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Software product line engineering is an efficient means of generating a family of program variants for
a domain from a single code base. However, because of the potentially high number of possible program
variants, it is difficult to test them all and ensure properties like type safety for the entire product line.
We present a product-line-aware type system that can type check an entire software product line without
generating each variant in isolation. Specifically, we extend the Featherweight Java calculus with feature
annotations for product-line development and prove formally that all program variants generated from a
well typed product line are well typed. Furthermore, we present a solution to the problem of typing mutually
exclusive features. We discuss how results from our formalization helped implement our own product-line
tool CIDE for full Java and report of our experience with detecting type errors in four existing software
product line implementations.
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1. INTRODUCTION

Software product line engineering is an efficient means of creating a family of related
programs for a domain [Bass et al. 1998; Pohl et al. 2005]. Instead of implementing
each program from scratch, product line engineering facilitates reuse by modeling a
domain with features (i.e., increments in functionality relevant for stakeholders) and
generating program variants from common assets [Kang et al. 1990; Bass et al. 1998;
Czarnecki and Eisenecker 2000]. Hence, from a common code base, we can generate
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14:2 C. Kastner et al.

different variants that are tailored to specific usage scenarios. Product-line engineering
is typically split into two phases: domain engineering (i.e., development of a common
code base) and application engineering (i.e., variant generation reusing the common
code base) [Czarnecki and Eisenecker 2000; Bass et al. 1998; Pohl et al. 2005].

Although the flexibility of software product lines for generating different tailored
variants is an important strength [Bass et al. 1998; Pohl et al. 2005], it comes at a price
of increased complexity. Instead of a single program, developers implement potentially
millions of variants in parallel. To ensure correctness, testing a single program is no
longer sufficient; out of millions of variants, errors may occur in a few variants that
offer a certain feature or feature combination [Pohl et al. 2005; Thaker et al. 2007;
Czarnecki and Pietroszek 2006; Batory and Geraci 1997]. As some variants are never
or rarely generated (e.g., only late after initial development when a new customer
requests such a variant), potential errors may go undetected for a long time, until
they are expensive to fix. A brute force strategy of generating, compiling, and testing
all variants is not feasible for most product lines due to the high number of potential
variants; therefore, novel approaches are needed that check the entire product line
during domain engineering instead of checking each individual variant in isolation
during application engineering.

There are many different approaches to implementing variability in software product
lines. Here, we focus on a simple mechanism, which is very common in the industry:
developers annotate code fragments inside a common code base, for example, using
#ifdef statements or similar directives; to generate a variant, annotated code frag-
ments are removed from the common code base, depending on a stakeholder’s feature
selection. Support for annotations (a.k.a. conditional compilation) is available in many
environments or languages, such as C, C#, Visual Basic, Pascal, Fortran, Erlang, and
Java ME; when not supported natively, it can be added with lightweight tools.

We present a product-line-aware type system that statically and efficiently detects
type errors in annotation-based product-line implementations. Type errors are a class
of common errors that can be detected statically in many languages, typically during
compilation. Product-line implementations are especially prone to type errors, such as
dangling method invocations, because variant generation may conditionally remove
code. In contrast to conventional product-line approaches that generate and check
variants in isolation during application engineering, a product-line-aware type system
detects type errors in the entire software product line in a single pass during domain
engineering.

As goals, we want our type system to be both sound and practical. We formalize the
type system for a subset of Java on top of the Featherweight Java calculus [Igarashi
et al. 2001] and provide a solution for the problem of type checking alternative (mutu-
ally exclusive) features. We guarantee that a well-typed software product line produces
only well-typed variants (generation preserves typing) and prove this property with
the proof assistant Cog.! We deliberately design a backward-compatible solution that
does not introduce new language constructs but can reuse existing tool infrastructures
and can be applied to existing source code. Based on our formalization and gained
insights, we implemented a type system for full Java on top of our annotation-based
product-line tool CIDE (as extensions to existing type checks in Eclipse). In three case
studies, we found that a product-line-aware type system can efficiently detect errors
in existing product-line implementations. In all three analyzed product lines, which
were developed using #ifdef directives by others (between 4,600 and 45,000 lines of
code), CIDE found type errors that occur only when a variant with a specific feature
combination is generated.

Thttp://www.lix.polytechnique.fr/coq/.
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Our type-checking approach is part of a bigger endeavor to detect various kinds
of errors in product lines as early as possible. It builds on top of our prior efforts
to prevent syntax errors with disciplined annotations in our tool CIDE [Késtner et al.
2008; Kistner et al. 2009] and is inspired by prior work on type checking entire product
lines [Czarnecki and Pietroszek 2006; Thaker et al. 2007; Huang et al. 2005, 2007;
Delaware et al. 2009; Apel et al. 2010] (see Section 9).

This article is a revised and extended version of Kdstner and Apel [2008]. We make
the following contributions (of which only the second was made in Késtner and Apel
[2008]).

— We provide an overview of typing problems and discuss design goals for practical
application and reuse of existing tool infrastructures.

— We formalize a product-line-aware type system and a variant-generation mechanism
on top of Featherweight Java.

— We provide a solution to the problem of typing alternative features.

— We proof soundness (generation preserves typing).

— We implement type checks for full Java in CIDE and conduct a series of case studies
to evaluate practicality and efficiency of the type system.

2. SOFTWARE PRODUCT LINE IMPLEMENTATION

The idea behind software product line engineering is to analyze an entire domain and
document commonalities and variabilities of different programs of that domain. Then,
instead of implementing a single program, developers implement common artifacts
from which they can generate different program variants. For example, in the domain
of embedded database systems, different program variants are needed depending on
different usage scenarios: in some embedded systems, transactions are required; in
others, recovery is needed; others are read-only; and only some need support for adhoc
queries.

There are many approaches to implementing software product lines, ranging from
simple adhoc mechanisms to sophisticated architectures and specialized languages. In
practice, developers often use simple tools, such as the C preprocessor, to implement
variability. In a common code base, developers annotate code fragments with #ifdef X
and #endif directives or similar constructs, in which X represents a feature, such as
transactions. Based on a feature selection provided as a configuration file or command
line parameters, developers can later include or exclude the annotated code fragments
during variant generation.

Beyond languages that support some form of annotations natively, such as C, C#,
and Pascal, there are several independent, partly configurable preprocessors, such as
GPP,2 GNU M4, or the preprocessors included in the Version Editor [Atkins et al.
2002]. Also, the commercial product-line tools pure::variants [Beuche et al. 2004] and
Gears [Krueger 2002] provide their own preprocessors.

In literature, annotation-based approaches are heavily criticized, as summarized in
the claim “#ifdef considered harmful” [Spencer and Collyer 1992] and in the colloquial
term “#ifdef hell” [Lohmann et al. 2006]. Numerous studies discuss the negative effect
of preprocessor usage on code quality and maintainability [Spencer and Collyer 1992;
Krone and Snelting 1994; Favre 1997; Ernst et al. 2002]. Despite this criticism, practi-
tioners implement many software product lines with preprocessors. Examples include
HP’s product line Owen for printer firmware [Pearse and Oman 1997], Danfoss, product
line of frequency converters [Jepsen and Beuche 2009], NASA’s product line of flight

2http://www.nothingisreal.com/gpp/.
Shttp://www.gnu.org/software/m4/.
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control systems [Ganesan et al. 2009], and the Linux kernel [Tartler et al. 2009; She
et al. 2010].

In academia, however, annotation-based approaches have received little attention.
Instead, academics typically recommend limiting or entirely abandoning their use and
implementing software product lines with “modern” implementation techniques that
encapsulate features in some form of module (such as components [Szyperski 1997],
frameworks [Johnson and Foote 1988], feature modules [Prehofer 1997; Batory et al.
2004], aspects [Kiczales et al. 1997], and others).

Nevertheless, adoption of modern implementation techniques in practice is slow, and
we expect that annotation-based product-line implementation will dominate practice at
least in the mid-term future. We even discuss that (with some improvement, disciplined
usage, and tool support) annotation-based approaches could be considered as viable
long-term alternatives to module-based approaches [Kdstner et al. 2008; Kistner and
Apel 2009]; however, that discussion is outside the scope of this article. Here, we provide
a type system for annotation-based implementations intended for current and at least
mid-term practical use.

3. TYPE ERRORS IN SOFTWARE PRODUCT LINES

Before we start with a formal discussion of our type system, we provide a quick overview
of product-line development using annotations, different type errors that could occur,
and desirable properties of the type system that we want to guarantee. We provide
examples of annotations that result in ill-typed program variants, which are simplified
for conciseness almost to the edge of triviality, but which stem from earlier experience
in developing product lines for embedded database applications [Késtner et al. 2007].
Our examples are written in Java, and variability is implemented with the well-known
syntax of the C preprocessor;* however, the same problems occur in other languages
and when using other forms of annotations.

Method invocation. As a first example, consider the following code fragment of a class
Storage used by another class Database.

class Database {
void insert(Object key, Object data, Txn txn) {
storage.set (key, data, txn.getLock());
}
}
class Storage {
#ifdef WRITE
boolean set(Object key, Object data, Lock 1) {...}
#endif
}

SOOI UK WN =

[y

In a read-only database variant, setting values in the storage class is not supported,
so the according code is annotated to be removed unless a feature WRITE is selected
(#ifdef). Although this code is well typed for all variants that actually select the feature
WRITE, the method invocation of set in Line 3 (underlined) cannot be resolved in variants
in which WRITE is not selected. In these cases, the method invocation remains, but the
corresponding method declaration is removed. If read-only databases are not generated
during development, this error may go undetected. In some cases, it may be detected
only after development, when a customer actually requests a variant without WritE. To
type check the entire product line, we need to make sure that the method invocation can

4For the sake of concise examples, we use a slightly relaxed notation of the C preprocessor throughout this
article. First, we allow #ifdef instructions inside a line, instead of breaking the source code into multiple
lines. Second, we allow boolean operators in the condition as “#ifdef X A Y” and “#ifdef X v Y” as alternative
to nested #ifdef directives or “#if defined(X) | | defined(Y)”.
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reach a method declaration in every variant in which the invocation itself is present.
One of many possible solutions to eliminating the error in our example is to annotate
the insert method with WRITE as well.

Referencing types. There are numerous similar type errors, for example, when an
entire class is annotated, as in the following example. If a database without transac-
tions is generated, compilation will fail, because the parameter’s type Txn (underlined)
cannot be resolved. Similar type errors can occur when the class is referenced as return
type or as supertype, when new objects are instantiated, and in several other cases.

1| class Database {

2 void insert(Object key, Object data, Txn txn) {
3 storage.set (key, data, txn.getLock()); }
4|}

5| #ifdef TRANSACTIONS

6| class Txn { ... }

7| #endif

Parameters. To fix the previous error, we could annotate the parameter ¢txn of the
method insert as well, as shown next, such that in database variants without trans-
actions, insert has a different signature. To avoid a problem when accessing the local
variable txn, we annotate the invocation ‘txn.getLock()’. If a database without trans-
actions is generated, typing this variant still fails, because the method invocation
‘storage.set(...)" has only two parameters, but the method declaration expects three.

class Database {
void insert(Object key, Object data
#ifdef TRANSACTIONS, Txn txn #endif ) {
storage.set (key, data #ifdef TRANSACTIONS, txn.getLock() #endif );
}
Y
class Storage {
boolean set(Object key, Object data, Lock 1) {...}

OO0 ~I0 ULk WN -

}

Again, there are different solutions to making all variants in this example well
typed: we can annotate the lock parameter of set (and all occurrences in the method’s
body not shown here), or we can overload the method declaration of set. Either way,
when type checking the entire product line, we must make sure that the provided
parameters match the expected formal parameters in all variants.

Feature model and alternative features. The previous examples were relatively sim-
ple because they contained only annotations with a single optional feature. However,
a software product line can have hundreds of features and not all combinations of
features may make sense. For example, transactions are not necessary in a read-only
database; therefore, we do not need to consider a variant with TRANSACTION but without
WRITE during type checking. Furthermore, two features like PERSISTENT and IN-MEMORY
for data storage can be alternative (mutually exclusive); every variant must select one
of them, but not both, at the same time. Even more complex constraints like ‘feature
A can be selected only when B or C but not D are selected’ could occur in practice
[Mendonga et al. 2009; Thiim et al. 2009].

Features and their relationships in product lines are described in a feature model
(also known as variability model). There are different forms of how to describe feature
models: a common form is a feature diagram [Kang et al. 1990; Czarnecki and Eise-
necker 2000], but it is also possible to enumerate all allowed variants or use logics
to describe constraints on the feature selection [Batory 2005; Benavides et al. 2005;
Schobbens et al. 2006]. Based on a feature model, we can decide which feature combi-
nations are valid and can be used to generate a variant. When type checking a software
product line, we need to consider all valid variants.
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The following code sample shows a code fragment which is only well typed if we
know (a) that PersiSTENT and IN-MEMORY are mutually exclusive (otherwise a variant
with both features would be ill typed because class Storage would contain two methods
with the same signature) and (b) that WRITE can only be selected if either PERSISTENT or
IN-MEMORY is selected (otherwise an ill-typed variant could be generated with a method
invocation of set but no according declaration). This example illustrates that we need
to consider complex constraints between features for type checking product lines.

1| class Database {

2| #ifdef WRITE

3 void insert(Object key, Object data, Txn txn) {

4 storage.set (key, data, txn.getLock()); }

5| #endif

6]}

7| class Storage {

8| #ifdef PERSISTENT

9 boolean set(Object key, Object data, Lock lock) {
10 return /* implementation A */;

11 }

12| #endif

13| #ifdef INMEMORY

14 boolean set(Object key, Object data, Lock lock) {
15 return /* implementation B */;

16 }

17| #endif

18|}

4. DESIRED PROPERTIES OF THE TYPE SYSTEM

Overall, there are two properties that we want to ensure with a type system for software
product lines: generation preserves typing and backward compatibility. The first is the
necessary core of this article and the second is a fundamental design decision targeted
at better tool support, as we will explain.

Generation preserves typing. We want to guarantee that every variant which we
can generate from a well-typed product line is well typed. If a product line allows ill-
typed variants, we want an error message upfront during domain engineering, without
actually generating every single variant. We call a product line well typed if all variants
it can generate are well typed. This is the main goal we want to achieve with our type
system.

Backward compatibility. We want that a product line that we strip of all its anno-
tations is a well typed program (not necessarily a variant with reasonable runtime
semantics). For our work with Java, this implies two things: (a) our type system is an
extension of Java’s type system and not a replacement, and (b) we do not introduce new
language constructs, because this would be no longer be a Java program. This desired
property may appear arbitrary but has a rationale from a tool developer’s perspective.
As soon as we introduce a new keyword or just allow multiple methods with the same
name, as in the previous code example, existing tool infrastructures can no longer
be used and must be rewritten. For example, this problem was experienced by the
AJDT and Scala teams that provided commercial-quality Eclipse plug-ins for AspectdJ
and Scala. Because Aspectd and Scala extend the Java syntax, the existing editors
with syntax highlighting, outline views, navigation, and code completion could not be
reused, but the entire tool infrastructure had to be rewritten (often through ‘coping and
editing’) [Chapman 2006; McDirmid and Odersky 2006]. On the other hand, adopting
a new language for product lines without adequate tool support is difficult for devel-
opers who are used to the comfort of modern IDEs. Therefore, we design a mechanism
and enforce certain restrictions so that our type system is backward compatible. For
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example, we do not directly support an implementation, as in the previous example,
but require a different encoding of alternative features, which we discuss in Section 6.

Backward compatibility is not necessary and can be discussed controversially. On
the one hand, if we drop backward compatibility, we can build a more expressive
language, especially regarding alternative features. On the other hand, if we retain
backward compatibility and design a type system as an extension, we can leave the
existing type checker and tool infrastructure as is and just add the additional condi-
tions on top. In fact, in a parallel line of work, we designed a different product-line-
aware type system FFJpr, that drops backward compatibility, introduces new language
constructs, and supports alternative features directly [Apel et al. 2010]. The type sys-
tem is very expressive but also very complex. Its applicability and ability to scale
to realistic product-line implementations has not been shown yet. From our perspec-
tive, backward compatibility is desirable; it influenced many of our design decisions,
which we discuss in the respective sections. We focus on type systems that can be used
for industrial-size product-line development and demonstrate suitability in four case
studies in Section 8.

5. COLORED FEATHERWEIGHT JAVA (CFJ)

With Colored Featherweight Java (CFJ), we introduce a calculus of a language and
type system for software product lines. We designed CFJ for a subset of Java on top of
disciplined annotations. It fulfills both desired properties: generation preserves typing
and backward compatibility. (The calculus is named “colored” due to a peculiarity of
our product-line tool CIDE, which uses background colors to represent annotations.)

We decided to provide a formalization and proof for both properties, after an initial
implementation of our type system for Java. We soon found that our implementation
was unsound: we could not give a guarantee and sometimes generated ill-typed vari-
ants from a product line that our implementation had considered well typed, because
we forgot some checks. We found similar problems in other product-line-aware type
systems (see Section 9). At the same time, a formalization of our type checks for the
entire Java language is not feasible because of Java’s complexity and rather informal
textual specification (688 pages!) [Gosling et al. 2005]. Instead, we formalize a product-
line-aware type-checking mechanism for Featherweight Java (F.J), a subset of Java, and
describe how we implemented and extended it toward full Java and other languages in
Section 7.

5.1. Featherweight Java

FJ is a minimal functional subset of Java for which typing and evaluation are specified
formally and proved to be sound with the FJ calculus [Igarashi et al. 2001; Pierce
2002]. It was designed to be compact; its syntax, typing judgments, and operational
semantics fit on a single sheet of paper. Fd strips Java of many advanced features, such
as interfaces, abstract classes, inner classes, and even assignments, while retaining
the core features of Java typing. There is a direct correspondence between FJ and a
purely functional core of Java, such that every FJ program is literally an executable
Java program.

The motivation behind FJ was to experiment with formal extensions of Java, while
focusing only on the core typing features and neglecting many special cases that would
require a larger calculus, without raising substantially different typing issues. Because
of its simplicity, even proofs for significant extensions remain manageable. For the same
reasons, we chose FJ over other formalized Java subsets, such as Classic Java [Flatt
et al. 1998], Javay,: [Nipkow and von Oheimb 1998], or Lightweight Java [StrniSa
et al. 2007].
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P:=(L, 1) program/product line
L ::=class C extends C {C f; KM } class declaration
K ::=C(C f) { super(f); this.f=f; } constructor decl.
M::=C m(C x) { return t; } method declaration
t = terms:
X variable
t.f field access
t.m(t) method invocation
new C(t) object creation

Fig. 1. CFJ syntax.

We do not repeat the FdJ calculus; however, its mechanisms will become clear from
our formalization, as we highlight our modifications and repeat unmodified rules.

5.2. Syntax and Annotations

First, we describe CFJ’s syntax and how feature annotations are introduced in the
calculus. For CFJ, we use the original FJ syntax without casts, as shown in Figure 1.5
As in FJ, we use the following notational conventions: X denotes a list of elements
X1 Xz ...X,. In conditions of type rules, relations and operations on lists are applied to
all entries, for example, f(X) = y is short for (f(x1) = Y) A(f(X2) = y) A ... A(f(X,) = ),
and f(X) = g(y) is short for (f(x1) = gly;) A(f(X2) = glys ) A ... A(f(X,) = g(y,). Finally,
also as in FJ, we require elements of lists to be named uniquely, for example, there may
not be two methods with the same name in a class.

Asin FJ a class table CT maps each class’s name to its declaration and has the sanity
conditions: (a) CT(C) = class C... for every C € dom(CT); (b) Object ¢ dom(CT); (c) for
every class name C (except Object) appearing anywhere in CT', we have C € dom(CT');
and (d) there are no cycles in the subtype relation (see the following) induced by CT'.

Next, we need to define which code fragments can be annotated and how. There are
different ways to model annotations, for example, we could introduce #ifdef and #endif
statements into CFJ’s syntax. In fact, the C preprocessor works on plain text without
considering the underlying language. Nevertheless, for type checking, we need a higher
level of abstraction; we are interested in annotations of code elements, such as classes,
methods, terms, or parameters. Therefore, we use a different solution: independent of
their actual storage, we provide an external mapping of code elements to features.

In our formalization, we manage annotations using an annotation table AT that
maps each code fragment to an annotation, similar to the class table CT which maps
a class name to the corresponding declaration. There are different ways to present
annotations to the developer; in the simplest case, we can use contemporary prepro-
cessors’ directives: we parse textual annotations like #ifdef of some surface syntax into
the annotation table and remove them from the product line’s code base during type
checking.

5An earlier version of our type system included casts [Kistner and Apel 2008]. Although casts were essential
in the original Featherweight Java publication for the discussion about parametric polymorphism [Igarashi
et al. 2001], casts do not add anything new for type checking product lines. We decided to remove casts to
streamline presentation and proofs.

We make slight modifications to the notation in Igarashi et al. [2001]: We use C finstead of C f to emphasize
that it is a list of pairs rather than a pair of lists; the same for C x and this.f=f. Note that this.f=f is one syntactic
expression and not a relation between two. Additionally, although it is technically not a syntax rule in FdJ, we
explicitly introduce the program P into the syntax for symmetry in the generation process and proofs later.
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Next, we need to decide what code fragments can be annotated. The C preprocessor
can language-independently annotate arbitrary tokens, even just the class keyword of
a class declaration or its constructor. This makes such preprocessors prone to syntax
errors that must be fixed before type checking [Kastner et al. 2009]. Therefore, we map
annotations only to code elements that can be removed without invalidating the syntax,
in line with our prior work on disciplined annotations [Késtner et al. 2008; Késtner
et al. 2009]; we simply disallow the annotation in isolation of the class keyword or
other fragments that could cause syntax errors when removed. In CFdJ, disciplined
annotations (printed bold in Figure 1) are elements of the class list (L), of field and
parameter lists (C f and C x), method lists (M), term lists (1), super call parameter lists
(), or field assignments (this.f=f). When filling the annotation table from a preprocessor,
we have to make sure that annotations map only to these code elements and reject all
other annotations.

The annotation table is used the following way: AT (L) returns the annotation of a
class declaration, AT (C f) returns the annotation of a field, AT (C x) returns the an-
notation of a parameter, AT (M) returns the annotation of a method, AT (t) returns the
annotation of a term, and AT (f) and AT (this.f=f) return annotations of parameters and
field initializations inside the constructor, respectively. Furthermore, we use AT (C) as
syntactic sugar for AT (CT(C)) to look up annotations of a class from its name. Note
that AT maps annotations from code elements (e.g., identified by their location) to
annotations, not from names, as CT does. For example, AT can map two methods
foo in different classes to different annotations; in this case, the result of AT (foo)
depends on which declaration of foo is referenced. The annotation table is equivalent to
introducing annotations into the syntax (which we actually did for our formalization in
Coq), but makes the formalization easier to read and is closer to our implementation,
in which we avoided extending the syntax to achieve backward compatibility.

5.3. Reasoning about Annotations

So far, we did not discuss the nature of feature annotations and the feature model. As
illustrated in our examples in Section 3, we are interested in reachability conditions
such as the following: “whenever code fragment a is present, then also code fragment
b is present.” (We use the metavariables a and b to refer to arbitrary annotatable
code fragments.) Reachability is necessary, for example, to check whether a method
invocation always references a method declaration in all variants, in that the invocation
is present. To determine reachability between code elements a and b, we have to
consider the annotations of a and b and the constraints of the feature model. Therefore,
we need to define what kind of annotations are possible and how they are evaluated
using a feature model.

A feature model describes a set of features and their constraints. A feature selection
F is a subset of all features and considered valid if the selection fulfills all constraints
described in the model. In some formalisms, features can additionally have numeric or
textual attributes. For example, a feature model may specify that “feature A is mutually
exclusive with feature B and A additionally requires that the attribute x of feature C
is larger than 10”. There are many different ways to describe feature models, for
example, simply enumerating all valid feature combinations, using graphical feature
diagrams [Kang et al. 1990; Czarnecki and Eisenecker 2000], or using logics to describe
constraints on the feature selection. [Batory 2005; Benavides et al. 2005; Schobbens
et al. 2006].

Based on features defined in a feature model, different kinds of annotations can
decide when to include a code fragment for a feature selection F'.
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(1) In Thaker’s safe composition approach [Thaker et al. 2007], each code fragment is
(implicitly) annotated with exactly one feature; a code fragment is removed if the
annotated feature is not selected in F'.

(2) In our prototype CIDE, by default, each code fragment can be annotated by one
feature or a set of features. This is equivalent to #ifdef directives and nested
#ifdef directives of the C preprocessor. For a feature selection F, an annotated code
fragment is removed if one of the annotated features is not selected in F.

(3) In fmp2rsm [Czarnecki and Pietroszek 2006] and some preprocessors, such as
Antenna, arbitrary propositions, such as ‘(A or B) and not C’, can be annotated.
An annotated code fragment is removed if the formula evaluates to false for the
feature assignment from F'.

(4) Some tools additionally support features with attributes, and annotations can rea-
son about attributes (e.g., include code fragment only if text attribute title is not
“default” or if numerical attribute max-weight < 10). Examples are the C prepro-
cessor (#if directive) and the commercial product-line tool pure::variants [Beuche
et al. 2004]. Again, the code fragment is removed if the expression evaluates to
false, given a feature selection (with attributes).

In our implementation, we use propositional formulas for feature models and for
annotations, but in our formalization, we abstract from concrete formalisms. AT (a)
generally returns some expression that evaluates to false for a variant with feature
selection F' (i.e., eval(AT (a), F) = false) when the code fragment a should be removed,
while each tool has to provide some (decidable) implementation of eval. The empty
annotation always evaluates to true, thus elements without annotations are never
removed. Throughout this article, we use the term ‘a code fragment is present’ for “the
code fragment’s annotation evaluates to true, therefore the element is not removed in
the given variant(s).”

We can now define reachability (denoted as —) between a and b as logical implication
in the ordinary sense between AT (a) and AT (b): “whenever AT (a) evaluates to true,
then also AT (b) must evaluate to true”.

AT (a) — AT (b) ::= VF € valid feature selections:
eval(AT (a), F) = eval(AT (b), F).

In other words, the variants in which code fragment a is included are a subset of (or
are the same as) the variants in which code fragment b is included. Bi-implication
(AT (a) <» AT (b)) is defined analogously.

A naive approach for determining reachability by iterating over all valid selections
does not scale, since there could be millions of valid variants. Still, there are several
ways to evaluate the reachability formula efficiently using an SAT solver, a constraint-
satisfaction-problem solver, or satisfiability-modulo-theories solvers, depending on how
valid feature models, feature selections, and annotations are specified. In the common
case that constraints between features can be represented by a propositional formula
Cruy (e.g., most feature models can be transformed directly into propositional formu-
las [Batory 2005; Thiim et al. 2009]), and when all annotations can be transformed
into propositional formulas (which is possible in most tools), then we can automatically
evaluate AT (a) — AT (b) with an SAT solver, as described by Thaker et al. [2007]. If
the formula —(Cpy = (AT (a) = AT (b))) is not satisfiable, then b is always reachable
from a. For technical details on how to reason about feature models and annotations
using a SAT solver, see Batory [2005] and Thaker et al. [2007]. As Mendonca et al.
[2009] and Thiim et al. [2009] have shown, reasoning about feature models with SAT
solvers is tractable for even very large feature models.
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5.4. Annotation Rules

Before we model annotation checks formally as extensions in CFJ’s typing judgments
and prove them complete, we first introduce informally the annotation rules that are
to be checked. In general, we need to check code fragments that reference other code
fragments. The code fragments—references and targets—must be annotated such that
the target is always reachable from the reference. Otherwise, dangling references that
typically result in ill-typed programs can occur. We have identified checks for thirteen
different pairs of references and targets.®

(L.1) A class L can extend only a class that is reachable.

(L.2) A field C f can have only a type C of a class L that is reachable.

(K.1) A super constructor call (i) can pass only those parameters that are bound to
constructor parameters and (ii) must pass exactly the parameters expected by
the super constructor.

(K.2) A field assignment this.f=f in a constructor can (i) access only present fields C
f in the same class and (ii) assign only values that are bound to constructor
parameters.

(K.3) A constructor parameter C f can have only a type C of a class L that is reachable.

(M.1) A method declaration C m(C x) { return t; } can have only a return type C of a
class L that is reachable.

(M.2) A method declaration overriding another method declaration must have the
same signature in all variants in which both are present.

(M.3) A method declaration parameter C x can have only a type C of a class L that is
reachable.

(T.1) Avariable x must be bound to a reachable parameter C x of its enclosing method.

(T.2) A field access t.f can access only a field C f that is reachable in the enclosing class
or its superclasses.

(T.3) A method invocation t.m(t) (i) can invoke only a method M that is reachable and
(ii) must pass exactly the parameters t expected by this method.

(T.4) An object creation new C(t) (i) can create only objects from a class L that is
reachable and (ii) must pass exactly the parameters t expected by the target’s
constructor.

Furthermore, there are some rules that deal with the removal process of children
from their parent element. For example, if a class is removed, all methods therein must
be removed also, if a method is removed, its parameters and its term must be removed
also. These rules seem obvious and are actually enforced in #ifdef-like preprocessors
by nesting annotations. However, when formalizing the calculus with arbitrary anno-
tations, we either have to always take all parent annotations into consideration, or we
have to make these rules explicit for all elements that can be annotated. We choose the
latter, because it provides more flexibility for future extensions.

(SL.1) A field is present only when the enclosing class is reachable.

(SL.2) A method is present only when the enclosing class is reachable.

(SK.1) A constructor parameter is present only when the enclosing class is reachable.

(SK.2) A super constructor invocation parameter is present only when the enclosing
class is reachable.

(SK.3) A field assignment in a constructor is present only when the enclosing class is
reachable.

6The names reference the according productions in CFJ’s syntax in Figure 1. For example, (K.1) is the first
check that addresses the constructor.
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C<:D D<:E class Cextends D { ...}
C<E C<:D

Fig. 2. CFJ subtyping.

C<:C

(SM.1) A method parameter is present only when the enclosing method is reachable.
(ST.1) A method invocation parameter is present only when the enclosing term is
reachable.
(ST.2) An object creation parameter is present only when the enclosing term is reach-
able.

In the remainder of this section, we highlight changes compared to the original FJ
calculus for the annotation rules (L.1-T.4) in light gray and changes for the subtree
rules (SL.1-ST.2) in darker gray.

5.5. Typing

5.5.1. Subtyping. CFJ’s subtyping relation <:, shown in Figure 2, is identical to FJ’s.
Though we could check the annotation rule (L.1) here, we decided to postpone this
check to FJ’s typing judgments instead (see T-CLAsS).

5.5.2. Auxiliary Functions. As in FJ, we need some auxiliary definitions for the typing
judgments shown in Figure 3. Although we try to perform most annotation checks in
the typing judgments, there are cases in which the auxiliary functions that are used
in FJ to recursively look up fields or methods across the inheritance hierarchy already
need to evaluate annotations. We use 4 as a metavariable for annotations and use e to
denote an empty sequence.

Field lookup. First, fields determines all fields of a class C, including fields inherited
from superclasses. In CFJ, the function fields is identical to the one in FJ. Annotations
on fields are checked later in the typing judgments.

Method lookup. Second, similar to the field lookup, mtype finds methods with a given
name m in a class C or its superclasses.” In contrast to fields, the method lookup
needs to be adapted because of the possibility of method overriding (in contrast to
overshadowing fields, which is not allowed in FdJ [Igarashi et al. 2001]). Thus it could
be possible that a method m in class C is not always reachable for a given annotation
A, but that another method m in a superclass of C is. Therefore, we cannot check
annotations only in the typing judgments but have to adapt the auxiliary function
mtype, as shown in Figure 3.

In FJ, there are two possible cases: either the method is found in class C, then its
signature is returned, or the method is not found, then the search proceeds to the
superclass. In CFJ, we additionally have to distinguish whether the found method
is always reachable or not. Reachability is checked against a given annotation that
is provided as a parameter A (i.e., A — AT (M)). In case it is not always reachable,
the search is continued in the superclass for the remaining variants with a reduced
annotation (A A —AT (M)). Note that auxiliary function override, as described next,
checks that all these methods have compatible signatures; here, we check overridden
methods only regarding reachability.

Overriding. Finally, the third auxiliary function override checks valid method over-
riding in FJ. In the presence of annotations, checking valid overriding is trickier than
expected. We need to ensure that the return type and parameter types match in every

"For technical reasons, we return the entire parameter list B x, instead of only their types, so that we can
later (in rule T-INVK) reason about annotations on parameters.
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Field lookup fields(C) =C f
fields(Object) = o
CT(C) =class Cextends D{Cf;,KM} fields(D)=Dg
fields(C) =D g,Cf
Method lookup mtype(m,C,4) =B x—B

CT(C) =class CextendsD{Cf;KM} M=Bm(Bx){retunt;} MeM 42— AT(M)
mtype(m,C,4) =B x—B

CT(C)=class CextendsD{Cf;KM} M=Bm(Bx){returnt;} MeM —(4—AT(M))
miype(m, C, A) = miype(m,D, AN ~AT(M))

CT(C) =class C extends D {Cf; KM} mis not defined in M
mtype(m,C, A) = mtype(m,D, A)

Overriding override(m,C,C x—Cy, 4)

override(m, Object,C x— Co, 4)
CT(C) =class C extends D { Df; KM}
override(m,D,C x—Cg,4) M=Bym(Bg) {returnt;}
M € M implies C = B and Co = By and (4 AAT (M)) — (AT(C x) <+ AT (B g))
override(m,C,C x— Co, 4)

Fig. 3. CFJ auxiliary functions.

variant in which two methods with the same name appear in the inheritance hierarchy
of a class. This is complicated, because we allow developers to annotate both methods
and their parameters.

Method overriding is the first and most important rule for which considerations re-
garding the desired backward compatibility—every CFdJ product-line implementation
stripped of its annotation should be a well-typed FJ program—have influenced design
decisions. We describe our solution fulfilling this property first and discuss possible
alternatives later.

Our function override works in the following way: for a given method m with an-
notation A and type C — Cy, we iterate over all superclasses until we reach Object.
Whenever we find a method in a superclass with the same name, we perform the
two checks. First, for backward compatibility, the return type and all parameter types
must match, independent of any annotation (Cy = By and C = B); this implies also
that both methods have the same number of parameters. Second, for (M.2), in all
variants in which both methods are present (i.e., for which both A and AT (M) both
evaluate to true), the annotations on parameters must be equivalent (formalized as
(AA AT (M)) — (AT(Cf) «+» AT (B @))). Taking both checks into account, we define the
auxiliary function override, as shown in Figure 3.
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Due to our design decision for backward compatibility, our override function does not
allow for different signatures of a method in mutually exclusive features. For example,
although the following code fragment generates only well-typed variants, given that
features X and Y are mutually exclusive, it is rejected by our override function.?

class D extends E { #ifdef X C £(C x) {...} #endif }
class C extends D { C f(#ifdef Y D y, #endif C x){...}}

DN =

Different typing judgments would be possible that drop backward compatibility in
exchange for increased expressiveness. In such cases, we would need to check valid
overriding only when two methods can occur in the same variant. Since we pursue
backward compatibility, we keep our simpler version of override. For developers, this
restricted expressiveness is not limiting, since simple workarounds can be used; in the
preceding code example, we could add a parameter D y to the first method declaration
and annotate it such that it is never present in any variant (e.g., ‘#if ().

5.5.3. Typing Judgments. For term typing and well-formedness rules, we revisit each
typing judgment in FJ and adapt it for CFJ to incorporate annotations, as shown in
Figure 4. For brevity, we discuss only changes compared to FJ.?

For all typing judgments for terms, we need an environment that is extended by
annotations. The environment I' is a finite mapping from variables to pairs of a type
and an annotation written X : C with A. Additionally, the current annotation A is
stored as environment. For the outermost term in a method, the current annotation
is the annotation of a method (see T-METHOD); for inner terms, the current annotation
may differ, because parameters can be annotated individually (see T-INVK and T-NEw).
The typing judgment for terms has the form A;T" I t: C and reads “in the environment
I' with annotation A, term t has the type C.”

When typing a variable (T-VAR), we need to ensure that the variable is reachable in
all variants in which x is accessed. This means that we check reachability between the
current annotation of the variable access .4 and the annotation A’ of the parameter (or
this) passed through the environment I' from T-METHOD.

For typing field accesses (T-FIELD), we require that the target field declaration is
reachable (T.2). Therefore, we check reachability between the current annotation A
and the annotation of the target field (AT (C; f;)). The typing judgment for classes (see
T-CLass) ensures that the class corresponding to each field’s type (C;) is reachable (L.2).

For typing method invocations (T-INvK), we similarly check that a target method is
present (T.31) using the filtering of mtype. Parameters in method invocations can be
annotated individually, so we need to check that the invocation parameters match the
expected parameters of the method declaration in every variant (T.3ii). We use the same
mechanism A — (AT (t) < AT (Dy)) as for the override function (with the same im-
plications for backward compatibility). Actually, in the presence of method overriding,
there can be different target methods in different variants; mtype ensures that always
at least one of these methods is available, and override (called in T-METHOD) ensures
that overriding methods have compatible type signatures and compatible annotations
on parameters. Furthermore, when typing a parameter, the annotation context is set
to the annotation of this parameter (AT (;); " F t; : C;). Finally, the subtree rule (ST.1)

8We leave out the constructor for conciseness in this example.

9Technically, it is possible to separate the CFJ type system into two parts: the original FJ type system and
an extension for reachability checks on annotations. Such separation would follow our implementation and
the idea behind backward compatibility. However, separated reachability checks replicate and adjust many
mechanisms from FJ; it would almost double the length of the calculus. We present the shorter, integrated
description of the CFJ type system instead.
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Term typing
x:Cwith4 e’ 4— 4
A;TFx:C

A;THty:Cy fields(Co) =Ct A — AT(C; ;)
AT Ht.f;: G

A;TH19:Co  miype(m,Co,A) =Dy—C AT({);l'Ft:C C<:D
4 (AT(}) <> AT(Dy)) AT@=4
A, THt.m(t): C

C C«:D

fields(C)=Df AT(t);[+t: :
(Df)) AT@{®) =24
C

A—AT(C) A— (AT(}) & AT
4;T+newC(t) :

Method typing
M=Com(Cx){returnty;} AT(M)=A A —AT(Cy) AT(Cx)—AT(C)
CT(C) =class Cextends D{...} override(m,D,C— Co,A)

I' =X : C with AT(CX), this : C with AT(C) 4:T'+1ty:Ey Eo <: Co
AT(Cx) » 4

MOKinC

Class typing

1!

K =C{Dy, ﬁ’){super(g) this.f=F; } MOK inC fields(D) = Dg
Cf=cCf Dg—Dg =0
AT(C)=4 A —AT(D) AT(CT) <« AT(ihisi=f) AT(CT)+« AT(CT)
4 (AT(Dg) <> AT(Dg')) AT(Dg)+> AT(g)) AT(CT)—AT(C)
AT(CT)—» A4 AT(M)— A4 AT(Dg)— 4
class C extends D { Cf; KM} OK

Product-line typing
LOK Ft:C
(L, t) OK

Fig. 4. CFJ typing.

14:15

(T-VAR)

(T-F1ELD)

(T-INVK)

(T-NEW)

(T-METHOD)

L OK

(T-CLASS)
P OK

(T-SPL)

is checked: there must not be a variant in which the invocation is removed but not its

parameter (AT (1) — A).

Typing an object creation term (T-NEw) is similar to typing a method invocation. First,
the target class must be present (T.4i), which is checked explicitly with A — AT (C).
Additionally for rule (T.4ii), we ensure that the provided parameters match the expected

constructor parameters in every variant (A — (AT (1) < AT (D f))). Finally, the subtree

rule (ST.2) is checked.

The typing judgment for method declarations (T-MeTtHOD) has the form M OK in C
and reads “method declaration M is well-formed, when it occurs in class C.” We make
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several extensions shown in Figure 4: First, we check valid overriding in all variants
(M.2) by passing the method’s annotation to auxiliary function override. Second, we
check that the class corresponding to the return type and all parameters of the method

(Co and C) are reachable (M.1, M.3).1° Third, we provide the annotations of parameters
in the type context to be checked in T-Var later (T.1), and use the current annotation
of the method A as annotation context. Finally, we check the subtree rule (SM.1).

The typing judgment for class declarations (T-Crass) has the form L OK. At first, it
appears very complex because it covers many annotation rules, but each rule by itselfis
simple. To distinguish the occurrences of g as constructor parameters, super invocation
parameters, and fields of the superclass—which can all have different annotations—we
distinguish g, g, and g” but still assume that all g’s are named the same (g =9 =7

g).

The same goes for C f that is used, both for fields and constructor parameters (C f =

ch). First, rule (L.1) checks that the superclass is always reachable (A — AT (D));
thus, from every reachable class, we can reach all its superclasses. Second, rule (K.1)
specifies that the super-constructor call receives exactly those parameters from the
constructor’s parameter list that are defined as fields in the superclass in all variants

(AT(Dg) < AT(@) and A — (AT(Dg) < AT(D_g”))). Third, rule (K.2) specifies that
the remaining constructor parameters match the field assignments and that those

match the fields declared in the class (AT'(C f) <» AT (this.f=f) and AT(C f) <> AT(C 1))
Fourth, we check that the class corresponding to the type of each field in this class is
reachable when the field is reachable (AT (C f) — AT (C)), which indirectly covers rules
(L.2) and (K.3). Fifth, subtree rules for fields, methods and constructor parameters
(SL.1-2, SK.1-3) are checked.

Finally, we are able to define when a software product line is well typed (T-SPL): a
software product line is well typed if all of its classes are well formed and the typing
judgment returns a type for the start term t (provided an empty environment with an
empty annotation, written as “;t: C”).

5.6. Variant Generation

Although technically possible, we do not execute product lines written in CFJ directly.
Thus, there are no evaluation rules for CFJ, and it is not possible or necessary to prove
type soundness with the standard theorem’s progress and preservation [Wright and
Felleisen 1994]. Instead, with a valid feature selection, we generate a tailored FJ pro-
gram by removing certain annotated code fragments. The resulting FJ program can be
evaluated with FJ’s evaluation rules (see Igarashi et al. [2001]). For FJ, type sound-
ness has already been proved [Igarashi et al. 2001]. Hence, we describe the variant
generation mechanism and subsequently prove that generation preserves typing in
Section 5.7.

To generate a program variant, we define a function variant that takes a CFJ product
line P and a feature selection F as input and returns an FJ program. The function
variant descends recursively through the code of the product line and applies a function
remove to all code fragments that can be annotated. The function remove evaluates pos-
sible annotations (as described in Section 5.3): those code fragments for which the an-
notation evaluates to false are removed; all other code fragments remain in the code.!!

0Thiim proved that the check A — AT (Cy) is actually redundant [Thiim 2010]. Still, we leave it for
readability.

HSince we describe annotations externally, we do not have to remove annotations explicitly during genera-
tion. Furthermore, in an implementation for a concrete language, remove must address the tokens used to
separate list items (especially commas between parameters). In our tool CIDE, remove is implemented using
transformations of the abstract syntax tree [Kastner et al. 2009].

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 14, Pub. date: June 2012.



Type Checking Annotation-Based Product Lines 14:17

| remove(a, F), short (@) ‘

remove(a, F) :{ aj,remove(ay ...a,,F) if eval(AT(a;),F)

remove(ay ...ay, F) else

remove(e,F) = e
‘ variant(a, F), short [[a] ‘
[x] =x (G.1)
[t4] = [ 4 G2)
[t-m®] = [t].m(HD (G.3)
[new C(H] = new G((H)]) (G.4)
[C m(C x) {return t;}}]] = C m({C x)) {return [t];} (G.5)
[C(C ) {super(f); this.f=f;}]] = C({C f}))) {super({F)); (this.f=F;}} (G.6)
[class C extends D { C f; K M }]] = class C extends D { {C f); [K] [{M)] } (G.7)
(0] = (ICENT, D) (G.8)

Fig. 5. CFJ variant generation with remove and variant.

We define the generation rules (bottom-up) in Figure 5. For brevity, we write
variant(a, F') as [all and remove(a, F') as (@) (we omit parameter F' in the short form,
because it is only propagated without modification).

5.7. Properties of CFJ

In Section 4, we discussed two desired properties: backward compatibility and gener-
ation preserves typing. With the presented type system and variant generation rules,
we can now prove both properties for CFJ. Backward compatibility is straightforward
to prove. Generation preserves typing is more complex, so we performed the proof
with the proof assistant Coq; for brevity, here, we describe only the theorem and proof
strategy.?

THEOREM 5.1 (BACKWARD COMPATIBILITY). Every well-typed CFdJ product line stripped
of the feature model and all annotations (without removing any code fragments) is a
well-typed FJ program.

Proor. CFdJ has the same syntax as FdJ. For stripping annotations, we assume that all
annotations evaluate to ¢rue for all variants (i.e., VF Va : eval(AT (a), F); called empty
annotation). Now, we can prove that with empty annotations, the type systems of FJ
and CFJ are equivalent: all reachability checks are always fulfilled; mtype in CFJ and
FdJ are equivalent, considering that CFJ’s override ensures the same method signature
for all methods with the same name in a class hierarchy; and the remaining differences
are straightforward to prove to be equivalent, as well. O

THEOREM 5.2 (GENERATION PRESERVES TYPING). Every variant that is generated from a
well-typed software product line P with a valid feature selection F is a well-typed FJ
program.

12Proof script available at http:/fosd.de/cfj/. Thiim [2010] provides a detailed description of the proof, its
structure, and its strategies.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 14, Pub. date: June 2012.



14:18 C. Kastner et al.

Proor StraTEGY. We prove the theorem by induction on the structure of CFJ prod-
uct lines, that is, induction over all possible CFJ class tables and all possible CFJ
terms. Using induction, we recursively iterate over all elements of the CFJ class table
(classes, methods, fields, parameter lists, and terms) and the start term. For every CFJ
element, if well typed, we do an induction over the variant generation rules to deter-
mine all possibly generated FJ elements and prove that they are well typed, according
to the FJ type system.!® The proof that the generated element is a well-typed FJ el-
ement is specific for each different kind of element (e.g., class or method invocation).
Generally speaking, we use the CFJ typing rules (including reachability conditions)
and the variant generation mechanism to prove that all code elements needed to type a
generated FJ element (e.g., referenced classes or methods) are part of the generated FJ
program.

To illustrate proof mechanism, consider the following example for the smallest ele-
ment: an access to a variable. Variant generation for variables (G.1) is independent of
the feature selection F' and just returns this variable. Still, we have to prove that any
generated FJ variable access is well typed according to Fd’s typing rules. Fd’s typing
rule T-VAR for variable access requires two conditions: (1) the provided environment
' must not contain duplicates, and (2) the environment must contain the analyzed
variable. For both conditions, we need to consider the FJ environment, which is formed
by the enclosing generated method. Hence, we have to consider variant generation for
methods in which parameters can be removed (G.5). We can prove both conditions of
FJ’s T-VAR using induction on the environment.

(1) CFJ’s type system forbids duplicates in parameter lists (cf. Section 5.2); thus, it
forbids duplicates in the CFJ environment; variant generation can only remove
entries (cf. Figure 5); hence, all parameter lists generated from well-typed CFJ
product lines are duplicate free.

(2) The generated variable always occurs in the FJ environment. This can be proved as
follows: the variable access has been generated from a well-typed CFJ product line.
In the well-typed CFJ product line, CFJ’s T-VAR ensures that the variable occurs in
the CFJ environment A; A and that A — A’, in which A’ is the annotation of the cor-
responding CFJ method parameter. Additionally, we know that eval(A, F) is true,
because otherwise we would not have reached the current point (G.1) of variant
generation (variant generation would have stopped in G.3, G.4, G.7, or G.8). Conse-
quently, reachability A — A’ implies that eval(A’, F) is also true, so the parameter
is not removed during variant generation; it is part of the FJ environment.

The proofs for other elements follows a similar pattern. They are often more com-
plex, because more context information (other classes, methods, and fields) has to be
considered. For example, due to overriding, a method invocation can point to different
methods in different FJ variants; hence, the proof considers information from auxiliary
function overriding in T-Method, which ensures that overriding methods always have
compatible signatures. Nevertheless, the general proof pattern is the same—induction
over well typed CFJ elements and variant generation rules—proving that each gen-
erated FdJ element is well typed with information from the induction steps (and often
induction over other elements). The entire proofis available as a script for Coq (see the
preceding). O

13Tn line with FJ, to support Java’s mutually recursive types, we assume a fixed CFJ class table. For the
same reason, we also assume that the feature selection is fixed so that variant generation produces a unique,
fixed FJ class table. Still, since the proof covers arbitrary CFJ class tables and arbitrary feature selections,
it holds for all CFJ product lines and all feature selections.
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A third interesting property of CFJ’s type system is completeness. Given a software
product line P and given that all valid feature selections F yield well-typed FdJ programs
according to Theorem 5.2, is P well-typed according to the CFJ typing judgments?
Unfortunately, this property does not hold due to backward compatibility. It is possible
to find an ill-typed CFJ product line, of which only well-typed variants are generated; for
an example, consider the discussion about different parameters in Section 5.5.2. That is,
due to our decision for backward compatibility, CFdJ is stricter than actually necessary.
Nevertheless, as previously discussed, we decided to enforce these restrictions for the
benefit of tool developers. Still, with tests and our case studies (see Section 8), we
confirm that CFJ is not too strict for practical applications.

6. ALTERNATIVE FEATURES

Our tool CIDE has its roots in decomposing legacy applications. In the formalization
of CFdJ, these roots are visible. It is possible to make code fragments optional and to
express annotations such as either FeatureA or FeatureB must be selected. However,
in CFJ, it is difficult to have two alternative (mutually exclusive) implementations of
the same class or method, similar to the persistent vs. in-memory storage example
in Section 3. Since we want CFJ to be backward compatible, we cannot simply allow
multiple classes or members with the same name (and signature), because this is not
supported by FJ (and Java). Nevertheless, alternative features are used in software
product lines when a common implementation expects to reach exactly one (of multiple
alternative) implementations of a class or method. Thus, for product-line development
in general, we need to provide a way to implement and type check alternative features.
Alternative features may influence the implementation in different locations.

(1) Alternative Classes. Depending on the feature selection, there may be entirely alter-
native implementations of a class. Different implementations may contain different
methods, common methods, or different implementations of the same method. They
may even have nothing in common except the class’s name, as long as both classes
are annotated to be mutually exclusive.

(2) Alternative Members. There can be different methods with the same name, but
different bodies, parameters, and return types. Thus, depending on the feature
selection, a method may be implemented differently, even with different signatures.

(3) Alternative Terms. There can be different implementations of a method body or
alternative terms passed as parameters of a method invocation, depending on the
feature selection. Thus, it is also necessary to discuss alternative implementations
of a term, not only of classes or methods.

6.1. Reduction to Alternative Terms

There are different strategies for dealing with alternative features (in CFJ and in
practice). One useful strategy is to reduce alternative implementations to alternatives
at the term level (respectively, at statement level in Java). For CFJ, the reduction
proceeds in two steps—merging classes and merging members—and can be done by
the developer or be automated by a tool (limitations of these steps are written in square
brackets and discussed subsequently).

— Merging classes. When there are two or more classes with the same name [and same
superclass, see the following] but different implementations and annotations, they
all can be merged into one class. The new class is annotated with a disjunction
of all individual annotations (A; v As Vv --- Vv A,), so that it is present in a variant if
any of the original classes would be present. All members from the original classes
are moved into the merged class and keep their annotations (the subtree rules
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1| class Database { ... }

2| #ifdef PERSISTENT

3| class Storage {

4 boolean save() { /* impl. A %/ }

5 boolean clear() { /* impl. B */ }

6 boolean set(Object key, Object data, Lock lock) {
7 return /* impl. C */; }

8}

9| #endif

10| #ifdef INMEMORY

—_
jny

class Storage {
boolean clear() { /x impl. B */ }
boolean set(Object key, Object data) {
return /x impl. D */; }

———
AW

15|}

16| #endif

1| class Database { ... }

2| #ifdef PERSISTENT \ INMEMORY

3| class Storage {

4| #ifdef PERSISTENT

5 boolean save() { /x impl. A */ }

6| #endif

7 boolean clear() { /* impl. B x/ }

8 boolean set(Object key, Object data

9 #ifdef PERSISTENT, Lock lock#endif) {
10 return #ifdef PERSISTENT/* impl. C */#endif

—_
joy

#ifdef INMEMORY/* impl. D */#endif;

—
D

}

—
w

3
#endif

=

Fig. 6. Reducing alternative classes and alternative methods to alternative terms.

(SL.1) and (SL.2) are automatically fulfilled). This step reduces alternative classes
to alternative methods in a single merged class.

— Merging members. When there are two or more methods with the same name [and
return type, see the following] in a single class declaration, they can be merged in to a
single method annotated with a disjunction of all previous annotations. Parameters
also are merged and annotated with a disjunction of all previous annotations of each
parameter. If their bodies are not the same, we need a way to represent alternative
terms inside this method. Analogously, multiple fields with the same name [and
type, see the following] can be merged. This way, we reduce alternative methods to
alternative terms.

In Figure 6, we show this reduction for an extended example of the persistent vs.
in-memory storage from Section 3. We reduce two alternative implementations of the
class Database to a single class and two alternative implementations of method set
with different parameters to a single method with alternative terms.

The reduction to alternative terms is limited regarding superclasses, return types,
and field types. That is, if two alternative classes with the same name do not have
the same superclass, if two methods with the same name do not have the same re-
turn type, or if two fields with the same name do not have the same type, they cannot
always be merged. We can either accept this limitation and disallow the three problem-
atic cases, or we can search for mechanisms that support alternative implementations
beyond alternative terms. To retain backward compatibility and since such cases are
rare in practice (usually alternative implementations of a class still provide a common
interface), we accept the limitation and suggest workarounds instead of new language
features, such as multiple inheritance. A simple workaround, which works for all three
problems, is to rename classes, methods, or fields with fresh names. By renaming
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class Storage; extends Object {

#ifdef 4, boolean set() {return /ximpl.1 x/;} #endif
}
class Storage, extends Storage; {

#ifdef 4, boolean set() {return /ximpl.2 x/;} #endif
}
//...
class Storage extends Storage, ; {

#ifdef A, boolean set() {return /*impl.n x/;} #endif
}

OO O UN AW —

Fig. 7. Implementing alternative return terms with method overriding.

the target declarations, variability is again propagated to alternative terms where,
depending on the feature selection, either of the now distinguishable methods is in-
voked, either of the fields is accessed, or either classes is instantiated. For CFJ and
our implementation for Java, we prefer to accept this limitation—enforcing constant
superclasses, return types, and field types in all alternative implementations of a class
method or field—and use the renaming workaround (which can even be automated) for
all other cases, instead of complicating the type system. Nevertheless, other solutions
without these limitations but with more complex typing judgments are possible, see
Section 9.

6.2. Handling Alternative Terms

So far, we have reduced the problem of alternative implementations to alternative
terms (in CFJ) or alternative statements (in Java and many other languages). Now we
have to make sure that the parser and type checker understand alternative terms/s-
tatements and check them accordingly.

In CFJ, the situation is especially problematic since every method must contain
exactly one return statement (i.e., a single term). We must make sure that in every
variant, exactly one of these terms remains. For CFdJ, we discuss three solutions; al-
though the first two have significant drawbacks, we briefly summarize all three here.

— Method overriding. Without making changes to the CFJ calculus, we found only
one way to implement alternative terms. The basic idea is to create an artificial
superclass for each alternative term and use method overriding to provide different
terms in different classes, as illustrated in Figure 7. In such an implementation,
the target method has a different annotation in each subclass, and in a generated
variant, only one of these methods remains (auxiliary function mtype ensures that
at least one of these methods is present always). Although this approach can be used
without modification of CFJ and is backward compatible to Fd, it has the drawback
of significantly obfuscating the source code with boilerplate code.

— New language constructs. A whole group of solutions for alternative terms becomes
available once we drop backward compatibility and decide to change the syntax or
typing judgments of CFdJ. For example, we could simply allow two methods with
the same name or a method with two return statements and adjust the syntax and
typing judgments to ensure that at most one of them remains in a generated variant.
Another solution is to introduce new language constructs which allow refinements
of classes or methods. That is, we could integrate language mechanisms such as
mixins [Bracha and Cook 1990; Flatt et al. 1998], class refinements [Batory et al.
2005; Apel et al. 2008], aspects [Kiczales et al. 19971, classboxes [Bergel et al. 2005],
traits [Ducasse et al. 2006], hyperslices [Tarr et al. 1999], and others. These ap-
proaches are interesting when designing a completely new language. In fact, in a
different line of research, we designed a product-line-aware type system for class
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class Database { ... }
class Storage {
boolean set(Object key, Object data, Lock lock) {
boolean result;
#ifdef PERSISTENT
result = /* implementation A */
#endif
#ifdef INMEMORY
result = /x implementation B */

O 0NN AW —

10| #endif

11 return result;
12 }

13| }

14|}

Fig. 8. Rewritten example of alternative return statements.

refinements [Apel et al. 2010], however, in this work, we prefer a backward-
compatible solution that is easier to adopt in practice.

— Metaexpressions. Czarnecki and Antkiewicz [2005] suggested metaexpressions as
a mechanism for supporting alternative values in a software product line of UML
models. In their setting, they did not have the opportunity to change the syntax
of UML but sought for another way to express alternatives. Metaexpressions are
annotations, stored separately, which specify one or more alternative values for a
language construct like the name of an UML association. This means that instead
of changing the syntax, alternatives are specified externally by a tool. Then, the
generation mechanism does not only remove code fragments for which annotations
evaluate to false, it can also replace those elements with a metaexpression by their
according value. The key difference to additional language constructs is that alter-
natives are specified externally on a tool level but still checked by the type system
(like the annotation table).

For full Java and many other languages, there are simpler solutions because these
languages support multiple statements inside a method, so the desired backward com-
patibility does not impose so many restrictions. Having two statements in a method
with alternative annotations is still backward compatible. In Java, only return state-
ments are problematic because of Java’s unreachable code detection (i.e., code after a
return statement results in a compiler error). Still, simple workarounds are possible,
for example, we can rewrite the persistent vs. in-memory example from Section 3, as
shown in Figure 8. In our experience with Java, all alternative features can be reduced
to alternative statements and implemented without language extensions using such
rewrites.

Despite the practical solution in full Java, we take a closer and formal look at
metaexpressions for CFJ in oder to explore a solution for Featherweight Java and
for potential other languages in which it is not possible to use statements, as just
described.

6.3. Metaexpressions

We describe metaexpressions with an external MetaeXpression Table MXT, similar
to the annotation table AT. Like annotations, we could introduce metaexpressions in
the language’s syntax, but we prefer to leave CFJ’s syntax unmodified for backward
compatibility.

The metaexpression table provides a list of alternatives for each term (again, able to
distinguish between multiple terms with the same name; e.g., identified by location);
if a term does not have alternatives, MXT returns the empty list. We use the following
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EdgeIfc addEdge (Vertex start, Vertex end,

arc g Nt

start. addidjacent [end) ; ﬂ
¥ end. addhdjacent (start);// undirected default
start. setWeight (veight); LI
public woid adc
start.addEc Peighbor e = new Neighbor (end, HODGRE! : =l
addEdge (start, e); Feature(s): _ Select... EI
return e; ﬂ
i Edge theEdge = new Edge(start, end, -q
edges. add (cheEdge) ; Feature(s): | EdgeObjects Select... EI
Vertex findsWer [start_addWeighbor(new Neighbor (end, :haEdgeJ:ﬂ
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/i 1f we ar
if (name == ﬂl Cancell
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Fig. 9. Editor for metaexpressions. In a code fragment of a product line of graph data structures, we select
the entire body of a method and invoke the metaexpression editor from the context menu. In this editor, we
specify alternative implementations to the selected code fragment.

notation to access alternatives and a specific alternative entry.
MXT () =t1,ta, ..., 1,

MXT(t,i) =+t;.

Each of the alternatives can be annotated the usual way. Additionally, for inner terms
of an alternative, the metaexpression table may provide alternatives again; as a san-
ity condition, we only require that there are no cycles in the metaexpression table.
In Figure 9, we illustrate how metaexpressions may be represented in a source-code
editor for full Java: the user selects a code fragment and can provide alternative code
fragments, including annotations for these alternatives. Note that this solution is en-
tirely backward compatible; instead of introducing a language construct, we provide
alternatives externally with tool support.

During variant generation, for each term, we look up whether the term has alterna-
tives; if it has and the annotation of an alternative evaluates to ¢rue, we replace the
term with this alternative. Alternatives are ordered; in case annotations of multiple
alternatives evaluate to ¢rue, the first is chosen. Regarding term typing, we need to
ensure that all alternatives have the same type as (or a subtype of) the original term’s
type, that is, we ensure that alternatives are always substitutable for the original term.

6.3.1. Typing. To describe variant generation and typing formally, we have to make
a number of changes to the calculus. During term typing, every time we derive the
type of a term (A, T Ft: C), we have to consider potential alternatives. We therefore
introduce a metaexpression-aware typing judgment written as A, I =™ t : C; it reads
“in the environment I' with the current annotation A, term t and all its alternatives
have a type that is a subtype of C.” Optionally, we may also report a warning or an error
if annotations of two or more alternative terms evaluate to ¢rue in the same variant,
although the variant-generation mechanism already ensures that exactly one term is
present in every variant.

The new typing judgment checks the original term t as before, but it additionally
determines the type of all alternatives, as shown in Figure 10 (first judgment). The
judgment returns the type that is the most specific supertype of all alternatives G.e.,
the smallest upper bound determined with function sub with standard semantics).
Finally, we have to adjust the typing judgments T-FieLp, T-Invk, T-NEw, T-METHOD, and
T-SPL to use H™ instead of -, as shown in Figure 10.
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A;I'+t:Cp A, THMXT(t,1):C; ... A;THMXT(t,n):C,
A;T" ™t sub(Cy,Cy,...,Cp)

Ci<:Cy Cr<:Cy ... C,<:Cp
sub(Cy,C) = Co

CT(Co) =class Cp extends D —(C; <:Cp C,<:Co ... GC,<:Co)
sub(Co,C) = sub(D,C)

4;TH™t,:C lds(Cop)=Cf A4— AT(C;f;
0:Co fie S( O) ( i l) (T-FIELD)
AT Ftg.f;:C;
A;TH"1y:Co mtype(m,Cp,A) =Dy—C AT();'-™t:C C<:D
4 — (AT(}) < AT(Dy AT — 4
(ar( (D) H (T-INVK)
A;T'Ftg.m(t): C
fields(C)=Df AT();I'™t:C C<:D
A—AT(C) A— (AT(1) -+ AT(DT)) AT{E) =4
_ (T-NEW)
A;TFnewC(t): C
M= Com(C x) {returnty;} AT(M)=4 A4 AT(Cy) AT(Cx)— AT(C)
CT(C) =class C extends D {...} override(m,D,C—Co, 4)
[ =X : C with AT(C x), this : C with AT(C) A;TF™1ty:Ey Eo<:Co
AT(Cx) — A4
- (T-METHOD)
MOKinC
LOK ™ C
_ (T-SPL)
(L, 1) OK

Fig. 10. CFJ typing with metaexpressions (changes only).

The type system with metaexpressions is stricter than the original type system of
CFJ because we always type check the original statement but, additionally, also check
alternatives. Alternatives can make the type of a term less specific (in the worst case,
when all alternatives have unrelated types, the term has the least specific type Object).

The choice that the term of a type with alternatives is the most specific supertype
of all alternatives’ types was a deliberate design decision. It provides the same ex-
pressiveness as the implementation pattern in Figures 7 and 8. Beyond that, we could
allow that a term could have alternative types, depending on the feature selection
(the metaexpression-aware typing judgment would return a list of types). However,
alternative types depending on the feature selection would make type checking more
complex and slower and could lead to a combinatorial explosion of different alterna-
tives. Alternative types can propagate through the entire type derivation process, for
example, x.f can have alternative types when x has alternative types. Furthermore,
when a term can have one of many types, type errors become difficult to understand
for users. We have explored this path and its consequences on complexity in a different
product-line type system FFdJpy, [Apel et al. 2010], as we discuss in Section 9. Here, we
settle with the slightly less expressive but simpler solution, which, in our opinion, is
easier to handle for developers.
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[MXT(t1)]  if eval(AT (MXT (1,1)),F)

| [MXT(L2)]  else if eval(AT(MXT (1,2)), F)

= [MXT(,n)]  else if eval(AT(MXT (t,n)), F)
lid] else
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™ m(CT™ D)

new C(([t]"™"))
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Fig. 11. CFJ variant generation with metaexpressions (changes only).
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6.3.2. Variant Generation. The variant generation mechanism is changed similarly to
the type system. In addition to the function variant(a, F) (denoted by [[a]l), we need a
metaexpression-aware function for terms variant™ (t, F') (denoted by [t]™). The func-
tion variant™ replaces the original term with the first alternative of which the an-
notation evaluates to true; if there is no alternative or all annotations of alternatives
evaluate to false, the original term remains. Again, as with term typing, we need to
adjust a number of variant generation rules (G.2, G.3, G.4, G.5, and G.8) to use the
new variant function. We show the new function variant™ and the changed generation
rules in Figure 11.

6.3.3. Properties. Both properties—backward compatibility and generation preserves
typing—still hold. Backward compatibility is obvious because we did not change the
syntax and because the type system behaves just as the original CFJ type system
when the metaexpression table is empty. Generation preserves typing also holds; the
intuition is that ™ checks all alternatives that can be generated by variant™. Again,
we formalized our extensions and proved the theorem of generation preserves typing
with the proof assistant Coq.*

6.4. Summary

There are many different possibilities for how alternative features can be implemented
and type checked in a product line. Merging alternative classes and methods is not
necessary but reduces the difficulty of finding mechanisms for implementation and
type checking to alternative terms. In full Java, in which a method can contain a
list of statements, we can now use alternative statements without further extensions.
In FJ, we are more constrained, because each method contains only a single return
statement. While method overriding can be used as a “hack” without modifications
of CFJ, we prefer a dedicated extension of the type system. There are many novel
language constructs we could introduce—mixins, aspects, traits, and many more—but
these require significant changes to the syntax and type system and are not backward
compatible to FJ (and Java). To achieve backward compatibility to keep existing tool
support, we introduce and type check metaexpressions, as originally suggested for
UML models by Czarnecki and Antkiewicz [2005]. Metaexpressions are added using an
external metaexpression table and are backward compatible to Java in the sense that
a metaexpression can always be added and type checked on top of an existing program.

14Proof script available at http:/fosd.de/cfj/.
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The main challenge remains to find an appropriate visualization for the editor that can
convey the metaexpression concept to developers, potentially even including nested
metaexpressions. However, a proper visualization is outside the scope of this article.

7. BEYOND FEATHERWEIGHT JAVA (IMPLEMENTATION)

Our formalization is based on Featherweight Java, because it allows for proving the
feasibility of a product-line-aware type system in a confined setting. Nevertheless, for
a practical application, a product-line-aware type system should be provided for full
Java or other languages. Our experience with CFJ guides the way for a more general
implementation in our product-line tool CIDE.

CIDE is an Eclipse plug-in for product-line development. After specifying features in
a feature model, a developer can assign annotations to code fragments. CIDE follows
a model of disciplined annotations, in which annotations have to align with the under-
lying structure, as outlined in Section 5.2. CIDE represents annotations visually with
background colors and provides various forms of additional tool support [Késtner et al.
2008], which are beyond the scope of this article.

The formalization shows that backward compatibility is possible; we only have to
add additional reachability checks between pairs (or triples or quadruples) of code
fragments and their annotations. At a practical level, to achieve language indepen-
dence (or at least extensibility toward new languages), we implemented a framework
for product-line-aware type checking in CIDE that provides a general mechanism that
iterates over a project, checks reachability conditions, and reports errors. CIDE displays
detected errors like standard Java errors, directly at their location (e.g., underlining
a method invocation), and provides suggestions for fixing them. Our framework can
be extended with plug-ins for specific languages. Each plug-in is responsible for de-
termining which reachability conditions to check in a given language, for example, it
looks up method invocations and corresponding method declarations. It is even pos-
sible to check reachability conditions between elements of different languages (.e.,
inter-language typing).

Currently, we provide the following type-checking plug-ins for CIDE.

— Featherweight Java. We implemented the CFJ type system in CIDE, including a
metaexpression extension for alternative features (see Section 6.2). Specifically,
Rosenthal [2009] implemented the entire type system natively without reusing an
existing implementation.

—dJava. For Java, we implemented all checks from Featherweight Java and several
additional checks regarding local variables, interfaces, generics, imports, abstract
classes, abstract methods, and others. This type system was implemented on top
of Eclipse’s type checks for Java, that is, we reused existing lookup mechanisms
and added only reachability checks on top. To be precise, we could not reuse all
lookup mechanisms but had to slightly adapt those that are equivalent to mtype and
override in Section 5.5.2. Although our implementation is probably not complete
(a guarantee is difficult to provide for full Java), we believe that we have covered
the most important causes of type errors and that our implementation is useful in
practice.

The product-line-aware extension for Java is built on top of Eclipse’s standard Java
compiler. Thanks to backward compatibility, the existing syntax- and type-checking
mechanisms, the internal Java model, and the background compilation process of
Eclipse remain untouched. Therefore, Eclipse provides tool support, such as syntax
highlighting, code completion, and code navigation, and as Eclipse already detects
all type errors of standard Java, we only add reachability checks on top.
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— Bali. Bali is a grammar specification language in the AHEAD tool suite [Batory et al.
2005] for which we added reachability checks between references to and declarations
of productions and tokens. In this language, looking up pairs is straightforward with
a simple name table. Still, the entire mechanism for checking reachability in the
context of a feature model is reused and shared with the other languages.

— OSGi Manifest + Java. As a demonstration of inter-language typing, we implemented
a plug-in that looks up package references between a manifest file of an OSGi
bundle [OSGi Alliance 2009] and the bundle’s implementation with Java. It again
checks that the implementation is reachable from the according declaration in all
variants so that, in this case, no variant of an OSGi bundle can declare exporting a
package that it does not contain. So far, we implemented only checks for the Export-
Package declaration as a proof of concept, but this can be extended easily to other
checks between an OSGi manifest and Java or to inter-language checks between
other languages.

Together, with an industrial partner, we currently also are implementing a product-
line-aware type system for C that is largely backward compatible to the C preprocessor.
This type system is developed outside CIDE but follows the same mechanisms.

Finally, the mechanism for actually reasoning about feature models and annotations
(to determine whether AT (a) — AT'(b) holds for all valid variants) also is abstracted
behind an interface so that different reasoning mechanisms can be plugged in. Cur-
rently, we have implemented two mechanisms: a very simple one based on set relations
(which, however, supports only very simple feature models that can only express de-
pendencies in the form of parent-child relationships in a tree but no alternatives), and
one for full feature models, originally developed for FeatureIDE [Leich et al. 2005;
Kastner et al. 2009]. In the latter, which we use by default, reasoning is performed by
transforming the feature model and reachability conditions into Boolean satisfiability
problems, as described by Batory [2005]; we subsequently solve the problem with the
off-the-shelf SAT solver SAT4.J.

To summarize, the formalization of CFd is tailored to Featherweight Java, but the un-
derlying mechanisms are general and can be transferred to other languages. Currently,
the additional reachability checks for every language (and combination of languages in
cases of inter-language typing) are provided manually using plug-ins. Whether these
plug-ins can be generated automatically (e.g., from attribute grammars) is an open
research question. Regarding inter-language typing, further research is needed to find
the right abstractions (e.g., [Apel and Hutchins 2010]) or a suitable polylingual type
system (e.g., [Grechanik et al. 2004]). From a tool perspective, recent advances in inter-
language refactorings in Eclipse can be used as a possible starting point [Fuhrer et al.
2007].

8. EVALUATION

In the previous sections, we have designed, formalized, and implemented a product-
line-aware type system. To demonstrate its practicality, we performed a series of case
studies to evaluate whether we can actually find type errors in existing product lines.
Specifically, we want to answer the following questions.

—What are typical shapes of annotations?

—Does type checking detect relevant errors in software product lines?

— What performance can we expect from type checking a software product line (espe-
cially since Boolean satisfiability problems are involved)?

We applied our type-checking approach to four case studies. As case studies, we
selected Java programs that implement variability using some form of preprocessor.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 3, Article 14, Pub. date: June 2012.



14:28 C. Kastner et al.

Table I. Size and Features of Our Case Studies

Software product line LOC #FEA #ANN Features

MobileMedia (Rel. 6) 4,600 9 88 Pnoro, Music, SMS, SorTING, CopYMEDIA, FAVORITES, 128 x
149, 132 x 176, and 176 x 205

MobileMedia (Rel. 8) 5,700 14 164 Pnoto, Music, VibEo, SMS, SorTING, CoPrYMEDIA, FAVORITES,
Privacy, CapTUREPHOTO, CAPTUREVIDEO, PLAYVIDEO, 128 X
149, 132 x 176, and 176 x 205

Mobile RSS Reader 20,000 14 1,050 MIDP10, MIDP20, JSR75, JSR238, CLDC11, SMALLMEM,
1TuNES, LocGING, TEsT, TESTUI, 4 x COMPATIBILITY

Lampiro 45,000 11 108 MororoLra, TLS, ComprESSION, BXMPP, SCREENSAVER, U,
GLIDER, BLUDENO, T1MING, SENDDEBUG, and PLAINSOCKET

Berkeley DB 70,000 42 1,825 TRANSACTIONS, STATISTICS, DELETEDBOPERATION,
ExvirRoNMENTLOCK, FILEHANDLECACHE, . .. (see Késtner et al.

[2007] for a comprehensive list)

Notes: LOC: lines of code (approximated); #FEA: number of features; #ANN: number of annotated code
fragments.

Since Java does not have a built- in preprocessor, there are not as many projects
as in C or C++, but, interestingly, providing variability is essential in the domain of
software for mobile phones, so we found some open-source projects that use the Java
ME preprocessor Antenna.!® We selected the following software product lines (see also
Table I).

(1) MobileMedia. MobileMedia is a Java ME application for manipulating photo, music,
and video files on mobile devices. It has been developed at Lancaster University
as a product line and has been used in several studies on comparing conditional
compilation with aspect-oriented mechanisms [Figueiredo et al. 2008; Conejero
et al. 2009]. The product line has several optional features implemented with #ifdef
directives, such as support for photos, music, video, SMS transfer, or favorites. We
selected this product line because the code is peer reviewed [Figueiredo et al. 2008]
and because the development is well documented in several incremental releases
(each added one or more features), which allowed us to analyze simple, as well as
more complex, versions. Specifically, we look at two releases: Release 6 with nine
features and the latest Release 8 with 14 features (cf. [Figueiredo et al. 2008]).16

(2) Mobile RSS Reader. Mobile RSS Reader is an open-source project for implementing
a portable RSS reader for mobile phones on the Java ME platform.!” Variability
is crucial to supporting different devices; therefore, typical features refer to Java
ME libraries: MIDP 1.0, MIDP 2.0, CLDC 1.1, JSR 75 (file system), and JSR 238
(internationalization). Additional features include support for devices with small
memory capacity, logging and testing features, and several compatibility features
for different RSS formats.

(3) Lampiro. Lampiro is an instant-messaging Java ME client for the XMPP proto-
col developed by Bluendo s.r.l., released as open source.!® Several features, such
as ComprEssION, ENcrypTION (TLS), ProFILING and DEBUGGING, or SCREENSAVER, are
implemented using #ifdef directives.

15 Antenna (http:/antenna.sourceforge.net/) uses #ifdef directives very similar to that of the C preprocessor;
however, Antenna’s directives are written in comments. When running Antenna with a given feature set, it
comments out all code of unselected features. The preprocessor is integrated in Java ME extensions of IDEs
like Eclipse and NetBeans, in the latter, even with additional syntax highlighting.

16The source code is available online at http:/mobilemedia.cvs.sf.net/viewve/mobilemedia/; of both releases,
we used the code revision from July 9, 2009.

1Thttp://code.google.com/p/mobile-rss-reader/. Mobile RSS Reader is under continuous development; we used
revision 1596 (May 21, 2009), available at http://mobile-rss-reader.googlecode.com/svn/!svn/bc/1596/trunk/.
18http://lampiro.bluendo.com/. Lampiro is still under development; we used version 9.6.0 (June 19, 2009),
available at http://lampiro.googlecode.com/svn/!svn/be/30/trunk/.
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(4) Berkeley DB. Finally, Oracle’s Berkeley DB is an open-source database engine writ-
ten in Java, which we decomposed into features in prior work [Késtner et al. 2007,
2008].1 Berkeley DB is different from the preceding case studies in two ways.
First, it was not originally developed as a product line, but we later refactored it
into features, such as TRANSACTIONS, STATISTICS, ENVIRONMENTLOCK, or DELETEDBOP-
ERATION. Second, we annotated the code base with CIDE after having implemented
an initial version of our type system. This gives a different perspective on our type
system regarding the development of a new product line by decomposing a legacy
application.

8.1. Shape of Annotations

In all case studies, annotations are used often at a fine granularity. While entire
classes and methods are annotated as well, most annotations are on the statement
level. In Mobile RSS Reader and Berkeley DB, even parameters in method declarations
and method invocations were annotated. This fine granularity is where annotations
play to their strength, compared to contemporary modularization techniques, such as
components or aspects [Késtner et al. 2008], but also where it is difficult to enforce
reachability conditions manually, due to their high number.

Most annotations were simple and consisted only of a single feature (#ifdef X) or
a negated feature (#ifndef X); however, nesting was quite common (up to level 4 in
Mobile RSS Reader). Beyond single features and nesting, only MobileMedia used some
pattern like AA Bor Av B (the most complex annotation we found was ‘(Music APHOTO)V
(Music A Vipeo) Vv (VIDEO A PHOTO) in MobileMedia Release 8). Usually, it is quite easy
to reason about reachability manually and thus interpret the errors reported by the
type system. Nevertheless, automatically checking reachability constraints in a type
system is helpful, due to the sheer number of reachability constraints (up to 72,534 in
Lampiro, cf. Table II).

In all software product lines that were developed with #ifdef directives originally,
we found alternative features or alternative implementations, depending on whether
a feature is selected. Alternatives generally occurred on the level of statements or
for setting initial values of constants. In Mobile RSS Reader, alternative superclasses
were also used, so that a class inherits from different classes depending on whether
feature TEsTUI is selected. To avoid complexity, we forbade alternative superclasses
(see discussion in Section 6.1) and rewrote the corresponding implementation. In gen-
eral, we found three alternative code fragments in MobileMedia Release 6, eight in
MobileMedia Release 8, 70 in Mobile RSS Reader, and 10 in Lampiro.

8.2. Detecting Errors

To our surprise, we found inconsistencies or type errors in all case studies except Berke-
ley DB. Berkeley DB is not relevant in this context, because it was already developed
with CIDE and an early version of our type system; thus, we already eliminated all
type errors in Berkeley DB during development. In all other case studies that were
developed without a product-line-aware type system, we checked existing annotations
in released source code.

In MobileMedia Release 6 (and Release 8), we found that a variant with SMS but
without PHOTO Would not compile. On closer inspection, we found that feature SMS
actually depends on PHOTO, it is only meant to send photos, not music or video. This de-
pendency was neither shown in the as simplified feature model published in Figueiredo
et al. [2008], nor in a feature model provided by the authors on request, nor was any

198pecifically, we used Berkeley DB version 2.1.30; available at http://www.oracle.com/technology/software/
products/berkeley-db/je/index.html.
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79| // #ifndef GLIDER

80 setTitle("Lampiro");

81 Image logo = Image.createImage("/icons/lampiro_icon.png");

82 UILabel ul = new UILabel("Loading _Lampiro...");

83| // #endif

84 UILabel up = new UILabel(logo);

85 up.setAnchorPoint(Graphics.HCENTER | Graphics.VCENTER);

86 uvl.insert(up, 1, logo.getHeight()+10, UILayout.CONSTRAINT_PIXELS);

88 ul.setAnchorPoint(Graphics.HCENTER | Graphics.VCENTER);
89 uvl.insert(ul, 2, UIConfig.font_body.getHeight(), UILayout.CONSTRAINT_PIXELS);

Fig. 12. Code excerpt from Lampiro (SplashScreen.java) with type errors when accessing local variables
logo and ul in lines 84, 86, and 89 in variants with GLIDER.

description about the relationship of features shipped with the source code. After adding
this dependency to the feature model, CIDE indicates that all variants are well typed.
Detecting such a mismatch between feature model and implementation is a typical
example of the strength of product-line-aware type systems.

In Release 8, MobileMedia has five additional features, and annotations are more
complex. CIDE initially indicated several type errors, because we inferred an incorrect
feature model from the source code; we could easily fix this when we received a complete
feature model from the authors and added the constraint between SMS and PHoro,
as just discussed. Still, there were two remaining type errors caused by incorrectly
annotated import statements. (Import statements are not part of the CFJ or the FJ
calculus but are checked in CIDE). While the target class and its references were
correctly annotated, two corresponding import statements were not annotated. This
causes a Java type error in several variants when a removed class is imported (e.g.,
in variants with SMS but without CapTUREPHOTO and without VIDEO, or in variants
with CopyMEDIA but without PHOTO). The type system in CIDE can point out even such
seemingly insignificant errors.

Also in Mobile RSS Reader, our type system found inconsistencies. Variants with
both MIDP20 and SMALLMEM and variants with TESTUI but without MIDP10 contain
type errors. Our domain knowledge is not sufficient to judge whether these are undocu-
mented constraints or incorrect implementations. As an easy fix, adding the constraints
‘<(MIDP20 A SmMaLLMEM)’ and ‘TEsTUI = MIDP10’ reduces the number of possible vari-
ants, but then, all variants are well typed. It is up to the developers and domain experts
to either change the implementation or the feature model.

Additionally, we found some fragments in Mobile RSS Reader that were never in-
cluded in any variant (called dead feature code or zombie features [Tartler et al. 2009]).
To include these code fragments, their annotations would require a feature selection
that is not allowed by the feature model. Although such dead-feature-code analysis is
not part of the type system (dead feature code is always well typed regarding reach-
ability constraints), we can easily add a warning to our implementation to point out
dead feature code.

Finally, in Lampiro, we already had difficulties creating a single Java version of
the source code with all features (for backward compatibility). We found that feature
SCREENSAVER is dead (since the first revision in the project’s repository) and must never
be selected: its implementation calls methods that do not exist, introduces duplicate
methods, and contains both missing and duplicate import declarations. Similarly, fea-
ture GLIDER is dead; it is obvious from code fragments, as shown in Figure 12, that it
makes no sense selecting this feature. Since GLIDER was only introduced in the last re-
vision in the repository, we assume that it is an incomplete part of an upcoming feature.
Our type system in CIDE points to these problems immediately. It forces developers to
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Table Il. Performance Statistics of Our Case Studies
Software product line  #y,, (sec) tspr, (sec) #Variants #Checks #SATP #USATP

MobileMedia (Rel. 6) 0.2 13 144 5,714 1,924 39
MobileMedia (Rel. 8) 0.3 1.8 2,784 7,359 3,569 111
Mobile RSS Reader 0.6 8.3 2,048 35,094 10,684 127
Lampiro 2.0 19.0 2,048 72,534 780 26
Berkeley DB 2.6 21.0 3.6 billion 70,316 19,517 324

Notes: ty,,: time to compile a single variant; fgpy,: time to evaluate all reachability checks; #Vari-
ants: approximate number of potential variants; #Checks: number of performed reachability
checks; #SATP: number of SAT problems solved; #USATP: number of unique SAT problems
solved.

document in the feature model that certain features are incomplete and must not be
selected.

All in all, we did not expect to find many errors because all product lines released
their code and because the number of features is still manageable small. We were
surprised to find small inconsistencies or type errors in every product line that was
annotated with #ifdef directives. In all cases, these were only minor problems (un-
documented dependencies, forgotten annotation on an import statement, dead feature
code), nothing significant and all easy to fix. Nevertheless, this shows how easy subtle
errors can be introduced into well-developed product lines and how product-line-aware
type systems can help to maintain consistency and fully document all implementation-
relevant dependencies between features. In Berkeley DB, our type system helped to
achieve consistency across the entire development process.

8.3. Performance

Finally, to provide some intuition about the complexity and performance of type check-
ing a software product line, we measured the time to compile a single variant (¢y,,)
and the time to check all reachability constraints in the software product line (tgpr,).2°
Additionally, we estimated the number of variants to illustrate what it would mean
to check every variant in isolation. Our current implementation of the type system is
about ten times slower than Eclipse’s industrial-strength compiler—that means type
checking the entire product line takes as long as type checking ten variants (a fraction
of the number of possible variants). Detailed results for all case studies are shown in
Table II.

The slowdown is mostly caused by our algorithm for locating the pairs for reachability
checks for method invocation, field access, type reference, and others, as described in the
calculus. There are up to 72,534 such pairs in our case studies, as shown in Table II. To
enable quick incremental type checking on changes to the source code, to annotations,
or to the feature model, we also store all checks for future reevaluation. We assume
that an optimized implementation can significantly speed up this process. In contrast,
the time needed to actually solve SAT problems is marginal. Many checks (60-98%) can
be skipped without consulting an SAT solver, either (a) because neither code element
is annotated or (b) because both are annotated with the identical feature expression.
For the remaining checks, the results for unique feature combinations can be cached so
that, in our case studies, only some hundred unique SAT problems remain to be solved.
Solving all SAT problems requires less than 50 ms for each product line.

This shows that, although reachability checks are required in all typing judgments,
they can be executed with reasonable performance that is acceptable for practical
development. Our current implementation slows down type checking by a factor of ten,

20We measured all times on a standard 2.66 GHz lab PC with 4 GB RAM, Windows Vista, Sun Java
VM 1.6.0.03, and Eclipse 3.5.
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which means that for every product line with more than ten potential variants, it is
faster to check the entire product line during domain engineering than to check every
variant in isolation during application engineering. Type checking is still reasonably
fast enough that it can be executed in the background during development to find
errors as early as possible.

9. RELATED WORK
9.1. Type Checking Product Lines

The idea of type checking an entire software product lines (instead of individual vari-
ants) emerged from research on generative programming.

First, in an influential approach, Huang et al. [2005] ensure that Java code generated
by their tool SafeGen is well typed. Though their tool is used for metaprogramming in
general, and not as product-line technology, the basic idea is similar to our theorem
of generation preserves typing. Since there is no need for backward compatibility,
alternative features are supported natively. Using first-order logic and theorem provers,
they check whether generators written in their confined metalanguage (with selection
and iteration operators) produce well-typed output for arbitrary Java input. However,
checks cover only some of Java’s typing rules, that is, there is no guarantee that
the output is well typed. In recent work, they introduced a newer metaprogramming
language Morphd with similar constructs that supports modular type checking and
has been proven type sound [Huang and Smaragdakis 2010].

The work on checking the generation mechanism instead of individual input pro-
grams in SafeGen influenced Czarnecki and Pietroszek [2006] to check an entire prod-
uct line instead of individual variants. Specifically, they target product lines of UML
models in their tool fmp2rsm and guarantee well formedness for all variants. In earlier
work, Czarnecki and Antkiewicz [2005] implemented a tool environment for develop-
ing a product line of UML models, very similar to that of CIDE: they extended an
existing UML editor such that a user can annotate presence conditions to UML el-
ements, like classes or associations; a variant of the UML model is then generated
by removing elements of which the annotation evaluates to false for a feature selec-
tion. In this environment, backward compatibility to the existing UML editor was also
implicit. Czarnecki and Pietroszek [2006] then describe a mechanism for this tool en-
vironment to check that all variants conform to certain well-formedness rules of UML
(e.g., ‘an association in UML class diagrams connects exactly two elements’). These
well-formedness rules are similar to typing rules in programming languages and can
be specified in UML's metamodel (and machine readable) using constraints written in
the Object Constraint Language (OCL). Their tool transforms presence conditions, the
feature model, and OCL constraints into a propositional formula, which can be solved
by an off-the-shelf SAT solver in a single step. Error messages are reconstructed from
the SAT solver’s result. Well formedness can only be guaranteed against those con-
straints that have been specified (machine readable) with OCL. For UML, those must
be first inferred from the informal textual UML specification, which is similar to how
Java’s typing rules must be inferred from the textual Java Language Specification. The
authors do not discuss completeness of their inferred OCL constraints. The metaex-
pression solution for alternative features was first described for their tool [Czarnecki
and Antkiewicz 2005]; however, metaexpressions have not (yet) been considered in
their well-formedness checks [Czarnecki and Pietroszek 2006].

Beyond annotations on existing languages, there have been approaches to type check-
ing product lines written in specialized architectures or with specialized languages,
using constructs such as aspects, class refinements, or mixins. These approaches gen-
erate variants by composing code modules. In some sense, feature annotations and
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feature composition are two sides of the same coin: one removes code from a com-
mon base (sometimes called negative variability), the other merges already separated
code (positive variability) [Kéastner et al. 2008]. Both approaches can be used (also in
combination) to implement product lines. Refactoring between implementations based
on annotations and based on composition is usually possible [Kistner et al. 2009];
hence, within the boundaries caused by alternative features, it is also possible to use
a composition-based type system indirectly for annotation-based implementations and
vice versa.

Some compositional approaches can check feature modules in isolation, so only their
combination into variants need to be checked; separate checking is possible for architec-
tures with separately compiled components or plug-ins, as well as for several specialized
languages, for example,[Ossher and Tarr 2000; McDirmid et al. 2001; Warth et al. 2006;
Chae and Blume 2008; Hutchins 2009; Bettini et al. 2010; Apel and Hutchins 2010].
In some scenarios, architectures are possible, in which all features are independent
plug-ins that can be combined without type conflicts [Chae and Blume 2008]. In many
languages, by analyzing module interfaces, we could derive dependencies that describe
which modules can be combined together; we could either use such dependencies to
extract an (implementation-specific) feature model [She et al. 2011] or consider these
dependencies themselves as feature model. Nevertheless, in the product-line commu-
nity, feature models often describe domain knowledge beyond just implementation
dependencies. Thus, we typically need an extra step to check actual variability in the
implementation against the intended variability described in the feature model [Met-
zger et al. 2007; Thaker et al. 2007].

The first approach of type checking all valid variants (i.e., intended variability) of
a product line implemented by feature composition was safe composition by Thaker
et al. [2007]. They analyze language semantics of Jak [Batory et al. 2005], a Java
dialect that supports mixin-style class refinements (including native support for alter-
native features). To check types, they identify six constraints that need to be satisfied,
which their tool maps to propositional formulas and checks with an SAT solver. One
constraint deals with references to fields and methods (roughly corresponding to T-
FieLb and T-INVK), two deal with abstract classes and interfaces (no correspondence in
Featherweight Java), and three deal with specific constructs of the Jak composition
mechanism (no correspondence in Featherweight Java). Their checks are not claimed
or even proved complete, and, in fact (compared to CFJ) checks that ensure the pres-
ence of types used in signatures are missing, for example, (M.1), (M.3). In recent work,
an extension of safe composition eventually was also formalized and proved type-sound
with a machine-checked model by providing an algorithm to reduce it to Lightweight
Java [Delaware et al. 2009].

In a parallel line of research, we have formalized a calculus Feature Featherweight
Java (FFJ) for class refinement and module composition [Apel et al. 2008] and
extended it toward checking entire product lines as FFdJp;, [Apel et al. 2010]. In
this work, we entirely drop backward compatibility, since the host language with its
composition semantics is already incompatible with Java and there is no sophisticated
tool support, yet. Instead, we aimed for flexibility, so that even alternative classes with
different supertypes or alternative fields with different types and alternative methods
with different return types are possible. Compared to CFdJ, the formalization is much
more complex, because a term in the product line may have different types, and
even the subtype relation may change in different variants, depending on the feature
selection. In the worst case, type-checking has exponential complexity. CFJ and FFJ
tackle type checking software product lines for different implementation mechanisms
and from different perspectives: CFJ targets annotations and tool support focusing on
developers, while FFJ targets module composition and explores maximum flexibility.
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9.2. Conditional Language Constructs

Independent of product-line research, the programming language community devel-
oped several type systems that support type conditions on methods or other language
constructs. So, invoking a conditional method is only well typed when the condition is
satisfied in the context of the invocation. Conditional language constructs are discussed
in the context of parametric polymorphism. For example, in a collection class, such as
List, clients should only be allowed to invoke a method print if the class is parametrized
with a type that can be printed; a collection should only implement the interface Print-
able if the type parameter implements this interface as well. Conditional language
constructs have been explored in object-oriented languages, at least since CLU [Liskov
et al. 1981] and have been studied, for example, in extensions to Cecil [Litvinov 1998],
Java [Myers et al. 1997; Huang et al. 2007], and C# [Emir et al. 2006]. In all these
languages, type constraints are structural constraints (parameter X contains method
Y) or subtyping constraints (parameter X is a subtype/ supertype of Y).

Conditional methods with type constraints and CFJ are related, because both restrict
the access to methods in some variants (#ifdef vs. condition on type parameter), and
both statically ensure that all variants are well typed. So, in some sense, we could
replace #ifdef directives on statements with conditions on type parameters, and instead
of generating a variant by removing code, we could instantiate the program with a
suitable type parameter. However, there are four important differences.

— Code removal vs. multiple instances. Our work addresses conditional compilation
in the context of product lines, such that code is actually removed in a generation
step. In contrast, all languages with conditional methods of which we are aware
do not generate variants, but check that a present method is never called when
the condition on the type parameter evaluates to false. Type conditions have the
benefit of different instances of a class with different configurations being used in
the same program, but they do not remove code and thus do not reduce binary
size, as sometimes desired in product-line development, especially for embedded
systems [Beuche et al. 1999; Lohmann et al. 2006; Rosenmiiller et al. 2009].

— Expressiveness of conditions. Compared to a full feature model, the expressiveness
of type conditions is restricted. In languages with structural constraints, they can
express part-of relationships; in language with subtyping constraints, they can ex-
press simple parent-child relationships (similar to our initial ‘set relations’ imple-
mentation, see Section 7). Most type conditions have the benefit of reasoning being
performed without an SAT solver; however, more expressive feature constraints are
needed in product-line practice (see Section 8), such as alternative features, negated
features (—A), or propositional expressions (e.g., AV =B A C).

— Granularity. Annotations and type conditions provide different levels of granularity.
In contemporary languages with type conditions, typically conditions can only be
placed on methods (and sometimes fields and supertypes); type conditions aim pri-
marily at providing flexible libraries. In contrast, #ifdef directives and annotations
in CFJ and CIDE are more flexible and can annotate entire classes, individual state-
ments, or even method parameters, which is typically not needed in libraries. Our
work targets variability in applications and product lines, in which the behavior of
an individual method also may change, depending on the feature selection. Of the
four examples in Section 3, only the first can be implemented and checked with type
conditions of contemporary languages.

— Backward compatibility. Finally, to add type conditions to Cecil, Java, or C#, all
approaches introduce new language constructs. In contrast, we aim explicitly at
backward compatibility in order to reuse the existing tool infrastructure.
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These differences are mostly design decisions for a specific language. It is possible to de-
velop conditional language constructs that are similar to CFJ (backward compatible, at
finer granularity, with more expressive conditions) or product-line-aware type systems
with characteristics of conditional language constructs. However, so far, the product-
line community and the programming language community have pursued different
goals (product-line development by code removal, backward compatibility, flexible an-
notations, and alternative implementations vs. expressive type system for libraries and
multiple instances respectively), which lead to different design decisions. With contem-
porary conditional compilation constructs, our case studies would be very difficult to
implement. We argue that both approaches are complementary and may eventually
converge. In this context, we contribute a different perspective with different design
decisions and their trade-offs for conditional language constructs.

10. CONCLUSION

We have formally discussed a type system for an entire software product line that
is implemented with annotations on a common code base. Instead of checking all—
possibly millions—of variants that can be generated from a product line in isolation,
we check the product line itself and guarantee that all variants generated from a
well-typed product line are well typed. We have shown that CFJ can be modeled in a
backward-compatible fashion on top of FJ, extending only the typing rules and auxiliary
functions with local checks on annotations.

The formalization was motivated by our product-line tool CIDE for Java and other
languages. Though CFJ (or FJ) covers only a small excerpt from the Java specification,
the formalization provides several insights on how to design a product-line-aware
type system, such as the concept of reachability conditions, the theorem of generation
preserves typing, and the design decision of backward compatibility. With the small
scope, it also allowed for exploring the implementation of alternative features with
metaexpressions in detail.

In four case studies, we have shown that type checking an entire software product
line is feasible, useful, and reasonably fast. With our implementation in CIDE, we
even found inconsistencies (undocumented dependencies, forgotten annotations on an
import statements, dead feature code) in all analyzed product lines that were developed
with #ifdef directives. With a product-line-aware type system, we can detect such
problems early on during product-line development, instead of later when problematic
variants with specific feature combinations are eventually compiled. Although these
product lines contain hundreds of annotations, sometimes at a fine level of granularity
or with complex or nested feature expressions, we can efficiently automate reachability
checking.

In future work, we intend to explore paths toward extensions for other code and non-
code languages and their interactions (inter-language typing). Furthermore, we intend
to apply verification and validation tools to entire product lines to also find semantic
errors. Our long-term goal is to provide a language-independent product-line tool that
counteracts the inherent complexity of product lines by detecting possible errors as
early as possible.
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