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ABSTRACT
Software product-line engineering enables efficient develop-
ment of tailor-made software by means of reusable artifacts.
As practitioners increasingly develop software systems as
product lines, there is a growing potential to reuse prod-
uct lines in other product lines, which we refer to as multi
product line. We identify challenges when developing multi
product lines and propose interfaces for different levels of
abstraction ranging from variability modeling to functional
and non-functional properties. We argue that these inter-
faces ease the reuse of product lines and identify research
questions that need to be solved toward modular analysis of
multi product lines.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Reusable Software—Do-
main engineering

1. INTRODUCTION
In the last decades, many complex software systems have

been developed as software product line (SPL). SPL engi-
neering is a methodology to develop tailor-made products
based on common artifacts [2]. This allows vendors to de-
velop many similar software systems cost-efficiently and with
reduced time-to-market. The increasing trend to develop
SPLs instead of single programs naturally raises the ques-
tion: How to reuse product lines?

Let us consider an example of an SPL of database manage-
ment systems (DBMS) in Figure 1, which is implemented in
Java and reuses an existing SPL of search indexes. We can
generate one product of the Index SPL to reuse its function-
ality in the DBMS SPL. However, it might be the case that
there is not a single product fulfilling all functional and non-
functional requirements of the DBMS SPL. Consequently, a
suitable product of the Index SPL may depend on the DBMS
configuration, and we need to expose the variability of the
reused SPL to the reusing SPL. SPLs with such dependen-
cies are also referred to as multi product line (MPL) [9].
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Figure 1: Reusing a preprocessor-based Index SPL
in a DBMS SPL implemented with FOP.

Reusing a suitable product of our Index SPL related to
the configured DBMS SPL is far from trivial and thus, a
challenging task of MPLs. Holl et al. present a literature
review about existing approaches to support MPLs [6]. The
approaches are categorized related to their capabilities, but
none of these address all of the detected capabilities. Our
goal is to present a holistic view on the development of an
MPL. Similar to Bosch [4], we consider different develop-
ment levels, but not limited to a closed world scenario and
extended by important aspects, such as non-functional prop-
erties and specification of MPL behavior. We argue that the
correct combination and communication among SPLs of an
MPL must be ensured on several levels related to the devel-
opment process of the MPL. These levels involve variability
modeling, implementation, specification, and non-functional
properties of MPLs.

At the level of variability modeling, there are approaches
such as Velvet [9], TVL [5], and Familiar [1] that support
reuse of variability models. However, it is unclear how these
models relate to the variable implementation underneath.
Furthermore, to the best of our knowledge, there is no ap-
proach supporting interfaces in variability models.

At implementation level, compositional approaches, such
as feature-oriented programming (FOP), and annotative ap-
proaches, such as preprocessors, enable to reuse code of ar-
tifacts in an SPL [2], but do not support reusing variability
that is provided by other SPLs. Several approaches exist
that treat dependencies between components by (variable)
interfaces (e.g., [13, 7]). In contrast to these approaches, we
focus on interfaces on different levels that depend on each
other. Furthermore, our approach can combine SPLs real-
ized with different implementation techniques. Reconsider
the DBMS of Figure 1. It is implemented with FOP, but
reuses an existing preprocessor-based SPL. Allowing code
reuse across different implementation techniques and pro-
gramming languages is a challenge that is to be resolved.

At specification level, we can define the intended behav-
ior of an SPL by means of formal specifications, such as
temporal logic or contracts [11]. Based on these specifi-
cations, there are efficient techniques for formal verifica-
tion [11]. However, it is not clear how to scale these ap-
proaches to MPLs. First, specifications need to made avail-
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Figure 2: Interfaces for the reuse of SPLs in MPLs.

able to reusing SPLs. Second, we need efficient techniques
for verification avoiding the redundant verification of reused
SPLs.

Finally, at the level of non-functional properties, develop-
ers can estimate the influence of an SPL’s features on dif-
ferent non-functional properties, such as performance, mem-
ory consumption, and footprint [10]. Considering the huge
variant space, this quantification is already challenging, but
when it comes to MPLs, we face additional problems re-
garding interactions between features belonging to different
SPLs. Clearly, to use a suitable product of the Index SPL in
our DBMS SPL, we need to determine which configuration
of both SPLs results in a product fulfilling all non-functional
requirements; again, an open challenge.

We argue that a holistic view on the development of MPLs
is required to facilitate modular analysis. We propose in-
terfaces for variability modeling, implementation, specifica-
tion, and non-functional properties. These interfaces enable
a modular view to different levels of SPLs and, thus, im-
prove the reusability of SPLs. Using these interfaces, direct
dependencies among SPLs are avoided, unused functional-
ity can be hidden, and evolution is simplified, because it is
sufficient to analyze the conformance to these interfaces. In
the remaining paper, we investigate all levels in detail.

2. PRODUCT-LINE INTERFACES
When combining multiple SPLs to develop an MPL, we

have to guarantee that the collaboration works correctly.
To this end, we propose interfaces on multiple stages of the
MPL development process. In detail, we distinguish between
variability-model interfaces, syntactical product-line inter-
faces, behavioral product-line interfaces, and non-functional
property interfaces (see Figure 2). Syntactical interfaces
build on the variability-model interface. That is, a suc-
cessful check at the modeling level is the precondition to
check the correctness of the SPLs against the syntactical in-
terfaces. Similarly, both remaining interfaces build on the
syntactical interface and are exchangeable related to given
requirements. This way, we handle errors due to reusing
SPLs as early as possible and fix them at the stage at which
the error originates. Furthermore, the proposed interfaces
depend each other, such that, for example, the syntactical
interface provides only features that exist in the variability-
model interface. In the following, we describe each interface
in detail using our running example.

2.1 Variability-Model Interface
The variability-model interface addresses the allocation

of functionality provided by one variability model that is
needed by another variability model. The interface is a vari-
ability model itself that can be seen as an agreement between
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Figure 3: Variability-model interface is a specializa-
tion of the Index feature model.

the using and the reused SPL. Thus, the feature model of
the DBMS can rely on the variability-model interface, such
that all configurations that are represented by this interface
can be reused. To this end, the interface defines a subset of
the configurations available in the variability model of the
reused SPL (a.k.a. specialization [12]).

In Figure 3, we illustrate a variability-model interface for
the Index feature model. In this example, the interface is
a feature model in which the alternative feature Double is
removed, and both features of the or group are specialized
to the mandatory features ExactMatch and Knn. We use this
feature model as variability-model interface, and refer to it
when modeling the DBMS SPL.

Several variability modeling languages, such as Velvet [9],
TVL [5], and Familiar [1] allow us to combine feature models
to model MPLs. However, the resulting composed feature
models can become complex and hard to understand. In-
stead, by using our variability-model interface, we can signif-
icantly reduce the complexity of these models and, enabling
domain engineers to focus on the features and dependen-
cies that are relevant to their MPL (i.e., we leave out the
irrelevant features in the interface).

Another benefit of variability-model interfaces is a reduced
complexity of automated analysis. Automated analyses are
used to detect inconsistencies (e.g., dead features) and calcu-
late statistics [3]. They become especially important in the
context of MPLs, because variability models are inherently
larger than for single SPLs and dependencies among sev-
eral SPLs introduce further complexity. In previous work,
we analyzed MPLs based on a propositional formula of the
complete MPL [9]. This required to create the combined
propositional formula of the DBMS and Index SPL. Using
our interface, we analyze the DBMS model in a modular
way, because, due to the specialization of the Index SPL,
the complexity of the propositional formula is reduced to
the visible features of the interface.

Variability-model interfaces simplify evolution of MPLs.
For instance, when changing the feature model of the Index
SPL, we need to check whether the variability-model inter-
face is still a specialization of the evolved feature model. If
so, there is no need to redo any automated analysis in the
MPL. If it is not a specialization, we have to adapt either
the interface or the evolved variability model. Only if the
interface itself needs to be changed, we have to redo the
analyses in the MPL.

However, there are open research challenges that need to
be addressed by future work. It is not clear to what ex-
tent we can and should automate the process of creating
a variability-model interface. In case a manual process is
preferred, it is questionable whether these interfaces shall
be created by the domain engineer of the reusing SPL, the
reused SPL, or as an agreement of both. Finally, the benefit
of variability-model interfaces for the automated analysis of
evolving MPLs should be evaluated quantitatively.



1 i n t e r f a c e IIndex {
2 // con s t r a i n t : Tuplewise && Int
3 boolean i n s e r t ( i n t [ ] po int ) ;
4 // con s t r a i n t : Bulkload && Int
5 boolean i n s e r t ( i n t [ ] [ ] po in t s ) ;
6 // con s t r a i n t : KNN && Int
7 i n t [ ] [ ] searchKNN( in t [ ] po int ) ;
8 }

Figure 4: Syntactical product-line interface of the
Index SPL.

2.2 Syntactical Product-Line Interface
A syntactical product-line interface is an application pro-

gramming interface (API) that contains variability. The in-
terface represents a view to the reusable code artifacts of
an SPL without containing implementation details, such as
method bodies. In detail, the interface contains those classes
and their members of one SPL, which are intended to be ac-
cessible by another SPL. Since classes and class members
may not be available for each configuration, we annotated a
propositional formula indicating the availability. The propo-
sitional formula may contain only features that are defined
in the variability-model interface to enable modular reason-
ing.

In Figure 4, we illustrate a syntactical product-line inter-
face of the Index SPL. It contains classes and methods that
can be used in the DBMS SPL. Each annotation is indicated
by the keyword constraint, which is followed by a proposi-
tional formula, describing the availability related to features
defined in the variability-model interface (because of limited
space, features Bulkload and Tuplewise are not illustrated
in Figure 1). We can use these annotations to check the
compatibility of the interface with the DBMS implementa-
tion and the Index implementation. For the DBMS, we need
to check whether methods are only accessed from DBMS
products that exist in the interface. Similarly, we need to
check whether all methods that are defined in the interface,
exist at least in those Index products. For instance, method
insert(int[] point) is available if features Tuplewise and
Int are selected in combination. If a feature of the DBMS
SPL requires both features, this method is available and can
be reused.

A benefit of syntactical product-line interfaces is informa-
tion hiding. The developer of the DBMS SPL does not need
to know the complete implementation of the Index SPL. In-
stead, the developers can look-up methods and their anno-
tations directly in the interface. Furthermore, the interface
refers only to features defined in the variability model inter-
face, which further reduces the complexity of SPL reuse.

Furthermore, the syntactical product-line interfaces en-
able modular type checking and compilation. In our ex-
ample, we can compile the DBMS SPL without having the
source code of the Index SPL, and vice versa. However,
the price for this modularity is that the interface must be
checked for compatibility with both SPLs. Separate com-
pilation is an important property for MPLs, because each
SPL may be developed by a different vendor, and may rely
on a different variability implementation mechanism. Sepa-
rate compilation is also beneficial for evolving MPLs. When
changes the Index implementation do not change the inter-
face, there is no need to recompile the DBMS.

However, there are still open research problems for syntac-
tical product-line interfaces. A challenge is to define a suited
interface, which contains all and only necessary members.
Missing members are problematic as the developer needs to

1 i n t e r f a c e IIndex {
2 ArrayList<i n t []> cont ; //Point conta ine r
3 //@ r equ i r e s po int != nu l l
4 //@ i f ( UniqueKeys )
5 //@ ensures ( e x i s t ( po int ) => \ r e s u l t = f a l s e )
6 //@ && cont . s i z e ( ) == \ old ( cont . s i z e ( ) )
7 //@ e l s e
8 //@ ensures cont . s i z e ( ) == \ old ( cont . s i z e ())+1
9 boolean i n s e r t ( i n t [ ] po int ) ;

10 }

Figure 5: Behavioral interface of the Index SPL.

adapt the interface to add them. Unused members are prob-
lematic, since the interface might become frequently adapted
caused by changes in the reused SPL. Hence, changes to
the interface should be avoided to enable modular analysis.
Further research is needed to evaluate to what extent the
creation of stable interfaces can be automated especially in
the presence of heterogeneous implementation techniques.

2.3 Behavioral Product-Line Interface
A behavioral product-line interface is an agreement on the

behavior of different methods to guarantee a correct commu-
nication between multiple SPLs. This is especially impor-
tant in MPLs, because multiple features coming from differ-
ent SPLs can influence the behavior of one method, which
is difficult to foresee. We propose to use the methodology
of design by contract to specify the behavior of methods. A
method is annotated with a method contract consisting of
a precondition defining under which condition the method
may be called and a postcondition defining what the caller
can rely on [8]. We extend method contracts by statements
indicating for which configurations a precondition or post-
condition must be established.

In Figure 5, we illustrate a behavioral product-line inter-
face for the Index SPL in an extension of the Java Modeling
Language. Method insert has the parameter int[] point.
The boolean return value indicates whether the point is cor-
rectly inserted. The behavior of this method differs depend-
ing on the configuration. If feature UniqueKeys is selected,
the method does not allow us to insert identical points and,
thus, the method returns false. By contrast, if feature
UniqueKey is not selected, we are able to insert the key even
if the key already exists.

The behavioral product-line interface documents the in-
tended behavior of the reused SPL. Hence, we can under-
stand methods of the reused SPL to a certain degree by
looking into the interface rather than the actual implemen-
tation. Consequently, the behavioral product-line interface
enables modular understanding of the MPL. When reusing
closed-source SPLs, we cannot examine the method behav-
ior by looking into the source code, so that such an interface
is even more valuable.

Furthermore, the behavioral product-line interface is an
agreement between SPLs that enables blame assignment.
Given that the vendors of two SPLs have agreed on a behav-
ioral product-line interface, it can be used to assign blame
on one of the vendors if a contract is not fulfilled for a given
configuration. The agreement may even be useful to develop
SPLs of an MPL in parallel.

Similar to the other interfaces, we see some research chal-
lenges regarding behavioral product-line interfaces. Again,
it is the question whether this interface shall be written man-
ually or could also be generated automatically to a certain
extent. Having these formal specifications, it is also an open
research challenge how to detect violations in the MPL in a



1 i n t e r f a c e IIndex {
2 ArrayList<i n t []> cont ; //Point conta ine r
3 // Performance :
4 // Time = point . l ength ∗ 10 ns
5 // i f ( UniqueKeys )
6 // + ln ( cont . s i z e ( ) ) ∗ point . l ength ∗ 10 ns
7 // Footpr int :
8 // 350 KB
9 // i f ( UniqueKeys )

10 // + 25 KB
11 boolean i n s e r t ( i n t [ ] po int ) ;
12 }

Figure 6: Non-functional interface of the Index SPL.

modular way; this may involve theorem proving, static anal-
ysis, model checking, or even runtime assertion checking. It
is not clear to what extent existing techniques [11] can be
extended for modular analysis of MPLs.

2.4 Non-Functional Product-Line Interface
A non-functional product-line interface describes the non-

functional properties of an SPL that other SPLs can rely on.
The non-functional properties specified in such an interface
depend on the modeled product line and the requirements
of stakeholders (e.g., performance, memory consumption,
or footprint). The non-functional product-line interface is
based on measurements for the reused SPL or on predic-
tions based on domain knowledge. As the configuration of
the reused SPL highly influences the non-functional proper-
ties of the final product, the interface specifies the properties
with respect to features of the reused SPL. Similar to the
other interfaces, only features of the variability-modeling in-
terface may be used.

In Figure 6, we illustrate a non-functional product-line in-
terface for the Index SPL, describing the performance and
the binary footprint. We use annotations similarly to the
previous interfaces to ease tool support by providing a con-
sistent description. For example, the response time depends
on the number of data points to be inserted. However, if
we select feature UniqueKeys, we have to add the time re-
quired to search for duplicates within the index container
(cont). Having this specification, we can compute the ex-
pected performance depending on the feature selection of
the MPL. Similarly, we can predict the binary size of the
resulting MPL program, which is, for instance, important
for embedded systems.

A non-functional product-line interface is especially use-
ful for MPLs that have to satisfy non-functional constraints
such as performance policies. In an MPL, non-functional
properties emerge in a complex interaction of the SPLs in-
volved. The proposed interface enables modular prediction
of non-functional properties, when we rely on the properties
in the interface rather than doing a prediction for reused
SPLs. This way, we can save effort for redundantly analyzing
non-functional properties of the reused SPL. When reusing
closed-source SPLs, we can even use white-box techniques
requiring the source code for measurement; each vendor can
measure its own SPLs in isolation.

The main research challenge is how to predict the non-
functional properties of the MPL based on these interfaces
rather than measuring the reused SPLs again. Specifically,
how can we determine interactions among SPLs, affecting
the outcome of non-functional properties? Furthermore,
when an MPL does not meet the overall non-functional re-
quirements, we need approaches to identify the SPL that is
responsible for the violation.

3. CONCLUSION AND FUTURE WORK
Multi product lines (MPLs) facilitate the reuse of soft-

ware product lines (SPLs) in other SPLs. We argue that
MPLs require sophisticated techniques to enable high-level
reuse and modular analysis. As a solution, we propose in-
terfaces for different levels of the development process: vari-
ability modeling, syntactical, behavioral, and non-functional
product-line interface. We exemplified how these interfaces
enable modular development and analysis of MPLs.

We identified open research challenges regarding interfaces
in MPLs. For instance, it is unclear how to design or gener-
ate interfaces that change less frequently than the involved
SPLs, but are still sufficient for the communication of SPLs.
We are currently working on tool support for all interfaces in
the development environment FeatureIDE.1 Given the tool
support, we plan an evaluation based on publicly available
SPLs.

ACKNOWLEDGMENTS This work is partially funded by

DFG grant SA 465/34-2, and BMBF grant 01IM10002B.

4. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. B. France. A

Domain-Specific Language for Managing Feature
Models. In SAC, page 1333–1340. ACM, 2011.

[2] S. Apel, D. Batory, C. Kästner, and G. Saake.
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