
Language-Independent Reference Checking
in Software Product Lines

Sven Apel, Wolfgang Scholz, and Christian Lengauer
University of Passau, Germany

{apel, scholz, lengauer}@fim.uni-passau.de
Christian Kästner

Philipps University Marburg, Germany
kaestner@informatik.uni-marburg.de

ABSTRACT
Feature-Oriented Software Development (FOSD) is a para-
digm for the development of software product lines. A chal-
lenge in FOSD is to guarantee that all software systems of
a software product line are correct. Recent work on type
checking product lines can provide a guarantee of type cor-
rectness without generating all possible systems. We gen-
eralize previous results by abstracting from the specifics of
particular programming languages. In a first attempt, we
present a reference-checking algorithm that performs key
tasks of product-line type checking independently of the tar-
get programming language. Experiments with two sample
product lines written in Java and C are encouraging and
give us confidence that this approach is promising.

Categories and Subject Descriptors: D.3.3 [Software]:
Programming Languages—Formal Definitions and Theory ;
D.3.3 [Software]: Programming Languages—Language Con-
structs and Features

General Terms: Languages, Reliability, Design

Keywords: Feature-Oriented Software Development,
Software Product Lines, Type Systems, FeatureHouse,
FeatureTweezer

1. INTRODUCTION
Feature-Oriented Software Development (FOSD) is a para-

digm for the development of software product lines [3,11,13,
26]. The key idea is to modularize software systems in terms
of features. A feature is a unit of functionality of a software
system that satisfies a requirement, represents a design deci-
sion, or provides a configuration option [3]. Typically, with a
set of features, a developer describes the commonalities and
variabilities of a family of software systems of a particular
domain (i.e., a software product line).

There are various ways of making the features of a soft-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

ware product line explicit in its document and code base [22].
Compositional approaches such as AHEAD [11] encapsulate
the code that belongs to a feature in a cohesive and compos-
able unit. Once we have made features explicit in terms of
cohesive and composable units, a customized software sys-
tem can be generated automatically, simply by selecting a
valid subset of features. Commonly, a feature model defines
which feature selections are valid [13], and tools are available
that check selections for validity [12,23].

A challenge addressed in recent work is to guarantee that
every valid feature selection produces a type-correct pro-
gram [5, 14, 15, 20, 28]. The problem is that, during the life
time of a software product line, the feature model and the
features’ implementations tend to diverge. That is, pro-
grams may be well-typed that are not valid in terms of the
feature model and programs may be ill-typed that are valid
in terms of the feature model. The latter case is problem-
atic because such errors are usually detected only when the
program in question is generated based on a feature selec-
tion. Due to the possibly very large number of different valid
feature selections, this may happen late in the development
process, leading to high costs and ripple effects. Generating
and compiling all programs is feasible only for small product
lines. Product-line type checking addresses this problem by
checking the entire code base of a product line once against
the product line’s feature model to ensure that no valid fea-
ture selection produces an erroneous program.

Contemporary product-line–checking approaches are tai-
lored to specific programming languages, development tools,
or formalisms, which limits principally their general appli-
cability (see Sec. 5). We would like to explore how far we
can implement product-line checking independently of the
particular language or formalism used. This approach is in-
spired by previous work on language-independent feature
composition tools [6, 7] and type systems [1]. Naturally,
there is a trade-off between generality and expressiveness.
That is, in our quest to increase generality, we may lose ex-
pressiveness, but we argue that this path is worth exploring
and that our initial results are encouraging.

We concentrate on a subclass of possible type errors: dan-
gling references. In a product line, code of one feature
may refer to code of another feature (e.g., in the form of
a method invocation or field access); if the former feature is
selected and the latter is not, the former has a dangling refer-
ence, reported by the type system. We propose a language-
independent model of programs with references, define (two

variants of) an algorithm for detecting potential dangling
references, and apply our prototypical implementation to
two sample product lines written in Java and C.

2. PRELIMINARIES
Our language-independent model of feature-oriented prod-

uct lines is based on previous work on feature algebra [8] and
feature composition tools [6]. For illustration, we use the
small example of a variable graph data structure, which is
motivated by one of our case studies in Section 4. The graph
example consists of the three features Graph, Weights,
and Dijkstra whose meanings will become clear later. It
has been implemented in FeatureHouse, a tool that supports
the composition of code written in a number of languages,
among them Java [6].

2.1 Feature Structure Trees
We describe the structure of a feature, independently of

the programming language, by a feature structure tree (FST).
An FST organizes the feature’s structural elements (e.g.,
files, classes, fields, or methods) hierarchically. Figure 1
depicts an excerpt of the Java implementation of feature
Graph and its representation in the form of an FST. One
can think of an FST as a stripped-down abstract syntax tree
that contains only essential information. The nature of this
information depends on the degree of granularity at which
software artifacts are to be used, analyzed, or composed, as
we discuss below.

1 package graph;
2 class Graph {
3 List<Node> nodes;
4 List<Edge> edges;
5 void add(Node n) {
6 ...
7 }
8 ...
9 }

10 class Node {
11 int id; ...
12 }
13 class Edge {
14 Node src, dest; ...
15 }

Graph

addnodes

edges Node

id

Edge

src dest

graph

Figure 1: Implementation and FST of feature Graph
(excerpt).

For example, the FSTs we use to represent Java code con-
tain nodes that represent packages, classes, fields, methods,
etc. They do not contain information on the internal struc-
ture of methods and so on. A different level of granularity
would represent only packages and classes but not methods
or fields as FST nodes (coarser granularity). Yet another
level of granularity would represent additionally statements
or expressions as nodes (finer granularity) [21].

Each node of an FST is labeled with a name and a type
(types are not shown in Figure 1, for brevity). We call two
nodes compatible if they have the same name and type and
compatible parents. A node’s name1 corresponds to the
name of the structural element it represents and a node’s
type corresponds to the syntactic category to which the

1Depending on the language and purpose, a name could
be a simple identifier, a signature, etc.

element belongs. For example, class Graph is represented
by node Graph of type class (type omitted in Figure 1, for
brevity). We must consider both the name and the type to
prevent ambiguities.

Note that, at the granularity we chose for Java, the order
of nodes could be arbitrary, but this may be different at a
finer granularity (e.g., the order of statements matters) and
it may also differ for other languages (e.g., the order of C
functions and of overlapping Haskell patterns matters) [6].
The FST model has been used to formalize and implement
feature composition based on FST superimposition, of which
we report elsewhere [6, 8].

It has been shown that the FST model is very general.
It can be used with different languages including object-
oriented (e.g., Java and C#), imperative (e.g., C), func-
tional (e.g., Haskell), modeling (e.g., UML), and relational
languages (e.g., Alloy) [2, 4, 6, 9]. Next, we extend the FST
model with references.

2.2 Adding References
First, we introduce the concept of a reference into the FST

model. Then, we discuss key design decisions.

References. A product line consists of multiple features,
each of which is represented by an FST. Commonly, there
are dependences between the individual features. One fea-
ture may extend or use another (e.g., in that it invokes a
method belonging to the other feature). This kind of refer-
ence is common in many languages. Examples of references
are field accesses in Java, references between grammar prod-
uct rules in JavaCC, associations in UML, and so on. Hence,
we extend the FST model by references. A reference is a pair
of a name of source FST element and a name of a destina-
tion FST element. The two elements need not to point to
the same FST.

Let us illustrate references by means of our graph example.
In Figure 2, we show the implementation and FST of feature
Weights. It refines class Edge of feature Graph by adding
a new field weight.2

1 package graph;
2 class Edge {
3 int weight;
4 ...
5 }

Edge

graph

weight

Figure 2: Implementation and FST of feature
Weights (excerpt).

In Figure 3, we show the implementation and FST of fea-
ture Dijkstra, which implements Dijkstra’s algorithm for
solving the shortest-path problem. It introduces class Dijk-
stra that, at some point, accesses field weight of class Edge.

The three features refer to one another: Weights refers
to Graph and Dijkstra refers to Graph and Weights. A
reference has a source (left-hand side) and a target (right-
hand side). The source consists of the feature’s name and the
element’s fully-qualified name. The target consists only of
the element’s fully-qualified name. In the graph example, we

2When composing feature Graph and feature Weights,
the two declarations of class Edge are merged; this is a form
of mixin composition [11].

1 package graph;
2 class Dijkstra {
3 Node[] shortestPath(Node n) {
4 ... int w = edge.weight; ...
5 }
6 }

graph

Dijkstra

shortestPath

Figure 3: Implementation and FST of feature Dijk-
stra (excerpt).

have the following references, excluding the inner references
of a feature to itself:

(Weights, Edge) → (Edge)
(Dijkstra, Dijkstra.shortestPath) → (Node)
(Dijkstra, Dijkstra.shortestPath) → (Edge)
(Dijkstra, Dijkstra.shortestPath) → (Edge.weight)
...

It is important to note that the target element can be part
of different features, so it is not fixed to which element an-
other element points—references are resolved after the de-
sired features have been selected by a user to generate a final
program. For example, there may be multiple features that
introduce different kinds of weights. It is the task of the
reference checker to ensure that there is a proper target for
each reference in every valid feature selection.

Discussion. Programs and documents written in various
languages can be represented by FSTs [6] and references
are a language-independent concept. In fact, the extended
FST model represents (a subset of) the context-sensitive ab-
stract grammar of a language, whereas the plain FST model
without references represents (a subset of) the context-free
abstract grammar. Essentially, the first design decision was
to detach the reference model from the underlying language
and to base it entirely on FSTs. This way, we attain lan-
guage independence but may reduce expressiveness in that
we cannot represent the full type structure of a language,
which may interfere with reference checking. Language in-
dependence also implies that references (and FSTs) have
to be represented in a general format. For a product line
to be checked, FSTs and references have to be extracted
by (language-specific) code analysis tools. Then, reference
checking is generic and uniform.

A second design decision we made is that we model refer-
ences as pairs of FST elements. This is the simplest model
possible and we use it until we encounter the need for a
more complex model. In some languages, we may need ref-
erences with multiple possible targets. Furthermore, some
languages may need a more dynamic view of references, for
instance, to take dynamic binding into account.

The third design decision we made is that a reference con-
tains, beside the source and target elements, also the source
feature; in contrast, the target feature is not contained in
the reference and undefined until the user selects a set of
features. The rationale is that, if a piece of code contains a
reference, we know to which feature the piece belongs, but
we do not know which feature provides a proper target for
the reference—in fact, there may be multiple features. How-
ever, in some languages, there may be situations in which
the type of the target element is relevant (e.g., a field with
type String instead of int). Since we currently do not sup-

port full typing, we cannot address this issue without losing
language independence.

FSTs and their references provide insight into the struc-
tural interactions between features. The knowledge about
the features of a product line, their references, and their
valid selections (i.e., the feature model) allows us to formu-
late a language-independent reference-checking algorithm.

2.3 Feature Models
Before we describe the reference-checking algorithm, we

repeat briefly the basics of feature models. A feature model
describes the valid feature selections of a software product
line [19]. There are different approaches and notations for
describing feature models [12]. We use the approach of Ba-
tory in which a feature model is represented by a proposi-
tional formula [10]. The formula contains, for each feature,
a boolean variable and expresses the constraints between
features. Most other notations can be translated to propo-
sitional formulas.

A propositional formula describing the variability of our
graph example could look as follows:

(Weights ∨Dijkstra) ⇒ Graph (1)

The formula states that, whenever Weights or Dijkstra
are selected, then also Graph has to be selected. A con-
sequence is that the features Weights and Dijkstra are
optional and independent (which can lead to a dangling ref-
erence, as we will explain shortly).

Solver technology can be employed to answer a number
of questions on feature models including whether a feature
selection is valid or whether a feature is always, sometimes,
or never present when another feature is present [12], which
is interesting information for reference checking. For exam-
ple, feature Graph is always present when one of the other
two features is present and feature Weights is sometimes
present when feature Dijkstra is present.

Typically, a feature model describes the variability of a
product line without considering a particular implementa-
tion. Hence, the variability of a domain does not necessarily
need to be consistent with the variability of the correspond-
ing implementation. There may be valid feature selections
that lead to programs with type errors. For example, assum-
ing the feature model of Equation 1, there is a valid feature
selection that leads to an incorrect program in our graph
example. By selecting Graph and Dijkstra only, we get
a type error because Dijkstra refers to field weight, which
belongs to the non-selected feature Weights.

The graph example illustrates that implementation vari-
ability may differ from domain variability. Both kinds of
variability can be described by feature models. The feature
model that describes the implementation variability of our
graph example, henceforth called the implementation model,
is:

(Weights ∨Dijkstra) ⇒ Graph ∧
(Dijkstra ⇒ Weights)

(2)

Compared to the feature model of Equation 1, henceforth
called the domain model, it contains an additional constraint
that states that, whenever Dijkstra is selected, Weights
has to be selected, too. A key task of reference checking
is to derive information on implementation variability and
to check it against domain variability to discover potential
dangling references.

Algorithm 1 Global reference-checking algorithm.

Require: F := set of feature names
Require: FT := FST table
Require: RT := reference table
Require: DM := domain feature model
1: // derive formula of implementation feature model
2: IM :=

∧
((f,src),tgt)∈RT (f ⇒

∨
fi∈F,tgt∈FT(fi)

fi)

3: // check whether the two models are consistent
4: sln := solve(DM ⇒ IM)
5: if sln 6= true then
6: // determine counterexample
7: cex := counter(DM ⇒ IM)
8: print(cex)
9: // identify dangling references

10: dref :=
{

(ref =((f, src), tgt)) |
11: ref ∈RT , f ∈cex , (@f ∈cex : tgt ∈FT (f))

}
12: for all

(
ref = ((f,src), tgt)

)
∈ dref do

13: // identify features with potential targets
14: ptgt :=

{
f | f ∈ (F\cex), tgt ∈ FT (f)

}
15: print(ref)
16: print(ptgt)
17: end for
18: end if

3. REFERENCE-CHECKING ALGORITHM
There are two variants of our reference-checking algorithm,

each of which has been inspired by a different branch of pre-
vious work (see Sec. 5): the global reference-checking algo-
rithm creates a single propositional formula (i.e., the imple-
mentation feature model) that covers all references [14, 15,
28]; the local reference-checking algorithm creates a propo-
sitional formula for each reference that covers exactly the
constraints implied by this reference [5, 20].

Global Reference-Checking Algorithm. In Algorithm 1,
we list the global variant of the reference-checking algorithm
including comments. It takes as input the following ingredi-
ents of a product line: the domain feature model, the FSTs
of all features, and the references between FST elements.
Based on this information, the global variant of the algo-
rithm proceeds in three steps:

1. The input FSTs and references are analyzed to obtain
the implementation feature model. To this end, for
each reference, all proper target elements are searched.
At least one target (i.e., its feature) must be present
when the source feature is present. This requirement
is added as a disjunctive clause to the propositional
formula of the implementation model (Line 2).

2. A SAT solver checks whether the implementation model
is consistent with the domain model (Line 4).

3. If the two models are not consistent, a counterexam-
ple is generated, which is a set of features that contains
dangling references (Line 7). Based on the counterex-
ample, for each dangling reference, all features with
proper targets are identified (Lines 12–17).

Local Reference-Checking Algorithm. In Algorithm 2,
we list the local variant of the reference-checking algorithm,
including comments. Like in the global variant, it takes as
input the domain feature model, the FSTs of all features,
and the references between FST elements. The algorithm

Algorithm 2 Local reference-checking algorithm.

Require: F := set of feature names
Require: FT := FST table
Require: RT := reference table
Require: DM := domain feature model
1: for all

(
ref =((f,src), tgt)

)
∈ RT do

2: // derive formula of reference
3: RM := (f ⇒

∨
fi∈F,tgt∈FT(fi)

fi)

4: // check for consistency
5: sln := solve(DM ⇒ RM)
6: if sln 6= true then
7: // determine counterexample
8: cex := counter(DM ⇒ RM)
9: print(cex)

10: // identify features with potential targets
11: ptgt :=

{
f | f ∈ (F\cex), tgt ∈ FT (f)

}
12: print(ref)
13: print(ptgt)
14: end if
15: end for

proceeds in three steps:
1. Rather than creating a single propositional formula

for the entire implementation model, one propositional
formula per reference is generated, which describes the
constraints implied by the reference, called the refer-
ence model. Again, at least one target of the reference
(i.e., its feature) must be present when the source fea-
ture is present (Line 3).

2. A SAT solver checks whether the constraints imposed
by each single reference are consistent with the domain
model (Line 5).

3. If the constraints of some reference are not satisfied,
a counterexample is generated (Line 8). Based on the
counterexample, for the dangling reference in question,
all features with proper targets are identified (Line 11).

1 erroneous feature selection:
2 [Graph,Dijkstra]
3 dangling reference:
4 (Dijkstra.shortestPath, Edge.weight)
5 in feature ’Dijkstra’
6 features that provide proper targets:
7 [Weights]

Figure 4: Output of FeatureTweezer when checking
the graph example.

Discussion. Both variants of the reference-checking algo-
rithm have a similar input-output behavior. They expect
domain and structural information and provide information
on dangling references and potential target features. For
our graph example, both variants of the algorithm would
produce an output like the one shown in Figure 4.

So what is the difference between the two variants and
why have researchers invented them in the first place? A key
difference is the size and number of propositional formulas
to be checked for consistency with the domain model. In
the global variant, we have a single, possibly large formula;
in the local variant, we have many smaller formulas. This
difference may be crucial for performance, an issue that has

gained too little attention in the past. Admittedly, there is
initial evidence that extracting a complete implementation
model is possible in linear time [27] and that solving large
formulas that represent feature models is possible in prac-
tice in polynomial time [25]. But there is also evidence that
solving many small formulas is efficient because intermedi-
ate results can be cached and reused [5]. In the future, we
intend to address this issue systematically. A contribution
of our language-independent model (and tool) is that we
can represent both variants at an abstract level, reveal their
principal differences, and provide a basis for experiments.

Another difference between the local and global variant
of the reference-checking algorithm is error reporting. The
local variant is finer-grained in that it identifies potential
dangling references directly and points to the corresponding
locations in the code. The global variant searches first for an
erroneous feature selection and identifies then potential dan-
gling references, but only for this selection. The local variant
identifies all potential dangling references. This makes the
debugging process less iterative and more efficient.

4. PROTOTYPE AND CASE STUDIES
As a proof of concept, we have been developing a proto-

type of a product-line reference checker in Haskell, called
FeatureTweezer.3 Checking for dangling references in a
product line, FeatureTweezer expects the product line’s
FSTs, the references, and the feature model. Currently, an
FST is encoded as a set of prefix-closed identifiers (the pre-
fix encodes the path in the FST), each of which denotes an
FST element. A reference is encoded as a pair of FST ele-
ment identifiers. A feature model is encoded in the GUIDSL
format [10], but, as illustrated in Figure 5, alternative for-
mats are possible. We depict the input data for our graph
example to FeatureTweezer in Figure 6, simplified and
adapted for presentation purposes.

Feature

Structure

Trees

ReferencesFeature

Model

...
...

...

GUIDSL

FeatureIDE

pure::variants

AHEAD

FeatureHouse

Fuji

FeatureC++

CIDE

Doxygen

Fuji

FeatureC++

CIDE

Example
Counter

FeatureTweezer

Figure 5: Input and output of FeatureTweezer.

FeatureTweezer processes all input information, trans-
forms it into a suitable internal format, and feeds it into the
reference-checking algorithm (see Sec. 3). To check reference
constraints and implementation models against the domain
model, we use funsat4, an open-source native Haskell SAT
solver. It provides a counterexample if the models are not
consistent. This information is used to find sources of dan-
gling references and potential features that provide proper
targets.

To gather experience with FeatureTweezer, we applied
it to two sample product lines: the graph product line (GPL)

3FeatureTweezer, including the examples and case
studies, is available on the Web: http://www.fosd.de/FT/

4http://github.com/dbueno/funsat/

domain feature model

1 GraphExample : Graph [Weights] [Dijkstra] ;

feature structure trees (type feature element)

1 ClassDecl Graph Graph
2 FieldDecl Graph Graph.nodes
3 FieldDecl Graph Graph.edges
4 ...
5 ClassDecl Weights Edge
6 FieldDecl Weights Edge.weight
7 ...
8 ClassDecl Dijkstra Dijkstra
9 MethodDecl Dijkstra shortestPath

references (type (feature element) element)

1 ClassRef (Weight Edge) Edge
2 ClassRef (Dijkstra Dijkstra.shortestPath) Node
3 ClassRef (Dijkstra Dijkstra.shortestPath) Edge
4 MethodRef (Dijkstra Dijkstra.shortestPath) Edge.weight
5 ...

Figure 6: Input data of the graph example for
FeatureTweezer (simplified).

of Lopez-Herrejon and Batory [24] and the feature-oriented
email client of Hall [18]. The former product line is im-
plemented in Java and the latter is implemented in C. A
key challenge is to extract the necessary information for
FeatureTweezer (FSTs, references, and feature model).
For the purpose of our initial experiments, we chose a prag-
matic approach. We extracted the FSTs with FeatureHouse5

and the references with Doxygen6 and CCVisu7. We ex-
tended FeatureHouse to export the FSTs of a product line
to the expected format and we configured Doxygen and
CCVisu such that the element identifiers in the references
correspond to the element identifiers in the FSTs; the fea-
ture models were available as part of the sample product
lines.

The fact that we were able to check two product lines
written in two different languages illustrates the potential
of our approach. We did not find bugs in the two sam-
ple product lines. This is not surprising because they are
rather small and well-tested. However, the product lines
were useful for testing our tool by introducing errors artifi-
cially. The size of the sample product lines do not allow us
to draw any conclusions on the differences in performance
and resource consumption between the local and the global
reference-checking algorithm. In further work, we intend
to check more and larger product lines, written in different
languages, to discover real bugs and to measure performance
and resource consumption.

5. RELATED WORK
Our work on reference checking feature-oriented product

lines has been motivated by previous work on type systems
for product lines [5, 14, 15, 20, 28]. Reference checking is an
important subset of type checking, so we believe we have
taken an important step toward a general tool suite for
product-line engineering.

Thaker et al. developed a type system for feature-oriented
product lines, based on Java, that does not check all in-

5http://www.fosd.de/fh/
6http://www.doxygen.org
7http://www.sosy-lab.org/~dbeyer/CCVisu/

dividual programs but the individual feature implementa-
tions [28]. In a number of case studies, they found numerous
hidden errors using their type rules. Our global variant of
the reference-checking algorithm is inspired by their type-
checking algorithm, which generates a single, large proposi-
tional formula representing implementation variability. Fur-
thermore, Delaware et al. developed a formal model of the
type system of Thaker et al. and proved its soundness [15].

Even previously to the work of Thaker et al., Czarnecki
and Pietroszek presented an automatic verification proce-
dure for ensuring that no ill-formed UML model template
instances will be generated from a valid feature selection [14],
which also uses a global reference-checking algorithm. That
is, they type check product lines that consist not of Java
programs but of annotated UML models (they use OCL con-
straints to express and implement a kind of type system for
UML; annotations denote features).

Our local reference-checking algorithm is inspired by our
own work on formal type systems for product lines [5, 20].
Kästner and Apel have developed the formal calculus CFJ
based on a subset of Java and a set of type rules for checking
annotation-based product lines [20]. Like in the approach of
Czarnecki and Pietroszek, and in contrast to AHEAD, vari-
ability is implemented with #ifdef-like directives or similar
annotations on the source code [21]. Kästner and Apel use
a local type-checking algorithm to guarantee type correct-
ness. Similarly, Apel et al. [5] define a formal model of a
feature-oriented language and a corresponding product-line
type system based on an compositional approach and a sub-
set of Java.

All of the approaches we discussed so far are tailored to
specific languages and core languages. An interesting aspect
is that our model is able to express reference checking in
both composition-based and annotation-based product lines.
Both can be reduced to FSTs and references.

Tartler et al. demonstrate that implementation models of
C code including preprocessor directives can be extracted
in linear time [27]. As in the global reference-checking al-
gorithm, they extract the implementation model once in
the form of a single propositional formula. Mendonca et
al. demonstrate that consistency checking in the global ap-
proach is possible in practice in polynomial time [25]. Apel
et al. illustrate how caching can be used to scale the lo-
cal variant of reference checking by reusing intermediate re-
sults [5]. These pieces of work illustrate that there is a po-
tential for tuning the performance of type checking product
lines. Our approach and tool can provide a basis for further
experiments in this direction.

6. CONCLUSION
We presented a language-independent reference checking

algorithm for feature-oriented product lines. To this end, we
extended the existing model of feature structure trees with
references. Our algorithm checks an entire product line and
reports whether any valid feature selection results in a pro-
gram that contains a dangling reference. The algorithm is
based on FSTs, extended with references, and the feature
model of a product line. We developed a prototypical tool
called FeatureTweezer, which we used to check two sam-
ple product lines written in Java and C for dangling refer-
ences. We believe that our work is a first step toward a
more general understanding of and more general tools for
feature-oriented product lines implemented using both com-

positional units and annotations.
In further work, we plan to extend our approach based

on language-independent, cross-language, or extensible type
systems [1,16,17] with other well-formedness criteria such as
mutual exclusion, typing, and subtyping. Furthermore, we
plan to extend existing feature algebraic models with refer-
ences and to reason about the effects of references on alge-
braic properties. Finally, we intend to conduct further case
studies of different domains, written in different languages
and provide evidence on the generality of our approach, to
discover real bugs, and to measure performance and resource
consumption of local and global reference checking.

Acknowledgments
Wolfgang Scholz is supported by the German Research Foun-
dation (DFG—AP 206/2-1). Kästner’s work is supported by
the European Research Council (ERC #203099).

7. REFERENCES
[1] S. Apel and D. Hutchins. A Calculus for Uniform

Feature Composition. ACM Transactions on
Programming Languages and Systems (TOPLAS),
32(5):Article 19, 2010.

[2] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model
Superimposition in Software Product Lines. In
Proceedings of the International Conference on Model
Transformation (ICMT), volume 5563 of LNCS, pages
4–19. Springer-Verlag, 2009.

[3] S. Apel and C. Kästner. An Overview of
Feature-Oriented Software Development. Journal of
Object Technology (JOT), 8(5):49–84, 2009.

[4] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Feature (De)composition in Functional Programming.
In Proceedings of the International Conference on
Software Composition (SoftComp), volume 5634 of
LNCS, pages 9–26. Springer-Verlag, 2009.

[5] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type Safety for Feature-Oriented Product Lines.
Automated Software Engineering – An International
Journal (2010), 17(3):251–300, 2010.

[6] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-Independent, Automated Software
Composition. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
221–231. IEEE CS, 2009.

[7] S. Apel and C. Lengauer. Superimposition: A
Language-Independent Approach to Software
Composition. In Proceedings of the International
Symposium on Software Composition (SoftComp),
volume 4954 of LNCS, pages 20–35. Springer-Verlag,
2008.

[8] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An
Algebraic Foundation for Automatic Feature-Based
Program Synthesis. Science of Computer
Programming (SCP), 75(11):1022–1047, 2010.

[9] S. Apel, W. Scholz, C. Lengauer, and C. Kästner.
Detecting Dependences and Interactions in
Feature-Oriented Design. In Proceedings of the
International Symposium on Software Reliability
Engineering (ISSRE). IEEE CS, 2010.

[10] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proceedings of the

International Software Product Line Conference
(SPLC), volume 3714 of LNCS, pages 7–20.
Springer-Verlag, 2005.

[11] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering (TSE), 30(6):355–371, 2004.

[12] D. Benavides, S. Segura, and A. Ruiz-Cortes.
Automated Analysis of Feature Models 20 years Later:
A Literature Review. Information Systems,
35(6):615–636, 2010.

[13] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[14] K. Czarnecki and K. Pietroszek. Verifying
Feature-Based Model Templates Against
Well-Formedness OCL Constraints. In Proceedings of
the International Conference on Generative
Programming and Component Engineering (GPCE),
pages 211–220. ACM Press, 2006.

[15] B. Delaware, W. Cook, and D. Batory. Fitting the
Pieces Together: A Machine-Checked Model of Safe
Composition. In Proceedings of the International
Symposium on Foundations of Software Engineering
(FSE), pages 243–252. ACM Press, 2009.

[16] M. Grechanik, D. Batory, and D. Dewayne. Design of
Large-Scale Polylingual Systems. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 357–366. IEEE CS, 2004.

[17] N. Haldiman, M. Denker, and O. Nierstrasz. Practical,
Pluggable Types for a Dynamic Language. Computer
Languages, Systems and Structures, 35(1):48–62, 2009.

[18] R. Hall. Fundamental Nonmodularity in Electronic
Mail. Automated Software Engineering, 12(1):41–79,
2005.

[19] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, SEI, CMU, 1990.

[20] C. Kästner and S. Apel. Type-Checking Software
Product Lines – A Formal Approach. In Proceedings of
the International Conference on Automated Software
Engineering (ASE), pages 258–267. IEEE CS, 2008.

[21] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 311–320. ACM Press, 2008.

[22] C. Kästner, S. Apel, and M. Kuhlemann. A Model of
Refactoring Physically and Virtually Separated
Features. In Proceedings of the International
Conference on Generative Programming and
Component Engineering (GPCE), pages 157–166.
ACM Press, 2009.

[23] C. Kästner, T. Thüm, G. Saake, J. Feigenspan,
T. Leich, F. Wielgorz, and S. Apel. FeatureIDE: Tool
Framework for Feature-Oriented Software
Development. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
611–614. IEEE CS, 2009.

[24] R. Lopez-Herrejon and D. Batory. A Standard
Problem for Evaluating Product-Line Methodologies.
In Proceedings of the International Conference on
Generative and Component-Based Software

Engineering (GCSE), volume 2186 of LNCS, pages
10–24. Springer-Verlag, 2001.

[25] M. Mendonca, A. Wasowski, and K. Czarnecki.
SAT-based Analysis of Feature Models is Easy. In
Proceedings of the International Software Product Line
Conference (SPLC), pages 231–240. SEI, CMU, 2009.

[26] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), volume 1241 of LNCS, pages 419–443.
Springer-Verlag, 1997.

[27] R. Tartler, J. Sincero, D. Lohmann, and
W. Schröder-Preikschat. Efficient Extraction and
Analysis of Preprocessor-Based Variability. In
Proceedings of the International Conference on
Generative Programming and Component Engineering
(GPCE). ACM Press, 2010.

[28] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proceedings of the
International Conference on Generative Programming
and Component Engineering (GPCE), pages 95–104.
ACM Press, 2007.

