
Research Challenges in the Tension Between
Features and Services

Sven Apel
Department of Informatics and

Mathematics
University of Passauapel�uni-passau.de Christian Kästner

School of Computer Science
University of Magdeburg
kaestne�ovgu.de Christian Lengauer

Department of Informatics and
Mathematics

University of Passaulengauer�uni-passau.de
ABSTRACTWe present a feature-based approa
h, known from softwareprodu
t lines, to the development of servi
e-oriented ar
hi-te
tures. We dis
uss �ve bene�ts of su
h an approa
h: im-provements in modularity, variability, uniformity, spe
i�a-bility, and typeability. Subsequently, we review preliminaryexperien
es and results, and propose an agenda for furtherresear
h in this dire
tion.Categories and Subje
t Des
riptors: D.2.11 [Software℄:Software Engineering�Software Ar
hite
tures; D.1.2 [Soft-ware℄: Programming Te
hniques�Automati
 ProgrammingGeneral Terms: Design, Languages, TheoryKeywords: Feature-Oriented Programming, Feature-Orien-ted Program Synthesis, Servi
e-Oriented Ar
hite
ture
1. INTRODUCTIONServi
e-oriented ar
hite
ture (SOA) is an emerging �eld ofsoftware ar
hite
ture. With SOA, software is de
omposedinto servi
es. A servi
e provides a well-de�ned pie
e of fun
-tionality while hiding implementation details behind an in-terfa
e. A servi
e infrastru
ture allows programmers to in-tegrate servi
es that are distributed and written in di�erentprogramming languages.SOA is an ar
hite
tural style dedi
ated not only to large-s
ale distributed systems but also to stru
ture appli
ationswithin the s
ope of a lo
al environment. Re
ent resear
hhas explored problems regarding modularity, variability, and
ompatibility of servi
es and related
on
epts [35,31,29,18,15℄. While there are �rst en
ouraging results, a multitudeof
hallenges remains.Starting from a feature-based approa
h, we develop a s
e-nario that integrates the notions of servi
es and feature-based produ
t lines. A feature re�e
ts a stakeholders' re-quirement, provides a
on�guration option, and is an in-
rement in fun
tionality. Programs of a produ
t line aredistinguished by their features [21℄; the implementations of
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SDSOA’08,May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-029-6/08/05 ...$5.00.

ommon features are reused in di�erent programs.There is a lot of similarity between feature-based approa-
hes and servi
e-based approa
hes to software system
on-stru
tion; exploring their synergy is bene�
ial. Both aimat stru
turing
omplex software systems into manageablepie
es. Our
laim is that using features and servi
es in
on-
ert
an solve present modularity, variability, and
ompati-bility problems that neither of them
an solve in isolation.Typi
ally, features
ross
ut the hierar
hi
al servi
e ar
hi-te
ture, whi
h results in a suboptimal system stru
ture thatrenders the development, maintenan
e, and evolution di�-
ult [4℄. Feature-oriented programming (FOP) is
apable ofmodularizing features whose
ode would otherwise be s
at-tered a
ross multiple servi
es [30℄. Feature-oriented programsynthesis (FOPS)
omposes tailored servi
es from featuresbased on a user spe
i�
ation [10,8℄. Finally, the formal foun-dation of feature orientation [24,2,6℄ provides a straightfor-ward way to set up a formal spe
i�
ation and type systemfor servi
es based on features, not just on interfa
es.While our approa
h bears the potential of supporting SOAresear
h and development, as we will argue, it poses severalresear
h
hallenges. We develop our idea of feature-basedSOA, point to the potential bene�ts, and propose an agendafor further resear
h in this dire
tion. We begin with a sim-ple example SOA s
enario and dis
uss subsequently impli-
ations for the general
ase.
2. AN EXAMPLE SCENARIOWe begin with a simple warehouse s
enario to illustrate ourideas. We fo
us here on a spe
i�
 kind of servi
es, namelyon white-box servi
es that are developed by a single vendor.However, this does not mean that the servi
es may not bedistributed, only that the implementation of all servi
es isa

essible. In Se
tion 7, we extend this s
enario to bla
k-box servi
es that are implemented and provided by di�erentvendors and that are plugged together in an ad-ho
 manner.The warehouse
onsists of seven servi
es that provide thebasi
 fun
tionality for pro
essing a
ustomer's order:

• a
quiring of
ustomer requests,
•
he
king the availability of ordered goods,
• rating the
redit worthiness of
ustomers,
• ordering the goods from an inventory,
• shipping the goods to the
ustomer,
• billing,
•
he
king the payment of
ustomers.Figure 1 depi
ts the servi
e ar
hite
ture of the warehouses
enario. As is
ommon in SOA, ea
h servi
e provides a

apel@uni-passau.de
ckaestne@ovgu.de
lengauer@uni-passau.de

well-de�ned, language-independent interfa
e and may be im-plemented in a language of
hoi
e.
Figure 1: Servi
e ar
hite
ture of the warehouse.

3. PROBLEM STATEMENTAlthough the warehouse s
enario is rather small, it is usefulto illustrate the problems of suboptimal modularity, vari-ability, and
ompatibility in SOA. In the basi
 s
enario ofFigure 1, the servi
es are well modularized and
ommuni-
ate via interfa
es. There are no variability or
ompatibilityissues. But, when exploring the example with a bit moredetail, several problems emerge.Suppose the servi
es of our example are used in di�erentvariants of an online warehouse:Dis
ounting is a variant that o�ers
ustomers a spe
ial dis-
ount on some goods for quantities larger than a pre-de�ned threshold. The
ustomer either pays less or re-
eives more goods than ordered. This
on
erns the im-plementations of Aquisition, Credit Ranking, Billing,and Payment Che
king.Status Monitoring is a variant that gives
ustomers theability to tra
e the status of the order transa
tion aswell as the logi
al and physi
al position of the orderedgoods. E-mail noti�
ation or a Web-based portal arepossible monitoring fa
ilities. This
on
erns the imple-mentations of all servi
es of the warehouse s
enario.Overseas Orders is a variant that
onsiders the spe
i�
sof foreign
urren
y, tolls, logisti
s, laws, et
. for ship-ping goods to overseas
ountries. This
on
erns theimplementations of Credit Ranking, Shipping, Billing,and Payment Che
king of goods.A �rst observation is that the di�eren
es between two vari-ants
on
ern multiple (though not all) servi
es of the ar
hi-te
ture. For example, to implement the dis
ounting variant,in whi
h
ustomers are billed less, we would have to
hangethe servi
es A
quisition, Credit Ranking, Billing, and Pay-ment Che
king. Typi
ally, deriving a variant from a servi
ear
hite
ture
hanges a servi
e's implementation and inter-fa
e only marginally. The
ore of an individual servi
e andthe overall ar
hite
ture remains untou
hed. For example,the dis
ounting variant extends the A
quisition servi
e's in-terfa
e (and implementation) to allow
ustomers to querythe dis
ount rate. There might even be
hanges a featurerequires that
on
ern only the implementation, but that arenot manifest in the interfa
e. For example, the dis
ount vari-ant does not a�e
t the Billing servi
e's interfa
e, but onlyalters the pri
e
al
ulation in the servi
e's implementation.A straightforward desire is to bene�t from the
ommonal-

ity of all variants of a servi
e ar
hite
ture in terms of reusingassets (su
h as
ode) and fa
toring out the variabilities in amodular fashion. Moreover, a servi
e that is used in di�erentvariations of a s
enario should be easy to adapt. Otherwise,
ode repli
ation and an in
rease in the e�ort of develop-ment along with a de
rease in the produ
tivity (due to thedi�
ulties to derive variants)
an be expe
ted [17, 16℄. Im-plementing servi
es that provide a superset of the fun
tion-alities of all their variants is not a desirable option. Eventu-ally, this will result in bloated and unmaintainable
ode andmake the SOA goal of stru
turing software appropriatelyunattainable.Furthermore, managing the di�erent variants of a SOAs
enario is problemati
. For example, when we lookup andintegrate a servi
e, how do we know to whi
h variants of thes
enario it belongs? Whi
h variants of a servi
e are
om-patible with another servi
e, whi
h may
ome in di�erentvariants, too? FOP and FOPS, two te
hniques known fromthe �eld of software produ
t lines, have the potential solvingthese problems.Note that servi
es might be reused in
ompletely di�erentappli
ation s
enarios, not only in variants of a single s
e-nario. However, we fo
us on variants of a single s
enario.This is reasonable insofar as the servi
es and the ar
hite
-ture is only slightly di�erent in ea
h variant, whi
h is simi-lar to feature-based software produ
t lines [21, 17, 10℄. Thissimilarity is the motivation for our approa
h that integratesfeatures and servi
es.
4. FEATURES AND SERVICESThe di�erent variants of our s
enario
an be des
ribed byand distinguished in terms of features. A feature re�e
ts astakeholders' requirement and provides a
on�guration op-tion. Of
ourse, in order to provide a feature, the implemen-tation of (some) servi
es has to be extended, i.e., a featureis an in
rement in servi
e fun
tionality.Two variants of a s
enario di�er in their sets of supportedfeatures. In our examples, the variants di�er only in onefeature, i.e., the dis
ounting variant is similar to the basewarehouse s
enario ex
ept that it additionally provides theDis
ounting feature.Figure 2 depi
ts the warehouse servi
e ar
hite
ture in-
luding the Dis
ounting feature. The servi
es that area�e
ted by the Dis
ounting feature are highlighted by ar-rows. The A
quisition servi
e now additionally provides in-formation about the dis
ount (
hange of interfa
e and im-plementation), and in Credit Ranking, Billing, and PaymentChe
king the pri
e
al
ulation is ea
h adapted to grant thedis
ount (
hange of implementation).Figure 2 illustrates the following fa
ts of the relationshipbetween features and servi
es:

• A servi
e provides a basi
 fun
tionality (i.e., a basefeature) and a (possibly empty) set of features thatextend the base fun
tionality.
• A feature may a�e
t the implementations and the in-terfa
es of multiple servi
es.The introdu
tion of the notion of a feature to SOA allowsus to apply te
hniques and methods from FOP and FOPS.The idea of FOP is to en
apsulate the
ode of a feature
o-hesively into a feature module [4℄. Feature
omposition joinsa servi
e's base
ode and the
ode of its features. Figure 3depi
ts the warehouse servi
e ar
hite
ture with a separate

Figure 2: E�e
ts of the dis
ounting feature on theservi
es of the basi
 warehouse s
enario.

Figure 3: Separating the dis
ounting feature fromthe basi
 warehouse ar
hite
ture.feature module for Dis
ounting. Fat (red) boxes representfeature modules and arrows represent extensions to servi
es.Feature modularization and
omposition requires a pro-gramming language to have a
ertain expressibility. Severalmainstream languages have been extended to support fea-tures, e.g., Java, C++, and XML [10,3,1℄. For example, anextension a feature makes to a servi
e's Java implementa-tion is shown in Figure 4. The
lass Bill of the basi
 ware-house servi
e Billing is re�ned by the feature Dis
ounting,denoted by `refines'. It overrides the method getPri
eand adds the method qualifiesForDis
ount in order tode
rease the
al
ulated pri
e of quali�ed orders by 20%.Interestingly, there are FOP extensions of XML [5,1℄ thatallow programmers to extend a servi
e's interfa
e that iswritten in WSDL, as illustrated in Figure 5. When
om-posing the base warehouse implementation with the Dis-
ounting feature, the interfa
e of the servi
e A
quisitionis superimposed with an extension of the same name. Dis-
ounting adds a new operation dis
ountResponse allow-ing a
ustomer to query the dis
ount rate.FOPS performs feature
omposition based on a de
lar-ative spe
i�
ation [10℄. Features are represented by fun
-tions that extend a program, in our
ase, a servi
e ar
hite
-ture in
luding the individual servi
e implementations andinterfa
es. For example, the feature-oriented model of ourwarehouse s
enario (WH) in
luding the three features Dis-

1
lass Bill { ...2 double getPri
e (Order o) { ... }3 }4 refines
lass Bill { ...5 double getPri
e (Order o) {6 i f (qualifiesForDis
ount(o))7 return original (o) * 0.8;8 else9 return original (o);10 }11 }12 boolean qualifiesForDis
ount(Order o) { ... }13 }Figure 4: A Java
lass (top) and a re�nement (bot-tom).1 <definitions name="A
quisition">2 ...3 <message name="pri
eRequest">4 <part name="orderNumber" type="xsd:int">5 </message >6 ...7 </definitions >8 <definitions name="A
quisition">9 ...10 <message name="dis
ountResponse">11 <part name="dis
ountPer
entage" type="xsd:float">12 </message >13 ...14 </definitions >Figure 5: A WSDL interfa
e de�nition (top) and are�nement (bottom).
ounting (Dis
), Status monitoring (Stat), andOver-sea orders (Over) of Se
tion 3 is modeled by the set:WH = {Base,Dis
,Stat,Over} (1)Base represents the basi
 servi
e ar
hite
ture that in
ludesour seven servi
es (Equation 2, names abbreviated). Ser-vi
es, in turn, in
lude a set of
ode artifa
ts, not depi
tedhere.Base = {Acqu, Avail,Cred, Ord, Ship, Bill, Pay} (2)Dis

onsists of the extensions the dis
ounting feature makesto the warehouse ar
hite
ture:Dis
 = {Acqu, Cred,Bill, Pay} (3)This illustrates that theDis
ounting feature a�e
ts mul-tiple servi
es of the warehouse s
enario, i.e., the implemen-tation of the feature is s
attered a
ross multiple servi
e im-plementations. The extensions of Dis
 are mat
hed (super-imposed) with the servi
es of Base by name. Feature
om-position s
ales from
omposing spe
i�
 methods or
lasses,a
ross
omposing individual servi
es, to
omposing a wholeservi
e ar
hite
ture.As features are modeled by fun
tions that modify pro-grams, feature
omposition ('•') is modeled by fun
tion
om-position. The
omposition of the basi
 warehouse ar
hite
-ture with the dis
ounting feature is written:WH1 = Dis
 •Base (4)

Using su
h feature expressions, several variants of thewarehouse s
enario
an be des
ribed, in
luding those, inwhi
h di�erent features are
ombined:WH0 = BaseWH1 = Dis
 • BaseWH2 = Over • Dis
 • BaseWH3 = Over • Stat • Dis
 • BaseWH4 = . . .

(5)The a
tual
omposition of software artifa
ts based on afeature expression is performed automati
ally by variousgenerator tools, most notably the AHEAD Tool Suite [10℄.
5. EXPECTED BENEFITSThere are �ve bene�ts of a feature-based approa
h to SOA.
ModularityThe de
omposition of a servi
e ar
hite
ture and its ser-vi
es into features fa
ilitates a better separation of
on
erns.Code of a feature is en
apsulated in a feature module, eventhough it a�e
ts multiple servi
es (
f. Figure 3). The baseimplementation of a servi
e is not polluted by feature
ode,whi
h improves
ode
omprehension and maintenan
e. FOPhas been shown to improve modularity in several
ase stud-ies for software produ
t lines [11, 14, 9, 33, 23, 4℄ and mightimprove modularity also in servi
e ar
hite
tures and relatedapproa
hes, where modularity has been observed to be sub-optimal [35, 31, 29, 18, 15℄.
VariabilityThe separation of base servi
e
ode and feature
ode al-lows a programmer to generate di�erent servi
e variants.Feature
omposition merges the
orresponding
ode frag-ments of servi
es and features based on a user spe
i�
ation(
f. Equation 5).
UniformityServi
es may be represented in di�erent languages. Thisin
ludes the implementation (e.g., in Java or C++) and theinterfa
e spe
i�
ation (e.g., in WSDL). Feature
ompositionis language-independent and appli
able to any kind of soft-ware artifa
t in
luded in a servi
e [5℄. For example, Fea-tureC++ [3℄ and Jak [10℄ are languages for
omposing fea-tures written in C++ and Java, respe
tively. Xak enablesthe
omposition of features written in XML [1℄, whi
h alsoin
ludes the servi
e's interfa
e written in WSDL.
SpecifiabilityProgrammers, software ar
hite
ts, and users have to dis-tinguish between di�erent variants of an ar
hite
ture andits servi
es. Otherwise, the
omposition of (synta
ti
ally orsemanti
ally) in
ompatible servi
es may lead to errors, in-
onsistent system states, and undesirable program behavior.A purely name-based and/or interfa
e-based spe
i�
ation isnot su�
ient: two servi
es might have equal names and/orinterfa
es but provide di�erent features (see Typeability). A
ombination of a name-based, interfa
e-based, and feature-based spe
i�
ation solves this problem. Features represent
ommon abstra
tions of a domain and help stakeholders tounderstand a servi
e's semanti
s during implementation, in-tegration, and or
hestration.

TypeabilityWithout a feature-based spe
i�
ation, servi
es are typedvia their names and interfa
es. But, as mentioned, not everyfeature might be manifest in a servi
e's interfa
e. To thisend, two variants of a servi
e might be of the same typealthough they provide di�erent feature sets. Another servi
emight expe
t a spe
i�
 behavior that
annot be expressedby an interfa
e. Consequently, the set of features a servi
eprovides has to be taken into a

ount during typing. A typesystem based on interfa
es and features solves
ompatibilityand in
onsisten
y problems. Su
h a type system is partiallynominal and partially stru
tural [26, 2℄.
6. RESEARCH CHALLENGESWe envision several resear
h
hallenges that arise from thebene�ts of the symbiosis of features and servi
es.
ModularityThe phenomenon of
ross
utting in servi
e,
omponent,and agent systems
hallenges modularity and has been ob-served before. Several approa
hes, most notably aspe
t-oriented programming [22℄, have been proposed to solve themodularity problem [35, 31, 29, 18, 15℄. FOP is
losely re-lated to these approa
hes [4℄. A feature-oriented approa
his promising insofar as the theory of features, that is basedon algebra [24, 6℄ and
ategory theory [34℄, enables the au-tomation of feature and servi
e
omposition, while provid-ing means for simple and pre
ise spe
i�
ation and typing(
f. Se
tion 5). A
hallenge is to prove the pra
ti
ality ands
alability of
ross
utting me
hanisms, su
h as feature mod-ules, in non-trivial SOA
ase studies. To the best of ourknowledge no su
h studies have been published.
VariabilityAn automated management of variants be
omes in
reas-ingly important as the number of variants grows. In SOA,this is espe
ially
hallenging as there is typi
ally a multi-tude of servi
es that
ome in many di�erent variants. Anapproa
h based on features pro�ts from the experien
es andtools of the �eld of software produ
t lines [21, 17, 10, 12℄.As with modularity, reasonable
ase studies have to be
on-du
ted. Conversely, SOA may be
ome a real-world s
enariofor resear
hers and developers that aim at features and prod-u
t lines.
UniformityAs dis
ussed before, servi
es may be implemented in dif-ferent languages. The whole idea of Web servi
es is based onservi
e virtualization [25℄. A language-independent
ommu-ni
ation infrastru
ture (proto
ol, interfa
e des
ription, ser-vi
e lookup, et
.) integrates servi
es that have been imple-mented and deployed by di�erent vendors. Thus, SOA isan ex
ellent use
ase for evaluating the generi
ity of feature
omposition. Whether this generi
ity is adequate and s
alesto heterogeneous, large-s
ale servi
e ar
hite
tures remainsto be explored.
SpecifiabilityVariants of a servi
e ar
hite
ture
an be spe
i�ed via fea-tures. A prerequisite is that there must be an agreementon the meaning of features in a domain. In the �eld ofsoftware produ
t lines, feature models and ontologies have

been shown to be useful [27,17℄. Assuming a
orre
t featuremodel, servi
e variant spe
i�
ation
an be based entirely onfeatures [21, 17, 12, 7℄, e.g., as illustrated with Equation 5.Of
ourse, an approa
h that integrates feature-based andinterfa
e-based spe
i�
ation is desirable. The
hallenge isto establish methods for stakeholders to agree on a featuremodel and to avoid misunderstandings and pre
on
eptionswhen using feature-based spe
i�
ations. The use of formalspe
i�
ation languages is dis
ussed in Se
tion 7.
TypeabilityIn a type system for SOA, ea
h servi
e has a type. Thetype is de�ned by the servi
e's interfa
e and by the set offeatures it provides. To this end, two servi
es are of thesame type if they provide the same interfa
e and the sameset of features
omposed in the same order. That is, thetype system is partially stru
tural (e.g., based on the fea-ture stru
ture) and partially nominal (e.g., based on featurenames). This notion of servi
e type allows us to de�ne asubtyping relation ('≤'). A servi
e A is a subtype of a ser-vi
e B if A's interfa
e is a subtype of B's interfa
e and Aprovides a superset of the features of B
omposed in thesame order. The relation ≤
an be de�ned as follows, where
Fn..Fi denotes a sequen
e of features and ⊇ denotes thesupersequen
e relation:

(∀A : F • A ≤ A)
(∀A,B : A ≤ B =⇒ F • A ≤ F • B)

(∀A : Fn • . . . • F1 • A ≤ Gm • . . . • G1 • A)i� Fn..F1 ⊇ Gm..G1

(6)A
hallenge is the integration of a feature-based type sys-tem [32,2℄ into a formal model of servi
es [13, 28℄.
7. BLACK-BOX SERVICESSo far, in our dis
ussion we assumed that all servi
e im-plementations of an ar
hite
ture are a

essible. This makesit possible to implement
ross
utting features by means offeature modules that extend the basi
 servi
es' implementa-tions. This assumption is not unrealisti
 sin
e SOA is oftenused in-house as an ar
hite
tural style for the developmentof well-stru
tured software systems. However, an advantageof SOA is that servi
es may be bla
k boxes implementedand deployed by di�erent vendors. Software is generated byintegrating o�-the-shelf servi
es lo
ated at di�erent pla
es.Considering this bla
k-box s
enario, the bene�ts of a fea-ture-based approa
h are redu
ed and enhan
ed at the sametime. A feature
annot be
ondensed into a single featuremodule anymore. The reason is that servi
e implementa-tions are bla
k boxes and, typi
ally, the vendors do notshare
ode; only interfa
e des
riptions are available. Thisalso hinders servi
e
omposition based on feature
omposi-tion. Nevertheless, in the s
ope of a single servi
e provider(i.e., a
ompany that uses SOA to implement large-s
ale ap-pli
ations) feature
omposition works as explained; it failsonly for servi
es that share the same features but that areimplemented by di�erent vendors.While the bene�ts of feature modularization and
ompo-sition are limited to lo
al vendors, the bene�ts of a feature-based spe
i�
ation and type system in
rease at the sametime. The more vendors
ontribute servi
es to an ar
hite
-ture, the more a pre
ise, formal agreement on the syntax andsemanti
s of servi
es is ne
essary. First, there needs to be

a
ommon feature model that is well-de�ned for a domain.Based on this model, vendors
an provide a feature-basedspe
i�
ation for their servi
es. Beside the name and the re-lationship to other features (what is required and provided),a spe
i�
ation of a feature de�nes the semanti
s expressed informal spe
i�
ation language, e.g., Alloy [19℄ or TROLL [20℄.The key is that the features
an be implemented di�erently,but they have to satisfy
ertain
onstraints. This issue hasbeen explored extensively in the �eld of program spe
i�
a-tion. A feature model has to in
lude, for ea
h feature, alanguage-independent spe
i�
ation.If there is a
ommon feature model, the feature-based typesystem plays to its strength. Servi
e integrations
an be
he
ked based on their interfa
es (interfa
e-based subtyp-ing), their features (feature-based subtyping), and the
on-straints of the domain (e.g., feature F implies feature G).
8. CONCLUSIONIn summary, we see several potential synergies between fea-tures and servi
es. A transfer of ideas and experien
es woulddo the �eld of SOA and FOP(S) good. We have outlinedseveral bene�ts a symbiosis
an bring with it but also sev-eral
hallenges, espe
ially regarding the uniform treatmentof servi
es and the formal spe
i�
ation and typing of servi
e
ompositions. The extended bla
k-box s
enario imposes fur-ther severe
hallenges but promises signi�
ant bene�ts of afeature-based approa
h to SOA.
AcknowledgmentsWe thank Don Batory and Salvador Trujillo for their helpful
omments on earlier drafts of this paper.
9. REFERENCES[1℄ F. Anfurrutia, O. Díaz, and S. Trujillo. On Re�ningXML Artifa
ts. In Pro
. Int'l. Conf. Web Engineering,volume 4607 of LNCS, pages 473�478.Springer-Verlag, 2007.[2℄ S. Apel and D. Hut
hins. An Overview of the gDeepCal
ulus. Te
hni
al Report MIP-0712, Dept. Inform.and Math., University of Passau, 2007.[3℄ S. Apel, T. Lei
h, M. Rosenmüller, and G. Saake.FeatureC++: On the Symbiosis of Feature-Orientedand Aspe
t-Oriented Programming. In Pro
. Int'l.Conf. Generative Programming and ComponentEngineering, volume 3676 of LNCS, pages 125�140.Springer-Verlag, 2005.[4℄ S. Apel, T. Lei
h, and G. Saake. Aspe
tual FeatureModules. IEEE Trans. Softw. Eng., 34(2), 2008.published online �rst.[5℄ S. Apel and C. Lengauer. Superimposition: ALanguage-Independent Approa
h to SoftwareComposition. In Pro
. Int'l. Symp. SoftwareComposition, volume 4954 of LNCS, pages 20�35.Springer-Verlag, 2008.[6℄ S. Apel, C. Lengauer, D. Batory, B. Möller, andC. Kästner. An Algebra for Feature-Oriented SoftwareDevelopment. Te
hni
al Report MIP-0706, Dept.Inform. and Math., University of Passau, 2007.[7℄ D. Batory. Feature Models, Grammars, andPropositional Formulas. In Pro
. Int'l. Software

Produ
t Line Conf., volume 3714 of LNCS, pages7�20. Springer-Verlag, 2005.[8℄ D. Batory. From Implementation to Theory inProdu
t Synthesis. In Pro
. Int'l. Symp. Prin
iples ofProgramming Languages, pages 135�136. ACM Press,2007.[9℄ D. Batory, C. Johnson, B. Ma
Donald, and D. v.Heeder. A
hieving Extensibility ThroughProdu
t-Lines and Domain-Spe
i�
 Languages: ACase Study. ACM Trans. Softw. Eng. Methodol.,11(2):191�214, 2002.[10℄ D. Batory, J. Sarvela, and A. Raus
hmayer. S
alingStep-Wise Re�nement. IEEE Trans. Softw. Eng.,30(6):355�371, 2004.[11℄ D. Batory and J. Thomas. P2: A Lightweight DBMSGenerator. J. Intelligent Information Systems,9(2):107�123, 1997.[12℄ D. Beu
he, H. Papajewski, andW. S
hröder-Preiks
hat. Variability Management withFeature Models. S
i. Comp. Prog., 53(3):333�352,2004.[13℄ M. Broy, I. Krüger, and M. Meisinger. A FormalModel of Servi
es. ACM Trans. Softw. Eng.Methodol., 16(1):Arti
le no. 5, 2007.[14℄ R. Cardone and C. Lin. Comparing Frameworks andLayered Re�nement. In Pro
. Int'l. Conf. SoftwareEngineering, pages 285�294. IEEE CS Press, 2001.[15℄ A. Char�, B. S
hmeling, and M. Mezini. Transa
tionalBPEL Pro
esses with AO4BPEL Aspe
ts. In Pro
.Europ. Conf. Web Servi
es, pages 149�158. IEEE CSPress, 2007.[16℄ P. Clements and L. Northrop. Software Produ
t Lines:Pra
ti
es and Patterns. Addison-Wesley, 2002.[17℄ K. Czarne
ki and U. Eisene
ker. GenerativeProgramming: Methods, Tools, and Appli
ations.Addison-Wesley, 2000.[18℄ A. Gar
ia, U. Kulesza, and C. Lu
ena. Aspe
tizingMulti-Agent Systems: From Ar
hite
ture toImplementation. In Software Engineering forMulti-Agent Systems III, volume 3390 of LNCS, pages121�143. Springer-Verlag, 2005.[19℄ D. Ja
kson. Alloy: A Lightweight Obje
t ModellingNotation. ACM Trans. Softw. Eng. Methodol.,11(2):256�290, 2002.[20℄ R. Jung
laus, G. Saake, T. Hartmann, andC. Sernadas. TROLL: A Language forObje
t-Oriented Spe
i�
ation of Information Systems.ACM Trans. Inf. Syst., 14(2):175�211, 1996.[21℄ K. Kang, S. Cohen, J. Hess, W. Novak, andA. Peterson. Feature-Oriented Domain Analysis(FODA) Feasibility Study. Te
hni
al ReportCMU/SEI-90-TR-21, Software Engineering Institute,Carnegie Mellon University, 1990.[22℄ G. Ki
zales, J. Lamping, A. Mendhekar, C. Maeda,C. Lopes, J.-M. Loingtier, and J. Irwin.Aspe
t-Oriented Programming. In Pro
. Europ. Conf.Obje
t-Oriented Programming, volume 1241 of LNCS,pages 220�242. Springer-Verlag, 1997.[23℄ J. Liu, D. Batory, and C. Lengauer. Feature-OrientedRefa
toring of Lega
y Appli
ations. In Pro
. Int'l.Conf. Software Engineering, pages 112�121. ACM

Press, 2006.[24℄ R. Lopez-Herrejon, D. Batory, and C. Lengauer. ADis
iplined Approa
h to Aspe
t Composition. In Pro
.Int'l. Symp. Partial Evaluation and Semanti
s-BasedProgram Manipulation, pages 68�77. ACM Press,2006.[25℄ A. Nash. Servi
e Virtualization: Key to ManagingChange in SOA. Bitpipe.
om, 2006. White paper.[26℄ K. Ostermann. Nominal and Stru
tural Subtyping inComponent-Based Programming. J. Obje
tTe
hnology, 7(1):121�145, 2008.[27℄ X. Peng, W. Zhao, Y. Xue, and Y. Wu.Ontology-Based Feature Modeling andAppli
ation-Oriented Tailoring. In Pro
. Int'l. Conf.Software Reuse, volume 4039 of LNCS, pages 87�100.Springer-Verlag, 2006.[28℄ M. Pereplet
hikov, C. Ryan, K. Frampton, andH. S
hmidt. A Formal Model of Servi
e-OrientedDesign Stru
ture. In Pro
. Austral. SoftwareEngineering Conf., pages 71�80. IEEE CS Press, 2007.[29℄ A. Popovi
i, G. Alonso, and T. Gross. SpontaneousContainer Servi
es. In Pro
. Europ. Conf.Obje
t-Oriented Programming, volume 2743 of LNCS,pages 29�54. Springer-Verlag, 2003.[30℄ C. Prehofer. Feature-Oriented Programming: A FreshLook at Obje
ts. In Pro
. Europ. Conf.Obje
t-Oriented Programming, volume 1241 of LNCS,pages 419�443. Springer-Verlag, 1997.[31℄ D. Suvée, W. Vanderperren, and V. Jon
kers. JAsCo:An Aspe
t-Oriented Approa
h Tailored forComponent-Based Software Development. In Pro
.Int'l. Conf. Aspe
t-Oriented Software Development,pages 21�29. ACM Press, 2003.[32℄ S. Thaker, D. Batory, D. Kit
hin, and W. Cook. SafeComposition of Produ
t Lines. In Pro
. Int'l. Conf.Generative Programming and Component Engineering,pages 95�104. ACM Press, 2007.[33℄ S. Trujillo, D. Batory, and O. Díaz. FeatureRefa
toring a Multi-Representation Program into aProdu
t Line. In Pro
. Int'l. Conf. GenerativeProgramming and Component Engineering, pages191�200. ACM Press, 2006.[34℄ S. Trujillo, D. Batory, and O. Díaz. Feature OrientedModel Driven Development: A Case Study forPortlets. In Pro
. Int'l. Conf. Software Engineering,pages 44�53. IEEE CS Press, 2007.[35℄ N. Ubayashi and T. Tamai. Separation of Con
erns inMobile Agent Appli
ations. In Pro
. Int'l. Conf.Metalevel Ar
hite
tures and Separation of Cross
uttingCon
erns, volume 2192 of LNCS, pages 89�109.Springer-Verlag, 2001.

