
12

14
15

key/value pair whose key is the pair of a source and a target
node and whose value is the list of nodes on the path.

e The reducer function processes each group of intermedi-
ate values with the same key, filters out the paths which do
not have the minimal length, and produces, for each remain-
ing input item, a pair of the source node as the key and the
list of nodes on the path as the value.

This program works, but it runs unnecessarily slowly, since all
the intermediate results computed by the other program have to be
communicated over the network to the node processing the match-
ing group of intermediate values. Fortunately, MapReduce pro-
vides the combiner functions, which we have described above, to
cope with this problem. We modify the (second) main program by
introducing a combiner function to accelerate it. The mapper
and reducer function remain unchanged. We note that we need
not write code to implement a new combiner function: we can
just reuse the code of the existing reducer function.

static int runMinLength(Job job, Path iPath,
Path oPath) throws ...
{
FileInputFormat.addInputPath(job, iPath);

FileOutputFormat.setOutputPath(job, oPath);

job.
job.
job.

setMapperClass (MinMapperForText.class);
setCombinerClass (MinLengthReducer.class);
setReducerClass (MinLengthReducer.class) ;

job.
job.

setOutputKeyClass (Pair.class);
setOutputValueClass(Text.class);
return

(job.waitForCompletion(true) 2?2 0 : 1);

}

Figure 3: The main program with combiner.

The Hadoop code for the main program is shown in Figure
Function runMinLength takes a rudimentary job description,
and input and output paths in the distributed filesystem of Hadoop
(HDFS). First it sets these locations in the job description. Then
the MapReduce job is created, consisting of reflected class values
for amapper (MinMapperForText), an additional combiner
(MinLengthReducer,highlighted in bold) and a reducer func-
tion (MinLengthReducer)f Hadoop needs additional “type
declarations” for the keys (Pair) and values (Text, our repre-
sentation of paths in the graph) of intermediate data which are
communicated over the network. These statements are not regular
Java type declarations, but function calls using reflection to convert
types to a reflective representation as values. After these types have
been supplied, the job is executed in the last line, and its exit status
is returned.

3. THE PROBLEM

The optimized MapReduce program compiles, but it raises a run-
time exception, shown in Figure @ The first line states the type
of the exception and the error message. The lines below contain
the Java stack trace, listing the procedures executed, from the last
callee to the first caller.

The exception is an IOException, indicating that something
went wrong during 1/O. Its message text mentions that the class of
keys mismatched. The highlighted parts of the stack trace show that
the error occurred in the code of class MinLengthReducer. The

2Since functions have to be modelled as classes in Java to become
first-class entities with associated types, we will not distinguish any
longer between these two concepts.

19

Pair<Person, Person> Person
Text Text

Pair<Person, Person> Person
Text Text

T
Input Output

Key —
Value —»

Figure 5: The mismatch between our combiner (at the top)
and reducer function (at the bottom).

exception message states that we made a type error: we confused
the types Person and Pair.

To locate the error, we look at class MinLengthReducer. Itis
used as both combiner and reducer function. The combiner
function feeds into the reducer function, so its output must match
the latter’s input (cf. Figure B). Consider the type parameters of
class MinLengthReducer. Important are the types of the keys,
since they are stated in the exception message: the combiner
function produces keys of type Per son, while the reducer func-
tion expects keys of type Pair<Person, Person>. This raises
the exception.

To correct the error, we need an extra combiner class distinct
from the reducer class. It must have distinct instantiations of
the generic type parameters and a distinct implementation, which
produces output in the format of the intermediate results instead
of the final results. We name the class MinLengthCombiner.
Its four type parameters read: Pair<Person, Person>, Text,
Pair<Person,Person>,and Text.

More generally speaking, Java is statically typed, so one might
expect a Java compiler to detect this error at compile time. But,
as an object-oriented language, Java has subtyping and a universal
supertype (or top type), class ObjectE Values may be cast up
(safely) and down (unsafely). So, the static type system cannot al-
ways detect whether a (down)cast must fail. To be type-safe, Java
has to complement its static type system with a dynamic counter-
part that detects unsafe downcasts at run time.

Generic types, providing parametric polymorphism, have only
recently made it into Java, as so-called Generics. Many APIs and
programmers do not use them, but resort to using subtype polymor-
phism instead [9]. This often defers the type check to run time, and
leads to exactly the kind of run-time type error encountered here,
which is normally associated with dynamic languages.

Hadoop does not require the programmer to use generic types
for the user-defined functions written and assembled to form a job.
As a consequence, a MapReduce program consisting of more than
one user-defined function—for example, any program containing
both mapper and reducer functions—will not be type checked
at compile time! This is the reason why the Java compiler did not
warn us about the type error just described. Having been made
aware by the run-time system, we isolated the error by inspection
and corrected this program. In the following section, we generalize
our approach to detecting similar errors automatically in Hadoop
MapReduce programs at compile time.

4. A SOLUTION

Static checkers have proved to be valuable tools for writing cor-
rect programs. Compilers for functional languages are particularly

3Technically, this is only true if we disregard primitive types.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

java.io.IOException: wrong key class:
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

org.
org.

apache.hadoop.
apache.hadoop.
org.apache.hadoop.
org.apache.hadoop.
org.apache.hadoop.
org.apache.hadoop.
org.apache.hadoop.
org.apache.hadoop.

class socialgraph.Person is not class socialgraph.Pair
org.apache.hadoop.mapred.IFile$Writer.append(IFile. java:164)
org.apache.hadoop.mapred. Task$CombineOutputCollector.collect (Task. java:880)
org.apache.hadoop.mapred. Task$NewCombinerRunner$OutputConverter.write(Task.java:1197)
org.apache.hadoop.mapreduce.TaskInputOutputContext.write (TaskInputOutputContext.java:80)
socialgraph.MinLengthReducer.workOnInput (MinLengthReducer. java:56)
socialgraph.MinLengthReducer.reduce (MinLengthReducer. java:36)
socialgraph.MinLengthReducer.reduce (MinLengthReducer. java:1)

mapreduce.Reducer.run (Reducer.java:176)
mapred.Task$NewCombinerRunner.combine (Task.java:1217)
mapred.MapTask$MapOutputBuffer.sortAndSpill (MapTask.java:1227)
mapred.MapTask$MapOutputBuffer.flush (MapTask.java:1091)
mapred.MapTask$NewOutputCollector.close (MapTask.java:512)
mapred.MapTask.runNewMapper (MapTask. java:585)

mapred.MapTask.run (MapTask.java:305)
mapred.LocalJobRunner$Job.run(LocalJobRunner. java:176)

Figure 4: Java run-time type error of the example of Section2.3}

successful in applying static checks, but modern object-oriented
languages like C# and Java also have good support for compile-
time checks. We can detect errors like the one just described by
making the necessary type information available to the compiler.

Our solution works with any compiler for Java 5 or higher. Since
we do not create a new language or a language extension, the pro-
grammer need not give up the abundant tool support available for
Java. The solution consists of two parts: the user-defined code ex-
plained in this section, and the generic code of our tool SNITCH
(Statlc Type Checking for Hadoop), explained in the next section.

Figure [6] contains a version of the main program that uses our
combinators. Compare this code with the previous main program
(runMinLength in Figure B). It also first sets input and out-
put paths. Then instance objects for the mapper, the erroneous
and the correct combiner, and the reducer class are created.
Next, if we comment the code in, we call a check function on
the (three constituting functions of the) original MapReduce pro-
gram, including the erroneous combiner function. At run time,
the check function does not do much. At compile time, it ensures
the correct typing of the three instance objects passed as parame-
ters; in this case, it will fail. Then we (type) check the (functions of
the) new MapReduce program successfully. Next we use function
configureTypeSafedJob to generate a job object, which inter-
nally stores the configuration of a Hadoop program. This replaces
the five calls of method job.setWhateverClass in the previ-
ous main program. The job object is then submitted to Hadoop for
execution as before.

In the following section, we will explain the functions check
and configureTypeSafeJdob used in this code. For now, it
suffices to know that the signature of function check alone guar-
antees correctness of the types of the instance objects passed as
parametersﬂ The generation step uses reflection to produce a job
equivalent to the one created in the original main program, and also
performs a type check internally. Thus, in a real program, one could
omit the two checks above and the four long lines with generic
type declarations, and instead pass the objects directly to function
configureTypeSafeJob. We include these lines to show the
exact types, and because we use the declared variables three times.

In summary, the user has to spend some additional effort, but,
in exchange, saves effort in another place: the Hadoop job con-
figuration is generated automatically by the combinator code. The
generic combinator code is provided by us, and it can be reused

“There is one case in which SNITCH will only issue a warning
instead of an error: if you call the check function with raw types,
for example with Reducer instead of Reducer<a, B, C, D> for
some types A, B, C and D. This is due to Java’s backward compat-
ibility with code that was written before Generics were introduced.

20

for all Hadoop programs. It guarantees that all type errors (aris-
ing from incompatibilities between the mapper, combiner, and
reducer functions) will be detected statically using a standard
Java compiler. The combinator code can be written non-invasively,
without modifying the MapReduce framework used (Hadoop).

S. TECHNICAL DETAILS

This section is about the implementation details of SNITCH: the
type checking function for Hadoop programs, the chaining combi-
nators used therein, and how it automatically generates a job con-
figuration.

5.1 Type Checking

The code for type checking is shown in Figure[Z] We use inden-
tation here and in the following figures to show matching type pa-
rameters in the same column, if possible. Function check takes a
mapper, a combiner, and a reducer object as input. For type
checking, only the signature of function check is important, its
body (implementation) does not matter. The implementation only
serves to understand better why the signature is correct. For those
interested, let us describe how we derived the types, in particular,
the generic type parameters.

Function check uses one of our chaining combinators (class
AutoChain with six type parameters, described in Section[3.2) to
check the interface between the mapper and the combiner func-
tion, and another one to check the interface between the result and
the reducer function. In total, this function has eight type param-
eters (K1 to K4 and V1 to V4). It returns a pair (Tuple)of null
values; what makes them useful is only their type information: they
are declared to be of the generic type that the intermediate keys and
values should have.

Using methods toMChain and toRChain, the chaining com-
binators can generate objects that simulate internal Hadoop objects
(of types Mapper .Context and Reducer .Context, respec-
tively). The resulting objects are subtypes of the Hadoop types. In
the code section commented out, we call these methodes to ver-
ify that the types of our chaining combinators match those used by
Hadoop: method run of each user-defined function is called with
the appropriate Hadoop object as parameterﬁ This code should be

This does not yet prevent all errors. There is another restriction
in Hadoop that is not expressed in the type system: a combiner
function is cast to Reducer<K, V, K, V>, identifying the types
of input and output parameters. This simplifies the testing of Map-
Reduce programs, as any program with combiner function is also
type-correct when omitting the combiner function. To model this
restriction in our type checker, we would simply have to identify K2
with K3 and V2 with V3.

1
2
3
4

O 00 3N

16
17

25
26
27
28

static int minLengthTyped(Job job, Path iPath, Path oPath) throws
{

FileInputFormat.addInputPath(job,
FileOutputFormat.setOutputPath(job,

ipPath);
oPath) ;

Mapper<Object , Text, Pair<Person,Person>,Text> map = new MinMapperForText();
Reducer<Pair<Person,Person>, Text, Person , Text> combinel = new MinLengthReducer () ;
Reducer<Pair<Person,Person>, Text, Pair<Person,Person>,Text> combine2 = new MinLengthCombiner();
Reducer<Pair<Person, Person>, Text, Person , Text> reduce = new MinLengthReducer () ;

//check (map, combinel, reduce);

check (map, combine2, reduce);
configureTypeSafeJob (job, map, combine2, reduce,
return (job.waitForCompletion(true) ? 0 1);

// This runtime error will now be
// The corrected version type checks.

Pair.class,

detected at compile time.

Text.class);

Figure 6: The new, statically checked main program.

public static<K1,V1, K2,V2, K3,V3, K4,V4>
Tuple<K3,V3> check(
Mapper<K1l,V1l, K2,V2> map,
Reducer <K2,V2, K3,V3> combine,
Reducer <K3,V3, K4,V4> reduce)
{
AutoChain<K1l,V1l, K2,V2, K3,V3> mapChain = new
AutoChain<K1l,Vl, K2,V2, K3,V3>(map, combine);

AutoChain <K2,V2, K3,V3, K4,V4> combineChain=
new AutoChain<K2,V2, K3,V3, K4,V4>
(mapChain.next (), reduce);

Chain <K3,V3, K4,V4> reduceChain =
combineChain.next () ;

/% try |

map . run (mapChain. toMChain ());
combine . run(combineChain.toRChain ());
reduce . run(reduceChain.toRChain ());
} catch (IOException e) { // empty
} catch (InterruptedException e) { // empty
}ox/

return new Tuple <K3,V3>
(combineChain.getNullAsOutputKey (),
combineChain.getNullAsOutputValue());
}

Figure 7: Generic code for type checking Hadoop programs.

used only at compile time to verify changes to the type checking
code; at run time, the generated internal objects are dysfunctional
and will always fail. Therefore, the code is left in comments.

5.2 Chaining Combinators

The chaining combinators are conceptually higher-order func-
tions, because they are functions that take functions as input. In
Java, they must be coded as classes. They must be generically typed
to allow for static type checking. In fact, they are special cases of
the function composition combinator used in functional program-
ming. In Figure [8 this is made evident by the highlighted type
parameters: the first AutoChain constructor takes a (mapper)
function from type (K1,V1) to (K2,V2) and a (reducer) func-
tion from type (K2,V2) to (K3,V3) as parameters. This is the type
signature of function composition. So, an AutoChain models
a function composition. A single function is represented by class
Chain. Since an AutoChain instance represents two functions,
there are two ways to convert it to a Chain:

e To select the first function, just use AutoChain, because it
is a subtype of Chain and has in its subtype declaration the
generic type parameters K1, V1, K2, V2 of the first function.

19
20
21
23

25

21

e To select the second function, call method next, which re-
turns a Chain for the second function.

In Hadoop, there are types for both mapper (Mapper) and
reducer (Reducer) functions, but there is no dedicated type for
combiner functions: they are also of type Reducer. As a conse-
quence, we can also use the first constructor of class AutoChain
to compose a mapper and a combiner function, as illustrated
in Figure[7} The second constructor then allows us to compose the
result of the composition with a reducer function. This way, we
have modelled and typed a complete MapReduce jobﬁ

class Chain <K1,V1, K2,V2>

{
public Chain(Mapper <K1,V1l, K2,V2> mapper) {...}
public MChain <K1,V1, K2,V2> toMChain()...
public RChain <K1,V1, K2,V2> toRChain()...

K2 getNullAsOutputKey ()
V2 getNullAsOutputValue ()

{ return null; }
{ return null; }

}

class AutoChain <K1,V1, K2,V2, K3,V3>
extends Chain <K1,V1, K2,V2>
{
public AutoChain (Mapper<K1l,V1l, K2,V2> mapper,
Reducer <K2,V2, K3,V3>
reducer) {...}
public AutoChain(Chain <K1,V1, K2,V2> chain,
Reducer <K2,V2, K3,V3>
reducer) {...}
public Chain <K2,V2, K3,V3> next()

...}

Figure 8: Generic code of the chaining combinators.

The constructor of class Chain simply wraps a mapper as a
combinator. Methods toMChain and toRChain create objects
of subtypes of internal Hadoop types, as we have described in Sub-
section[5.1} The remaining two methods getNullAsOutputKey
and getNullAsOutputValue in this class do what their name
suggests: they return a null value having the type of output keys
and values, respectively. In this code, it is obvious that these types
must be K2 and V2, respectively. They allow us to propagate the
information about the types needed to their callers.

®Since combiner functions are optional, we also need a check
function without a combiner parameter. We have left it out as it
does not add any insight.

eI e Y e S

=)

10

12

14
15

17

5.3 Generating Legacy Job Configurations

For flexibility, Hadoop jobs are assembled from the three func-
tions (mapper, combiner, and reducer) using run-time re-
flection. We can use this facility to generate the references to re-
flected classes from the objects we use in our type checking func-
tion (cf. Figure@). This way, we can generate the Hadoop job con-
figuration that the user would otherwise have to write by hand. In
our approach, the user replaces the code for manually creating a
job configuration with code to enable static type checking, which,
in turn, automatically generates the job configuration needed.

static K3,V3, K4,V4>

Tuple <K3,V3>

configureTypeSafeJob(Job job,
Mapper<K1l,V1l, K2,V2> map,

<K1l,V1, K2,V2,

Reducer <K2,V2, K3,V3> combine,

Reducer <K3,V3, K4,V4> reduce,

Class <?/+xK3%/> keyClass,

Class <?/%xV3x/> valueClass) throws...

job.setMapperClass (map.getClass());
job.setCombinerClass (combine.getClass());
job.setReducerClass (reduce.getClass());

job.setOutputKeyClass (keyClass) ;
job.setOutputValueClass(valueClass);

return check(map, combine, reduce);

}

Figure 9: The code for generating Hadoop job configurations.

To create reflective Class objects from the function objects for
mapper, combiner, and reducer, we use the predefined Java
method getClass, available for every object (Figure 0). This
gives us the “class values” needed to create a Hadoop job.

Then we replicate the additional “type declarations” from the
original main program. Their values are parameters to function
configureTypeSafeJob,butthey are effectively untyped: the
type Class<?> stands for any instantiation of the generic type
Class used by the Java reflection mechanism.

We would like to supply the generic type parameters K3 and V3
here, as the comments suggest. This is impractical in Java: if we
use nested type parameters in our user-defined functions, such as
Pair<Person, Person> for K3, the type parameter K3 has it-
self type parameters. Java does not allow a “class value” for gener-
ically typed classes[] In consequence, a strongly typed variant of
this method would not be usable in general. Nevertheless, one
could write an additional strongly typed variant to be used only
for flat generic type parameters.

Remember that, for a static check of the parameters, the signa-
ture of function configureTypeSafeJob alone suffices. Nev-
ertheless, we call function check in the last line of of function
configureTypeSafedJob for two reasons: as a sanity check,
and to be able to put the type parameters K3 and V3 in the return
type of function configureTypeSafedob. This enables the
user to match them manually with the parameter objects for the
additional “type declarations” discussed above.

6. SUBTYPING

In this section, we describe an additional feature of our imple-
mentation that is of interest to programmers who assemble Map-

7 This is due to fype erasure: in Java, all generic type information
is erased at compile time [4]]. Because of type erasure, in Figure 3]
we have to use Pair .class without any reference to its two type
parameters of class Person.

22

K1 K2sub <

V1 V2sub>_
Key —>(K2 K3sub
Value — V2 V3sub
Input Output

Figure 10: The match with subtyping (<) between

combiner (top) and reducer function (bottom).

Reduce programs from a pool of already implemented mapper,
combiner, and reducer functions.

Suppose you have written a Hadoop program with a reducer
function that counts the number of key/value-pairs in each group.
This reducer function is fairly general. Consequently, if you
want to reuse it in another (arbitrary) Hadoop program, it should
accept any value of the top type Object as input value. This
means that you must declare it to have Object as the type of in-
put keys, and of input values. (You could have declared it to have
more specialized input types.) In the type checker developed so
far, this means that we would have to change the types of the two
mapper functions involved: they must now return values of ex-
actly the top type. This, in turn, would render them incompatible
with most other, more specialized reducer functions. All in all,
this constitutes an unwanted interaction with the type system, hin-
dering the reuse of the user-defined functions.

The restriction is imposed by the Java 5 compiler used to check
the Hadoop program: it cannot detect safe upcasts between types
with different instantiations of generic type parameters. So, at some
point, a human must decide whether to allow a type cast, and will
then have to guarantee that the cast will not be an unsafe downcast
in any instantiation. We have relegated this task to our type checker.
‘We have included the safe casts, and omitted the others.

Fortunately, the decision which casts are safe is relatively straight-
forward, since a similar concept has long been present in object-
oriented programming: defining subtypes of function types. There,
we need contravariance for function arguments and covariance for
function return values [9]: function [is a subtype of function v iff
[accepts at least the values accepted by w and wu returns at least
the values returned by [. So, a subtype may additionally accept as
parameters (read, in our case) supertypes of the original parameter
types, and return (write, in our case) subtypes of the original return
types.

With this theoretical armament, it is easy to extend our checker
to support subtyping. In the modified checker, instead of mandat-
ing exactly matching instantiations of the type parameters of the
user-defined functions, we relax this constraint to an implication:
when chaining two user-defined functions, the first may produce
more specific intermediate results than the second has declared to
accept (cf. Figure [[0). Implementing this, we must make use of
generic type bounds in Java, which allows us to define upper or
lower bounds (sub- or supertypes) on the generic type variables in
a declaration. In the type checker, in the chaining combinators on
which it is built and in the generator for job configurations, we need
additional type parameters for the types of keys and values before
upcasting them. The remaining modifications are straightforward.

Figure [[I] contains the code of our subtyping-enabled checker.
All differences to Figure[Zlare highlighted in bold. The static func-
tion check Subtypes has four additional type parameters (in com-

1

3
4
5
6
7
8
9

public static <K1,V1l, K2,V2,
Tuple<K3sub,V3sub> checkSubtypes (

K2sub extends K2,V2sub extends V2, K3,V3,

K3sub extends K3,V3sub extends V3, K4,V4>

Mapper <K1,V1, K2sub, V2sub> map,
Reducer <K2,V2, K3sub, V3sub> combine,
Reducer <K3,V3, K4,V4> reduce)
{
AutoChainSub<K1l,V1l, K2,V2, K2sub,V2sub, K3sub,V3sub> mapChain = new
AutoChainSub<K1l,V1, K2,V2, K2sub,V2sub, K3sub,V3sub> (map, combine);
AutoChainSub <K2,V2, K3,V3, K3sub,V3sub, K4,V4> combineChain = new
AutoChainSub <K2,V2, K3,V3, K3sub,V3sub, K4,V4>(mapChain.next (), reduce);
Chain <K3,V3, K4,V4> reduceChain =

combineChain.next () ;

/%

return new Tuple<K3sub,V3sub> (combineChain.getNullAsOutputKey(),

the code previously shown here remains unchanged x/

combineChain.getNullAsOutputValue());

Figure 11: The generic code for type checking Hadoop programs, allowing for subtyping.

parison with check) that are declared to be subtypes of existing
ones. So, the existing type parameters are upper type bounds. An
example of this is the type parameter K2sub with the upper type
bound K2. These type parameters are then used in a correctly cho-
sen subset of declarations of parameters and local variables. For
example, K2sub is the new type of the keys the mapper function
produces, and is therefore used in the declaration of the function
parameter map and the local variable mapChain.

During this adaptation, it is all the more important to use ex-
actly the declared type of the values in question. For example, the
type of combineChain.getNullAsOutputKey () is K3sub,
a proper subtype of K3. If we used Tuple<K3,K3> as the con-
structor and return type, we would have written code that makes
the compiler introduce an unwanted upcast here, thus reducing the
amount of type information available to the user.

/% class Chain <KI1,Vl, K2,V2> remains unchanged =/
class AutoChainSub<K1l,V1, K2,V2, K2sub extends K2,
V2sub extends V2, K3,V3>
extends Chain <K1,V1, K2sub,V2sub>
{
public AutoChainSub(
Mapper <K1,V1,
Reducer

K2sub, V2sub> mapper,
<K2,V2, K3,V3> reducer) {...}

public AutoChainSub(Chain<K1l,V1, K2sub,V2sub>chain,
Reducer <K2,V2, K3,V3>
nextReducer) {...}

public Chain
next () {...}

<K2,V2, K3,V3>

}

Figure 12: An extract of the generic code of the chaining com-
binators for use with subtyping.

In Figure[12] we have highlighted the changes with respect to Fig-
ure 8l Class Chain is exactly the same as before. Compared to
class AutoChain, we introduce two additional type parameters
with type bounds to class AutoChainSub. Finally, Figure [3]
shows the necessary modifications of the generator shown in Fig-
ure 0l These modifications are analogous to those applied to the
checkSubtypes function in Figure {1l As there are no local
variable declarations, the function body is not changed at all.

With this extension, fewer MapReduce programs will be wrongly
marked as being erroneous. Since the extension does not let any ad-
ditional type errors pass undetected, we have made it the default (al-

23

though the variant without permitting subtyping remains available).
In summary, our type checker is now capable of checking Hadoop
programs that use subtyping, without producing large amounts of
false positives, as it did before [}

7. RELATED WORK

Domain-specific languages built on top of MapReduce, such as
Pig Latin [8], are frequently compiled to Hadoop code. Thus, it is
possible to integrate static type checks in the compilation process.
Yet, many programmers write their code for Hadoop directly in
Java, and we enable them to find program errors more quickly.

There are also many MapReduce implementations written in dy-
namically typed programming languagesﬁ These languages do not
offer any static type check at all. You could also write a static
checker for MapReduce programs written in these languages, but
this does not show much promise.

The industrial push for the MapReduce programming model came
from Google in an imperative setting. The open-source framework
Hadoop is also imperative, based on Java, and our work caters di-
rectly to the Hadoop and Java community.

However, the roots of MapReduce lie farther back and come
from functional programming, where map and reduce are two of
the central higher-order functions. A higher-order function, which
takes one or more functions as parameters and/or supplies them as
result can be viewed as a program skeleton. A program skeleton can
be a precise and convenient way of specifying generic parallelism
[10]. Program skeletons come with efficient implementations for
specific parallel machines.

One example is MapReduce, whose implementations have so far
been aimed at large homogenous cluster platforms. There have
been a number of functional specifications of MapReduce [1, 13, [7]].
They are naturally type-safe and do not incur the problems which
we encounter in the Hadoop setting. And they have not been tuned
as seriously for large-scale, high-performance applications as the
imperative implementations.

8 As mentioned in Footnote B the genericity of combiner func-
tions in Hadoop is lower than described here. This means that, to
model this restriction, we would have to identify the type K2 with
K3sub, and V2 with V3sub in function checkSubtypes in Fig-
ure[TTl As a consequence, K2sub would be a subtype of K3sub, and
V2sub a subtype of V3sub. Nevertheless, all advantages introduced
with this extension would be preserved.

One example, written in Erlang and Python, is “disco — massive
data - minimal code” (http://discoproject.org/).

http://discoproject.org/

public static<K1l,V1l, K2,V2, K2sub extends K2,V2sub extends V2, K3,V3, K3sub extends K3,V3sub extends V3, K4,V4>

1

2 Tuple<K3sub,V3sub> configureTypeSafeJobSubtypes(Job job,
3 Mapper <K1,V1, K2sub, V2sub> map,

4 Reducer <K2,V2,

5 Reducer

6 Class

7 Class

8
9

/% the code previously shown here remains unchanged =/

11 return checkSubtypes(map, combine, reduce);

K3sub, V3sub> combine,

<K3,V3, K4,V4>reduce,

<?/%«K3%/> keyClass,

<?/%V3*/> valueClass) throws ...

Figure 13: The code for generating Hadoop job configurations, for the subtyping variant.

The skeleton approaches most similar to our work here are im-
plemented as frameworks in object-oriented languages with para-
metric polymorphism (prevalently C++). One such framework is
an anonymous C++ skeleton library [6]], whose present version is
called Muesli[{ It uses C++ templates to ensure type correctness.
C++ templates are a metaprogramming concept. They are checked
at compile time; to be precise, the C++ program generated by the
template metaprogram is checked when it is compiled to binary
code. As a consequence, C++ templates and the skeletons using
them are only checked if there is code that instantiates them. This
process can be viewed as static checking, but the programmer must
assure that the code in question is used in the final program.

8. CONCLUSIONS AND FURTHER WORK

We have shown that type errors can be introduced easily when
programming with common MapReduce implementations. With-
out special treatment, these errors go undetected until a failure oc-
curs at run time. As a consequence, one can imagine failures oc-
curring arbitrarily late in a long, distributed computation. We have
proposed and implemented an automatic method to detect this kind
of type errors in Hadoop programs at compile time. Using our im-
plementation is as simple as writing the main MapReduce program
following the scheme of Figure[6] rather than that of Figure

In further work, we plan to provide better error messages for the
type errors found. Presently, our implementation transforms type
errors in MapReduce programs to type errors in Java programs with
messages that are unspecific regarding MapReduce concepts. We
plan to extend Eclipse and its Java compiler ecj to using special
knowledge of MapReduce concepts like mapper and reducer
functions when providing explanations for type errors detected in
MapReduce programs.

Furthermore, we will investigate the problem of the additional
type parameters presently supplied by reflection. In a Hadoop pro-
gram, not only the user-defined functions need to be given by re-
flection, but also the types of the intermediate keys and values (for
communication over the network). We cannot generate these types
in the current implementation, as we would first have to create in-
stances, and this may be arbitrarily difficult.

We would like to reduce the amount of user code needed for
type checking Hadoop programs to zero. To this end, we need to
extract all information needed from main programs represented as
Java code or in one of the alternative representations mentioned
earlier. This will enable us to check any legacy Hadoop program,
for example, any one submitted to a cluster for execution.

Finally, the problem of inter-job type safety has not yet been at-
tacked. With this work, we have presented a solution for intra-job
type safety. Yet, as we have explained in Section [I MapReduce
workflows can consist of multiple MapReduce jobs. We would like

to consider also the data flow from one job to the next in such a
workflow, as incompatibilities at this level can lead to run-time fail-
ures as well. We strive to present a practical solution to detect such
errors statically, too.

9. ACKNOWLEDGEMENTS

We would like to thank the members of our group, Jorg Liebig
in particular, for fruitful discussions of earlier drafts of this paper.
We thank Johannes Henneberg for providing Figure [l

10. REFERENCES

[1] J. Berthold, M. Dieterle, and R. Loogen. Implementing
Parallel Google Map-Reduce in Eden. In Proc. Euro-Par,
LNCS 5704, pages 990-1002, 2009.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Comm. ACM, 51(1):107-113,
2008.

[3] C. A. Herrmann and C. Lengauer. Transforming Functional
Prototypes to Efficient Parallel Programs. In Rabhi and
Gorlatch [10], chapter 3, pages 65-94.

[4] A.Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java:
A Minimal Core Calculus for Java and GJ. In Proc.
OOPSLA, pages 132-146, 1999.

[5] C.Jardak, J. Riihijdrvi, F. Oldewurtel, and P. Mdhonen.
Parallel Processing of Data from Very Large-Scale Wireless
Sensor Networks. In Proc. HPDC Workshops, pages
787-794, 2010.

[6] H. Kuchen and J. Striegnitz. Features from Functional
Programming for a C++ Skeleton Library. Concurrency
Computat.: Pract. Exper., 17(7-8):739-756, 2005.

[7]1 R. Lammel. Google’s MapReduce Programming Model —
Revisited. Sci. Comput. Program., 70(1):1-30, 2008.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-So-Foreign Language for Data
Processing. In Proc. SIGMOD, pages 1099-1110, 2008.

[9] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[10] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons
for Parallel and Distributed Computing. Springer, 2003.

[11] K. Wiley, A. Connolly, J. P. Gardner, S. Krughof,
M. Balazinska, B. Howe, Y. Kwon, and Y. Bu. Astronomy in
the Cloud: Using MapReduce for Image Coaddition. CoRR,
abs/1010.1015, 2010.

Yhttp://www.wi.uni-muenster.de/PI/forschung/Skeletons/

http://www.wi.uni-muenster.de/PI/forschung/Skeletons/

	Introduction
	MapReduce
	Phases
	Hadoop
	An Example

	The Problem
	A Solution
	Technical Details
	Type Checking
	Chaining Combinators
	Generating Legacy Job Configurations

	Subtyping
	Related Work
	Conclusions and Further Work
	Acknowledgements
	References

