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Abstract A software product line (SPL) is a family of related programs of a domain. The
programs of an SPL are distinguished in terms of features, which are end-user visible
characteristics of programs. Based on a selection of features, stakeholders can derive tailor-
made programs that satisfy functional requirements. Besides functional requirements,
different application scenarios raise the need for optimizing non-functional properties of a
variant. The diversity of application scenarios leads to heterogeneous optimization goals
with respect to non-functional properties (e.g., performance vs. footprint vs. energy opti-
mized variants). Hence, an SPL has to satisfy different and sometimes contradicting
requirements regarding non-functional properties. Usually, the actually required non-
functional properties are not known before product derivation and can vary for each
application scenario and customer. Allowing stakeholders to derive optimized variants
requires us to measure non-functional properties after the SPL is developed. Unfortunately,
the high variability provided by SPLs complicates measurement and optimization of non-
functional properties due to a large variant space. With SPL Conqueror, we provide a
holistic approach to optimize non-functional properties in SPL engineering. We show how
non-functional properties can be qualitatively specified and quantitatively measured in the
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context of SPLs. Furthermore, we discuss the variant-derivation process in SPL. Conqueror
that reduces the effort of computing an optimal variant. We demonstrate the applicability
of our approach by means of nine case studies of a broad range of application domains
(e.g., database management and operating systems). Moreover, we show that SPL. Con-
queror is implementation and language independent by using SPLs that are implemented
with different mechanisms, such as conditional compilation and feature-oriented
programming.

Keywords Software product lines - Non-functional properties - Feature-oriented software
development - Measurement and optimization - SPL Conqueror

1 Introduction

A software product line (SPL) is a family of related program variants that share a common
code base (Clements and Northrop 2002). Program variants of an SPL are distinguished in
terms of features, which are end-user visible characteristics of programs (Czarnecki and
Eisenecker 2000). Features usually satisfy functional requirements of stakeholders. Hence,
by selecting a set of features, stakeholders derive exactly the variant that fulfills their
functional requirements. Common techniques to implement features are conditional
compilation (e.g., C preprocessor using #ifdef), components and feature modules (Batory
et al. 2004). Features are mapped to these implementation units. According to a feature
selection, the corresponding implementation units are used to generate a variant.

Besides functional requirements, stakeholders have requirements regarding non-func-
tional properties of a program (Chung et al. 1995). In the literature, the definition of non-
functional properties (also referred to as quality attributes) is not consistent (Robertson and
Robertson 1999; Glinz 2007; Chung and do Prado Leite 2009). We use the definition of
Robertson and Robertson (1999), who define a non-functional property as: “A property, or
quality, that the product must have, such as an appearance, or a speed or accuracy
property.” We focus on common non-functional properties such as performance, reli-
ability, footprint and so forth. When developing single programs, non-functional
requirements are identified and documented before product development (Chung et al.
1999). During development, tools such as the non-functional requirements framework
(Chung et al. 1999), i* framework (Yu 1997) and KAOS (van Lamsweerde 2001) help
developers with design decisions that affect non-functional properties of the final program
variant. Conflicting requirements have to be resolved during development (van Lamswe-
erde et al. 1998). SPLs change this picture.

In contrast to conventional software development, an SPL usually covers a broad
spectrum of application scenarios in a certain domain. A vendor develops an SPL for an
entire domain in which stakeholders can have very different non-functional requirements.
Depending on the concrete application scenario, it is even possible that customers have
conflicting or contradicting non-functional requirements. Hence, an SPL has to satisfy very
different non-functional requirements. As running example, consider an SPL of database
management systems (DBMS). Stakeholders of such an SPL (e.g., users who derive a
variant of an SPL) have completely different non-functional requirements when they use a
particular variant in different application scenarios, such as mobile devices, parallel
computers, or desktop computers. For example, the footprint of a DBMS variant has to be
minimized for an embedded system, a variant for real-time systems must provide a
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deterministic response time, and a DBMS variant for a mobile device requires minimized
energy consumption.

Contrary requirements result in alternative features, which in turn result in the ability to
provide different variants that satisfy even contradicting requirements. For instance, a
DBMS SPL may provide alternative buffer manager features, e.g., a feature minimizes
working memory consumption and another feature optimizes performance. Hence, many
non-functional requirements are defined when deriving a concrete product during appli-
cation engineering, i.e., affer SPL implementation (a.k.a. domain engineering). Non-
functional as well as functional requirements can often only be defined per application or
per customer, that is, at product derivation time. As described before, highly differing and
even contradicting non-functional requirements of different concrete application scenarios
make it necessary to postpone the definition of objective functions (or quality goals) to the
product derivation phase. Hence, often SPL vendors do not know the concrete non-func-
tional requirements before variant derivation (i.e., after development) and can only prepare
an SPL for anticipated possible requirements.

As a result of the high variability of an SPL, it is usually not clear which feature
selection leads to which non-functional properties. Since variants are generated by
selecting desired features, it is difficult to predict which selection of features or which
alternative feature implementations result in a program variant with, for example, a
footprint lower than 200 KB and a response time of less than one second. Again, an SPL
cannot be tuned to these requirements as the requirements are usually not known
beforehand and vary (in certain bounds) depending on the application scenario, environ-
ment and customer. Therefore, SPL developers implement a spectrum of non-functional
properties with a large degree of freedom in the implementation. During product deriva-
tion, actually important properties are determined by individual application engineers.
Hence, application engineers often face the questions: Is there a variant that meets my
functional requirements and also satisfies my non-functional requirements? What is the
best trade-off between different properties?

Answering these questions is far from trivial. An SPL usually has many variants that
satisfy the same functional requirements. To give a correct answer, an SPL’s vendor would
have to measure the properties for all of these candidate variants. This can lead to a costly
and time-consuming trial and error process, because even small SPLs with only few
features can have millions of possible variants. With an increasing number of features,
vendors face an exponential explosion of the variant space. Generating, compiling and
executing each relevant program is infeasible even for medium-sized SPLs (Krueger 2006;
Siegmund et al. 2008b). Even worse, some non-functional properties cannot be measured
at all. They have to be described qualitatively on an ordinal scale. These kinds of properties
must be considered for variant derivation, too.

Besides measuring and determining non-functional properties of a variant, a customer
often wants to derive a variant that is optimized with respect to a specific non-functional
property (e.g., performance or footprint). This means also that it is not sufficient to find a
feature selection that meets the requirements, but to calculate the optimal feature selection
for a given non-functional property.

We present a holistic approach, called SPL Congueror, that integrates all aspects of the
variant-derivation process with respect to non-functional properties. We show the big
picture of optimizing non-functional properties in the area of SPLs. SPL. Conqueror sup-
ports the optimization of qualitative and quantitative properties. In previous work, we
focused only on certain aspects of the optimization process. In this paper, we combine
developed solutions to automate the whole optimization process. We subsume and extend
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our previous work and evaluations (Siegmund et al. 2008a, b) and make the following
novel contributions:

1. We extend our integrated product-line model (Siegmund et al. 2008a) to assign non-
functional properties to features and implementation artifacts and to model feature
interactions explicitly. SPL. Conqueror uses this model to compute an optimized
variant based on a feature’s properties.

2. We classify non-functional properties into three classes (qualitative, feature-wise
quantifiable and variant-wise quantifiable properties). We use these classes to select
suitable measurement and configuration techniques.

3. With SPL Conqueror, we provide a holistic approach in which user-defined metrics are
used to measure different non-functional properties. During measurement, we address
the problems of the variable code base of SPLs. Furthermore, we automate the
measurement process and enrich an integrated product-line model with the measure-
ment results.

4. We support derivation of variants that are optimized with respect to non-functional
properties by (1) highlighting features that improve a certain non-functional property,
(2) predicting the value of a non-functional property for a variant based on
approximations of a feature’s properties and (3) automatically measuring promising
variants using our automated measurement framework.

2 Problem statement

In this section, we describe the challenges of measuring and optimizing non-functional
properties in SPLs. This is the basis for understanding the rationales behind our classifi-
cation and measurement approach.

2.1 Software product line scenario
In SPL development, we differentiate between domain engineering and application

engineering (Czarnecki and Eisenecker 2000; Pohl et al. 2005) as illustrated in Fig. 1. A
domain engineer analyzes the functional and non-functional requirements that are

Domain Engineering
Model System
joRe : Domain Features | pomain/Feature |Architecture Domain
- Common Domain —» . - >
Requirements Analysis Model Implementation
; A
Requirements Missing Generator /
Engineering Feature Composition
A y
- Customer ! Required :
Requirements L 5 Requirements | Features Product Integration /
- Concrete Analysis ~| Configuration Test
Application Scenario
Application Engineering

Fig. 1 Domain and application engineering phases in SPL development including requirements specifi-
cation (Czarnecki and Eisenecker 2000)
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Berkeley DB
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Fig. 2 Feature model of Berkeley DB (C version)

important for an entire domain (i.e., not necessarily for a single application scenario). This
is in contrast to conventional software development in which concrete requirements are
defined and are usually known before development. These requirements address the whole
spectrum of possible program variants and may be contradicting. For example, a DBMS
SPL can contain features for in-memory and persistent storage. Although both features
have contradicting goals (i.e., performance vs. reliability), they both are useful for specific
scenarios (e.g., an in-memory variant for a web browser and a persistent variant for an
e-mail client). That is, developers implement alternative features to satisfy different and
even incompatible goals. After domain analysis, developers and domain engineers design
and implement reference architecture for the SPL. Hence, typically almost the whole
implementation work is done in the domain engineering phase (Clements and Northrop
2002).

For each product, application engineering starts with the requirements analysis of a
concrete application scenario. After this second requirement engineering phase, an
application engineer (e.g., the customer) selects features to satisfy her requirements. If
requirements cannot be satisfied (e.g., because functionality is missing or non-functional
requirements cannot be fulfilled), new features or alternative implementations have to be
developed.

Developing a DBMS SPL would start by analyzing the database domain. Domain
engineers identify common and variable functionality, such as data structures, search
indexes, encryption mechanisms, transaction support and logging. A feature model is used
to document the features of an SPL including their dependencies (e.g., a feature requires
the presence of another feature).'

In Fig. 2, we visualize the feature model of the Berkeley DB SPL. We use Berkeley DB
as a running example. Berkeley DB? is a customizable DBMS with over 200 million
deployments (Oracle 2006). It has optional features (e.g., Hash, Queue, Cryptography) to
be able to tailor a program variant to a customer’s requirements. One can generate 256
different variants for the Windows platform. Features are represented by boxes and con-
nections between them express domain constraints. For example, a feature connected by an
empty bullet is optional (e.g., feature Hash), and a feature connected with a filled bullet is
mandatory (e.g., feature B-Tree). There are also grouping relationships in a feature model.
For example, a set of features can be alternative (XOR), which enforces user to select
exactly one feature of the alternative group. Furthermore, we can define an OR group that
allows user to select between at minimum one and an arbitrary number of features.

! Please note, a feature model looks similar to a goal model often used for requirements engineering (van
Lamsweerde 2001). However, the concepts cannot be compared. A feature model describes the variability of
an entire SPL, i.e., all products.

2 Available at: http://www.oracle.com/technetwork/database/berkeleydb/.
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Fig. 3 Relationship between non-functional properties and feature interactions. On the left side, we depict
the non-functional properties per feature (e.g., feature Replicate has a footprint of 89 KB). On the right side,
we show the measured properties of all variants that can be generated with the three features. For footprint,
we show the composition of the features’ footprints of a variant. The feature interaction introduces
additional footprint and changes the performance of variant 4. A plus symbol describes qualitatively that a
feature improves a certain property. Performance is given in transactions per second (T/s) and footprint in
KB

2.2 Measuring non-functional properties

Many but not all non-functional properties can be measured. Measurement theory defines
multiple scales, such as ordinal, interval and ratio (Stevens 1946). We measure non-
functional properties that can be described with a metric scale (i.e., interval and ratio) for
which a stakeholder (i.e., a vendor, developer, domain expert, or user) can define a suitable
metric. For example, we can define footprint (using the measurement of the binary size)
and performance (using a benchmark that outputs performed transactions per second) as
properties to be measured for Berkeley DB. By contrast, it would be difficult to define a
metric to measure user-friendliness. Hence, we differentiate between quantifiable and
qualitative properties, which we explain in Sect. 3.1.

In SPL engineering, developers face the problem that requirements of concrete cus-
tomers are specified after SPL development. That is, SPL vendors have to consider a
spectrum of non-functional properties during development. Typically, it is not known
without exhaustive measurements which implications a feature selection has on certain
non-functional properties. In Fig. 3, we illustrate the relationship between three features of
Berkeley DB and the four non-functional properties footprint, performance, reliability and
security. Often, a feature affects multiple non-functional properties, for example, feature
Replication of Berkeley DB increases the binary size by 89 KB. However, this information
is not known until we have actually measured it. Other non-functional properties such as
reliability cannot be measured at all. Their influence can only be described qualitatively,
rather than quantitatively. For example, we may also need domain knowledge to somehow
express the influence of a feature on such a property. Even worse, also a certain feature
combination has an influence on non-functional properties. On the right side of Fig. 3, we
show program variants with different feature combinations. The variant that includes both
features Replication and Cryptography have an unexpected behavior. We obtain a decre-
ment in performance although, when measuring a variant with only a single feature, there
is no performance decrement compared to the base variant. Moreover, based on the fea-
ture’s footprint, we would expect that the variant has a size of 448 KB® rather than

3 The sum of the footprint of features Base, Replication and Cryptography is 448 KB.

@ Springer



Software Qual J (2012) 20:487-517 493

480 KB. The observed difference is caused by feature interactions of both features at the
source code level.

Another example is SQLite.* SQlite is a customizable DBMS SPL deployed on over 500
million systems (SQLite.org 2010). Although it targets embedded systems and thus has a
small footprint, the developers provide further configuration options to reduce the size of the
compiled DBMS. However, they can neither provide values to which degree a deactivated
feature saves binary size nor what influence a deactivation has on other non-functional
properties. The website states only: “[..Jthe library size can be less than 300KiB, depending
on compiler optimization settings,” and “If optional features are omitted, the size of the
SQLite library can be reduced below 180KiB.” Often, a customer needs more exact infor-
mation than “less than” or “can be reduced below.” Hence, to find a feature set for a specific
footprint limit, a customer would need to measure the binary sizes of many variants. Con-
sidering the fact that 88 features are optional and can be arbitrarily configured, there are 2
different variants. Measuring all variants would take longer than the time the universe exists.’
Obviously, a customer cannot find the optimal variant with a brute force approach.

2.3 Optimizing non-functional properties

Optimization means to find the best variant (feature selection) according to specific non-
functional properties. To optimize a variant with respect to non-functional properties, we
can search for an optimal feature selection during application engineering. For example,
we select those features that have the most positive influence on a property. For example,
we would select the B-tree search index in Berkeley DB (cf. Fig. 2) to optimize perfor-
mance. However, there are usually trade-offs between non-functional properties. Selecting
feature B-tree increases the binary size, which might be not acceptable for some appli-
cation scenarios. Typically, an SPL vendor has to cooperate with customers to define an
objective function over a set of non-functional properties. An objective function expresses
how to rate the diverse non-functional properties to achieve the desired goals (van Lam-
sweerde et al. 1998; van Lamsweerde 2001; Marler and Arora 2004).

Another problem is the computational complexity of finding an optimal variant (Floch
et al. 2006). White et al (2009) found that this problem is NP-hard. Special algorithms are
needed to approximate a good solution. Although there are already some solutions available
(e.g., using filtered Cartesian flattening (White et al. 2009) or constraint satisfaction problem
solvers (Benavides et al. 2005)), they work only for a limited class of properties (which we
later describe as feature-wise quantifiable). Other properties, such as performance and energy
consumption, that can only be measured per variant are not addressed and neither are qual-
itative properties (e.g., user-friendliness). Thus, we require a combined approach of com-
puting optimized variants on a per feature basis and measuring non-functional properties on a
per variant basis. We show how our approach addresses this issue in Sect. 6.

3 Representing non-functional properties in software product lines

We aim at optimizing non-functional properties in the product-derivation phase. Defined
by an SPL vendor or customer, the specification of desired properties must either contain a

4 Available at: http://sqlite.org.

5 In fact, a single measurement takes approximately 5 min. Measuring all 2%% variants would take ca.
2.9 x 10*! years.
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qualitative statement regarding the range of values of a property or a metric that we can use
to measure a property. Hence, we need the information whether a property can be
described with an ordinal or a metric scale. To this end, we categorize non-functional
properties based on measurement theory (Stevens 1946) to use the proper measurement and
derivation technique for a given non-functional property.

3.1 Classification of non-functional properties

There is a number of non-functional properties including their classification described in
the literature, for instance, McCall’s quality model (Mccall et al. 1977), Boehm’s quality
model (Boehm et al. 1978) and the ISO 9126 quality model (International Organization for
Standardization (ISO) 2001). These models have a certain purpose. For example, McCall’s
quality model bridges the gap between a customer’s quality perspective and a developers
view on quality attributes. Hence, McCall describes factors based on an external view of a
software and quality criteria that describe the internal view of a software. A developer can
use this model to derive suitable metrics (e.g., error tolerance and accuracy) to improve a
quality factor (reliability). Boehm’s quality model is a hierarchical model to refine and
further specify characteristics from which a property is composed (Boehm et al. 1978). For
example, maintainability is refined to understandability which in turn is refined to con-
ciseness. Hence, he qualitatively defines software quality with a given set of metrics.

In contrast to the mentioned models, our purpose is to classify non-functional properties
such that we can choose proper optimization techniques based on this information. Some
non-functional properties can be described only qualitatively, whereas other properties can
be represented with metric-based values, so we cannot use the same optimization technique
for all properties. For example, we cannot compute which feature selection results in a
variant with the best user-friendliness, because we usually have no metric to obtain
quantifiable measures. But, we can compute the variant with the smallest footprint or
highest performance. Hence, we classify non-functional properties with respect to our
ability to measure them and which operations are valid for the measures.®

We classify non-functional properties into three different classes: qualitative properties,
Sfeature-wise quantifiable properties and variant-wise quantifiable properties. It is impor-
tant to note that the categorization of a specific non-functional property depends on the
SPL and the application scenario and is not general. This means that the same property can
be in different classes for different SPLs or domains. Reasons for different classifications
are, for example, different view points and interpretations of stakeholders for the same
property. Also, the domain of an SPL may change the category of a property. For instance,
in a web-service SPL, security may be measured via an intrusion-detection system
resulting in quantifiable measures. In another scenario, security can only be qualitatively
specified (e.g., with weak, medium and strong secure), like it is done in Window 7.

3.1.1 Qualitative properties
There are non-functional properties that can only be described qualitatively using an

ordinal scale (i.e., there is no metric from which we can retrieve quantifiable measures).
For example, we can define that feature Verification in Berkeley DB improves the

 Measurement theory defines which operations are valid for which scale of measurement. For example, we
can only use median and percentile operations for an ordinal scale, because we only have a totally ordered
set of measures.
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Berkeley DB
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Fig. 4 Product-line model of Berkeley DB with assigned properties. Footprint represents the actually
measured binary size per feature. The up-arrow visualizes an improvement for a qualitative property

reliability of a DBMS, because it verifies the consistency of indexes (cf. Fig. 4). We can
assign such a qualitative statement to features (i.e., “feature Verification improves reli-
ability”). Since ranking is a valid operation for values on an ordinal scale, a domain expert
can rate features according to their influence on a non-functional property. For example,
we can rate feature Verification higher than feature Diagnostic for property reliability,
because in the DBMS, domain consistency of search indexes has a crucial impact on
reliability whereas Diagnostic functions may only identify some possible weak points for
reliability.

Qualitative properties usually require domain knowledge. Hence, SPL vendors should
define important properties that can be used by customers as guidelines to support feature
decisions during product derivation. For example, we can assign them certain values (e.g.,
Verification = 2 and Diagnostic = 1). Again, a stakeholder must keep in mind that only
certain types of calculations (median, percentile) are suitable over ordinal numbers (Ste-
vens 1946). To sum up, we use qualitative properties (a) to show them as configuration
possibilities to the user (e.g., hint which features qualitatively improve a certain property),
(b) to automatically select features with positive influence, and (c) to avoid the selection of
features with negative influence during the computation of an optimal variant.

Common representatives of this class are: reliability, security, trustability, availability,
usability, integrity and completeness.

3.1.2 Feature-wise quantifiable properties

This category contains properties that can be measured on a metric scale. An important
requirement for feature-wise quantifiable properties is that we can either measure a single
feature directly or infer the results of the measurement of a variant to single features with
an user-defined metric (i.e., either customers or SPL vendors provide suitable metrics).
Hence, we can compute to which extent a feature influences a non-functional property.
Examples of this class are footprint of a feature (which can be measured per implemen-
tation unit (Siegmund et al. 2008b)) and maintainability (which can be measured to some
degree with code metrics such as lines of code and cyclomatic complexity (McCabe
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1976)). A feature-wise measurement allows us to annotate each feature and implementa-
tion unit of an SPL with a specific value and to compute a value for a feature selection. To
compute a value for a concrete feature selection, a stakeholder defines an aggregation
function, such as addition or maximum. The aggregation function is used to aggregate the
values for each selected feature. For example, we defined for Berkeley DB maximum as
aggregation function for cyclomatic complexity and addition for footprint. This way, we
are able to compute the properties of a variant in advance only based on a configuration.

Common representatives of this class are: footprint, maintainability, accuracy/resolu-
tion of data, price of a feature, adaptability, interoperability and modularity.”

3.1.3 Variant-wise quantifiable properties

Some properties have either no meaning for single features or we are not able to quantify
the influence of individual features on the non-functional properties of a concrete variant.
Usually, such properties emerge when a variant is executed. They require the highest
measurement effort, because we have to generate each variant from which we want to
know properties. This usually requires to execute and to measure a variant, e.g., by running
benchmarks. For example, to measure performance in Berkeley DB, we use Oracle’s
standard benchmark, which defines certain types of queries. Considering the large number
of possible variants, variant-wise properties should be measured only for a predefined set
of selected features. This set may be the result of previous optimization and configuration
steps based on the properties of the previous categories. Similar to the previous class,
variant properties can be described with a metric scale.

Common representatives of this class are: performance, response time, resource
behavior (e.g., energy and memory consumption) and bandwidth.

3.2 Product-line model to reason about feature selections

As we explained before, a feature model describes the variability of an SPL and ensures
that only meaningful variants can be derived (Kang et al. 1990; Czarnecki and Eisenecker
2000). We extended the common feature-model approach to include also non-functional
properties of features and implementation units (Siegmund et al. 2008a). We call our
extension a product-line model. In Fig. 4, we show the product-line model of Berkeley DB.
In addition to the feature model of Fig. 2, we model implementation units. For instance,
B-Tree fast and B-Tree small are alternative (mutually exclusive) implementations of
feature B-tree.

The product-line model supports the assignment of qualitative properties (with ordinal
values) and feature-wise quantifiable properties (with actually measured metric values). In
Fig. 4, we show the footprint of each feature that we measured for Berkeley DB’s features
(described in Sect. 5) We assigned also a price for features, for illustration. Furthermore,
we defined two qualitative properties security and reliability and also highlighted that a
certain feature has a positive influence on this property. For example, feature Verification
has a positive effect on reliability for a DBMS.

We distinguish between alternative features and alternative implementations. While
alternative features define different functionality, alternative implementation units imple-
ment the same functionality in different ways. For instance, an user can decide either to
derive a performance-optimized Berkeley DB variant (by selecting the implementation unit

7 Maintainability can be derived from source code metrics to some degree.
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B-Tree fast) or a footprint-optimized (binary size) variant (by selecting the implementation
unit B-Tree small). Hence, alternative implementations represent variability at the level of
non-functional properties. Often, alternative implementations are extensions for new
customers who have new requirements that cannot be satisfied with the currently available
SPL implementation. If an user is not interested in a non-functional property, then often a
standard decision is made.

As an important extension to our product-line model (Siegmund et al. 2008a), we
introduce the concept of feature interactions in our product-line model. Feature interac-
tions change non-functional properties of a feature depending on the presence of a certain
feature combination. We explicitly model feature interactions to consider them for pre-
dicting a variant’s non-functional properties. For example, interactions occur when mul-
tiple features share a common code unit or when a certain feature combination requires
additional code (e.g., using nested #ifdefs). Additionally, feature interactions can cause
deadlocks and bus overloads. In Berkeley DB, there is an exhaustive use of nesting a
feature’s code in another feature’s code (e.g., to implement statistics for the hash search
index; cf. Fig. 2) resulting in different binary sizes depending on a certain feature com-
bination. In Berkeley DB, we identified a feature interaction between features Replication
and Statistics. We measured the influence of this interaction on footprint: A product with
both features in combination has an increased binary size of 80 KB in addition to sum of
the feature’s sizes. Such feature interactions occur for many non-functional properties.

4 SPL Conqueror: a holistic approach for the optimization of non-functional
properties

With SPL Conqueror, we propose a holistic approach to integrate measurement and
optimization of non-functional properties in the product-derivation process. With holistic
we mean that we support the whole product derivation process starting from the definition
of desired non-functional properties, over the measurement of properties, to the concrete
feature selection and optimization by means of an objective function. We support the
different kinds of non-functional properties described in Sect. 3.1. A stakeholder (i.e., an
SPL vendor or domain expert) can assign properties to features to describe the influence of
a feature on a specific property. In addition, a stakeholder can specify measurements and
metrics in SPL Conqueror to measure either a single feature (e.g., the source code com-
plexity) or a whole variant. Once the measurement procedure is defined, the process of
selecting features and generating and measuring features is automatically performed.

The results of measurements are stored in the SPL’s product-line model, which we
described in Sect. 3.2. We use this model including all assignments and measurements
during the product derivation phase to provide multiple optimization possibilities. Cus-
tomers can define non-functional constraints (e.g., a footprint limit of 200 KB) as well as
objective functions for quantifiable properties (e.g., maximize performance). If the
objective function contains a property that can only be quantified on a per variant basis,
SPL Conqueror automatically generates and measures variants to identify the optimal
variant. In Fig. 5, we provide an overview of the process of SPL Conqueror including the
following tasks (cf. Fig. 5):

— (a) Assign quantifiable properties to features (by domain expert)
— (b) Measure non-functional properties per feature (by domain expert and vendor)
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Fig. 5 Process of SPL Conqueror including the different tasks of measurement, configuration and
optimization

Properties

— (c) Define functional and non-functional requirements in application engineering per
variant (by customer)

— (d) Optionally apply additional post-derivation optimizations to a generated variant (by
domain expert and SPL vendor)

In the Sects. 3—6, we describe each task in detail. Analogously to the classification of
non-functional properties (which we described in 3), we have different tasks to specify and
measure non-functional properties. For qualitative properties, a domain expert assigns non-
functional properties to features (in Fig. 5a). Ordinal values are stored in the product-line
model and are used in the variant-derivation process.

The next step is to measure quantifiable properties per feature (in Fig. 5b), which we
describe in Sect. 5 For this task, an SPL vendor or domain expert defines proper mea-
surement procedures (e.g., a source code metric or a tool which measures a property).
These measurement procedures are plugged into SPL Conqueror to automatically measure
individual features and to store the values in the product-line model. We describe the
measurement of properties of all categories including its evaluation based on multiple
SPLs in Sect. 5.

To derive a variant (in Fig. 5c¢), a customer defines functional and non-functional
requirements. That is, she selects features satisfying functional requirements and defines
constraints for non-functional properties as well as optimization goals (in terms of
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objective functions). For example, if a customer wants to optimize the footprint of
Berkeley DB, she would define an objective function, such as min(Footprint). During the
derivation process, SPL. Conqueror provides for each property class a specific configuration
and optimization technique. We describe each technique including an algorithm in Sect. 6
in detail.

Once SPL Conqueror has found an optimal feature set (in Fig. 5d), an SPL vendor can
apply further optimizations to this variant. In the past, we developed two techniques that
scale to large SPLs and a high number of properties considered for optimization (Siegmund
et al. 2010a, b). We can purposefully use refactoring to alter the structure of a generated
variant in such a way that a certain non-functional property is improved. Our second
technique uses libraries of features that realize specific optimizations for different non-
functional properties. By linking such additional features in a variant, we can optimize a
non-functional property.

We structure the remaining article according to the tasks of SPL Conqueror. We first
describe for each class of non-functional properties our measurement techniques and
explain how we realized measurements in our case studies and which experience we
gained. We continue with a demonstration of the variant-derivation process.

5 Measuring non-functional properties

The measurement of non-functional properties is a challenging task, because often one
cannot measure features in isolation (i.e., without the presence of and interaction with other
features), and we have to guarantee that the measured feature is actually used in the
benchmarked variant. We illustrate our approach for the measurement of reliability,
complexity, footprint and performance. We selected these non-functional properties,
because they are commonly relevant during variant derivation, and they are representatives
of quantifiable and qualitative properties. In Fig. 6, we show the dialog of SPL Conqueror
with which users can define measurement procedures and metrics for a specific property. In
Fig. 6a, an user defines a measurement procedure using the following parameters: the
program that performs the measurement, required input values, and an access method to
extract the measurement values from the program output. Furthermore, aggregation
instructions can be inserted (Fig. 6b) to define how the values obtained from individual
features must be aggregated to obtain a value for an entire variant. SPL. Conqueror can
export and import such definitions as XML files. Thus, metrics and measurement speci-
fications can be reused in different contexts and easily exchanged.

In previous work, we evaluated the measurement process using SPL Conqueror with
nine existing SPLs that have very different characteristics to cover a broad spectrum of
scenarios (Siegmund et al. 2011).® In this paper, we present an approach to compute non-
functional properties of features based on a small number of generated and measured
variants. In contrast to previous work, we only give here examples for how measurements
can be achieved with SPL. Conqueror rather than presenting concrete algorithms to com-
pute a feature’s properties. We give an overview of the sample SPLs, in Table 1. We
selected case studies of varying sizes (2500 to 13 million lines of code, 5 to 100 features)
and implemented with different languages (C, C++, and Java) and different variability
mechanisms (conditional compilation and feature-oriented programming), from different

8 We provide the raw material of our measurements and evaluations on our website:
http://fosd.de/SPLConqueror.
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functional properties of selected features

Table 1 Overview of the SPLs used in our evaluation. OS: Operating system; Acad.: Academic; Ind.:
Industrial

Product line Domain Origin Lang. Features Variants LOC

Linked list Structures Acad. Java 18 492 2,595
Prevayler Database Ind. Java 5 24 4,030
ZipMe Compr. lib Acad. Java 8 104 4,874
PKJab Messenger Acad. Java 11 72 5,016
SensorNet Simulation Acad. C++ 26 3240 7,303
Violet UML editor Acad. Java 100 ca. 10% 19,379
Berkeley DB Database Ind. C 8 256 209,682
SQLite Database Ind. C 85 ca. 107 305,191
Linux kernel® oS Ind. C 25 ca. 33 x 10° 13,005,842

? We use only a subset of 25 features of the Linux kernel selected by a domain expert

domains (e.g., operating systems, database engines and end-user applications) and from
different developers (both, academic and industrial).

5.1 Reliability (Qualitative property)

To specify a qualitative property, a domain expert inserts only the name of the property in
SPL Conqueror and selects the features and implementation units that improve or degrade

the property. Additionally, the domain expert can rank the features according to their
influence on the property.
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Fig. 7 Definition and assignment of the qualitative property reliability in SPL. Conqueror

Giving an explicit ranking of features and implementation units may not be sufficient
for a later (automatic) optimization. For example, Berkeley DB has multiple features that
improve reliability, but the effect can heavily differ (as we described earlier). Hence, we
provide the option to define a value for each feature. These values estimate the impact of a
feature on the property. Similar to a feature model, in which features are an agreement
about expected functionality between stakeholders of a domain, we consider non-func-
tional properties as agreements between stakeholders about the meaning of a property
(Czarnecki et al. 20006).

In Fig. 7, we show the assignment of the non-functional property reliability to a number
of features. For example, we define that feature concur_transaction, transactions, and
loggingrecovery have a positive influence on reliability. Furthermore, we define values for
these features to express their influence (e.g., feature memorybudget and loggingrecovery
have both the same value). This means, that both features have the same positive effect. If
other non-functional requirements are relevant in the optimization process (e.g., a footprint
constraint), we are able to decide whether to select memorybudget or loggingrecovery,
depending on their measured footprint.

5.2 Measuring the complexity of a feature’s source code (feature-wise quantifiable
property)

Knowing the complexity of a feature’s source code is important if an SPL vendor sells the
source code of a variant including the responsibility to maintain the variant. A typical
application scenario in which a customer is interested in the source code of a variant is
components (e.g., graphical components). Often, a component must be further customized
and so must the source code of a component adapted, e.g., in white box frameworks and
libraries. To make the adaptation process efficient, a customer is interested in buying a
component that is easy to understand, maintain and customize. Hence, we have to provide
means that allow customers to derive easily maintainable variants.

There are several metrics that measure the complexity or maintainability of source code.
We use McCabe’s cyclomatic complexity (McCabe 1976) as an exemplary metric, but
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Table 2 Lines of code (LOC), maximum and average cyclomatic complexity of Berkeley DB and ZipMe

SPLs
Feature Complexity Feature Complexity

LOC Max. Avg. LOC Max. Avg.
B-tree 18,223 39 3.8 Base 2,837 25 2.8
Hash 11,562 14 4.1 Adaptation 7 1 1
Queue 7,394 23 33 Checksum 169 1 1
Sequence 913 12 2.8 ArchiveCheck 17 4 1.4
Verify 8,924 25 4.1 Compress 679 30 4
Statistic 9,576 63 3.7 CRC 34 5 1.8
Cryptography 1,058 1 1 Extract 293 17 34
Replication 9,112 8 22 GZIP 190 26 3.6
Diagnostic 21,342 15 2

other metrics could be used as well. For measurement, we used the tool Source Monitor’
(cf. Fig. 6). For example, for SPLs implemented with feature-oriented programming'® the
source code of each feature is physically separated in different folders. When starting the
measurement, SPL. Conqueror executes Source Monitor for each feature (giving the folder
of the feature’s source code as input), extracts the XML output with a previously defined
XPath statement and stores the result in the product-line model. Either a standard aggre-
gation function (we use the maximum) or a user-defined aggregation function is used to
determine the complexity of a feature from the complexity values of the classes of the
feature. As a design decision, we define the complexity of a feature as the maximum
complexity of each method that belongs to this feature.''

In Table 2, we show the results of two SPLs. We omit measurements of other SPLs,
since the results are straightforward.12 A number higher than 25 for the cyclomatic
complexity is considered to be poorly written code that is difficult to understand (McCabe
1976). For example, feature Compress of ZipMe (implementing a hash-based search index)
appears to be very difficult to maintain according to this metric with a measured value of
30. Depending on the configuration, maintainability for the variant (according to such
metrics) can significantly change.

5.3 Measuring footprint (feature-wise quantifiable property)

Measuring the footprint of an application strongly depends on the used implementation
technique. There are many ways to measure the footprint of a feature. For example, we
developed in previous work (Siegmund et al. 2008b) two methods to measure the footprint
of an SPL implemented with feature-oriented programming (Batory et al. 2004). When
using an implementation technique that supports separately compilable code units, e.g.,
components or feature modules (Batory et al. 2004), we can easily measure these units and

® http://www.campwoodsw.com/sourcemonitor.html.
19 The SPLs are: LinkedList, ZipMe, PKJab, SensorNetwork and Violet.

' Please note, that this is only an example. Such a design decision should be made by domain experts and
SPL vendors.

12 The complete measurement can be found at our website: http://fosd.de/SPLConqueror.
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Table 3 Approximated footprint (binary size) of selected features of Berkeley DB, Linux kernel and
ZipMe

Berkeley DB Linux kernel ZipMe
Feature Footprint Feature Footprint Feature Footprint
(KB) (KB) (KB)

B-tree 1,800 SMP 709 Base 79
Hash 113 INotify_User 11 CRC 1.6
Queue 58 Firmware_In_Kernel 239 ArchiveCheck 0.3
Sequence 20 CHR_Dev_SCH 20 GZIP 5.8
Verify 50 No_HZ 12 Adaptation 0.2
Statistic 285 NF_Conntrack_IPV6 13 Checksum 2.4
Cryptography 19 PCNET32 34 Compress* 0
Replication 89 Module_Unload 24 Extract 7
Diagnostic 191 CC_Optimize_For_Size 1,443

* Compress is a mandatory feature

store the results in the product-line model (similar to the complexity measurement). The
drawback of these measurement techniques is that they depend on the used implementation
techniques and programming language.

We need a more general technique to measure non-functional properties per feature,
since many SPLs are, for example, implemented by means of conditional compilation (e.g.,
with the C preprocessor). To measure a feature’s footprint, we developed an approach that
is implementation and language independent (Siegmund et al. 2011). The idea is to gen-
erate a set of variants that differ only in the presence of a single feature. The delta of the
measured footprint of two variants can be interpreted as the influence of the corresponding
feature on footprint. This way, we can approximate a feature’s non-functional properties.
The details of this approach are outside the scope of this paper and can be found in
(Siegmund et al. 2011).

We show the approximated footprint of selected features of Berkeley DB, Linux kernel
and ZipMe in Table 3. We refer the interested reader to our website for the measurements
of the other SPLs. We can see that our approach is applicable to large SPLs (e.g., Linux
with a size between 11 and 13 MB), medium SPLs (e.g., Berkeley DB’s footprint range for
the static library is between 1.8 and 2.7 MB) and small SPLs (e.g., for ZipMe13 the range
within 79 and 99 KB).

5.4 Measuring performance (variant-wise quantifiable property)

Often, stakeholders want to derive a performance-optimized variant. To measure perfor-
mance, we have to execute the variant. That is, we have to configure the SPL, compile the
variant and finally run a benchmark. Obviously, we can only measure the performance of
the whole variant, not of individual features. Thus, we classify performance as a variant-
wise quantifiable property. Each application domain or even each program has special

13 Since feature Compress is a mandatory feature, it is present in every product. Hence, the size of this
feature is measured together with the size of the SPL’s core feature Base.
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demands for measurements of runtime properties, such as performance. For instance, we
measure the time for sorting of the LinkedList SPL. and we use Oracle’s standard read
benchmark for Berkeley DB.

Since the measurement of variant-wise properties is the last phase in the variant-deri-
vation process, we compare the results of different variants according to an objective
function. Depending on the feature selection, we can observe largely differing results. We
benchmarked three different variants of Berkeley DB. The variants differ in the features
B-Tree, Hash and Cryptography. In our case, we use 40 runs for each benchmark to reduce
the effect of measurement bias. As a result, the variant with feature B-Tree index has the
best performance with respect to the workload of Oracle’s standard benchmark. In average,
we measured a performance of about 110,000 T/s (transactions per second). If we change
the index to use the feature Hash, the performance degrades to about 45,000 T/s. Finally,
we also measured the influence of feature Cryptography on performance. Not surprisingly,
we found a substantial performance degradation if data are encrypted. In this case,
Berkeley DB was only able to perform 2,640 T/s, which is about 43 times slower than
without feature Cryptography. In SPL. Conqueror, we use the aggregated result of such a
benchmark in the objective function to identify an optimal variant.

5.5 Discussion

In this section, we provide details about effort and accuracy of our evaluations. In par-
ticular, we show how much time we needed to perform the measurements using SPL
Conqueror compared to manual measurement (which we did in previous work). Further-
more, we evaluate the accuracy of the measurements of feature-wise quantifiable
properties.

5.5.1 Time for measurements

Compared to previous work (Siegmund et al. 2008b), SPL. Conqueror has an automated
measurement process. SPL Conqueror does not require any user interaction (e.g., the
measurement process can run over night). It automatically generates variants and applies
predefined measurements to them, which significantly reduces effort for measurement.
Overall, the definition of appropriate measurements did not require any domain knowledge.

Before measurement, a stakeholder (usually the vendor) has to define a metric or a
program that can be applied to measure a variant or piece of source code (e.g., as we did for
Source Monitor). Additionally, an user must define how SPL Conqueror can extract the
results of the measurement. For example, we use XPath expressions to extract results from
XML files. Given such a setup, we can run SPL. Conqueror without any user interactions in
our case.

Moreover, we could reuse the measurement setup (i.e., the definition how a non-
functional property can be measured) for different SPLs, which further reduce the effort
when new SPLs have to be measured. When measuring the footprint of an SPL, the largest
amount of time was dedicated to the compilation process. For example, measuring foot-
print for the selected 25 features of the Linux kernel took us 4 days with a standard desktop
computer. In Table 4, we show the average time needed to measure a feature’s footprint for
all SPLs. We required the most time for SPLs with either a large number of features (e.g.,
SQLite or Violet) or a large code base (in the case of the Linux kernel). Having a large
code base increases the compilation time substantially and having a large number of
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Table 4 Time spent for mea-

. . SPL Measurement # Measured Total # of
suring footprint per feature of a . . .
. time variants variants
number of variants
LinkedList 15 min 13 492
Prevayler 7 min 7 24
ZipMe 8 min 10 104
PKJab 7 min 8 72
Sensornetwork 12 h 34 3,240
Violet 24 h 2,115 ca. 10%°
Berkeley DB I1h 15 256
SQLite 48 h 146 10%
Linux kernel 96 h 207 ca. 33 x 10°
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Fig. 8 Fault rates of predicted footprints of all variants of Berkeley DB using two different measurement
approaches

features requires to generate, compile, and measure many variants which also increases the
measurement time.

Measuring complexity took only 30 minfor all SPLs. We had to analyze the output format
of Source Monitor and defined an appropriate XPath expression to extract the correct value.
After we did this for one SPL, we could export the definition in SPL Conqueror and import it
for all other SPLs. The definition of footprint and performance measurements took about
5 min, on average, per SPL. Depending on the existence of a makefile for building and
benchmarking, we had to extract only the binary size or benchmark results either from the
command line output or extract from a self-written tool. For example, we wrote a simple tool
to compute the size of all class files, lib files, etc. Then, we only had to specify in SPL
Conqueror how to start the tool and from which file to read the (XML-based) output. This took
a minute. Again, we could reuse the tool for all SPLs.

5.5.2 Accuracy of property prediction

When predicting non-functional properties of a variant using a feature-wise measurement,
we found that predictions can be inaccurate due to unknown feature interactions or
compiler optimizations. In the following, we discuss our observations for the property
footprint and analyze how the accuracy can be improved.

In case of Berkeley DB, we identified some minor inaccuracies for our footprint pre-
diction."* On the left side of Fig. 8, we depict the fault rate of our initial predictions. One
can see that we have an increasing fault rate for larger variants. The worst fault rate is 7%,

4 We used the Microsoft C compiler and /O2 optimization level as compiler flag.
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and the average fault rate is 1.9%. The reason for our inaccurate predictions is feature
interactions at the source code level, such as nested #ifdef statements (Késtner et al. 2009).
That is, some code fragments are only active if two or more interacting features are used at
the same time. When measuring a single feature’s footprint, we could not measure the
influence of code fragments that are only present in a product for a certain feature com-
bination. Hence, we refined our measurement approach to also measure combinations of
features. The measured values are assigned to the derivatives in our product-line model.
The existing feature interactions at source code level were easy to identify, because we
only had to look for nested code fragments.

With the refined approach, we could significantly improve our predictions up to a worst-
case fault rate of 0.1%. That is, we predicted the footprint of nearly every variant correctly
based on a feature’s footprint. The feature-wise measurement is usually accurate and has a
very low complexity. In Fig. 8, we show the improved predictions for Berkeley DB on the
right side. A complete description of the refined measurement approach is outside the
scope of this paper and given elsewhere (Siegmund et al. 2011).

6 Computing an optimal variant

The variant-derivation process of SPL Conqueror integrates the measurement of properties,
the manual selection of features by customers and the computation of an optimal feature
selection based on an user-defined objective function. An objective function can be defined
over multiple properties of the feature-wise and variant-wise quantifiable properties.
Additionally, if a customer or a domain expert provides a mapping from a qualitative
description of a property to real numbers, also qualitative properties can be used in an
objective function. However, it is the responsibility of the stakeholder who provides such a
mapping that the objective function produces meaningful results. In this work, we do not
address the problems of defining appropriate objective functions and so refer the interested
reader to according literature (Karlsson et al. 1998; Bagnall et al. 2001; Saliu and Ruhe
2007; Zhang et al. 2007). Hence, our work is orthogonal to previous work in this area and
we can integrate it. For simplicity, in SPL. Conqueror, we currently use a single (weighted)
objective function that can be entered in a text field.

During the variant-derivation process, we face two major challenges. First, due to the
large variant space, the computation of the optimal variant is very time consuming. The
underlying problem is NP-hard (White et al. 2009). Second, properties of the third cate-
gory (variant-wise quantifiable properties) require the generation of a variant and usually
the execution of a benchmark, which requires additionally a large amount of time. Hence,
we need a solution that measures only variants that are likely to be the optimal variant. To
this end, we propose a staged product-derivation process, as illustrated in Fig. 9. The
underlying algorithm consists of four steps: (a) feature selection to satisfy functional
requirements, (b) constraining non-functional properties to reduce the search space to find
an optimal variant, (c) computing a feature selection to optimize non-functional properties
and (d) applying post-derivation optimizations to a derived variant. In the following, we
describe each step in detail.

6.1 Feature selection

The variant derivation starts with the selection of features according to the functional
requirements, (in Fig. 9a). For example, the product-line model of the Java version of the
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Fig. 9 Algorithm of SPL Conqueror’s variant-derivation process

Berkeley DB SPL (on the left side of Fig. 10) can be used to select required features. After
selecting the desired features, users can verify the correctness of the selection (e.g., find out
whether there are domain constraints that require the selection of another feature). As a
result of this stage, we can exclude many variants that cannot satisfy functional
requirements.

6.2 Constraining non-functional properties

The aim of the second step is to exclude as many features and feature combinations as
possible from the search space of an optimal variant. To this end, we use multiple tech-
niques to define constraints for non-functional properties. For qualitative properties, we
highlight features that improve or degrade the respective property. For example, we can
highlight the features Replication, Verification and Diagnostic for non-functional property
reliability, since a domain expert already associated these features with the property. To
reduce the number of variants, we exclude features from further consideration if they have
a negative effect on a property that is of interest to a customer. Although this is an
approximation, it is often necessary to reduce the optimization complexity. Additionally,
constraints can be defined to exclude features. For example, a customer may define a
constraint that states that a DBMS variant has to be at least medium secure (e.g., like it is
used in Windows 7). Hence, we do not have to consider weaker security mechanisms
anymore.

If a customer is interested in a property that is not already assigned, either the SPL
vendor or a domain expert has to perform the assignment task. Since features are usually
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Fig. 10 Variant derivation in SPL Conqueror including constraint specification and optimization

well documented, this task is usually fast and easy to accomplish. However, it is important
that the understanding of the nature of a non-functional property is consistent between SPL
vendor and customer. It might be the case that an assignment of a non-functional property
looks optimal for one stakeholder might not look optimal to another stakeholder. For
instance, reliability can be interpreted in different ways. Thus, we store a description of the
property to give rational about how the influence of features is qualitatively interpreted.

In addition to qualitative properties, a customer can define constraints for quantifiable
properties in SPL. Conqueror (top of Fig. 10) to reduce the search space for an optimal
variant. Based on the stored non-functional properties of features, we can compute in
advance whether the selection (or a certain feature combination) violates the given non-
functional constraints. Then, we remove these features and feature combinations from the
search space that would always violate the given non-functional constraints. If many non-
functional constraints are defined with contradicting goals, it might be the case that we
exclude all features or could not give any valid configuration. If so, we can give a warning
to the user that there is no product that can satisfy all given constraints.

To give a concrete example for footprint, we measured the footprint of all Berkeley DB
features and stored the results in the product-line model. If a customer wants to derive a
variant with a footprint limit of 500 KB, we can exclude features that alone are larger than
500 KB. For instance, we have to use the small B-Tree implementation with 340 KB
instead of the fast implementation (with 1,800 KB). Since feature B-Tree is a mandatory
feature, we have at minimum 340 KB for a variant. Hence, we can further exclude features
from the search space (e.g., feature Diagnostic) that would introduce more than 160 KB,
because it would always violate the given constraint. We can also define constraints for
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variant-wise quantifiable properties. However, we cannot use such constraints to exclude
variants until we generate and measure a variant, which we also do in the optimization
step. We would have the effort of determining variant-wise properties twice. Therefore, we
postpone the Verification of such constraints to the optimization stage.

6.3 Optimization of non-functional properties

The next step in the derivation process is the computation of an optimal feature selection
based on an user-defined objective function (center of Fig. 10). As an example, consider
the following objective function in which a customer of Berkeley DB is interested in
deriving a variant with the best trade-off between high performance and low footprint:

max (performance /(1000 x footprint)) (1)

This objective function consists of a weighted feature-wise quantifiable property and a
variant-wise quantifiable property. According to our algorithm in Fig. 9, if the objective
function contains only feature-wise quantifiable properties, we directly compute an optimal
variant using a CSP solver. Since the computation is NP-hard, we may be able to give only
an approximately good feature selection in a suitable amount of time for a large number of
features. It is also possible to optimize a qualitative property with the same algorithm. To
this end, a domain expert must provide a mapping from qualitative assignments to num-
bers, which we can use in an objective function. Since we have all features assigned with a
value (zero if there is no influence), we do not have to measure a single variant. This shows
that our approach scales also for this type of property. However, the usual approach to
optimize a qualitative property would be to (automatically) select features that are marked
as positively influencing the respective property.

Our exemplary objective function is defined additionally over a variant-wise non-
functional property. In such a case, we can first compute a set of possible optimal variants
based on the part of the objective function that contains only feature-wise quantifiable
properties. The size of this set can be defined by a customer or SPL vendor to adjust the
processing time. Then, we order this set of feature selections based on the intermediate
results of the objective function and start the process of generating and measuring each
remaining variant until we found the optimal variant or the process is aborted. This process
is also performed only if variant-wise quantifiable properties exist in the objective function.
Regarding scalability of the number of different non-functional properties in an objective
function, we need only a linear number of additional measurements with respect to the
number of different properties. That is, we already generate a variant of the SPL for a
single variant-wise quantifiable property to compute its values for the objective function.
We can use the same variant to measure all further defined non-functional properties in the
objective function. Hence, our approach scales linearly with the number of defined
properties in the objective function.

6.4 Post-derivation optimization

In a last step, we can apply further optimizations to the generated source code of the
derived variant to improve non-functional properties. There are lots of optimization pos-
sibilities in the literature such as instruction reordering (Tiwari et al. 1994; Li and Henkel
2002), code transformations (Fei et al. 2007) or special compilers (Cooper et al. 2002) that
target different non-functional properties.
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Also, post-derivation optimizations specific to SPLs exist. Products of an SPL are
usually generated by a set of implementation units. The generated source code can be hard
to read and to maintain, and the generation process might even produce unoptimized code
with respect to performance or footprint. To overcome these drawbacks, we developed a
technique to further optimize a derived variant by means of refactorings. Altering the
structure of a derived variant may influence certain non-functional properties. In previous
work, we classified refactorings based on the influence on different non-functional prop-
erties (Siegmund et al. 2010a). For example, we can improve the execution time of a
variant by applying the Inline Method refactoring to a method of a variant. The refactoring
replaces the method call with the body of the called method and thus avoids the execution
overhead of the method call. Depending on the application scenario and a careful use of
this refactoring, we can improve performance by up to 50% (Gé6tz and Pukall 2009). Since
other refactorings, such as Replace Inheritance with Composition or Inline Class improve
other non-functional properties (e.g., footprint or working memory consumption), we apply
only refactorings to a variant that actually optimize a desired non-functional property. A
detail discussion is out of scope of this paper (Siegmund et al. 2010a, b).

7 Related work

Our approach is orthogonal to other requirements and quality-engineering approaches as
well as to measurement and optimization techniques. We present a holistic approach that
integrates and makes use of existing measurement and optimization techniques. In the
following, we describe how different approaches integrate with SPL. Conqueror.

7.1 Quality models

There is a number of quality models and definitions of non-functional requirements (or
properties) in the literature, see (Glinz 2007; Chung and do Prado Leite 2009) for an
exhaustive survey, such as McCall’s quality model (Mccall et al. 1977), Boehm’s quality
model (Boehm et al. 1978), SQUID, Software Quality in the Development Process, (Bgegh
et al. 1999) and the ISO 9126 quality model (ISO 2001). All these models can be used by
domain experts, SPL. vendors or even customers to specify non-functional properties.
However, they do not consider the specifics of SPL engineering (i.e., the separation of
domain and application engineering) and of the variant-derivation process (i.e., the large
variant space). Nevertheless, we can use the modeling of non-functional properties to
evaluate whether a property is a qualitative or quantitative property. These models are
orthogonal to our approach, and an integration in SPL Conqueror is promising to define
proper measurements and to improve the optimization of non-functional properties.

Prometheus is an approach to model and predict non-functional properties in products of
SPLs (Trendowicz and Punter 2003). It concentrates on the design and development phase.
That is, Prometheus is limited to SPLs targeting a very restricted application scenario. The
goal of Prometheus is to reuse measurements and definitions of non-functional properties
for other product lines. But, it is not clear how it can be used for SPLs that have a broad
scope with contradicting requirements depending on the application scenario. In contrast to
Prometheus, we concentrate on product derivation. That is, we aim at optimizing varying
non-functional properties of an SPL’s product.
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7.2 Measurement and prediction of non-functional properties in SPLs

There are many measurement techniques to predict a software’s quality attributes (see
(Rana et al. 2007) for an overview and (Lincke et al. 2010) for a comparison of selected
models). However, prediction models usually target only a single property, such as reli-
ability (Khoshgoftaar and Seliya 2003) and do not consider a variable set of assets as it
would be necessary in SPL engineering. We do not propose novel measurements or pre-
diction models, but aim at using existing ones in our approach. We can, for example,
integrate source code-based measurements in SPL Conqueror (e.g., number of imple-
mented interfaces, number of inner classes, etc., as used by (Pizzi et al. 2002)) and use
existing methods to aggregate and reason about the results.

Only a few approaches apply measurements of non-functional properties to SPLs.
Zubrow and Chastek proposed measures that evaluate the development effort for an SPL
(Zubrow and Chastek 2003). Lopez-Herrejon and Apel express with their metrics the
complexity of an SPL in terms of variation points (Lopez-Herrejon and Apel 2007) and
cohesion (Apel and Beyer 2011). An approach close to our work is the measurement of the
binary size of an aspect-oriented SPL (Hunleth and Cytron 2002). The authors compiled
aspects in distinct files and measured the binary size. The footprint of different variants can
then be computed. However, the approach does not consider other non-functional prop-
erties or the computation of an optimal variant.

Sincero et al (2007, 2010) propose to estimate a product’s non-functional properties
based on a knowledge base consisting of measurement results of already created variants.
Using a machine learning approach, their aim is to find a correlation between feature
selection and measurement. This way, they can infer how a feature influences a non-
functional property during configuration. In contrast to our approach, they do not measure
a feature’s non-functional properties but a quantification of how a feature affects a prop-
erty. During product derivation, they do not present an expected value for a product’s
properties, as we do, but can show with a slider how much a feature selection improves a
property such as performance or not. Furthermore, they do not address the different types
of non-functional properties (i.e., qualitative properties) nor they define a holistic product
derivation process.

In a parallel line of research, we developed an approach to approximate non-functional
properties of features (Siegmund et al. 2011). We use the measurement delta of two
variants that differ only in the selection of a single feature. This delta is interpreted as the
influence of the according feature on the measured non-functional property. We developed
an algorithm to minimize the number of required measurements and to account for feature
interactions. In contrast here, we focus on the complete product derivation process rather
than only the measurement of products. We do not propose measurement techniques in this
paper, but use existing techniques in SPL Conqueror. The measurement of features is only
a single step toward the derivation of an optimal variant.

7.3 Variant derivation approaches

There are a number of approaches that target the development of programs with desired
non-functional properties. These approaches, such as the non-functional requirement
framework (Chung et al. 1999), i* framework (Yu 1997) and KAOS (van Lamsweerde
2001), are originally intended to help developers with design decisions to develop a
software considering non-functional requirements. In SPL engineering, the software arti-
facts are usually already implemented when new customers derive a variant, but decisions
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regarding desired non-functional properties can be made during the variant-derivation
process. Hence, these frameworks may be suitable for an integration in SPL. Conqueror,
such that a goal-oriented model can be defined for an SPL’s feature model.

The vast majority of variant-derivation tools focuses on reducing the complexity of the
configuration process and supporting the user with advanced user interfaces during feature
selection (Batory 2005; Antkiewicz and Czarnecki 2004; Czarnecki et al. 2004; Bot-
terweck et al. 2007; Rabiser et al. 2007). These tools often use SAT solvers or Prolog (e.g.,
in pure::variants (Pure-systems GmbH 2004)) to verify a configuration against the con-
straints of the SPL.

As we explained before, we use a CSP solver to compute an optimal variant. There are
also some approaches that allow an user to optimize the feature selection with regard to a
specific non-functional property. Benavides et al. presented a technique based on CSP
solvers to find an optimal variant (Benavides et al. 2005, 2007). The solver evaluates
values attached to features in the feature model and then computes an optimal configu-
ration for a small number of features. Unfortunately, their studies show that with an
increasing number of features, the computation time exponentially grows. White et al.
(2007, 2009) extended the optimized feature selection by enabling the definition of
resource constraints. Moreover, they propose a solution based on filtered Cartesian flat-
tening to approximate a nearly optimal variant for even large scale feature models. Again,
we use a CSP solver in SPL Conqueror. But, both approaches might be useful in SPL
Conqueror (e.g., for selecting optimal feature sets).

7.4 Optimization techniques for non-functional properties

There are a number of techniques targeting the optimization of a specific non-functional
property. A related approach for optimizing non-functional properties was developed in the
COMQUAD project (Gobel et al. 2004). The project focuses on techniques for tracing and
adapting non-functional properties in component-based systems. Particularly, developers
can select between alternative implementations dynamically and an infrastructure weaves
these implementations as non-functional aspects in the component. This approach requires
a dedicated component model based on Enterprise JavaBeans, CORBA Components and
AOQRP. In contrast, SPL. Conqueror is not constrained to a specific implementation technique
or language. Furthermore, we consider the measurement of non-functional properties,
which is not addressed in their work.

8 Conclusion

In this paper, we address the problems of measuring non-functional properties and finding
the optimal variant for given non-functional requirements. With SPL Conqueror, we
present a holistic approach for the whole variant-derivation process. It automates the
measurement of non-functional properties and derivation of optimized program variants of
a product line. We allow product-line vendors to measure the features of a product line
(e.g., footprint and performance) or to qualitatively rate features according to their influ-
ence on a non-functional property. By providing a classification of non-functional prop-
erties, we support different measurement techniques (feature-wise measurement and
variant-wise measurement). We solve the problem of the large variant space and the large
spectrum of non-functional properties in a product line by providing appropriate config-
uration possibilities for each class of properties embedded in a staged variant-derivation
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process. We discussed an evaluation for the measurement of non-functional properties with
nine case studies. The sample product lines were chosen from different domains (e.g.,
database and UML editor). They are implemented with different techniques and languages
(C, C++, Java). This demonstrates that our approach is language, domain and imple-
mentation independent.

In future work, we will extend our approach to reduce the measurement effort for
variant-wise quantifiable properties, such as performance and energy consumption. We
will also work on techniques to automatically identify feature interactions at the level of
non-functional properties and on an integration of other approaches for computing the
optimal feature selection in SPL. Conqueror. Furthermore, an important work will be the
application of SPL Conqueror with an industrial setting including customer-defined non-
functional requirements.
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