Research Challenges in the Tension Between
Features and Services

Sven Apel
Department of Informatics and
Mathematics
University of Passau
apel@uni-passau.de

ABSTRACT

We present a feature-based approach, known from software
product lines, to the development of service-oriented archi-
tectures. We discuss five benefits of such an approach: im-
provements in modularity, variability, uniformity, specifia-
bility, and typeability. Subsequently, we review preliminary
experiences and results, and propose an agenda for further
research in this direction.

Categories and Subject Descriptors: D.2.11 [Software]:
Software Engineering Software Architectures; D.1.2 [Soft-
ware|: Programming Techniques—Automatic Programming

General Terms: Design, Languages, Theory

Keywords: Feature-Oriented Programming, Feature-Orien-
ted Program Synthesis, Service-Oriented Architecture

1. INTRODUCTION

Service-oriented architecture (SOA) is an emerging field of
software architecture. With SOA, software is decomposed
into services. A service provides a well-defined piece of func-
tionality while hiding implementation details behind an in-
terface. A service infrastructure allows programmers to in-
tegrate services that are distributed and written in different
programming languages.

SOA is an architectural style dedicated not only to large-
scale distributed systems but also to structure applications
within the scope of a local environment. Recent research
has explored problems regarding modularity, variability, and
compatibility of services and related concepts [35]B1]E29118]
[T5]. While there are first encouraging results, a multitude
of challenges remains.

Starting from a feature-based approach, we develop a sce-
nario that integrates the notions of services and feature-
based product lines. A feature reflects a stakeholders’ re-
quirement, provides a configuration option, and is an in-
crement in functionality. Programs of a product line are
distinguished by their features [2I]|; the implementations of

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SDSOA'08May 11, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-029-6/08/05 ...$5.00.

Christian Késtner
School of Computer Science
University of Magdeburg
ckaestne@ovgu.de

Christian Lengauer
Department of Informatics and
Mathematics
University of Passau
lengauer@uni-passau.de

common features are reused in different programs.

There is a lot of similarity between feature-based approa-
ches and service-based approaches to software system con-
struction; exploring their synergy is beneficial. Both aim
at structuring complex software systems into manageable
pieces. Our claim is that using features and services in con-
cert can solve present modularity, variability, and compati-
bility problems that neither of them can solve in isolation.

Typically, features crosscut the hierarchical service archi-
tecture, which results in a suboptimal system structure that
renders the development, maintenance, and evolution diffi-
cult . Feature-oriented programming (FOP) is capable of
modularizing features whose code would otherwise be scat-
tered across multiple services [3l. Feature-oriented program
synthesis (FOPS) composes tailored services from features
based on a user specification [I0J8]. Finally, the formal foun-
dation of feature orientation [Z4L2[6] provides a straightfor-
ward way to set up a formal specification and type system
for services based on features, not just on interfaces.

While our approach bears the potential of supporting SOA
research and development, as we will argue, it poses several
research challenges. We develop our idea of feature-based
SOA, point to the potential benefits, and propose an agenda
for further research in this direction. We begin with a sim-
ple example SOA scenario and discuss subsequently impli-
cations for the general case.

2. AN EXAMPLE SCENARIO

We begin with a simple warehouse scenario to illustrate our
ideas. We focus here on a specific kind of services, namely
on white-box services that are developed by a single vendor.
However, this does not mean that the services may not be
distributed, only that the implementation of all services is
accessible. In Section [we extend this scenario to black-
boz services that are implemented and provided by different
vendors and that are plugged together in an ad-hoc manner.

The warehouse consists of seven services that provide the
basic functionality for processing a customer’s order:

acquiring of customer requests,

checking the availability of ordered goods,
rating the credit worthiness of customers,
ordering the goods from an inventory,
shipping the goods to the customer,
billing,

checking the payment of customers.

Figure [depicts the service architecture of the warehouse
scenario. As is common in SOA, each service provides a

apel@uni-passau.de
ckaestne@ovgu.de
lengauer@uni-passau.de

well-defined, language-independent interface and may be im-
plemented in a language of choice.

check

Y acauisition check | availability Credit
q Checking Ranking
l order

Ordering
ship

heck bill

Payment |_° . o

Checking ’4 { Billing }- Shipping

Figure 1: Service architecture of the warehouse.

3. PROBLEM STATEMENT

Although the warehouse scenario is rather small, it is useful
to illustrate the problems of suboptimal modularity, vari-
ability, and compatibility in SOA. In the basic scenario of
Figure [l the services are well modularized and communi-
cate via interfaces. There are no variability or compatibility
issues. But, when exploring the example with a bit more
detail, several problems emerge.

Suppose the services of our example are used in different
variants of an online warehouse:

Discounting is a variant that offers customers a special dis-
count on some goods for quantities larger than a pre-
defined threshold. The customer either pays less or re-
ceives more goods than ordered. This concerns the im-
plementations of Aquisition, Credit Ranking, Billing,
and Payment Checking.

Status Monitoring is a variant that gives customers the
ability to trace the status of the order transaction as
well as the logical and physical position of the ordered
goods. E-mail notification or a Web-based portal are
possible monitoring facilities. This concerns the imple-
mentations of all services of the warehouse scenario.

Overseas Orders is a variant that considers the specifics
of foreign currency, tolls, logistics, laws, etc. for ship-
ping goods to overseas countries. This concerns the
implementations of Credit Ranking, Shipping, Billing,
and Payment Checking of goods.

A first observation is that the differences between two vari-
ants concern multiple (though not all) services of the archi-
tecture. For example, to implement the discounting variant,
in which customers are billed less, we would have to change
the services Acquisition, Credit Ranking, Billing, and Pay-
ment Checking. Typically, deriving a variant from a service
architecture changes a service’s implementation and inter-
face only marginally. The core of an individual service and
the overall architecture remains untouched. For example,
the discounting variant extends the Acquisition service’s in-
terface (and implementation) to allow customers to query
the discount rate. There might even be changes a feature
requires that concern only the implementation, but that are
not manifest in the interface. For example, the discount vari-
ant does not affect the Billing service’s interface, but only
alters the price calculation in the service’s implementation.

A straightforward desire is to benefit from the commonal-

ity of all variants of a service architecture in terms of reusing
assets (such as code) and factoring out the variabilities in a
modular fashion. Moreover, a service that is used in different
variations of a scenario should be easy to adapt. Otherwise,
code replication and an increase in the effort of develop-
ment along with a decrease in the productivity (due to the
difficulties to derive variants) can be expected [IZ[I6]. Im-
plementing services that provide a superset of the function-
alities of all their variants is not a desirable option. Eventu-
ally, this will result in bloated and unmaintainable code and
make the SOA goal of structuring software appropriately
unattainable.

Furthermore, managing the different variants of a SOA
scenario is problematic. For example, when we lookup and
integrate a service, how do we know to which variants of the
scenario it belongs? Which variants of a service are com-
patible with another service, which may come in different
variants, too? FOP and FOPS, two techniques known from
the field of software product lines, have the potential solving
these problems.

Note that services might be reused in completely different
application scenarios, not only in variants of a single sce-
nario. However, we focus on variants of a single scenario.
This is reasonable insofar as the services and the architec-
ture is only slightly different in each variant, which is simi-
lar to feature-based software product lines [ZI[T7[T0]. This
similarity is the motivation for our approach that integrates
features and services.

4. FEATURESAND SERVICES

The different variants of our scenario can be described by
and distinguished in terms of features. A feature reflects a
stakeholders’ requirement and provides a configuration op-
tion. Of course, in order to provide a feature, the implemen-
tation of (some) services has to be extended, i.e., a feature
is an increment in service functionality.

Two variants of a scenario differ in their sets of supported
features. In our examples, the variants differ only in one
feature, i.e., the discounting variant is similar to the base
warehouse scenario except that it additionally provides the
D1SCOUNTING feature.

Figure Bl depicts the warehouse service architecture in-
cluding the Di1scouNTING feature. The services that are
affected by the DiSCOUNTING feature are highlighted by ar-
rows. The Acquisition service now additionally provides in-
formation about the discount (change of interface and im-
plementation), and in Credit Ranking, Billing, and Payment
Checking the price calculation is each adapted to grant the
discount (change of implementation).

Figure Pl illustrates the following facts of the relationship
between features and services:

e A service provides a basic functionality (i.e., a base
feature) and a (possibly empty) set of features that
extend the base functionality.

e A feature may affect the implementations and the in-
terfaces of multiple services.

The introduction of the notion of a feature to SOA allows
us to apply techniques and methods from FOP and FOPS.
The idea of FOP is to encapsulate the code of a feature co-
hesively into a feature module [4]. Feature composition joins
a service’s base code and the code of its features. Figure
depicts the warehouse service architecture with a separate

inquiry check check

—_—

o Credit
Acquisition Ranking

™ 7

different implementations and

Availability
Checking

order

possibly different interfaces Ordering
ship

Y

Payment || e - bl o
Chching Billing Shipping

Figure 2: Effects of the discounting feature on the
services of the basic warehouse scenario.

U | evisition L%l Avaiabilty | K| Credit
q Checking Ranking
order
Basic Orderin
Warehouse
shi
check bill
CPSZZ‘(?:; Billing Shipping
v 4
/’
Acquisition RCa;ekL?:
Discounting L]
Feature
Payment i
Checking Biling

Figure 3: Separating the discounting feature from
the basic warehouse architecture.

feature module for DiIsSCOUNTING. Fat (red) boxes represent
feature modules and arrows represent extensions to services.

Feature modularization and composition requires a pro-
gramming language to have a certain expressibility. Several
mainstream languages have been extended to support fea-
tures, e.g., Java, C++, and XML [I0,BL[]. For example, an
extension a feature makes to a service’s Java implementa-
tion is shown in Figure @l The class Bill of the basic ware-
house service Billing is refined by the feature DISCOUNTING,
denoted by ‘refines’. It overrides the method getPrice
and adds the method qualifiesForDiscount in order to
decrease the calculated price of qualified orders by 20 %.

Interestingly, there are FOP extensions of XML [BI[I] that
allow programmers to extend a service’s interface that is
written in WSDL, as illustrated in Figure When com-
posing the base warehouse implementation with the Dis-
COUNTING feature, the interface of the service Acquisition
is superimposed with an extension of the same name. Dis-
COUNTING adds a new operation discountResponse allow-
ing a customer to query the discount rate.

FOPS performs feature composition based on a declar-
ative specification [I]. Features are represented by func-
tions that extend a program, in our case, a service architec-
ture including the individual service implementations and
interfaces. For example, the feature-oriented model of our
warehouse scenario (WH) including the three features Dis-

w N =

N oUW N

class Bill {
double getPrice (Order o) { ... }
}

refines class Bill {
double getPrice (Order o) {
if (qualifiesForDiscount(o))
return original (o) % 0.8;
else
return original (o) ;
}
}
boolean qualifiesForDiscount(Order o) { ... }

}

Figure 4: A Java class (top) and a refinement (bot-
tom).

<definitions name="Acquisition">
<message name="priceRequest'">
<part name="orderNumber" type="xsd:int">

</message>

</definitions >

<definitions name="Acquisition">

<message name="discountResponse">
<part name="discountPercentage"
</message>

type="xsd:float">

</definitions>

Figure 5: A WSDL interface definition (top) and a
refinement (bottom).

COUNTING (D1sc), STATUS MONITORING (STAT), and OVER-
SEA ORDERS (OVER) of Section Blis modeled by the set:

WH = {Basg, D1sc, STAT, OVER} (1)

BASE represents the basic service architecture that includes
our seven services (Equation Bl names abbreviated). Ser-
vices, in turn, include a set of code artifacts, not depicted
here.

Baske = {Acqu, Avail,Cred, Ord, Ship, Bill, Pay} (2)

Disc counsists of the extensions the discounting feature makes
to the warehouse architecture:

Disc = {Acqu, Cred, Bill, Pay} (3)

This illustrates that the D1ISCOUNTING feature affects mul-
tiple services of the warehouse scenario, i.e., the implemen-
tation of the feature is scattered across multiple service im-
plementations. The extensions of D1sc are matched (super-
imposed) with the services of BASE by name. Feature com-
position scales from composing specific methods or classes,
across composing individual services, to composing a whole
service architecture.

As features are modeled by functions that modify pro-
grams, feature composition (’e’) is modeled by function com-
position. The composition of the basic warehouse architec-
ture with the discounting feature is written:

WH; = Disc e Bask (4)

Using such feature expressions, several variants of the
warehouse scenario can be described, including those, in
which different features are combined:

WH, = BAsge
WH; = Disc e BASE
WH, = OVER e Disc e Base (5)
WH3; = OVER e STAT e Disc e BASE
WH, =

The actual composition of software artifacts based on a
feature expression is performed automatically by various
generator tools, most notably the AHEAD Tool Suite [T0J.

5. EXPECTED BENEFITS
There are five benefits of a feature-based approach to SOA.

Modularity

The decomposition of a service architecture and its ser-
vices into features facilitates a better separation of concerns.
Code of a feature is encapsulated in a feature module, even
though it affects multiple services (cf. Figure Bl). The base
implementation of a service is not polluted by feature code,
which improves code comprehension and maintenance. FOP
has been shown to improve modularity in several case stud-
ies for software product lines [IT},[141[0 B3l 231 @] and might
improve modularity also in service architectures and related
approaches, where modularity has been observed to be sub-

optimal |35 BT 291 T8 [TH].
Variability

The separation of base service code and feature code al-
lows a programmer to generate different service variants.
Feature composition merges the corresponding code frag-

ments of services and features based on a user specification
(cf. Equation Bl).

Uniformity

Services may be represented in different languages. This
includes the implementation (e.g., in Java or C++) and the
interface specification (e.g., in WSDL). Feature composition
is language-independent and applicable to any kind of soft-
ware artifact included in a service [B]. For example, Fea-
tureC+-+ [3] and Jak [I] are languages for composing fea-
tures written in C++ and Java, respectively. Xak enables
the composition of features written in XML [IJ], which also
includes the service’s interface written in WSDL.

Specifiability

Programmers, software architects, and users have to dis-
tinguish between different variants of an architecture and
its services. Otherwise, the composition of (syntactically or
semantically) incompatible services may lead to errors, in-
consistent system states, and undesirable program behavior.
A purely name-based and/or interface-based specification is
not sufficient: two services might have equal names and/or
interfaces but provide different features (see Typeability). A
combination of a name-based, interface-based, and feature-
based specification solves this problem. Features represent
common abstractions of a domain and help stakeholders to
understand a service’s semantics during implementation, in-
tegration, and orchestration.

Typeability

Without a feature-based specification, services are typed
via their names and interfaces. But, as mentioned, not every
feature might be manifest in a service’s interface. To this
end, two variants of a service might be of the same type
although they provide different feature sets. Another service
might expect a specific behavior that cannot be expressed
by an interface. Consequently, the set of features a service
provides has to be taken into account during typing. A type
system based on interfaces and features solves compatibility
and inconsistency problems. Such a type system is partially
nominal and partially structural [26]2].

6. RESEARCH CHALLENGES

We envision several research challenges that arise from the
benefits of the symbiosis of features and services.

Modularity

The phenomenon of crosscutting in service, component,
and agent systems challenges modularity and has been ob-
served before. Several approaches, most notably aspect-
oriented programming |22)], have been proposed to solve the
modularity problem [B5lB1,29[I8I[T5]. FOP is closely re-
lated to these approaches []. A feature-oriented approach
is promising insofar as the theory of features, that is based
on algebra [241[6] and category theory |34], enables the au-
tomation of feature and service composition, while provid-
ing means for simple and precise specification and typing
(cf. Section B). A challenge is to prove the practicality and
scalability of crosscutting mechanisms, such as feature mod-
ules; in non-trivial SOA case studies. To the best of our
knowledge no such studies have been published.

Variability

An automated management of variants becomes increas-
ingly important as the number of variants grows. In SOA,
this is especially challenging as there is typically a multi-
tude of services that come in many different variants. An
approach based on features profits from the experiences and
tools of the field of software product lines [2T1 17, [T0L [T2].
As with modularity, reasonable case studies have to be con-
ducted. Conversely, SOA may become a real-world scenario
for researchers and developers that aim at features and prod-
uct lines.

Uniformity

As discussed before, services may be implemented in dif-
ferent languages. The whole idea of Web services is based on
service virtualization [Z5]. A language-independent commu-
nication infrastructure (protocol, interface description, ser-
vice lookup, etc.) integrates services that have been imple-
mented and deployed by different vendors. Thus, SOA is
an excellent use case for evaluating the genericity of feature
composition. Whether this genericity is adequate and scales
to heterogeneous, large-scale service architectures remains
to be explored.

Specifiability

Variants of a service architecture can be specified via fea-
tures. A prerequisite is that there must be an agreement
on the meaning of features in a domain. In the field of
software product lines, feature models and ontologies have

been shown to be useful [Z4[7]. Assuming a correct feature
model, service variant specification can be based entirely on
features [2ZILI7AM2AM], e.g., as illustrated with Equation
Of course, an approach that integrates feature-based and
interface-based specification is desirable. The challenge is
to establish methods for stakeholders to agree on a feature
model and to avoid misunderstandings and preconceptions
when using feature-based specifications. The use of formal
specification languages is discussed in Section [

Typeability

In a type system for SOA, each service has a type. The
type is defined by the service’s interface and by the set of
features it provides. To this end, two services are of the
same type if they provide the same interface and the same
set of features composed in the same order. That is, the
type system is partially structural (e.g., based on the fea-
ture structure) and partially nominal (e.g., based on feature
names). This notion of service type allows us to define a
subtyping relation ('<’). A service A is a subtype of a ser-
vice B if A’s interface is a subtype of B’s interface and A
provides a superset of the features of B composed in the
same order. The relation < can be defined as follows, where
F,,..F; denotes a sequence of features and O denotes the
supersequence relation:

(VA: Fe A< A)
(VA,B:A<B=FeA<FeB) 6)
(VA:Fr,e...0F1e A< Gnpe...06G1eA)
i Fy. FL D Gon..Gh

A challenge is the integration of a feature-based type sys-
tem |32 into a formal model of services [T3}28].

7. BLACK-BOX SERVICES

So far, in our discussion we assumed that all service im-
plementations of an architecture are accessible. This makes
it possible to implement crosscutting features by means of
feature modules that extend the basic services’ implementa-
tions. This assumption is not unrealistic since SOA is often
used in-house as an architectural style for the development
of well-structured software systems. However, an advantage
of SOA is that services may be black boxes implemented
and deployed by different vendors. Software is generated by
integrating off-the-shelf services located at different places.

Cousidering this black-box scenario, the benefits of a fea-
ture-based approach are reduced and enhanced at the same
time. A feature cannot be condensed into a single feature
module anymore. The reason is that service implementa-
tions are black boxes and, typically, the vendors do not
share code; only interface descriptions are available. This
also hinders service composition based on feature composi-
tion. Nevertheless, in the scope of a single service provider
(i.e., a company that uses SOA to implement large-scale ap-
plications) feature composition works as explained; it fails
only for services that share the same features but that are
implemented by different vendors.

While the benefits of feature modularization and compo-
sition are limited to local vendors, the benefits of a feature-
based specification and type system increase at the same
time. The more vendors contribute services to an architec-
ture, the more a precise, formal agreement on the syntax and
semantics of services is necessary. First, there needs to be

a common feature model that is well-defined for a domain.
Based on this model, vendors can provide a feature-based
specification for their services. Beside the name and the re-
lationship to other features (what is required and provided),
a specification of a feature defines the semantics expressed in
formal specification language, e.g., Alloy [T9] or TROLL [0
The key is that the features can be implemented differently,
but they have to satisfy certain constraints. This issue has
been explored extensively in the field of program specifica-
tion. A feature model has to include, for each feature, a
language-independent specification.

If there is a common feature model, the feature-based type
system plays to its strength. Service integrations can be
checked based on their interfaces (interface-based subtyp-
ing), their features (feature-based subtyping), and the con-
straints of the domain (e.g., feature F implies feature G).

8. CONCLUSION

In summary, we see several potential synergies between fea-
tures and services. A transfer of ideas and experiences would
do the field of SOA and FOP(S) good. We have outlined
several benefits a symbiosis can bring with it but also sev-
eral challenges, especially regarding the uniform treatment
of services and the formal specification and typing of service
compositions. The extended black-box scenario imposes fur-
ther severe challenges but promises significant benefits of a
feature-based approach to SOA.

Acknowledgments

We thank Don Batory and Salvador Trujillo for their helpful
comments on earlier drafts of this paper.

9. REFERENCES

[1] F. Anfurrutia, O. Diaz, and S. Trujillo. On Refining
XML Artifacts. In Proc. Int’l. Conf. Web Engineering,
volume 4607 of LNCS, pages 473 478.
Springer-Verlag, 2007.

[2] S. Apel and D. Hutchins. An Overview of the gDeep
Calculus. Technical Report MIP-0712, Dept. Inform.
and Math., University of Passau, 2007.

[3] S. Apel, T. Leich, M. Rosenmiiller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proc. Int’l.
Conf. Generative Programming and Component
Engineering, volume 3676 of LNCS, pages 125-140.
Springer-Verlag, 2005.

[4] S. Apel, T. Leich, and G. Saake. Aspectual Feature
Modules. IEEE Trans. Softw. Eng., 34(2), 2008.
published online first.

[5] S. Apel and C. Lengauer. Superimposition: A
Language-Independent Approach to Software
Composition. In Proc. Int’l. Symp. Software
Composition, volume 4954 of LNCS, pages 20-35.
Springer-Verlag, 2008.

[6] S. Apel, C. Lengauer, D. Batory, B. Méller, and
C. Késtner. An Algebra for Feature-Oriented Software
Development. Technical Report MIP-0706, Dept.
Inform. and Math., University of Passau, 2007.

[7] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proc. Int’l. Software

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Product Line Conf., volume 3714 of LNCS, pages
7—-20. Springer-Verlag, 2005.

D. Batory. From Implementation to Theory in
Product Synthesis. In Proc. Int’l. Symp. Principles of
Programming Languages, pages 135 136. ACM Press,
2007.

D. Batory, C. Johnson, B. MacDonald, and D. v.
Heeder. Achieving Extensibility Through
Product-Lines and Domain-Specific Languages: A
Case Study. ACM Trans. Softw. Eng. Methodol.,
11(2):191 214, 2002.

D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Softw. Eng.,
30(6):355-371, 2004.

D. Batory and J. Thomas. P2: A Lightweight DBMS
Generator. J. Intelligent Information Systems,
9(2):107-123, 1997.

D. Beuche, H. Papajewski, and

W. Schréder-Preikschat. Variability Management with
Feature Models. Sci. Comp. Prog., 53(3):333-352,
2004.

M. Broy, I. Kriiger, and M. Meisinger. A Formal
Model of Services. ACM Trans. Softw. Eng.
Methodol., 16(1):Article no. 5, 2007.

R. Cardone and C. Lin. Comparing Frameworks and
Layered Refinement. In Proc. Int’l. Conf. Software
Engineering, pages 285 294. IEEE CS Press, 2001.

A. Charfi, B. Schmeling, and M. Mezini. Transactional
BPEL Processes with AO4BPEL Aspects. In Proc.
Europ. Conf. Web Services, pages 149 158. IEEE CS
Press, 2007.

P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

A. Garcia, U. Kulesza, and C. Lucena. Aspectizing
Multi-Agent Systems: From Architecture to
Implementation. In Software Engineering for
Multi-Agent Systems I1I, volume 3390 of LNCS, pages
121 143. Springer-Verlag, 2005.

D. Jackson. Alloy: A Lightweight Object Modelling
Notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256-290, 2002.

R. Jungclaus, G. Saake, T. Hartmann, and

C. Sernadas. TROLL: A Language for
Object-Oriented Specification of Information Systems.
ACM Trans. Inf. Syst., 14(2):175 211, 1996.

K. Kang, S. Cohen, J. Hess, W. Novak, and

A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proc. Europ. Conf.
Object-Oriented Programming, volume 1241 of LNCS,
pages 220-242. Springer-Verlag, 1997.

J. Liu, D. Batory, and C. Lengauer. Feature-Oriented
Refactoring of Legacy Applications. In Proc. Int’l.
Conf. Software Engineering, pages 112-121. ACM

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Press, 2006.

R. Lopez-Herrejon, D. Batory, and C. Lengauer. A
Disciplined Approach to Aspect Composition. In Proc.
Int’l. Symp. Partial Evaluation and Semantics-Based
Program Manipulation, pages 68 77. ACM Press,
2006.

A. Nash. Service Virtualization: Key to Managing
Change in SOA. Bitpipe.com, 2006. White paper.

K. Ostermann. Nominal and Structural Subtyping in
Component-Based Programming. J. Object
Technology, 7(1):121 145, 2008.

X. Peng, W. Zhao, Y. Xue, and Y. Wu.
Ontology-Based Feature Modeling and
Application-Oriented Tailoring. In Proc. Int’l. Conf.
Software Reuse, volume 4039 of LNCS, pages 87-100.
Springer-Verlag, 2006.

M. Perepletchikov, C. Ryan, K. Frampton, and

H. Schmidt. A Formal Model of Service-Oriented
Design Structure. In Proc. Austral. Software
Engineering Conf., pages 71-80. IEEE CS Press, 2007.
A. Popovici, G. Alonso, and T. Gross. Spontaneous
Container Services. In Proc. Europ. Conf.
Object-Oriented Programming, volume 2743 of LNCS,
pages 29 54. Springer-Verlag, 2003.

C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proc. Europ. Conf.
Object-Oriented Programming, volume 1241 of LNCS,
pages 419-443. Springer-Verlag, 1997.

D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
An Aspect-Oriented Approach Tailored for
Component-Based Software Development. In Proc.
Int’l. Conf. Aspect-Oriented Software Development,
pages 21-29. ACM Press, 2003.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proc. Int’l. Conf.
Generative Programming and Component Engineering,
pages 95 104. ACM Press, 2007.

S. Trujillo, D. Batory, and O. Diaz. Feature
Refactoring a Multi-Representation Program into a
Product Line. In Proc. Int’l. Conf. Generative
Programming and Component Engineering, pages

191 200. ACM Press, 2006.

S. Trujillo, D. Batory, and O. Diaz. Feature Oriented
Model Driven Development: A Case Study for
Portlets. In Proc. Int’l. Conf. Software Engineering,
pages 44-53. IEEE CS Press, 2007.

N. Ubayashi and T. Tamai. Separation of Concerns in
Mobile Agent Applications. In Proc. Int’l. Conf.
Metalevel Architectures and Separation of Crosscutting
Concerns, volume 2192 of LNCS, pages 89 109.
Springer-Verlag, 2001.

