Aspectual Mixin Layers

Sven Apel, Thomas Leich, and Gunter Saake

Department of Computer Science
University of Magdeburg, Germany
email: {apel,leich,saake}@iti.cs.uni-magdeburg.de

Abstract. Feature-Oriented Programming (FOP) is an appropriate pro-
gramming paradigm to implement program families and incremental
designs. Beside numerous strengths in doing that FOP yields several
drawbacks, especially regarding the ability to localize and modularize
crosscutting concerns. This is exactly the strength of another prominent
programming paradigm, Aspect-Oriented Programming (AOP). In this
article we contribute a set of evaluation criteria as well as a detailed
evaluation and comparison of AOP and FOP. The evaluation criteria
are tailored especially for incremental software development. The evalu-
ation reveals that aspects and features are not concurrent concepts. In
fact AOP has several strengths to improve FOP in order to implement
crosscutting features. Based on these results we introduce the novel no-
tion of aspectual mizin layers (AMLs) that integrate AOP concepts into
FOP. Our evaluation of AMLs reveals that they improve the crosscutting
modularity of features. In a subsequent case study we clarify and discuss
the benefits and limitations of AMLs. Finally, we suggest two potential
derivates of AMLs that yield different promising properties.

1 Introduction

Program families [28] and incremental software development have a long tradi-
tion and are still subject of current research. A main objective of research in
this field is to simplify the maintainance, reuse, customization, and evolution
of software. Two important programming techniques used to implement com-
plex software in form of program families are Feature-Oriented Programming
(FOP) [7] and Aspect-Oriented Programming (AOP) [15].

FOP was developed to implement software incrementally in a step-wise man-
ner. Features reflect requirements and program characteristics that are of interest
to stakeholders. The main idea is that these features are mapped one-to-one to
modular implementation units. Mizin layers [31,7] and collaborations [19,26]
are most successful in implementing program families in FOP style. GenVoca [6)
and its successor AHEAD [7] are architectural models that describe and unify
such feature implementation techniques. In this article we use the term feature
and refinement synonymously and in the sense of FOP and AHEAD: Features
are implemented incrementally by extending and refining existent classes and
their collaborations. Hence, features have a direct implementation level repre-
sentation, e.g. mixin layers.

AOP addresses similar issues but with a different focus: AOP focuses mainly
on separating and modularizing crosscutting concerns. It introduces aspects
which encapsulate code that would be otherwise tangled with other concerns and
scattered over the base program. Thereby, separation of concerns is achieved that
is important to implement complex software, i.e. program families. Although the
initial focus does not lie on incremental software development several research
efforts go into this direction [22, 26,9, 24, 19], however, with numerous problems
that are discussed in this article.

1.1 The Relationship of Aspects and Features

In this article we explore the relationship of aspects and features. We do not
perceive them as concurrent concepts but rather as concepts that can profit
from each other. The idea of FOP is to decompose a system architecture into
units that are of interest to the stakeholders. Thus, an object-oriented design
becomes fragmented. It is decomposed along collaborations of classes that im-
plement features. Such features are best fit to form the basic building block of
program families. However, FOP has drawbacks regarding the crosscutting mod-
ularity, in particular the ability to localize, separate, and modularize crosscutting
concerns [26]. This is where AOP comes into play.

Aspects implement crosscutting concerns but are not adequate to implement
all kinds of features. In many cases aspects cannot implement features stand-
alone [23]. Other aspects and additional classes are needed. This is because fea-
tures are mostly implemented by collaborations and common AOP techniques
are not able to express and encapsulate collaborations. A further drawback of
current AOP approaches is that aspects only insufficiently support incremental
software development. In a nutshell, aspects are problematic in incremental de-
signs because they cannot be bounded to a certain scope and so they may affect
inadvertently unanticipated features.

However, we see aspects at the level of classes whereas features organize
the architecture at a higher level. Thinking of aspects and features in this way
makes it possible to integrate both. Our idea is that a programmer implements
features as units that crosscut an aspect-oriented architecture. Technically this
means that aspects are integrated into collaborations and work with classes and
other aspects together to implement features of software.

The close integration of aspects and features holds several advantages to FOP
as well as to AOP. Introducing aspects into collaborations improves the FOP’s
crosscutting modularity. This improvement eases the development of feature-
based software. Furthermore, our approach supports the programmer to imple-
ment incremental designs using aspects. Due to their integration into a stack
of collaborations we were able to bound aspects to certain layers. In short,
this bounding capability decreases unpredictable aspect behavior in the face
of adding unanticipated features.

Our view on the relationship of aspects and features differs from previous
work: Caesar [26], Aspectual Collaborations [19], and Object Teams [12] and their
successors are approaches that aim on improving AOP by integrating support

for an incremental development style and for expressing collaborations. These
approaches intermix structural elements of AOP and FOP, e.g. introducing key-
words for pointcuts or collaborations. Our view is more general and explores the
architectural relationship of aspects and features. We found out that there is a
natural connection between both. Moreover, we apply our ideas to the AHEAD
architectural model that implicates many advantages (see Section 7).

However, our ideas are inspired by previous work. e.g. Caesar and extend
our investigations in FEATUREC++ a feature-oriented extension to C++ [3]. In
contrast to work on FEATURECH+, we address general issues that arise from the
evaluation and integration of aspects and features. Our results are independent
from a specific language and can be seen as an architectural model for integrating
AOP and FOP.

1.2 Contributions

This article contributes the following;:

We define a set of criteria for evaluation of modularization techniques focus-

ing on complex software, i.e. program families.

— We use this set of criteria to evaluate the applicability and efficiency of
FOP and AOP for implementing complex software with high demands on
reusability of artifacts and a high degree of variability of the architecture and
implementation. The evaluation reveals several limitations of both program-
ming paradigms, AOP and FOP, that hinder and complicate incremental
software development.

— Based on the evaluation we propose aspectual mizin layers (AMLs) that
integrate FOP and AOP concepts: Whereas collaborations (mixin layers) are
used to implement the skeleton of a design, aspects are used to implement
certain crosscutting concerns inside features. The evaluation and discussion
of AMLs give insight in the relation between features (and their structural
elements) and aspects as well as their synergetic potential.

— Furthermore, we present a case study that clarifies the use of AMLs as well
as their contribution to FOP/AOP with respect to incremental software
development. It serves as a fundament for a discussion about the advantages
and disadvantages as well as promising further research.

— Finally, we introduce two variations of AMLs that yield different promising

characteristics regarding the relationship of aspects and features.

2 Background

For a better understanding of the remaining article we briefly review FOP
and AOP as well as two representative languages, FEATUREC++ [3] and As-
pectC++ [32].

2.1 Feature-Oriented Programming

FOP studies the modularity of features in program families [7]. The idea of FOP
is to build software (individual programs) by composing features. Features are
basic building blocks and first-class entities in design and implementation. They
represent program properties and satisfy intuitive user-formulated requirements
on the software system. Features refine other features incrementally. This step-
wise refinement leads to conceptually layered software designs.

Mizin layers are one appropriate technique to implement features [31,7].
The basic idea is that features are seldomly implemented by single classes (or as-
pects). Often, a whole set of collaborating classes contribute to a feature. Classes
play different roles in different collaborations. A mixin layer is a static component
encapsulating fragments of several different classes (roles) so that all fragments
are composed consistently. Advantages are a high degree of modularity and an
easy composition [31].

AHEAD is an architectural model for FOP and a basis for large-scale com-
positional programming [7]. AHEAD generalizes the concept of features and
feature refinements. Features do not consist of code only but of several types of
artifacts, e.g., makefiles, UML-diagrams, documentation. The ideas elaborated
in this article follow the AHEAD model.

FEATUREC++! is a proprietary C++ language extension that supports
FOP. Features are implemented by mixin layers. Figure 1 depicts a stack of
three mixin layers (Ly — L3) in top down order. The mixin layers crosscut mul-
tiple classes (C4 — C¢). The rounded boxes represent the mixins. Mixins that
belong to and constitute together a complete class are called refinement chain.

In FEATURECH++ mixin layers are represented by file system directories.
Therefore, they have no textual representation at code level. Those mixins found
inside the directories are assigned to be members of the enclosing mixin layers.

G

=)

Fig. 1. Stack of mixin layers. Fig. 2. Aspects extend classes.

Each constant and refinement is implemented as a mixin inside exactly one
source file. Constant classes form the root of a refinement chain. Refinements
are applied to constants as well as to other refinements. Figure 3 depicts a con-
stant (Line 1) and a refinement (Line 5). Programmers declare refinements using
the refines keyword. Usually, refinements introduce new attributes and methods

! http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/

=

QOO Uk WN

class Buffer {
char *buf;
void put (char *s) {}

¥3

refines class Buffer {
int len; int getLength() {}
void put (char *s) {

if (strlen(s) + len < MAX) super::put(s);

}

};

Fig. 3. Constants and refinements.

(Line 6) or extend? methods of their parent classes (see Figure 3, Lines 7-9). To
access the extended method the super keyword is used (Line 8).

For a more detailed explanation of FEATURECH+, its capabilities, and its
implementation we refer the interested reader to [3].

2.2 Aspect-Oriented Programming

AOP aims on separating and modularizing crosscutting concerns [15]. Using
common object-oriented methods the implementation of crosscutting concerns
results in tangled and scattered code [15,10]. The idea behind AOP is to im-
plement crosscutting concerns as aspects. The core features are implemented as
components, as in common design and implementation methods. Using pointcuts
and advice, an aspect weaver brings aspects and components together. Pointcuts
specify the join points of aspects and components, whereas advice define which
code is applied to these points. Figure 2 shows two aspects (A1, Az) that extend
three classes at different join points.

AspectC++3 is an C++ language extension for AOP. Since it has a similar
syntax as the prominent AspectJ?*, we omit a detailed introduction and refer the
reader to [32].

AspectC++ in a nutshell, Figure 4 shows a logging aspect that intercepts all
calls to methods of a buffer class. A pointcut (Line 2) specifies this set of join
points and an advice (Lines 4-6) prints out some logging information.

3 Evaluating FOP and AOP

In this section we introduce a set of criteria that forms a basis for a systematic
evaluation of modularization techniques with respect to incremental software
development. We use these criteria to evaluate and compare FOP and AOP.

2 We do not use the term ’override’ because we want to emphasize that usually method

refinements reuse the parent method. This is more an extension than an overriding.
3 http://www.aspectc.org/
4 http://eclipse.org/aspectj/

N O U W N

aspect Logging {
pointcut log() = call("% Buffer::%(...)");

advice log() : before() {
cout << JoinPoint::signature() << endl;
+
};

Fig. 4. A logging aspect in AspectC++.

3.1 Evaluation Criteria

The following considerations are based on our experience in building program
families [2, 17] as well as on previous work [23, 26, 19]. We are aware that this set
of criteria is not complete but we consider only these criteria that are serious to
step-wise refinement and in which FOP and AOP differ significantly.

Homogeneous vs. heterogeneous crosscuts. Crosscutting concerns can have
two different structures [8]: Homogeneous concerns add the same code at
different join points whereas heterogeneous concerns add different code. A
modularization technique should support both types because the former oc-
curs when implementing non-functional features, e.g. tracing, and the latter
becomes more important for complex programs, e.g. program families.

Static vs. dynamic crosscutting. Crosscutting concerns affect the base pro-
gram in two ways: Static crosscutting affects the static structure, e.g. static
introductions of members in AspectJ or adding classes in AHEAD. Dynamic
crosscutting depends on and affects the dynamic behavior, e.g. method in-
terceptions. Whereas static crosscutting extends a given program structure,
dynamic crosscutting indicates when to apply and execute an extension at
runtime.® Both types are essential in expressing incremental program refine-
ments because new features usually have to extend the structure and the
behavior.

Structural dependency. Refinements that depend on the structure of the re-
fined base program are called hierarchy-conforming. Such refinements are ex-
pressed in terms of the structural elements of the base program. Refinements
that alter the structure and rise the abstraction level are mon-hierarchy-
conforming, e.g. a refinement that extends existent classes but introduces
new concepts and structural elements that are the base for subsequent fea-
tures [26]. Non-hierarchy-conforming refinements are important to raise the
abstraction level and to reduce complexity during the evolution of complex
software systems [26]. They are highly related to the crosscutting phenomena
because with common object-oriented techniques several structural elements
at different locations are refined using elements that form a new structure.

® With dynamic crosscutting we do not refer to dynamic weaving. Whereas the former

indicates when to execute/apply an extension during the runtime control flow, the
latter is the process of weaving features at load time or runtime.

Whereas the hierarchy-conforming refinements are naturally supported by
most language paradigms, e.g. inheritance, it is more difficult to implement
non-hierarchy-conforming refinements. Therefore, they should be explicitly
supported by modern modularization techniques.

Feature interaction problem. Features interact with each other in many ways.

These interactions results in dependencies between different features in this
way that features exclude or require other features [13, 34]. Usually the num-
ber of interactions grows exponentially with the number of deployed features.
This decreases maintainability, variability, and customizability [20]. But even
these virtues are especially important for program families.
The Law of Demeter for Concerns (LoDC) dictates that features should
only know others that contribute to or share their own concerns [18]. This
minimizes feature interactions. Advanced modularization techniques have to
follow this law by decoupling and scoping features. Since we aim on static
customizability and reusability of components at compile time we focus on
static and structural interactions that are caused by code modifications and
transformations (see also [29,4]).

Feature optionality problem. This criteria provides information about to
what extent a modularization technique is robust against adding or removing
optional features [20]. A high tolerance of optional feature compositions leads
to a high degree of flexibility and variability. This is a major requirement for
incremental designs.

Feature cohesion. Cohesion is the property of a feature to encapsulate all im-

plementation units that contribute to the feature in one module [23]. This
eases the maintainability, clearness, and configurability of software. The one-
to-one mapping of requirements to implemented features would be an ideal-
ized goal [10].
Feature cohesion is the basis for aggregating features to form compound fea-
tures. Such aggregation mechanism allows to reuse approved features in order
to construct new ones. This eases the implementation and understanding be-
cause thinking in terms of existing features is often easier than building each
feature from scratch.

3.2 Evaluation

We evaluate AOP and FOP step-by-step using the evaluation criteria. Due to the
limited space, we do not consider hybrid approaches, e.g. Caesar. We elaborate
on the relationship to our work in the discussion of related work.

Homogeneous vs. heterogeneous crosscuts. FOP deals with implementing
heterogeneous crosscuts: By refining several classes and methods with new
classes and methods the programmer applies different code to different join
points. It is hard to specify a set of join points and to apply the same code to
this set because it is not explicitly supported by common FOP approaches.
This results in redundant programming effort and duplicated code. This
weakness in modularizing homogeneous crosscuts is the strength of AOP.

With AOP the programmer specifies a set of join points in order to apply one
advice. This makes it easy to express homogeneous crosscuts. In exchange,
AOP has weaknesses in expressing heterogeneous crosscuts. It is possible
to bundle a set of static introductions or pairs of pointcuts and advice,
but such aspects do not reflect the structure of the refined feature. That
means that the logical structure reflecting the domain knowledge is broken.
Another way to implement a heterogeneous crosscut using AOP is to define
one aspect per join point. This solution breaks the feature cohesion because
the added feature consists of several aspects and classes but they are not
encapsulated in one implementation unit. This makes it difficult to switch
features on and off. Imagine a program family consiting of 10 features. Each
feature is implemented in average by 10 classes/aspects. In order to derive a
family member with 5 features the programmer has to manually choose 50
aspects/classes and to remove the remaining 50 aspects/classes, respectively.
Using FOP, features are encapsulated in mixin layers. The programmer sim-
ply chooses the desired features in a declarative way (by specifying equations
of features). FOP expresses heterogeneous crosscuts in a more elegant, sim-
pler, and intuitive way than AOP.

Static vs. dynamic crosscutting. Both, FOP and AOP support static cross-

cutting, in particular adding methods and attributes. FOP has a more gen-
eral mechanism for introducting new structural elements. Beside methods
and attributes also classes (and other elements) can be introduced. With
AOP, the programmer has to add new classes manually.
Furthermore, both paradigms support dynamic crosscutting. Whereas FOP
supports only simple method interceptions, AOP can express more advanced
dynamic crosscutting, e.g. cflow, if, execution pointcuts. Note that dynamic
crosscutting can be implemented using static program transformation, e.g.
as in AspectdJ or FEATURECH+.

Structural dependency. In FOP, features that refine other features have to

extend the static structure of the base feature. The programmer is forced to
express new features in terms of abstractions of the existent features, e.g. by
refining existent classes and methods with new classes and methods. This
prevents the raising and altering of the abstraction level, e.g. by introducing
new elements on the basis of former elements. Indeed, with FOP new classes
can be added, but it is not possible to refine/extend multiple existent classes
and to introduce a new concept on top of the refined elements.
AOP allows encapsulating a refinement into aspects. Aspects are able to re-
fine a base program at multiple positions but do not depend on its structural
properties. Thus, the programmer can introduce new abstractions that build
up on present structures but introduce new concepts (cf. [26]).

Feature interaction problem. To minimize feature interactions in FOP, Pre-
hofer suggests to use lifters. Lifters encapsulate code that depends on other
features [29]. This results in feature that are independent of other features
and feature that depend on others. This reduces the amount of depended
code, decouples features, but increases the overall number of implementation

units. Prehofer argues that in real applications this number is manageable
and therefore this approach helps the programmer to handle interactions.

AOP has no specific mechanisms or idioms to minimize interactions. The
property of aspects to crosscut module boundaries and the absence of a
scoping mechanism makes it hard to predict interactions with other features.
Solving these problems is subject of current research [11,22,16, 1]. Lopez-
Herrejon and Batory propose an alternative bounding mechanism that scopes
aspects in order to affect only features of current and prior development
stages [22]. However, current AOP languages do not follow this principle
and complicate the development of incremental designs.

Feature optionality problem. To solve the feature optionality problem in
FOP once more lifters can help [29]. As with the feature interaction problem
the decoupling of features is essential.

AOP tackles the problem from another side. By expressing join points in
pointcuts the programmer is able to skillfully define wildcards that are ro-
bust against changes of features and their composition. Furthermore, a lot
of research effort is done to provide more advanced and robust join point
descriptions, e.g. [27].

Feature cohesion. Features implemented as mixin layers are mapped one-to-
one to the implementation level. All structural elements that contribute to
the feature are encapsulated inside a mixin layer. Hence, a high degree of
feature cohesion is achieved. Features can be composed to form new features.
This enables the programmer to generate compound features out of atomic
features in order to reuse code.

Using AOP, a programmer expresses new features by introducing aspects
and classes. In certain cases features cannot be expressed using one single
aspect, especially not in large naturally grown programs [23, 26]. Often, the
programmer introduces several aspects and additional classes, e.g. a logging
aspect and a class responsible for printing log messages. One may argue that
he is able to express every feature using one aspect stand-alone, but we argue
that this conflicts with the idea of AOP and separation of concerns. Doing
all things in one huge class would also not be a good programming style.

With common AOP the introduced aspects and classes that contribute to a
feature are not encapsulated in one implementation unit. This complicates
the customization, evolution, and comprehensibility of the overall architec-
ture. Common AOP does not support the explicit expression and encapsu-
lation of collaborations, i.e. classes that collaborate to implement a feature.
Thus, AOP has a low degree of feature cohesion and therefore aspects cannot
be composed to form compound aspects. This decreases the aspect reuse and
hinders building software of large-scale building blocks.

A further benefit of FOP is that feature compositions can be described us-
ing algebraic equations. An algebraic model poses as a basis and supports
automatic composition and optimization [7]. This is especially important for
handling large-scale program families.

3.3 Summary

o |3
=] >
5] o o
o |2 £ £[_%8 2
52158 £e5|28| 2l5g,5
Q LR
20|50 SIED|2c|28 So|o3
DRl s |co |58 65|50
ELIRY =2 |c8|SolRa|leR RS
62|22 |82 |52|50 (82|28 (86
£06|€0|nG |00 |ho|LE|0l |20
@ good support
S NONN BN RECERORN BECEN J "
(D limited support
AOP
® DD ® D O D| O] © weakinosupport

Table 1. Evaluation of FOP and AOP

Table 1 summarizes our evaluation results. As we already explained all these
evaluation criteria are crucial to implement incremental designs. Choosing one
modularization technique, FOP or AOP, would lead to problems because both
have their weaknesses. Table 1 shows that both techniques complement one
another, e.g. AOP is strong in modularizing homogeneous crosscuts whereas
FOP has its strengths in modularizing heterogeneous crosscuts. Therefore, we
propose the integration of both techniques. Whereas FOP helps to decompose
a program family in the large, aspects improve the crosscutting modularity of
features.

4 Combining Aspects and Features

This section presents AMLs that address several issues discussed in the previous
section.

We perceive FOP as a basis methodology for incremental software develop-
ment using large-scale building blocks. Therefore, we discuss AMLs in terms of
how they enhance FOP in improving the crosscutting modularity. Furthermore,
we present the new notion of aspect refinement and a specific bounding mech-
anism that follow logically from the integration of AOP and FOP. Afterwards,
we evaluate AMLs using our evaluation criteria.

4.1 Aspectual Mixin Layers

The key idea behind AMLs is to embed aspects into mixin layers (see Figure 5).
Since mixins implement class fragments the embedded aspects can be seen as
fragments, too. FOP with AMLs decomposes an aspect-oriented design into lay-
ers that implement features. Thus, each AML contains a set of mixins and a set
of aspects. The programmer uses mixins to implement static, heterogeneous, and
hierarchy-conforming crosscutting, and he/she uses aspects to express dynamic,
homogeneous, and non-hierarchy-conform crosscutting. In other words, mixins
refine other mixins and depend, therefore, on the structure of the parent layer.

These refinements follow the static structure of the parent features. Aspects re-
fine a set of parent mixins by intercepting method calls and executions as well as
attribute accesses. Therefore, aspects are able to implement advanced dynamic
crosscutting and homogeneous, non-hierarchy-conform refinements. With AMLs,
the programmer is able to select the adequate technique — mixins or aspects —
that fits a given problem best.

CoHCOC)

refinement - - - - N _ -+ weaving

Fig. 5. Aspectual mixin layers.

Figure 6 shows a stack of mixin layers that implements buffer functionality,
in particular a basic buffer with iterator, a separated allocator, synchronization,
and logging support. Whereas the first three features are implemented using

Base

Iterator ‘

T

oo [(Buter) |
T . T

Sync ‘ [E?&J‘fferj\gte/rator] [Alloéator] ‘

Log ‘ [LogConsoIe)\éEI:ogAspect] ‘

Fig.6. An AML for logging.

common mixins, the logging feature is implemented using mixins and aspects.
The rationale behind this is that the logging aspect captures a whole set of
methods that will be refined (dashed arrows). This refinement is not hierarchy-
conforming and depends on the runtime control flow (dynamic crosscutting).
Moreover, it modularizes a homogenous crosscutting concern.

4.2 Aspect Refinement

The introduction of AOP techniques and concepts into FOP leads us to the
notion of aspect refinement. Since aspects are introduced into mixin layers it is
natural to refine them incrementally, too. This is complementary to the view
that AMLs are units of (de)composition of aspect-oriented architectures. Since
in many AOP languages aspects have similar structural elements as classes it is

straightforward to refine these elements in the same way, e.g. introducing meth-
ods and attributes or extending methods. Moreover, it becomes possible to refine
pointcuts and advice. Refining these aspect-specific elements yields several ad-
vantages. By refining a pointcut a programmer can subsequently alter or extend
a set of join points. Think of a logging aspect that matches certain points at a
given development stage. Introducing new classes leads to modifying the logging
aspect to match these new classes. As with classes it is better to refine the log-
ging aspect subsequently than changing the existent aspect. Refining advice is
similar to refining methods. In doing that the aspect behavior can be adjusted
and extended.

In the following we describe the concept of aspect refinement using FEA-
TUREC+-+: With AMLs aspects can refine other aspects by using the refines
keyword. To access the methods and attributes of the parent aspect, the refining
aspect uses the super keyword. Figure 7 shows an AML that refines a logging
aspect included in a logging feature by additional join points in order to extend
the set of intercepted methods. Beside this, the logging console (implemented as
a mixin) is refined by additional functionality, e.g. a modified output format.

Extending pointcuts increases the reuse of existing join point specifications.
Note that refining/extending aspects is conceptually different than applying as-
pects themselves. Applying two aspects modifies the base program in two inde-
pendent steps. In our logging example this would lead to two different logging
instances. Instead, aspect refinement results in two native aspects that are con-
nected via inheritance. Thus, one aspect extends the other and both are applied
to the base program. Applied to our logging example, we have only one logging
instance.

Base ‘ m Iterator ‘

Alloc | q |
[E}\uffer] [Iterator] [Allocatorj m ‘

Log ‘ [LogConsoIe)e(LogAspect] ‘

Sync

ExtLog ‘ [LogConsoleHLogAspectj ‘

Fig. 7. Refining an AML.

Figure 8 depicts a logging aspect that extends a method of a parent aspect
in order to adjust the output format (Line 2) and refines a parent pointcut to
extend the set of target join points (Lines 3-4). Both is done using the super
keyword (Line 2,4).

Since advice is not a first class entity in FEATUREC++ and AspectC++
we cannot demonstrate an example of refining an advice. By adopting ideas of

T W=

refines aspect LogAspect {
void print () { changeFormat(); super::print(); }
pointcut log() = call("% Buffer::put(...)") ||
super: :log();
e

Fig. 8. An aspect embedded into a mixin layer.

classpects that unify methods and advice [30] we would be able to refine advice
analogously to methods.

4.3 Bounding Quantification

The close integration of aspects into the incremental development style of FOP
and program families leads to a further interesting issue. This integration allows
us to tame the unpredictable behavior of aspects.

The problem of current AOP languages is that the binding of aspects is in-
dependent of the current development stage. That means an aspect may affect
subsequent integrated features although the aspect was implemented without
being aware of these features. Moreover, aspects degrade the ability to reason
about module interfaces [16]. The programmer may not be aware of the interac-
tion of aspects of previous features with the elements of new features. This can
lead to unpredicted effects and errors, e.g. an aspect is unintentionally bound
to features of subsequent development stages. Since common AOP languages
cannot distinguish between elements of different development stages they can-
not scope their appliance. Integrating aspects into incremental designs makes it
possible to assign the implementation units to development stages and to define
a natural order.

In [22] Lopez-Herrejon and Batory propose an alternative aspect composition
mechanism. They argue that with regard to software (program family) evolution,
features should only affect features of prior development stages. Mapping this to
aspects means that aspects should only affect elements assigned to development
stages that were already present at the implementation time of these aspects.
Current AOP languages do not follow this principle.

In order to integrate this bounding mechanism into FEATURECH+ the user-
declared join point specifications must be restructured: Type names in pointcut
expressions are translated in order to match only these types that are declared
by the current and the parent layers. Each expression that contains a type name
is translated into a set of new expressions that refer to all type names of the
parent classes. Figure 9 shows a synchronization aspect that is part of an AML.
It has two parent layers (Base, Log) and several child layers. Using this novel
bounding mechanism, we transform the aspect and the pointcut as depicted in
Figure 10. It can be seen that the new pointcut matches only types of the current
and parent layers (Lines 3-5).

W =

QT W~

This example reflects only our first results. A detailed analysis of complex
pointcuts and their transformation is part of further work.

aspect SyncAspect {
pointcut sync() =
execution ("% Buffer::put(...)");

s

Fig. 9. A simple pointcut expression.

aspect SyncAspect_Sync {
pointcut sync() =

execution ("% Buffer_Sync::put(...)") ||
execution ("% Buffer_Log::put(...)") ||
execution ("% Buffer_Base::put(...)");

s

Fig. 10. Transformed pointcut.

4.4 Evaluation of Aspectual Mixin Layers

Taking the ideas of aspect refinement and bounding quantification into account,
we evaluate AMLs using our criteria:

Homogeneous and heterogeneous crosscuts. The integration of aspects and
mixins in AMLs enables the programmer to choose the right technique for
solving a given problem: The programmer uses aspects to implement homo-
geneous and mixins to implement heterogeneous crosscuts. Furthermore, it
is feasible to combine mixins and aspects in one layer to profit from their
collaboration. Aspects and mixins can be refined in subsequent mixin layers.

Static and dynamic crosscutting. The integration of FOP and AOP con-
cepts allows to express static crosscutting in two ways, using mixins and us-
ing static introductions in aspects. This introduces a semantic redundancy.
As mentioned in the previous paragraph, we suggest to use aspects to imple-
ment homogeneous crosscuts and mixins to implement heterogeneous cross-
cuts, which depend on the structure of the parent feature. Although we have
this guideline how and when to use mixins and aspects, a programmer may
violate this idiom. In this case, we handle mixins with an higher priority
than aspects. The rationale is that we perceive mixins as the skeleton of a
software.

Furthermore, the integration of aspects into mixin layers allows expressing
advanced dynamic crosscutting. By using pointcuts, e.g. set, get, execution,
or cflow, a programmer can implement features depending on the runtime
control flow, the runtime state, and the current context. As with static cross-
cutting method extensions can be implemented with aspects (using a call
pointcut) and mixins (by extending the parent method). We handle this
analogously to static crosscutting: using aspects for homogeneous and mix-
ins for heterogeneous crosscuts.

Structural dependency. AMLs can express hierarchy-conforming and non-
hierarchy-conforming refinements. AMLs are a super set of mixin layers that
can additionally be used to define new features that alter the program struc-
ture. AMLs can define aspects that refine entities of the parent features at
several locations. Furthermore, they may introduce new concepts that on
their part can be refined by other features. It is possible to refine a parent
feature by aspects and mixins in concert, e.g. as with the extended logging
feature that refines an aspect and a mixin.

Feature interaction problem. FOP solves the problem of unpredictable fea-
ture interactions by using lifters. In common AOP languages no such tech-
niques or idioms are intended. Since we do not want to introduce this weak-
ness of AOP into FOP, we utilize a specific bounding quantification mecha-
nism (cf. Section 4.3). It supports a better incremental design and prevents
unpredictable aspect composition.

Feature optionality problem. The feature optionality problem is solved by
FOP by using lifters. Lifters encapsulate feature dependencies and decouple
features. In AOP the well-thought use of wildcards in pointcut designators
helps to be reliable against optional features. The integration of mixins and
aspects do not worse this problem. On the contrary, the programmer can
decide which functionality is implemented using aspects or using mixins.
In this way he can select the adequate technique to implement a feature
hierarchy that is tolerant and reliable against changes and optional features.

Feature cohesion. Since aspects are encapsulated in mixin layers a high degree
of feature cohesion is achieved. Due to the ability to refine aspects they can
be reused and combined to form new compound features. Indeed, aspects
are encapsulated but still crosscut module boundaries and are not part of
the interface of the mixin layer. We refer to Open Modules that address this
issue [1].

Features that contain aspects can be composed using declarative descrip-
tions. This is an improvement of AOP with respect to incremental software
development.

4.5 Summary

Table 2 summarizes the discussion of this section. It compares AMLs with pure
FOP and AOP approaches. AMLs are better than FOP and AOP standalone
because they combine the advantages of both. However, it is up to the program-

a |8
o
8,18, 2 2.8 ¢
S2/5g £|oEle5| 8l el.8
23|83 | 2|E8|32|pG|82|ed
215222 |82|ca|5C|65|50
EZIE8|88|c8|22|RE|E8|RS
sPle2 |82 |52 50(|82(28|80
£G6|£6|hG |86 |ho|LE|o0l |83
FPIO | @ @O0 @0 e
jood support
APl @D | D @[O0 ®oodww
() limited support
AL/ O | @ © 06 06 0 0 O (O weak/no support

Table 2. Evaluation of AMLs

mer to choose the right techniques to implement a given feature. AMLs are no
excuse for bad design or code.

5 Case Study

This section introduces a case study that clarifies the use of AMLs. We choose
the stock information broker example, adopted from [26], in order to emphasize
the benefits of AMLs compared to common FOP approaches. We show how they
perform regarding the criteria discussed in Section 3. Furthermore, the case study
serves as a basis for discussing and comparing our ideas. We have implemented
the case study using FEATURECH++.

5.1 A Stock Information Broker

Client | <<creates>> N StockInfoRequest
run(...) getStocks()
: <<uses>> /\\
, : <<uses>>
StocklInfo —
getQuote) StockInformationBroker S DBBroker
addQuote() oo collectlnfo(...) getStock()

Fig. 11. Stock Information Broker.

A stock information broker provides information about the stock market. The
central abstraction is the StockInformationBroker (SIB) that allows to lookup
for information of a set of stocks (see Figure 11). A Client can pass a StockIn-
foRequest (SIR) to the SIB by calling the method collectInfo. The SIR contains
the names of all requested stocks. Using the SIR, the SIB queries the DBBroker
in order to retrieve the requested information. Then, the SIB returns to the
client a StockInfo (SI) object that contains the stock quotes.

O~ Uk WN -

class StockInformationBroker {
DBBroker m_db;
public:
StockInfo &collectInfo(StockInfoRequest &req) {
string *stocks = req.getStocks();
StockInfo *info = new StockInfo ();
for (unsigned int i = 0; i < req.num(); i++)
info->addQuote (stocks[i]l, m_db.get (stocks[il]));
return *info; }

i

class Client {
StockInformationBroker &m_broker;
public:
void run(string *stocks, unsigned int num) {
StockInfoRequest sir(stocks, num);
StockInfo &info = m_broker.collectInfo(sir);

Jx .. %/
}
s

Fig. 12. The basic stock information broker.

All classes are encapsulated in a mixin layer. In other words, this mixin layer
implements a basic stock information broker feature. Figure 12 shows a subset
of this base feature.

A second feature implements a pricing functionality. The pricing feature
charges the client’s account depending on the received stock quotes. A third
feature implements an accounting functionality that monitors the overall flow of
money between client and broker.

5.2 Implementing Refinements

The two features pricing and accounting shall be implemented as refinements
without modifying the base feature. The following paragraphs present solutions
using common FOP and AMLs.

A Common FOP Solution. Figure 13 depicts the pricing feature imple-
mented using common FOP. Client is refined by an account management (Lines 17-
27), SIR is refined by a price calculation (Lines 1-6), and SIB charges the account
when passing information to the client (Lines 10-14).

The accounting feature is depicted in Figure 14. An Accounting class (Line 21)
stores and manages information about money transfers between client and bro-
ker. Client and SIB are extended by account ids (Lines 2,13). Moreover, they are
refined by code that captures transactions that are critical to the money transfer.
Corresponding information is passes to the Accounting class (Lines 7,17).

There are several problems to this approach: (1) The pricing feature is ex-
pressed in terms of the structure of the base feature. This problem is caused by
the inability of FOP to express non-hierarchy-conforming refinements. It would

O~ Uk WN -

refines class StockInfoRequest {
float basicPrice();
float calculateTax();

public:
float price();

s

refines class StockInformationBroker {
public:
StockInfo &collectInfo(Client &c,
StockInfoRequest &req) {
c.charge(req);
return super::collectInfo(req);
}
};

refines class Client {
float m_balance;
public:
float balance();
void charge(StockInfoRequest &req);
void run(string *stocks, unsigned int num) {
StockInfo &info =
super::m_broker.collectInfo (xthis,
StockInfoRequest (stocks, num));

Fig. 13. The pricing feature using FOP.

be better to describe the pricing feature using abstractions as product, pro-
ducer, and customer. (2) The interface of collectInfo was extended. Therefore,
the Client must override the method run in order to pass a reference of itself to
the SIB. This is an inelegant workaround, increases the complexity, and violates
the principle to do not replace methods of prior development stages. (3) The
charging of clients cannot be dynamically altered, e.g. depending on the run-
time control flow or the context (e.g. the caller). (4) The accounting feature is a
homogeneous crosscut that cannot be encapsulated in one location. The intro-
duction of the account ids and the call to the log method is redundant in client
and broker.

An Aspectual Mixin Layer Solution. Figure 15 depicts the pricing feature
implemented by an AML. The key difference to the common FOP solution is
the Charging aspect and the modified Client class (run is not extended). SIR
is similar to the FOP version and SIB remains unchanged, i.e. it is not extend-
ed/refined by a mixin.

The Charging aspect intercepts calls to the method collectInfo (Lines 2-4)
and charges the calling client depending on its request (Lines 6-9). This solves
the problem of the extended interface because the client is charged by the aspect
instead by the SIB. The client does not need to extend the run method.

A further advantage is that the charging of client’s accounts can be made
dependent to the control flow (using the cflow or if pointcut). This makes it pos-

O~ Uk WN -

refines class StockInformationBroker {
int account;
public:
StockInfo &collectInfo(Client &c,
StockInfoRequest &req) {
StockInfo &info = super::collectInfo(req);
Accounting::log(account, req.price());
return info;
}
};

refines class Client {
int account;
public:
void Client::charge(StockInfoRequest &req) {
super: : charge (req);
Accounting::log(account, req.price());
}
};

class Accounting {
void log(int, float) { /x...x/ }
};

Fig. 14. The accounting feature using FOP.

sible to implement the charging function variable, e.g., depending on the caller.
Finally, our example shows that by using AMLs we are able to refine these classes
that play the roles of product (SIR) and customer (Client). Unfortunately, they
do not directly represent the producer role. However, AMLs allow to alter the
abstraction level and to implement certain non-hierarchy-conform refinements.

The accounting feature is implemented using a simple aspect (see Figure 16).
The account ids are added using static introductions (Lines 2-3). A pointcut
specifies the target methods (Line 5-6) and an advice adds calls to the Accounting
class (Line 11). To overcome the problem of the different signatures of charge
and collectInfo we use the AspectC++s reflective API as well as its static typing
support [21].

This solution implements the accounting feature, which is a homogeneous
crosscut, in an elegant way, using an aspect and a class but encapsulated in a
cohesive feature.

6 Discussion

AMLs highlight one way to integrate aspects and features. Our investigations
reveal that there is no reason to perceive aspects and features as concurrent
concepts. We believe they complement each other.

AMLs contribute novel ideas to FOP in order to improve the crosscutting
modularity. AMLs tackle the FOP problems by introducing aspects into mixin
layers. This enables the programmer to choose the adequate technique for a given
problem: On the one hand, he uses aspects for implementing homogeneous cross-

O~ Uk WN -

OO~ Uk WK~

aspect Charging {
pointcut collect(Client &c, StockInfoRequest &req)
call ("%,StockInformationBroker::collectInfo(...)"
&& args(req) && that(c);

")

advice collect(c, req)
after (Client &c, StockInfoRequest &req) {
c.charge(req);
}
};

refines class Client {

float m_balance;
public:

float balance ();

void charge(StockInfoRequest &req);
15

Fig. 15. The pricing feature using AMLs.

aspect AccountingAspect {
pointcut id() = "Client" || "StockInformationBroker";
advice id() : int account;

pointcut transfers() =
call ("% %::collect%(C...)" || "%u%::charge(...)");

advice transfers() : after() {
StockInfoRequest &req =
(StockInfoRequest)tjp->arg(JoinPoint::ARGS-1);
Accounting::log(tjp->that ().account, req.price());
}
};

class Accounting {
void log(int, float) { /x...x/ }
};

Fig. 16. The accounting feature using AMLs.

cuts, advanced dynamic crosscutting, as well as features that do not follow the
structure of the base elements. Note that the programmer does not use aspects
stand-alone but encapsulated in AMLs with mixins in collaboration. On the
other hand, the programmer uses common mixins to implement heterogeneous
crosscuts that can be expressed in terms of the structure of the base features.
The integration of aspects into the incremental development model allows the
refinement of aspects similar to classes. Furthermore, we are able to bound their
effects to a predefined set of features.

However, the case study has shown that AMLs where not able to express
the pricing feature in terms of product, producer, and customer. This is because
aspectual entities as pointcuts cannot be assigned to mixins, e.g. the SIB. A
possible solution would be to assign pointcuts and advice to mixins. Thereby,

mixin refine other mixins additionally by introducing pointcuts and advice. [3]
discusses such potential variations of the AML approach in the context of FEA-
TURECH+..

A different point of view is that FOP using AMLs (de)composes aspect-
oriented architecture in order to achieve feature modularity. The introduction
of aspects has led us to the proposal of aspect refinement. Since aspects are
encapsulated in mixin layers they can be refined, too. Refining aspects leads to
the observation that it would be useful to refine pointcuts and advice, besides
methods. Since advice are not first-class entities in common AOP approaches we
focus preliminarily on pointcut refinements. Section 4 has shown that there are
indeed certain applications of this concept.

Finally, the new bounding mechanism allows to scope aspects and to prevent
unpredicted aspect interactions and bindings. This is not possible with common
AOP languages because the order of refinements cannot be inferred from the
program structure, e.g. the classes and aspects. So the integration of aspects
into features makes it possible for the first time to bound aspects based on their
affiliation to a development stage. This is an important contribution to apply
aspects to incremental program family development.

6.1 Extensions and Modifications

During our work on AMLs we have collected several possible extensions and mod-
ifications of our ideas to integrate AOP concepts into FOP. The remaining sec-
tion describes multi mixzins (MMs) and aspectual mizins (AMs) that contribute
new ideas to the symbiosis of AOP and FOP. However, the following considera-
tions are of conceptual nature and are not implemented in FEATUREC+-+ nor
in another language.

Aspectual Mixins. The idea of AMs is to apply AOP language concepts di-
rectly to mixins (see Figure 17). In this approach, mixins refine other mixins as
with common FOP, but they also define pointcuts and advices. In other words,

C)

v
refinement. - - - |).

aspectual
mixin

Fig. 17. Aspectual mixins: Unifying aspects and mixins.

_-7.- weaving

aspectual mixins are similar to aspectual mixin layers but integrate pointcuts
and advices directly into mixins. The rationale behind this is that in some cases
an aspects have to refine directly mixins. Recall the case study where AMLs
where not able to assign the producer role to the SIB class. Instead, a separate

=

O OO0 Uk W+~

refines class StockInformationBroker {
pointcut collect(Client &c, StockInfoRequest &req)
call ("%,StockInformationBroker::collectInfo(...)"
&& args(req) && that(c);
advice collect(c, req) :
after (Client &c, StockInfoRequest &req) {
c.charge(req);

)

+
int broker_id;
TransferMap map;

Fig. 18. Aspectual mixins.

aspects encapsulates the charging code. With AMs the SIB can be refined and
implement the charging functionality using pointcuts and advice.

Figure 18 depicts an AM that implement the pricing feature by adding the
charing code to the SIB (pointcut and advice).

We admit that this solution differs only in the fact that the charging code
has moved to the broker. But (1) in this example the charging functionality can
be logically assigned to the broker (which plays the role of the producer), and
(2) the broker is an extension to an existent broker and can further refine it by,
e.g., adding protocol code for tracing the client’s transactions (Lines 11,12). We
perceive that as an improvement over the AML solution.

AMs can be seen as aspects that inherit from class using mixin-based in-
heritance. The close connection between mixin and aspect may lead to deeper
problems (e.g. regarding the life time dependency of aspects and mixins) which
we currently cannot anticipate in their full depth.

However, the possibility to implement mixins, aspects, and aspectual mix-
ins offers the programmer powerful techniques to implement various kinds of
features. Each technique has its strengths and weaknesses and it is up to the
programmer to select the adequate one. A downer is the fact that the overall
approach may become to complex and the programmer is lost. In ongoing work
we want to evaluate or ideas in real world case studies.

Multi Mixins. A further variant that comes into mind in order to improve
mixins and mixin layers is to extend the capabilities of how to specify the join
points where they are bound to. MMs are one approach to do that. They are
related to the idea of AMs. The key difference is that MMs specify the set of
parent mixins and methods using pointcut-like constructs (see Figure 19).

In a first variant we propose to specify the sets of parent mixins using simple
pointcut-like constructs. Figure 20 depicts a multi mixin that implement the
accounting feature. It refines the client and the broker (Line 1) and adds to both
classes an account id (Line 3). Furthermore, it extends two methods (charyge,
collectInfo, Line 5-8) to apply the code that passes information to the Accounting
class (Line 12). Since the two methods have different signatures the refined

—

OOk WN -~

Fig. 19. Multi mixins: One mixin refines a set of parent mixins.

refines class Client &&
class StockInformationBroker {
int account;
public:
void charge(...) && collectInfo(...) {
StockInfoRequest &req =
(StockInfoRequest)argv(argc - 1);
Accounting::log(caller.account (), req.price());
}
};

Fig. 20. The accounting feature using multi mixins.

method body accesses the argument via reflective API (Line 6-7) and calls the
log method (Line 8).

MMs offer a more advanced mechanism to express homogeneous and non-
hierarchy-conforming refinements. The strength lies in the pointcut-like mecha-
nism to specify the set of parent mixins and methods (Lines 1,5).

However, in current it is not clear if multi mixins introduce weaknesses in
static typing, e.g. by accessing the caller (Line 7), the result, or the arguments
(Line 6). Part of future work is how to exploit known ideas of AOP languages
and ideas of [21] to guarantee static type checking.

The more complex the mechanism for specifying target methods and mixins
become, the more multi mixins mutate to aspects and classpects [30]. However,
aspects separate pointcuts and advices. classpects, further unify advices and
methods. This is also true for multi mixins.

7 Related Work

7.1 Aspects, Features, and Collaborations

[23,26,19] feature an evaluation and discussion of common AOP and FOP ap-
proaches. They identify several weaknesses concerning the crosscutting modu-
larity, the reuse of features/aspects, the support for dynamic composition, as
well as missing module boundaries.

Our evaluation is based on their results but extends them by an explicit
evaluation framework with focus on incremental software development. Espe-
cially, the direct connection between aspects, mixins, and mixin layer is novel
and results in AMLs that exploit their synergetic potential.

Mezini et al. propose Caesar that combines aspects and collaboration to
address the mentioned issues [26]. Aspects in Caesar rely on aspect collabora-
tion interfaces that decouple an aspect’s implementation from its binding. By
defining a binding a programmer can adapt the aspect’s implementation to the
application context. This on-demand remodularization improves aspect reuse.
Bindings are applied statically at object creation time or during the dynamic
control flow. Different aspects can be composed via their collaboration interfaces.
Collaborations are refined using pointcut-like constructs.

As with the Caesar approach, Object Teams (OTs) [12] and Aspectual Col-
laborations (ACs) [19] encapsulate aspects into modules with expected and pro-
vided interfaces. Their focus is similar to Caesar but with drawbacks regarding
the aspect reuse (due to missing bidirectional interfaces).

Caesar, ACs, and OTs as well as AMLs have several similarities. All are based
on collaborations which represent the basic building blocks and all integrate
AOP concepts. The main advantage of AMLs is that they have AHEAD as
architectural model. Although the others do not propose such model we perceive,
if it is, GenVoca as their architectural model. AHEAD has several strengths
compared to its predecessor GenVoca: It integrates all kinds of software artifacts
and introduces an algebraic model for software structure. This opens the door
to automatic algebra-based optimization and compositional reasoning [7].

However, Caesar, ACs, and OTs have a stronger focus on on-demand re-
modularization and dynamic composition which are not addressed in the AML
approach.

Jiazzi is a component system for Java that allows to express components as
collaborations [25]. A special linker is used to compose binary Jiazzi components.
Although the author propose to use Jiazzi for AOP this is very complicated and
has not the same power than common AOP approaches, e.g. AspectJ. Instead,
AMLs support both AspectJ-like aspects and collaborations. As with the other
mentioned component systems Jiazzi lacks an architectural model.

7.2 Aspects and Incremental Software Development

Colyer et al. propose the principle of dependency alignment: a set of guidelines
for structuring features in modules and aspects with regard to program fami-
lies [9]. They distinguish between orthogonal and weak-orthogonal features. But
they do not distinguish between the structural properties and conceptual differ-
ences of aspects and features. The discussion of AMLs reveals that using aspects
stand-alone has several weaknesses in implementing features. The integration in
collaborations unifies and improves AOP and FOP.

Loughran et al. support the evolution of program families with Framed As-
pects [24]. They combine the advantages of frames and AOP in order to serve
unanticipated requirements. Framed Aspects are related to AMLs. Both allow
to parameterize aspects at instantiation time but AML embed aspects into col-
laborations.

Kendall explores the connection between role modeling and AOP [14]. As-
pects can implement roles, but, however, she does not consider the encapsulation

of aspects into collaborations. Thus, her approach has several shortcomings re-
garding cohesive role refinements.

7.3 AOQOP and Separation of Concerns

AMLs are related to multi-dimensional separation of concerns (MDSC) and Hy-
per/J that implements MDSC for Java [33]. This approach to software develop-
ment is as general as that of AHEAD and AMLs [5]. It addresses all kinds of
software artifacts. Hyper/J uses external rules to compose the different concerns.
AMLs with its implementation level mechanisms based on roles and aspects, as
well as their external composition using algebraic equations, is more flexible and
leaves space for optimizations and compositional reasoning. However, the sepa-
ration of features along different dimensions as proposed in MDSC has strengths
compared to common collaboration-based designs, e.g. handling of optional fea-
tures and feature interactions.

The Law of Demeter for Concerns (LoDC) states that concerns should only
know other concerns that contribute to its own functionality [18]. Following this
principle (1) eases the incremental evolution of software by adding concern by
concern and (2) minimizes the number of feature interactions. AMLs follows
LoDC and enables a clear encapsulation of concerns. The supported bounding
mechanism scopes aspects in order to reduce unpredictable feature interactions.

Classpects combine capabilities of aspects and classes to unify the design
of layered module systems [30]. They are related to AMLs, whereas classpects
unify advice and methods (advice can be explicitly invoked), but do not support
mixin-based refinements.

AspectJ-like languages can express mixins, too. Using static introductions,
several classes (and methods) can be refined. In the face of heterogeneous cross-
cuts, for each target class a new aspect must be introduced. Otherwise, one
aspect declares all introductions. The problem of the first approach is that it
breaks feature cohesion. Moreover, the target classes are defined at development
time. Therefore, an easy exchange of the target features is not possible (because
class names change which is not the case with mixins). The second approach
merges multiple refinement chains into one aspect. This may destroy the logi-
cal structure. Our approach can be seamlessly integrated into mixin layers and
follows an architectural model. Moreover, it supports incremental software de-
velopment using a novel bounding mechanism.

7.4 Aspects and Modular Reasoning

Several research efforts are made on the fact that aspects crosscut module bound-
aries. Aspect-ware interfaces [16] and open modules [1] support modular reason-
ing by encapsulating the interactions between two concerns. This reduces unpre-
dictable aspect/feature interactions but also reduces the flexibility to implement
unanticipated features. AMLs tackle the problem from another side: The AMLs
bounding quantification exploits the order that is naturally introduced by dif-
ferent development stages. Furthermore, it is based on an algebraic model that

is more extensible [22]. However, in future work we aim on integrating ideas on
modular reasoning into AMLs.

8 Conclusions

This article has contributed a discussion and evaluation of FOP and AOP with
respect to the implementation of incremental designs and program families. We
have identified the architectural connection between aspects and features. Both
complement each other to implement complex software. We have introduced a
set of criteria that poses as a basis for the evaluation and comparison of modu-
larization techniques with focus on incremental software development. Whereas
common AOP has weaknesses regarding heterogeneous crosscuts, feature cohe-
sion, and implementing software incrementally, FOP has shortcomings in the
crosscutting modularity. On the contrary, both contribute essential ideas and
approved techniques to incremental software development at different levels of
abstraction.

Since both paradigms have their strengths and weaknesses, we have proposed
the symbiosis of both in order to exploit and combine their strengths. Based on
a detailed evaluation, we have introduced the novel notion of aspectual mixin
layers. AMLs enhance common mixin layers by integrating AOP techniques, i.e.
by integrating aspects into mixin layers. This leads to an improvement of FOP
regarding crosscutting modularity. Furthermore, it contributes an architectural
model that integrates aspects and features as well as the novel AOP concepts of
aspect refinement and bounding quantification.

A case study has revealed the benefits and limitations of AMLs. AMLs im-
prove the crosscutting modularity of FOP but, unfortunately, they introduce
known AOP weaknesses, e.g. no strict module boundaries. However, further im-
provements of aspect techniques will also advance AMLs.

A final discussion of alternative variants of AMLs revealed that there are
numerous ways to integrate aspects and features. A deeper examination is part
of further work.

9 Acknowledgments

The authors would like to thank Don Batory, Olaf Spinczyk, Aleksandra Tesanovic,
Walter Cazzola, and Ingolf Geist for fruitful discussions on the ideas developed
in this article.

This work is partially funded by the Metop Research Institute at Magdeburg,
Germany.

References
1. J. Aldrich. Open Modules: Modular Reasoning about Advice. In ECOOP, 2005.

2. S. Apel and K. Bohm. Towards the Development of Ubiquitous Middleware Prod-
uct Lines. In ASE’04 SEM Workshop, volume 3437 of LNCS. 2005.

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

S. Apel et al. FeatureC++: On the Symbiosis of Feature-Oriented and Aspect-
Oriented Programming. In GPCE, 2005.

D. Batory, 2005. Personal correspondence.

D. Batory, J. Liu, and J.N. Sarvela. Refinements and Multi-Dimensional Separation
of Concerns. ACM SIGSOFT, 2003.

D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components. ACM TOSEM, 1(4), 1992.

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE TSE, 30(6), 2004.

A. Colyer and A. Clement. Large-Scale AOSD for Middleware. In AOSD, 2004.
A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns in Program
Families. Technical report, Computing Department, Lancaster University, 2004.
K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

R. Douence, P. Fradet, and M. Siidholt. A Framework for the Detection and
Resolution of Aspect Interactions. In GPCE 2002, 2002.

S. Herrmann. Object Teams: Improving Modularity for Crosscutting Collabora-
tions. In NetObjectDays, 2003.

D. Keck and P. Kuehn. The Feature and Service Interaction Problem in Telecom-
munications Systems: A Survey. I[EEE TSE, 1998.

E. A. Kendall. Role Model Designs and Implementations with Aspect-Oriented
Programming. In OOPSLA, 1999.

G. Kiczales et al. Aspect-Oriented Programming. In ECOOP, 1997.

G. Kiczales and M. Mezini. Aspect-Oriented Programming and Modular Reason-
ing. In ICSE, 2005.

T. Leich, S. Apel, and G. Saake. Using Step-Wise Refinement to Build a Flexible
Lightweight Storage Manager. In ADBIS, 2005.

K. Lieberherr. Controlling the Complexity of Software Designs. In ICSE, 2004.
K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Collaborations: Combining
Modules and Aspects. The Computer Journal, 46(5), 2003.

J. Liu, D. Batory, and S. Nedunuri. Modeling Interactions in Feature-Oriented
Software Designs. In ICFI, 2005.

D. Lohmann, G. Blaschke, and O. Spinczyk. Generic Advice: On the Combination
of AOP with Generative Programming in AspectC++. In GPCE, 2004.

R. Lopez-Herrejon and D. Batory. Improving Incremental Development in Aspect.J
by Bounding Quantification. In SPLAT, 2005.

R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in
Advanced Modularization Technologies. In ECOOP, 2005.

N. Loughran et al. Supporting Product Line Evolution with Framed Aspects. In
AOSD ACP4IS Workshop, 2004.

S. McDirmid and W. Hsieh. Aspect-Oriented Programming in Jiazzi. In AOSD,
2003.

M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. ACM SIGSOFT, 2004.

K. Ostermann, M. Mezini, and C. Bockisch. Expressive Pointcuts for Increased
Modularity. In ECOOP, 2005.

D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
TSE, SE-5(2), 1979.

C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In ECOOP,
1997.

30.

31.

32.

33.

34.

H. Rajan and K. J. Sullivan. Classpects: Unifying Aspect- and Object-Oriented
Language Design. In ICSE, 2005.

Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM TOSEM, 11(2),
2002.

O. Spinczyk, D. Lohmann, and M. Urban. AspectC++: An AOP Extension for
C++. Software Developer’s Journal, (5), 2005.

P. Tarr et al. N Degrees of Separation: Multi-Dimensional Separation of Concerns.
In ICSE, 1999.

P. Zave. Feature Interactions and Formal Specifications in Telecommunications.
IEEE Computer, XXVI(8), 1993.

