
On-the-Fly Decomposition of Specifications
in Software Model Checking

Sven Apel 1, Dirk Beyer 2, Vitaly Mordan 3, Vadim Mutilin 3, and Andreas Stahlbauer 1

1 University of Passau, Germany 2 LMU Munich, Germany 3 ISP RAS, Russia

ABSTRACT
Major breakthroughs have increased the efficiency and effec-
tiveness of software model checking considerably, such that
this technology is now applicable to industrial-scale software.
However, verifying the full formal specification of a software
system is still considered too complex, and in practice, sets
of properties are verified one by one in isolation. We pro-
pose an approach that takes the full formal specification as
input and first tries to verify all properties simultaneously
in one run of the verifier. Our verification algorithm mon-
itors itself and detects situations for which the full set of
properties is too complex. In such cases, we perform an
automatic decomposition of the full set of properties into
smaller sets, and continue the verification seamlessly. To
avoid state-space explosion for large sets of properties, we
introduce on-the-fly property weaving : properties get weaved
into the program’s transition system on the fly, during the
analysis; which properties to weave and verify is determined
dynamically during the verification process. We perform an
extensive evaluation based on verification tasks that were
derived from 4 336 Linux kernel modules, and a set of proper-
ties that define the correct usage of the Linux API. Checking
several properties simultaneously can lead to a significant
performance gain, due to the fact that abstract models share
many parts among different properties.

CCS Concepts
•Software and its engineeringÑ Formal software ver-
ification;

Keywords
Software Model Checking, Program Analysis, Multi-Property
Verification, Specification, Formal Methods, Decomposition

1. INTRODUCTION
Software model checking is an automatic, exhaustive, and

precise approach for verification. A software model checker
takes a program and a formal specification as input, con-
structs an abstract model of the program to verify whether
the program adheres to the specification, and provides the
verification result True or False (ideally accompanied by a
witness). The challenge in model checking is to represent
huge state spaces by sound and complete approximations
that avoid the state-space explosion problem. Abstraction
is crucial to construct an abstract state space of tractable
size [19,27,33]; the abstraction precision [10,14] defines the
level of abstraction. The model of a program has to be
abstract enough to allow for an efficient verification process,
and precise enough to be able to prove, or refute, that the
specification is satisfied [2,27]. The complexity of the model,
and the resources required for computing an abstraction,
increase with the complexity of the specification to verify.

The formal specification of a software system is typically
described by dozens, or hundreds, of properties. For example,
given a Linux kernel module, there is a set of API usage rules
that the module must fulfill; each of these rules is a safety
property. Defining each property in isolation respects the
principle of separation of concerns, and ensures maintainabil-
ity and comprehensibility of the formal specification. Due
to the size and structure of an elaborate software system,
such as the Linux kernel, it is state-of-the-art to decompose
the specification before the verifier starts, and to verify each
part (property) of the specification in isolation, in a new
instance of the verification tool. Verifying many properties
simultaneously can exhaust computing resources, in partic-
ular due to state-space explosion, expensive solver queries,
and complex abstraction computations. Thus, small sets
of properties are preferred to reduce the complexity of the
abstract model (a lower precision is sufficient). Several sig-
nificant improvements in the last years (most prominently,
the performance breakthrough of SMT solving [4]) make us
believe it is time to address the challenge of verifying large
sets of properties at once. Verifying a set of properties in one
run has major advantages over the state-of-the-art approach,
especially in industrial practice: (1) the program is parsed
only once, (2) invariants can be reused across different prop-
erties, and (3) the overall number of expensive satisfiability
checks can be reduced. We developed a set of techniques as
a foundation for verifying many properties simultaneously
in one run of a software model checker, including on-the-fly
property weaving and dynamic specification decomposition.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950349

Artifact evaluated by FSE✓

349

Specification Automata. A required property 1 is usually
represented by a monitor automaton [7,42]. Generally, there
are two alternative methods to verify a property for a program
with software model checking: (a) the monitor automaton
is weaved into the source code of the program and thus
reduced to the reachability of a certain program location [3,7]
and (b) the monitor automaton runs in parallel and the
current state of the automaton is represented separately
with an abstract domain over the automaton states [20,43].
Method (a) is easy to implement in a pre-processing step,
for example, by an aspect weaver [39], but has the drawback
that the source code is changed, blown-up considerably, and
traceability is more difficult to ensure. If applied to a multi-
property setup, instrumenting all properties of a specification
into the program code introduces a lot of noise in the program,
especially in cases where only a subset of the properties
is verified; this adds another burden to the abstraction-
refinement procedure, makes calls to the SMT solver more
expensive, and makes the program-comprehension task for
the verification engineer harder. Method (b) is conceptually
much more elegant, but has the following drawback: because
each property is equivalent to an automaton (that is, each
property has an own state space, which needs to be tracked in
addition to the current state in the program exploration), and
the combination of the properties can be seen as a product
construction, there is a new kind of state-space explosion:
a huge number of different states in the specification.

Both methods have advantages that seem mutually ex-
clusive: Method (a) allows us to encode the specification
state space into the program’s control flow and thus benefit
from the same symbolic representation as in the program
state space. It helps to avoid an explicit representation of
the automaton states of the resulting product specification.
Method (b) allows us to integrate the concept of abstraction
precisions [10], which makes it possible to enable and disable
properties on the fly. We can view the process of reducing
the number of properties as abstraction and the process of
adding properties as refinement of the abstract state space.

On-the-Fly Property Weaving. We have solved the above
dilemma by designing the Loom analysis, which is a flexible
and configurable analysis preventing state-space explosion
that arises from the specification. This analysis weaves only
those properties on-the-fly into the program’s transition
system that are to be verified, and allows us to use the
concept of dynamic precision adjustment to dynamically
enable and disable properties during the verification process.

While we would like to leverage reuse between proper-
ties (abstract models for different properties often overlap),
we sometimes have to reduce the number of simultaneously
verified properties to keep the complexity of the abstract
model to construct manageable.

Dynamic Specification Decomposition. Our goal is to
automatically decompose large sets of properties into smaller
sets, instead of requiring the decomposition from the veri-
fication engineer. A multi-property model checker takes a
set of properties (the specification) as input, and provides a
separate result for each property as output. The verifier au-
tomatically decides which properties to verify in combination,

1We focus on safety properties that define the correct usage
of an operating-system API [1,32]. In our experiments, we
verify properties of Linux kernel modules, due to their open-
source availability, and their well-understood requirements.

Table 1: Simultaneous verification of different sets
of properties of a Linux kernel module for a network
device; verifying all properties simultaneously runs
into a timeout (1.5 hours)

Property
132a 134a 43a 68a 68b A

na
ly

si
s
Sp

ee
du

p

T
ot

al
Sp

ee
du

p

A
na

ly
si
s
C
P
U

T
im

e
(s
)

T
ot

al
C
P
U

T
im

e
(s
)

Loo
p

U
nr

ol
lin

gs

R
efi

ne
m

en
ts

• – – – – 1.0 1.0 110 140 7 75
– • – – – 1.0 1.0 15 48 1 2
– – • – – 1.0 1.0 18 50 2 5
– – – • – 1.0 1.0 25 61 2 5
– – – – • 1.0 1.0 5.9 40 1 0

• • – – – 1.0 1.2 120 150 7 81
• – • – – .68 .88 180 220 7 100
• – – • – .58 .76 230 270 12 65
• – – – • 1.0 1.2 110 150 7 75
– • • – – 1.5 1.8 21 55 3 7
– • – • – 1.5 1.8 27 62 3 9
– • – – • 1.3 1.7 16 51 1 2
– – • • – .90 1.3 48 88 4 23
– – • – • 1.2 1.7 19 54 2 5
– – – • • 1.2 1.7 26 60 2 5

• • • – – .64 .93 220 260 7 102
• • – • – .56 .83 260 310 12 65
• • – – • 1.0 1.4 120 160 7 81
• – • • – .048 .077 3200 3300 12 113
• – • – • .66 .99 200 240 7 100
• – – • • .57 .86 250 280 12 65
– • • • – .92 1.5 63 110 4 27
– • • – • 1.9 2.6 20 54 3 7
– • – • • 1.8 2.5 25 60 3 9
– – • • • .96 1.6 51 92 4 23

• • • • – ´ ´ ´ ´ ´ ´

• • • – • .61 1.0 240 280 7 102
• • – • • .47 .80 330 370 12 65
• – • • • .046 .083 3400 3600 12 113
– • • • • 1.0 1.8 63 110 4 27

• • • • • ´ ´ ´ ´ ´ ´

or individually. The goal is to decompose the specification
such that the overall effectiveness and efficiency of the verifi-
cation process is improved.

We developed a technique that allows us to dynami-
cally (on-demand and on-the-fly) adjust the specification by
switching on and off individual properties using the concept
of dynamic precision adjustment [10]. To determine when
and where to decompose, our analysis algorithm monitors
itself to detect situations in which the abstract model for a
certain set of properties becomes too complex to be efficiently
constructed. The approach requires heuristic estimates for
choosing a promising decomposition alternative.

To discuss this aspect in more detail, we show results of
verifying a Linux kernel module in Table 1, with all possible
decompositions of a set of properties. The module provides
access to a family of Siemens Gigaset devices.2 We chose
this module for discussion because it is one of the most
challenging for finding a good decomposition, which is a
central problem to be solved—we obtain significant speedups
for other kernel modules as well (see Fig. 2). The analysis
CPU time only includes the time for model checking (model
construction, refinement based on infeasible error paths), the
CPU time for parsing the input program, constructing the

2http://kernel.org/doc/Documentation/isdn/README.gigaset

350

http://kernel.org/doc/Documentation/isdn/README.gigaset

control-flow graph, and other preparation and initialization
steps is included in the total CPU time.

Verifying all five properties simultaneously is not possible
because we run into a timeout (last row of Table 1). If we
choose a decomposition where property 132a is verified in
isolation and the other four properties simultaneously, we
spend a total analysis time of 110 s + 63 s = 173 s. The
decomposition {{134a, 68a, 68b}, {132a}, {43a}} needs an
analysis CPU time of 25 s + 110 s + 18 s = 153 s. Admittedly,
this is not a too big speedup compared to 174 s for verifying
each property separately: the overall cost is dominated by
the one hard property 132a.

The potential speedup of verifying several properties si-
multaneously depends on the program and on the properties.
Some program parts require a high precision for verifying
several properties, whereas the precision can be coarse for
other parts (because they are not relevant for any property).
Different properties have different scopes, and thus, could
benefit from intermediate verification results that are avail-
able in the scope from other properties. Overlapping scopes
of properties can also have a negative impact on the veri-
fication performance: the state space might in some cases
explode for those regions. Our approach tries to detect such
situations early and verify certain properties in isolation.

Related Work. We classify the related work into approaches
related to multi-property verification and approaches related
to specification automata and specification weaving.

Multi-Property Verification. Checking properties individ-
ually has already been identified to be impractical in the
context of hardware verification [17, 23, 36]. Some of the
discussed problems and ideas are applicable to verifying soft-
ware: (1) grouping properties according to their potential of
reuse of intermediate results, (2) reuse of learned facts, and
(3) projection of constraints, and reachable states, between
properties based on a cone-of-influence analysis. The tool
Varvel [29], which uses abstract interpretation and bounded
model checking, has been used for verifying several prop-
erties of software; it is applied function-wise and does not
perform a whole-program analysis; function contracts can
be used to reason about whole programs [30]. Multi-aspect
verification [37] is the work closest to our approach; it was
inspired by the positive effects of precision reuse [14] and
led to our new concepts and experiments. The idea is to use
the LDV toolkit to produce, for a given program source code
and a set of properties, a source code that is instrumented
with the given properties. The model checker (CPAchecker)
is repeatedly queried to verify such instrumented programs.

The potential of reuse for similar queries was explored in
the area of SAT solving [31,41,45]. Large sets of test goals
are considered in the context of dynamic test generation [25],
or in dynamic analysis [22]. In general, test generation can
benefit from reusing parts of abstract reachability graphs [11].
Also regression verification can benefit from the reuse of ab-
stract reachability graphs [26] or of abstraction precisions [14]
to reduce the verification effort over several verification runs.

Our work complements the existing approaches by auto-
matic specification decomposition with self-monitoring for the
case that the full specification is too complex, an implementa-
tion using unbounded software model checking, verifying full
programs as a whole, and by avoiding pre-processing (com-
bine or weave) of properties. We conduct an extensive study
on the effects, and specifics, of verifying several properties in
one run of a software model checker.

Specification Weaving and Automata. In the past two decades,
several languages for expressing formal software specifications
have been proposed [3,5,7,18]. Our specification language
is inspired by the Blast query language [7, 18]. Every safety
property can be reduced to the reachability of an error label;
a new version of the program, where the specification is part
of the program code, is generated in a pre-processing step and
a verifier checks then whether an error label that represents
a violating program location is reachable. Aspect-oriented
programming is one way of instrumenting a program with
its specification [39]. In the spirit of configurable software
verification [9], it is desirable to integrate the specification
automaton as a configurable program analysis that runs
simultaneously with the main analysis (on-the-fly product
construction of program and specification) [43]. Our speci-
fication automata can encode several properties, similar to
supermonitors [40]. Our specification analysis uses dynamic
precision adjustment [10] to enable or disable certain prop-
erties on demand. A work that is closely related to our
approach for on-the-fly weaving can be found in the con-
text of performance monitoring [28]. Code instrumentation
is added or removed dynamically at any point during the
program execution; the main goal of that work is to col-
lect performance data. Our Loom analysis applies the idea
of dynamic instrumentation to static analysis, that is, at
verification time, without changing the actual program.

Contributions. We summarize our results as follows:

‚ We propose a fully-integrated approach for verifying sets
of properties in one run of a software model checker.

‚ We developed the Loom CPA, a technique that makes the
simultaneous verification of large sets of properties efficient,
by weaving properties on-the-fly into the program.

‚ We developed a configurable algorithm that dynamically
decomposes a set of properties into smaller sets, whenever
self-monitoring detects that the verification task is too
complex for the current set of properties.

‚ We perform an extensive experimental evaluation of our
approach to illustrate how an on-the-fly specification de-
composition can increase both the efficiency and the effec-
tiveness of the overall verification process. Our benchmark
suite comprises 4 336 Linux kernel modules.

‚ We provide a replication package 3 that contains all data
and a detailed description for reproducing our experiments.
Our implementation is based on the open-source software-
verification framework CPAchecker; the source code is
available under the Apache 2 license.

2. PRELIMINARIES
Before we introduce our new approach and the correspond-

ing techniques, we start with some preliminary definitions.

Control-Flow Automata. We represent a program
as control-flow automaton (CFA), which is a tuple pL, l0, Gq
consisting of a set L of program locations, the entry loca-
tion l0 P L, and a set G Ď L ˆ Ops ˆ L of control-flow
edges; an operation in Ops represents an assignment opera-
tion or an assume operation, in the programming language
and (if available) its abstract syntax tree; the subset R Ă Ops
represents all assume operations (Boolean expressions); the
subset S Ă Ops zR represents all assignment operations.
For a set M , we write M˚ for the set of all words over M ,

3http://sosy-lab.org/research/spec-decomposition/

351

http://sosy-lab.org/research/spec-decomposition/

and ε for the word of length zero. The concatenation of two
words w1 and w2 is written as w1 ˝ w2.

Properties and Partitions. The set P “ tp1, . . . , pnu con-
sists of all properties of a program that are to be verified.
A partitioning P Ď 2X of a set X is a set of non-empty sets,
where all elements P1, P2 P P, with P1 ­“ P2, are pairwise
disjoint (P1 X P2 “ H), and X “

Ť

PPP P .

Configurable Program Analysis. Our work builds on the
concept of configurable software verification [9] with dy-
namic precision adjustment [10]. CPAs of the form D “

pD,Π,ù,merge, stop, prec, targetq are the central building
blocks of this formalism. The full-fledged program analysis
is composed of several component CPA to form a composite
analysis. The abstract domain D “ pC, E , rr¨ssq with the
semi-lattice E “ pZ,Ď,\,Jq defines the type of abstract
representation of concrete states from C, where C is the set
of all concrete states of the program; one abstract state e P Z
represents a set of concrete states (region), which can be
obtained by the concretization function: rress Ď C. A pre-
cision π P Π defines certain aspects of the state space that
should be represented by abstract states in a given abstract
domain. The transfer relation ù defines, for each abstract
state, a set of successor abstract states. The operator merge
can combine two abstract states such that both abstract
states are subsumed by the resulting abstract state; given
an abstract state e, and a set R Ď Z of abstract states,
the coverage-check operator stop returns true if e represents
only concrete states that are already represented in R, that
is, rress Ď

Ť

e1PRrre
1
ss, and returns false otherwise. Given an

abstract state e, a precision π, and a set R Ď Z, the precision
adjustment operator prec can provide a new abstract state e1

with an adjusted precision π1. The operator target : Z Ñ B
returns true if a given abstract state is the goal of the reach-
ability analysis, that is, if the abstract state violates the
specification, and returns false otherwise. The strengthening
operator Ó of a CPA can be used to get information from
the abstract state of another component CPA to compute
a stronger successor abstract state; it is called within the
transfer relation of the wrapping composite CPA after all
component CPAs have done their transfers. More details on
the CPA formalism can be found in the literature [9, 10,12].

Abstract Reachability Graph. To verify properties of a
program, we run a program analysis [10] (Alg. 1) that is
defined by a CPA D. Starting from all initial abstract
states with precision (from W0), we compute all successor
abstract states until we have reached the fixed point. All
abstract states that have been reached so far are stored in
the set reached; the set waitlist represents the frontier, that
is, the set of abstract states for which the successor abstract
states still have to be computed. The abstract states in the
set reached are the nodes of an abstract reachability graph
(ARG), a directed graph that is rooted at the initial abstract
states with precision (from W0). Lazy abstraction [27] pro-
poses to use different precisions for different parts of the
ARG; both the set reached and waitlist consist of pairs of an
abstract state with abstraction precision.

3. LOOM CPA: ON-THE-FLY WEAVING
This section introduces (1) our specification automata,

(2) our specification analysis, which provides on-the-fly spec-
ification decomposition, and (3) the Loom analysis, which

Algorithm 1 CPAalgDpR0,W0q, adopted from [10]

Input: a CPA D “ pD,Π,ù,merge, stop, prec, targetq,
a set R0 Ď E ˆΠ of abstract states with precision,
a subset W0 Ď R0 of frontier abstract states with precision,
where E denotes the elements of the lattice of D

Output: a set of reachable abstract states with precision,
a subset of frontier abstract states with precision

Variables: a set reached Ď E ˆΠ, a set waitlist Ď E ˆΠ

1: reached :“ R0; waitlist :“W0

2: while waitlist ‰ H do
3: pe, πq :“ choosepwaitlistq
4: for each e1 with eùpe1, πq do
5: ppe, pπq :“ precpe1, π, reachedq
6: for each pe2, π2q P reached do
7: enew :“ mergeppe, e2, pπq
8: if enew ‰ e2 then
9: waitlist :“

`

waitlistY tpenew , pπqu
˘

ztpe2, π2qu

10: reached :“
`

reachedY tpenew , pπqu
˘

ztpe2, π2qu
11: if stopppe, te | pe, ¨q P reachedu, pπq then
12: waitlist :“ waitlistY tppe, pπqu
13: reached :“ reachedY tppe, pπqu
14: if targetppeq then
15: return preached,waitlistq
16: return preached,Hq

provides on-the-fly weaving of operations from the specifica-
tion automata into the transition relation of the analysis.

A key design decision of our approach is to give the formal
specification and the program code to the verifier as separate
objects. Instead of instrumenting the specification into the
program code before running the verifier, the verifier weaves
the specification on-the-fly into the transition relation of the
program, during the analysis. Whenever a different (sub-) set
of properties is to be verified, we do not have to re-instrument
the input program and restart the verifier. In our method of
on-the-fly specification weaving, only selected properties are
weaved, and only for a specific part of the state space (which
properties, and where to weave them, can be dynamically
adjusted, e.g., via lazy abstraction [27]). Irrelevant noise in
terms of unnecessarily instrumented properties is avoided
and the algorithm (and the engineer who tries to understand
an error path) deals with ‘clean’ abstract program paths.

A formal specification that represents a set of program
executions can be expressed as a temporal-logic formula or
by an automaton that accepts the same set of executions [16,
38,44]. We concentrate on temporal safety properties, which
can be expressed using finite automata [34,42,44].

Specification Automata. A specification automaton en-
codes a set of properties and observes, but not restricts,
the state space of an analysis run. A specification au-
tomaton pQ,Σ, δ, q0, F q for a given CFA pL, l0, Gq is a non-
deterministic finite automaton with a finite set Q of control
states, an alphabet Σ Ď 2G ˆ S˚ ˆR˚, a transition relation
δ Ď Qˆ ΣˆQ, an initial control state q0 P Q, and a set F
of accepting control states. Each qp P F represents that
property p P P is violated (i.e., a path through the program
that violates p is found). We write q

σ
ÝÑq1 if pq, σ, q1q P δ holds.

A symbol pγ, s, rq P Σ consists of a set γ of control-flow
edges, a sequence s of assignment operations to weave, and
a sequence r of assume operations.

To increase traceability and to support enabling and dis-
abling automaton transitions that are irrelevant for specific
properties, we calculate two maps that assign to each control
state q P Q and to each transition τ P δ the sets of relevant
properties Ppqq and Ppτq, respectively.

352

Our specification automata support three modes of ex-
pressing and encoding properties. The pure automata-based
mode tracks every possible state of the specification explicitly,
and thus contributes to the explosion of the (specification)
spate space. In the pure weaving mode, the specification
that is represented by the automaton gets weaved into the
program completely. The set of control states only consists
of the initial control state and a number of accepting control
states, each representing a different property. The hybrid
mode combines the first two modes. Different control states
are used for guiding the process of weaving the given set
of properties into the transition relation of the underlying
analysis. A control state of an automaton typically models
the current context of the program.

To not affect the completeness or soundness of the program
analysis, the operations that are introduced by the weaving
process must never modify or restrict the state space of
the program under analysis: (1) assignment operations are
allowed to assign values to only such variables that were
introduced by the automaton itself, and (2) for each control
state, the disjunction of all predicates from assume operations
on the outgoing transitions must evaluate to true.

Property Relevance. A property p is relevant for a given
program if the specification automaton has a transition τ to
control state q1 with p P Ppq1q or p P Ppτq and transition τ
syntactically matches a control-flow edge of the program.
Situations where a property is not relevant for a program
can also indicate a flaw in the specification.

Specification Analysis. For each specification automaton,
we instantiate one specification analysis. The specification
analysis (1) keeps track of the current state of the automaton
and determines its successors based on the transition rela-
tion δ and the current control-flow edge of the CFA, (2) it
provides operations that should later be weaved into the
control flow, (3) it provides assumptions on the state space
for strengthening the composite abstract state, (4) it can
disable the verification of certain properties on-the-fly for
some region of the state space, and (5) it is responsible for
determining whether a violating state has been reached. By
running several specification analyses in parallel, we lazily
accept the union of words without any explicit automaton
construction.

The specification analysis for a specification automaton is a
CPA DS “ pDS,ΠS,ùS,mergeS, stopS, precS, targetSq. A pre-
cision π P ΠS of this CPA is a set of properties to verify; it
implicitly defines the subset δπ of transitions of the specifi-
cation automaton that are relevant for verifying properties
from π: δπ “ tτ P δ | PpτqX π ‰ Hu. The specification anal-
ysis interprets the transitions of the specification automaton
according to the precision: for a given transition q

σ
ÝÑq1, it

uses the precision-adjusted transition q
σ
ÝÑπq

1 (i.e., it uses only
transitions that are relevant for verifying a property p P π).
The CPA is defined as follows:

1. The abstract domain DS “ pC,Q, rr¨ssq consists of the set
C of concrete states, a semi-lattice Q, and a concretization
function rr¨ss. The semi-lattice Q “ pZ,Ď,\,JQq is a flat
lattice on the set of abstract states Z “ pQ Y Jq ˆ Ops˚,
where one abstract state pq, oq P Z consists of an automaton
state q and a sequence o of operations.

2. The transfer relation ùS has the transfer
pq, oq

g
ùSppq

1, o1q, πq, if the specification automaton A has a
precision-adjusted transition q

σ
ÝÑπq

1, with σ “ pγ, s, rq and

g P γ, and o1 “ r ˝ s. If no transition is applicable, it has the
(stuttering) transfer pq, oq

g
ùSppq, oq, πq. An analysis shall

not stop exploring a program path after a property violation;
other properties could be violated later along the path as
well (soundness).

Our specification language supports patterns variables: the
sequences s and r of assignment and assume operations, re-
spectively, have to be instantiated within the transfer relation
based on the current automaton state and the control-flow
edge g. The set of matching control-flow edges γ can be
defined by patterns like $1 = malloc($2), which matches
for example the control-flow edge with the assignment oper-
ation ptr = malloc(512). The expressions that match the
pattern variables can then be referenced for instantiating new
sequences of assignment or assume operations. Continuing
the example, the pattern $1 == NULL, would be instantiated
as the assume operation ptr == NULL.

3. The precision πS of the analysis determines which proper-
ties are verified for which part of the state space. The preci-
sion adjustment operator precS : Z ˆΠS ˆ 2ZˆΠS Ñ Z ˆΠS
is central in the on-the-fly decomposition of a specification.

Based on several measures of the verification effort spent
on each property, we dynamically decide whether we should
stop verifying a property starting from a given abstract
state onwards. The operator exceeds : P Ñ B returns true
if a specific budget for a given property is exceeded, and
false otherwise. A property p is removed from the precision
(precSpe, πS, reachedq “ pe, πS z tpuq) if exceedsppq “ true.

4. The operator mergeS : Z ˆ Z Ñ Z keeps two abstract
states always separate: mergeSpe, e

1
q “ e1.

5. The operator stopS : Z ˆ 2Z Ñ B checks whether there
is already an abstract state that subsumes a given state:
stopSpe,Rq returns true if De1 P R : e Ď e1, otherwise false.

6. The operator targetS : Z ˆ B returns true if the specifi-
cation automaton is in an accepting control state qp P F ,
which signals the violation of property p: given an abstract
state pq, ¨q P Z, it returns true if q P F , otherwise false.

On-the-fly Weaving with the Loom Analysis. The
Loom analysis is a composite [9] CPA DL# that weaves
sequences of operations from the specification CPA into the
transition relation of the analysis. The definition of specifi-
cation automata ensures that this process does not make the
data-flow analysis for the program unsound.

The Loom analysis is composed of (at least) the location
CPA as well as the instances of the specification CPA. Given
the composite state e “ pl, . . . , pq1, o1q, . . . , pqm, omqq and
the concatenation oc “ o1 ˝ . . . ˝ om “ pop1, . . . , opnq of all
operation sequences, with oc ‰ ε, we add new control-flow
edges to G: pl#, op1, l1q, . . . , pln´1, opn, lq, where the last
control-flow edge leads to the original location l; the transfer
relation ùL# has the transfer pl, . . .qùL#pl

#, . . .q, which
is taken after all component CPAs have performed their
transfers and strengthenings.

The only operator that is allowed to modify the compo-
nents of the composite state is the strengthening operator.
The strengthening of the location CPA [9] is used to modify
the current location based on the operations to weave that
are provided in the states of the specification CPAs. With-
out loss of generality, we assume that no transition g P G
of the CFA leads to the entry location l# of the sequence of
newly introduced control-flow edges. Figure 1 illustrates this
process on an example.

353

la lb

l# . . . ln

opk

op1
opn´1

opn

la lb

l# . . . ln

opk
op1

opn´1

opn

Figure 1: Given an abstract state e “ plb, . . . , pq, oq, . . .q
created based on the control-flow operation opk,
with o “ pop1, . . . , opnq, the Loom CPA introduces a se-
quence of control-flow edges that correspond to the
operations o. The program analysis is redirected to
their entry location l# such that e1 “ pl#, . . . , pq, εq, . . .q.

4. DECOMPOSING PROPERTY SETS
Different properties exhibit different characteristics [21],

which determine whether some properties should be verified
on the same abstract model or separately. Ideally, a decom-
position strategy separates those pairs of properties that, if
verified simultaneously, lead to a decrease of efficiency, and
it bundles those properties that benefit from simultaneous
verification. We propose run-time strategies for specification
decomposition, which can consider measures of the verifica-
tion process and the state space (under construction), for
deciding which properties to verify separately or in a specific
combination. Depending on the chosen abstract domain or
analysis configuration, different measures might be appro-
priate. Such measures can help to identify properties whose
scope spans across loops, properties that involve an undecid-
able theory, or any property that would cause a blow-up of
the abstract reachability graph.

We define three points in time for providing or performing
a decomposition of the specification: (1) a domain expert can
provide an authoritative decomposition of the specification
before starting the verifier, (2) the decomposition can be
performed dynamically each time before running the model-
checking algorithm, and (3) it can be performed on the fly
during the execution of the model-checking algorithm.

4.1 Decomposition Framework
Model-checking algorithms found in the literature are nei-

ther designed for decomposing a specification, nor are they
able to handle the fact that only a fraction of the specification
might have been verified. Algorithm 2 SDC (Specification
DeComposition) was particularly designed for this concern:
it wraps a standard analysis algorithm analyze 4, and its
specifics are defined by a decomposition strategy S.

The algorithm takes four parameters. The initial abstract
state e0 with the adjusted (line 4) initial precision π0 de-
fines the initial frontier (line 5), which is the starting point
for the analysis to compute successor states until a fixed
point is reached. The initial partitioning of the specification
and the initial resource budget define the initial decomposi-
tion process. If no property is left for verification (line 18),
the algorithm terminates with a pair of satisfied proper-

4This can be a standard program analysis, such as CPAalg
(Alg. 1), or even testing; algorithm analyze must satisfy the
interface: operate on sets reached and waitlist, and return a
set of error paths. While we base our implementation on
CPAchecker, our concepts are not bound to this framework.

ties and violated properties. Properties are removed from
the set remaining if a feasible error path was found (line 9),
or a fixed point was reached with the properties enabled
for verification (line 14), or if the analysis resigns to verify
them (line 17).

Resource Budgets. Due to the general undecidability of
the verification problem, some properties cannot be verified,
even with an arbitrary amount of resources; the algorithm
would terminate without reaching a fixed point, returning
the result unknown. Appropriate resource budgets for spe-
cific properties or sets of properties are therefore crucial for
the overall efficiency and effectiveness of verification with
specification decomposition.

Different resources H can be taken into account for defin-
ing budgets on properties, or the overall verification process.
A resource κ P H can be, for example, the CPU time that is
spent on a specific operation of the analyzer or the full (enclos-
ing) analysis algorithm, or the number of precision elements
with specific characteristics, or the number of branchings in
the ARG (this list is not exhaustive).

A resource utilization monitor U “ put, utPq tracks the
amount of resources consumed by the analyzer. The utiliza-
tion operator ut : H Ñ Z returns the total amount utpuq for a
given resource κ P H that was consumed between the start of
the monitor and the time the operator was invoked. The uti-
lization operator utP : PˆH Ñ Z returns the amount utPpuq
for a given resource κ P H that was consumed for a specific
property p P P. We denote the set of all resource utilization
monitors by U . Whenever the specification-decomposition
algorithm starts with a new set of properties, the resource
utilization monitor is reset (all utilization operators are set
to zero whenever operator init is called).

A resource budget β : U Ñ B is an operator that returns
true for a given pair of ut and utP if there are sufficient
resources left for a given property p P P, and false otherwise.
We denote the set of all budgets by B; budget βJ does not
restrict; budget βK declares all resources unavailable.

As part of our framework, we define a set of operators that
take the resource monitors and the resource budgets into ac-
count for performing the specification decomposition, dynam-
ically, on-the-fly: the precision-adjustment operator precS of
the specification analysis and the operators of the decom-
position strategy (the exhaustion operator resigned and the
partitioning operator adjPrecision).

Decomposition Strategy. Algorithm 2 SDC for specifica-
tion decomposition is configured by a decomposition strat-
egy S “ padjPrecision, resignedq:

1. The operator adjPrecision : Πˆ 2P
Ñ ΠˆB for a given

decomposition strategy S takes as input a precision and a
set of remaining properties (that are still to be verified), and
returns as output a pair of precision π and budget β. The
precision defines which properties to verify simultaneously in
the next run of the analyzer. Our (stateful) implementation
of operator adjPrecision internally maintains a decomposition
of the specification, which is represented as partitioning P
of properties. The partitioning is iteratively adjusted based
on the verification progress (in terms of remaining properties
and consumed resources) and the next partition is returned
as part of π. The new resource budget β limits the CPU
time, number of transitions, number of refinements for the
next run of the analyzer.

354

Algorithm 2 SDCS,analyzeppe0, π0q,P0, β0q

Input: a decomposition strategy S “ padjPrecision, resignedq,
an analysis algorithm analyze,
an initial state e0 P E with precision π0 P Π,
an initial partitioning P0,
the initial resource budget β0

Output: set of satisfied properties, set of violated properties
Variables: a set reached Ď E ˆΠ, a set waitlist Ď E ˆΠ,

a precision π that determines which properties to track,
a set remaining Ď P of remaining properties,
a set satisfied Ď P of satisfied properties,
a set violated Ď P of violated properties,
a set cexs of counterexamples (abstract program paths),
which violate properties Ppcexsq Ď P

1: π :“ π0; β :“ β0

2: satisfied :“ H; violated :“ H; remaining :“ P
3: repeat
4: pπ, βq :“ adjPrecisionP0,β0

pπ, remainingq

5: waitlist :“ tpe0, πqu; reached :“ waitlist
6: repeat
7: preached,waitlist, cexsq :“ analyzeβpreached,waitlistq

8: violated :“ violatedY Ppcexsq
9: remaining :“ remaining z violated

10: waitlist :“ disablepwaitlist, violatedq
11: until cexs “ H
12: if waitlist “ H then
13: satisfied :“ satisfiedY activepreachedq
14: remaining :“ remaining z satisfied
15: else
16: // Resource budget β exhausted!
17: remaining :“ remaining z resignedpreachedq
18: until remaining “ H
19: return psatisfied, violatedq

2. The operator resigned : 2EˆΠ
Ñ 2P takes as input a set of

abstract states with precision (reached) and returns a set of
properties that are considered not verifiable (within the given
resource constraints) and should no longer be considered in
any further iterations of the decomposition algorithm.

The auxiliary function disable : 2EˆΠ
ˆ2P

Ñ 2EˆΠ returns
for a given set of abstract states with precision and a set of
properties P , a new set of abstract states with precision from
which all properties from P are removed from the precision
of the specification analyses.

The helper function active returns, for a given set of reach-
able abstract states with precision, a set of properties that
the analysis was still verifying in the last run of the analyzer
(that is, the properties that were still active).

4.2 Decomposition Strategies
Next, we describe how specification-decomposition strate-

gies can be instantiated within our framework. An experi-
mental evaluation of our strategies can be found in Sect. 5.

The strategies are different in decomposition opera-
tor adjPrecision, the initial partitioning P0, and the initial
budget β0. The strategies consider the set H “ tat , rc, scu of
resources, were at , rc, sc denote the analysis CPU time, the
number of refinements, and the number of transitions taken
so far by the analyzer, respectively. All strategies define
a budget for the analysis CPU time at P H (for example,
the budget β900 “ utpatq ď 900 limits the analysis CPU
time to 900 s). The operator exceeds, which is used in the
precision adjustment operator precS of the specification CPA,
returns true if any of the resources is exhausted in β. The
operator resignedOne returns true if only one property was

enabled for verification in the given set of abstract states,
otherwise, it returns false.

Strategy S0 “ padjPrecisionS0 , resignedS0q. This strategy
does not perform any specification decomposition (it places
all properties in one single partition) and does not specify any
resource limit. This strategy is used as a baseline for evaluat-
ing the performance of more advanced strategies. We use this
strategy with the initial partitioning P0 “ tPu and the ini-
tial resource budget β0 “ βJ. After the analysis terminates
for the initial partitioning P0, the operator adjPrecisionS0
returns pπ, βKq: we signal the exhaustion of all resources.
The operator resignedS0 returns the full set P as result, which
leads to the immediate termination of the specification de-
composition algorithm.

Strategy S1 “ padjPrecisionS1 , resignedOneq. This strategy
starts by verifying all properties simultaneously, and con-
tinues to verify the remaining properties in isolation (one
by one). This simple strategy is useful if no measure is
available for deciding which properties to verify in the same
partition. The goal of this strategy is to not lose verification
results in cases where verifying all properties simultaneously
is not possible. We use this strategy with the initial parti-
tioning P0 “ tPu and the initial resource budget β0 “ β900.
After the analysis is finished for the initial partitioning P0,
the call adjPrecisionS1pπ, remainingq returns pπ1, β900q where

π1 enables exactly one arbitrarily (but deterministically) cho-
sen property p P remaining. The operator resignedOne ensures
that a property is verified only once in isolation.

Strategy S2 “ padjPrecisionS2 , resignedOneq. Strategy S2

builds on strategy S1 but restricts the budget for specific
resources. We have configured the strategy to stop verifying
a property if it causes, relative to the other properties, sig-
nificantly more refinement iterations (which might correlate
with a much higher abstraction precision). A property p
is removed during the verification process from the preci-
sion π if there have been, relative to the maximum number
of refinements for the other properties in π, at least twice as
much, but at least ten, refinements: Given the number of
refinements rcp “ utPpp, rcq, we use the initial budget β0 “

utPpp, rcq ă 10_ utPpp, rcq ă 2 ¨maxp1Ppπzpq utPpp
1, rcq.

The background is that our program analysis uses coun-
terexample guided abstraction refinement (CEGAR) [19]
for constructing the abstract model of the program, that
is, we use CEGAR to determine the abstraction precision
that is necessary to rule out infeasible error paths. An error
path cex witnesses the violation of a set of properties Ppcex q.
The idea of strategy S2 is to use the number of infeasible
error paths (that have to be ruled out by an abstraction
refinement) as an indicator for the cost of verifying a specific
property. The number of refinement iterations is a critical
factor that affects the performance of an analyzer that is
based on CEGAR [14].

Strategy S3 “ padjPrecisionS3 , resignedOneq. This strategy
tries to reduce the effort for verifying properties that are
likely irrelevant for a given program, and to focus on the
properties that have been identified as relevant. Whether
a property p is considered relevant is determined based
on the number of transitions sc P H to a control state q
of a specification automaton with p P Ppqq, which can be
queried from the resource utilization monitor: utPpp, scq. The
set PRel “ ttp | p P P^ utPpp, scq ą 0uu represents the set of
properties that have already been identified to be relevant;

355

the set PIrr “ P zPRel, represents the properties that have
not yet been identified to be relevant and that might be ir-
relevant for the given program. Each partition of properties
is verified with the resource budgets β900.

The strategy operates in three phases; we start with the
initial partitioning P0 “ tPu, which defines the first phase
of the strategy. The full set properties get verified simulta-
neously for 900 s without any limits on certain properties.

In the second phase of the strategy, we verify only those
properties that have, so far, not yet identified to be relevant
for the program; the second phase is skipped if |PIrr | “ 0.
Thus, we make sure that all properties that have not been
identified to be relevant in the first phase are really irrele-
vant for the given program (at least with the given resource
budget). If any new relevant property was identified during
that phase, the set of relevant properties is corrected and
the second phase is restarted.

In the third phase of our strategy, we verify all those prop-
erties separately that have still not been verified successfully,
but have been identified to be relevant for the given program.
That is, given the set remaining of remaining properties, the
properties PRel X remaining get verified in isolation with the
resource budget β900.

Strategy S4. Strategy S4 combines strategies S2 and S3: It
considers the relevance of properties to reduce the number
of properties to verify separately and a resource budget on
properties limits the number of refinements per property.

5. EVALUATION
In a series of experiments, we evaluate the potential of

software verification with on-the-fly decomposition of specifi-
cations in terms of efficiency and effectiveness.

5.1 Research Questions
Our experimental evaluation is guided by five research

questions, which are divided into three groups that provide
different perspectives on our approach.

Simultaneous Verification of All Properties. We first
investigate the performance benefit of verifying all properties
of a specification in one verification run using one shared ab-
stract model (one abstract reachability graph) of the program.
This reuse of intermediate verification results can influence
both the efficiency and the effectiveness of a software veri-
fier. For now, we are only interested in the performance of
the analysis procedure itself; the effort for all pre-processing
steps that are associated with the verification run will be
investigated separately.

RQ1.1: How many verification tasks can be solved more
efficiently, and what is the speedup in terms of CPU time
for the analysis, by verifying all properties of a specifica-
tion simultaneously compared to verifying each property in a
separate run of the verifier?

RQ1.2: How many verification tasks can be solved more
effectively, in terms of number of verification results, by veri-
fying all properties of a specification simultaneously compared
to verifying each property in a separate run of the verifier?

Specification-Decomposition Strategies. Our initial ex-
ample (see Table 1) illustrates that there are cases for which
simultaneously verifying all properties of a specification with
one abstract model is not feasible. But, it can still be benefi-
cial to verify at least some of the properties simultaneously.

This set of research questions aims at investigating the po-
tential of automatic specification-decomposition strategies:

RQ2.1: How many verification tasks can be solved
more efficiently by applying automatic decomposition strate-
gies (S1– S4) for verifying several properties simultaneously
in one run of the verifier?

RQ2.2: How many verification tasks can be solved
more effectively by applying automatic decomposition strate-
gies (S1– S4) for verifying several properties simultaneously
in one run of the verifier?

Overall Performance. The above research questions have
focused purely on the analysis procedure; we have not dis-
cussed the costs for the pre-processing steps. These steps
include parsing the program, construction of the CFA, and
setting up the different CPAs (which includes initializing
solvers, etc.). Taking these steps into account results in the
last research question:

RQ3.1: What overall effectiveness and efficiency can
we expect in practice (that is, including costs for the pre-
processing steps), from a verifier with on-the-fly specification
decomposition compared to traditional configurations that
verify each property in a separate run of the verifier?

5.2 Setup
Our benchmark suite consists of two sets of Linux ker-

nel modules: the full set with 4 336 modules and a subset
with 250 modules. Details on the benchmarking environment
and the benchmark suite can be found in Sect. 8, where we
describe the replication package. The replication package
includes all tools and data for replicating our experiments,
as well as a detailed description of all properties.

Presentation. If not stated otherwise, we report CPU time
in hours, rounded to two significant digits. Analysis CPU
time excludes the time taken by pre-processing steps that
are performed before the analysis itself starts.

Analysis Domain. We have configured a composite anal-
ysis, where one of the components is a predicate analysis
with adjustable-block encoding [13]. This analysis is used for
representing central aspects of the state space of the program
and the portion of the specification that was weaved (on-
the-fly) with our Loom analysis; assume operations that are
provided by the specification automata get encoded within
the strengthening operation of this analysis. The program
counter, the call stack, and the control states of the specifi-
cation automata, are tracked each by separate analyses. Our
predicate analysis is configured to compute a Boolean predi-
cate abstraction [35] for each function-call location and for
each head of a loop (we perform a large-block encoding [8]).

Experiments. The baseline for all our discussions and ex-
periments is an analysis where only one property is verified
in one instance of the verifier. We have limited the analysis
CPU time for one property to 0.25 h. Limiting the analysis
CPU time instead of the total CPU time helps us to exclude
costs for pre-processing, and focus on the costs of the state-
space exploration. Given the set of 250 kernel modules (see
Sect. 8) and the set of 14 properties, we run 3 500 single-
property verification tasks; the analysis can provide results
in 3 394 cases, from which 97 violate and 3 297 satisfy the
property. The analysis CPU time for the solved verification
tasks sums up to 52 h (includes the time for tasks that ran
into a timeout).

356

To answer RQ1.1 and RQ1.2, we compare the baseline
to a multi-property verification run that is configured to
verify all properties in one partition, that is, we use the
decomposition strategy S0 on 250 kernel modules for which
we verify all 14 properties; the overall CPU time for analysis
is limited to 3.5 h (14ˆ 0.25 h).

To answer RQ2.1 and RQ2.2, we perform two experiments,
where we evaluate the decomposition strategies S1– S4. The
first experiment is on the 250 kernel modules for which we
verify all 14 properties. The second experiment evaluates the
efficiency and effectiveness of our decomposition strategies
on “hard” tasks, that is, tasks for which the baseline configu-
ration is either able to provide results for more properties or
is more efficient than strategy S0. For both experiments, we
have limited the overall CPU time for the analysis to 3.5 h.

To answer RQ3.1, we run two experiments for which we do
not force the Java Virtual Machine (JVM) to compile most
of the bytecode during its startup. The first experiment is on
the 250 kernel modules for which we verify all 14 properties.
To confirm our results and increase their validity, the second
experiment is on the larger set of verification tasks, that is,
we verify the 14 properties of all 4 336 Linux kernel modules.

5.3 Results
This section presents the results of our experiments; raw

data and more details are shipped with our replication pack-
age (Sect. 8).

RQ1.1: Efficiency of Multi-Property Verification. Ver-
ifying all properties simultaneously is faster for 80 per-
cent (199 modules) of the modules compared to verifying each
property individually. Overall, we gain an average speedup
of 5.2 in terms of CPU time for the analysis. A graphical
illustration of the results can be found in Fig. 2.

Several relevant properties can be verified without any
refinements, purely based on the state of the specification
automata. In the cases in which verifying the properties
individually is more efficient, the simultaneous checks ran
into a timeout for 14 modules, without providing any result;
the individual checks were able to provide results for some
of the properties of eleven of those modules.

RQ1.2: Effectiveness of Multi-Property Verification.
The results illustrate that verifying all properties simultane-
ously without any decomposition strategy can lead a sub-
stantial loss of results: We lost 5.6 % (191) of the results; the
goal of specification decomposition is to improve this. On
the other hand, the analysis is able to provide five additional
results (for different properties in different modules) because
the resources are not divided across different partitions.

RQ2.1: Efficiency by Specification Decomposition.
For the set of 250 modules, each decomposition strategy
can provide an average speedup of at least 5.1. There are
subsets of these modules for which specific decomposition
strategies are the most efficient choice. Strategy S0 is the
best choice (only those strategies are considered that pro-
vide results for all properties of a given module) for 20 %,
S1 for 15 %, S2 for 18 %, S3 for 19 %, and S4 for 12 % of
the modules. The baseline configuration provides the best
efficiency for 12 % of the modules.

For the subset of 51 “hard” modules, strategy S4 provides
an average speedup of 1.1, and is able to provide a speedup
for 33 % of these modules; without a specification decom-
position, no speedup was possible for this set of modules.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●●

●

●

●

●

1

10

100

1000

10000

1 10 100 1000 10000

Each Separately

A
ll

S
im

u
lt
a
n
e
o
u
s
ly

Figure 2: Scatter plot that compares the simulta-
neous verification of all properties (y-coordinate) to
the classical approach where each property is veri-
fied in a separate instance (x-coordinate) of the ver-
ifier, in terms of CPU time for the analysis

Table 2: Results for different decomposition strate-
gies; the first set of tasks covers 250 Linux kernel
modules; the set of “hard” tasks is a subset of those
tasks: tasks for which the baseline configuration is
either able to provide results for more properties or
is more efficient than strategy S0

St
ra

te
gy

Sa
tis

fie
d

V
io
la
te

d

Par
tit

io
ns

A
na

ly
sis

C
PU

T
im

e
(h

)

A
ve

ra
ge

Sp
ee

du
p

#
A
dd

iti
on

al
R
es

ul
ts

#
Los

t
R
es

ul
ts

%
Los

t
R
es

ul
ts

%
Sp

ee
du

pą
1

A
ll

M
o
d
u
le

s BL 3 297 97 3 500 53 1.0 0 0 0 0
S0 3 104 99 250 97 5.2 5 196 5.6 80
S1 3 284 96 790 53 5.2 3 17 .49 79
S2 3 289 96 724 56 5.1 4 13 .37 78
S3 3 281 96 403 33 5.2 0 17 .49 82
S4 3 282 96 453 33 5.2 0 16 .46 84

H
a
rd

M
o
d
u
le

s BL 573 36 714 36 1.0 0 0 0 0
S0 379 38 51 94 .43 4 196 27 0
S1 572 35 538 44 .67 3 5 .70 14
S2 575 35 355 42 .82 4 3 .42 24
S3 571 35 188 27 .92 0 3 .42 18
S4 572 35 185 24 1.1 0 2 .28 33

The strategies S2 and S4, which implement a decomposition
heuristic based on the number of abstraction refinements,
are more efficient than strategies S1 and S3 that do not use
such a heuristic.

Table 2 provides more details on the efficiency of different
decomposition strategies on the discussed sets of tasks.

RQ2.2: Effectiveness by Specification Decomposition.
According to Table 2, all our strategies that perform some
kind of specification decomposition can reduce the number
of lost results to less than 1 %.

RQ3.1: Overall Performance. For estimating the practi-
cal potential of multi-property verification with specification
decomposition and on-the-fly specification weaving, we con-
sider the total process CPU time of strategy S4. Because the
JVM is now allowed to take the full advantage (see Sect. 5.2)

357

of its just-in-time compiler, the results are slightly different
from those for the earlier research questions.

For the set of 250 kernel modules, the overall process CPU
time reduces, compared to the baseline, from 60 h to 25 h,
with an average speedup of 5.5 (median 5.0). To confirm our
results, and increase their validity, we evaluated our approach
on a larger set of verification tasks that covers 4 336 kernel
modules. The overall process CPU time is considerably
reduced from 400 h to 130 h, with an average speedup of
8.0 (median 8.6), and a lower speedup for 99 % (4171 of
4 336 modules) of the modules. At the same time, 112 re-
sults (0.4 %) for separate properties were lost in comparison
to the baseline. Note that this set of modules contains entries
for which none of the properties is relevant, leading to the
best possible speedup for them.

5.4 Discussion
Our results illustrate that multi-property verification is

in many cases more efficient than verifying every property
individually. The number of solved problems can be kept on
a similar level by using a specification-decomposition strat-
egy. Taking the relevance of properties into account helps
to further improve the efficiency of the overall verification
process. Measures of the verification process can indicate
properties that are likely to cause high costs. The measures
can be used to decide which properties to better verify later
in another partition (or even in isolation).

On-the-fly weaving of specification automata, with dy-
namically adjustable precision, helps the verifier to focus on
properties that are enabled for analysis at the moment, and
the current state of the specification can be encoded in an
appropriate abstract domain. Such an encoding is crucial
for our approach: it helps avoiding state-space explosion
considerably. An experimental comparison to traditional
approaches that instrument the specification into the pro-
gram code before the verifier starts may be promising but is
outside the scope of this paper.

One hypothesis is that our approach can benefit from a
large portion of intermediate verification results that are
similar for different properties. As we use lazy abstraction,
only those parts of the state space are modeled with higher
precision that are relevant for at least one of the analyzed
properties. Common states might be the result of expen-
sive computations, such as the computation of a Boolean
predicate abstraction. An indicator for the similarity of
state spaces is their size, that is, the number of states in
the set reached. We can compare the maximum number of
reached states of verification runs that verify a single property
to the size of the set reached of multi-property verification
runs. This analysis reveals that the number of reached states
is indeed similar in many cases, that is, we likely take ad-
vantage of this sharing potential; we leave a more elaborate
analysis of this observation to future work.

Our decomposition strategies are configured to (re-) con-
struct the state space from scratch for each partition of
properties, which is (still) a waste of precious intermedi-
ate verification results. Re-using (parts of) previously con-
structed state space graph for successive partitions could
lead to a significant improvement of the performance [11,26].

5.5 Threats to Validity
Our benchmark suite consists of a substantial set of Linux

kernel modules and a set of safety properties that are relevant
in that domain. The size and diversity of our benchmark
suite ensures that our conclusions are externally valid in that
application domain. Different tools with different abstract
domains and analysis techniques work differently in terms of
sharing abstraction precisions and abstract states; similarly,
the SMT solver is critical for the performance.

The chosen time limit of 0.25 h for a single property is cho-
sen more-or-less from previous experience: Most verification
tasks that we encounter can be solved within this time period
by CPAchecker (cf. one of the reports on the International
Competition on Software Verification [6]).

The speedup depends on the number of properties that are
verified, and can be artificially increased by including many
properties that are not relevant for a verification task. We
use a subset of the properties that were defined in context of
the Linux Driver Verification project; each property can be
potentially relevant for each kernel module, or might become
relevant by a minor change to its code.

The distribution of code that is relevant for proving a
property is important. The scope of properties in a program
influences the potential speedup of our approach. It is not
possible to control this variable, thus, we increase internal
validity by the large number of experiments on many different
modules. Proving a property is in general considered harder
than showing its violation. Our set of verification tasks has
only a small percentage of violations, such that the overall
picture is still valid.

6. CONCLUSION
We presented a set of enabling techniques for verifying

formal specifications that can be further decomposed into
sets of properties. First, we presented the Loom analysis, a
new technique that on-demand and on-the-fly weaves prop-
erties into the transition system. This way, we can switch on
and off, as needed during the verification process, properties,
independent from other analysis components; the precision
of the specification analysis defines the set of properties to
verify for a specific part of the state space. Second, we de-
veloped several promising heuristics for self-monitoring the
verification progress and reduce or increase the precision of
the analysis (the set of properties to be verified) dynamically
during the analysis. The combination of these concepts leads
to an efficient and effective analysis of large sets of properties
in one run of the verifier. The results of our experimental
study are promising: Verifying several properties in one ver-
ification run can (in most cases) significantly increase the
efficiency of the verification process; this complements the
current practice where only single properties are verified in
one run of the verifier. Our results open up a number of
interesting research directions: Techniques that were success-
ful for verifying single properties in one run might not be
the best choice for verifying larger sets of properties.

7. ACKNOWLEDGMENTS
This work has been supported by the State of Bavaria,

the Russian Science Foundation, and the German Research
Foundation (AP 206/4 and AP 206/6).

358

8. ARTIFACT DESCRIPTION
To make our results easier to reproduce, we provide a

replication package that includes all verification tasks, tools,
and scripts for automatically re-running our experiments.
The verification tasks have been derived from 4 336 Linux
kernel modules, and a set of safety properties that define
the correct usage of the Linux API. An implementation of
our approach is part of the open-source software verification
framework CPAchecker [12]; its source code is freely available
under the Apache 2 license. The replication package—a large
fraction of it can be reused for other research endeavors—is
provided on a supplementary Web site 5 which contains de-
tailed instructions for reproducing our experimental results.

Benchmark Suite. We evaluated our approach on a set of
modules from the Linux kernel version 4.0-rc1. The modules
were extracted and prepared using the Linux Driver Verifica-
tion (LDV) toolkit 6 [32], which also takes care of enriching
the modules with an environment model of the Linux kernel.
Each module has several entry functions which represent, for
example, different interrupt handlers; we only consider one
entry function (main0) per module. We use two sets of mod-
ules for our experiments: the full set with 4 336 modules and
a subset with 250 modules. The subset consists of randomly
chosen tasks from the full set of modules, for which at least
two properties are relevant. The pre-processed Linux kernel
modules are licensed under GNU GPL 2.0.

The specification consists of 14 safety properties that are
relevant for the Linux kernel; a detailed description of these
properties can be found in Table 4. Not all properties are
relevant for all kernel modules, for example, property 77_1a

is relevant for only two modules from the subset with 250 el-
ements. Table 3 provides an overview on the relevance of the
properties for the two sets of kernel modules. For 1 989 of
the kernel modules, at least one property is relevant; at least
two properties are relevant for 1 059 modules.

Experimental Setup. We have implemented our approach
on top of the CPAchecker framework. We used revision 21027
from the branch muauto for our experiments, with SMTIn-

terpol as SMT solver. All experiments have been executed
on machines with Linux 4.2 and Java 1.7, equipped with
two Intel Xeon E5-2650 CPUs and 135 GB of RAM. As we
assume that a software verifier can always make use of the
full memory installed on a (typical) machine, we limit runs
in which only single properties are verified (baseline) and
runs where several properties are verified at once to the same
amount of memory: 26 GB of Java heap and 30 GB for the
process itself; each process was limited to use 4 cores.

Evaluation and Reproducibility. Since CPAchecker is
written in Java, special characteristics of a JVM have to
be considered [24]. In particular, a scenario where we com-
pare multiple launches of the JVM to a single launch, but
also comparing multiple iterations to a single iteration of
an algorithm, requires special care. To mitigate the effects
of the just-in-time compiler of the JVM, we force the JVM
to already compile most of the byte code during its startup.
The initial size of the Java heap is set to the maximum.

We measure and control computing resources using
BenchExec [15], a framework for reliable and accurate
benchmarking, which is freely available and licensed under

5http://sosy-lab.org/research/spec-decomposition/
6http://linuxtesting.org/project/ldv/

Table 3: Not all properties are relevant for every
kernel module; the number of modules for which a
property (table header) is relevant is given for two
sets of modules: the full set All with 4 336 kernel
modules, and a subset Sub consisting of 250 modules
with at least two relevant properties each.

0
8

1
a

1
0

1
a

3
2

1
a

4
3

1
a

6
8

1
a

6
8

1
b

7
7

1
a

1
0
1

1
a

1
0
6

1
a

1
1
8

1
a

1
2
9

1
a

1
3
2

1
a

1
3
4

1
a

1
4
7

1
a

Sub 29 119 129 191 31 14 2 4 19 19 20 13 43 23
All 129 783 846 1 054 150 65 6 10 111 82 125 52 200 123

Table 4: Safety properties that we verified for the
Linux kernel modules

Property Description

08 1a Each module that was referenced with module_get must
be released with module_put afterwards.

10 1a Each memory allocation that gets performed in the con-
text of an interrupt must use the flag GFP_ATOMIC.

32 1a The same mutex must not be acquired or released twice
in the same process.

43 1a Each memory allocation must use the flag GFP_ATOMIC if
a spinlock is held.

68 1a All resources that were allocated with usb_alloc_urb

must be released by usb_free_urb.
68 1b Each DMA-consistent buffer that was allocated with

usb_alloc_coherent must be released by calling
usb_free_coherent.

77 1a Each memory allocation in a code region with an active
mutex must be performed with the flag GFP_NOIO.

101 1a All structs that were obtained with blk_make_request

must get released by calling blk_put_request afterwards.
106 1a The modules gadget, char, and class that were regis-

tered with usb_gadget_probe_driver, register_chrdev,
and class_register must be unregistered by calling
usb_gadget_unregister_driver, unregister_chrdev

and class_unregister correspondingly in reverse order
of the registration.

118 1a Reader-writer spinlocks must be used in the correct order.
129 1a An offset argument of a find_bit function must not be

greater than the size of the corresponding array.
132 1a Each device that was allocated by by usb_get_dev must

get released with usb_put_dev.
134 1a The probe functions must return a non-zero value in case

of a failed call to register_netdev or usb_register.
147 1a RCU pointer/list update operations must not be used

inside RCU read-side critical sections.

Apache 2. All requirements on the hardware, the command-
line parameters for CPAchecker, and the verification tasks to
use, are specified in benchmark definition files (XML), which
are shipped with the replication package.

9. REFERENCES
[1] T. Ball, E. Bounimova, B. Cook, V. Levin,

J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis of
device drivers. In Proc. EuroSys, pages 73–85. ACM,
2006.

[2] T. Ball, V. Levin, and S. K. Rajamani. A decade of
software model checking with Slam. Commun. ACM,
54(7):68–76, 2011.

[3] T. Ball and S. K. Rajamani. Slic: A specification
language for interface checking (of C). Technical Report
MSR-TR-2001-21, Microsoft Research, 2002.

[4] C. Barrett, M. Deters, L. de Moura, A. Oliveras, and
A. Stump. 6 Years of SMT-COMP. J. Autom.
Reasoning, 50(3):243–277, 2012.

359

http://sosy-lab.org/research/spec-decomposition/
http://linuxtesting.org/project/ldv/

[5] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate,
Y. Moy, and V. Prevosto. Acsl: ANSI/ISO C
specification language. 2008.

[6] D. Beyer. Reliable and reproducible competition results
with benchexec and witnesses. In Proc. TACAS.
Springer, 2016.

[7] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,
and R. Majumdar. The Blast query language for
software verification. In Proc. SAS, LNCS 3148, pages
2–18. Springer, 2004.

[8] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu,
and R. Sebastiani. Software model checking via
large-block encoding. In Proc. FMCAD, pages 25–32.
IEEE, 2009.

[9] D. Beyer, T. A. Henzinger, and G. Théoduloz.
Configurable software verification: Concretizing the
convergence of model checking and program analysis. In
Proc. CAV, LNCS 4590, pages 504–518. Springer, 2007.

[10] D. Beyer, T. A. Henzinger, and G. Théoduloz. Program
analysis with dynamic precision adjustment. In Proc.
ASE, pages 29–38. IEEE, 2008.

[11] D. Beyer, A. Holzer, M. Tautschnig, and H. Veith.
Information reuse for multi-goal reachability analyses.
In Proc. ESOP, LNCS 7792, pages 472–491. Springer,
2013.

[12] D. Beyer and M. E. Keremoglu. CPAchecker: A tool
for configurable software verification. In Proc. CAV,
LNCS 6806, pages 184–190. Springer, 2011.

[13] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate
abstraction with adjustable-block encoding. In Proc.
FMCAD, pages 189–197. FMCAD, 2010.

[14] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and
P. Wendler. Precision reuse for efficient regression
verification. In Proc. ESEC/FSE, pages 389–399. ACM,
2013.

[15] D. Beyer, S. Löwe, and P. Wendler. Benchmarking and
resource measurement. In Proc. SPIN, LNCS 9232,
pages 160–178. Springer, 2015.

[16] J. R. Büchi. On a Decision Method in Restricted
Second Order Arithmetic. 1960.

[17] G. Cabodi and S. Nocco. Optimized model checking of
multiple properties. In Proc. DATE, pages 543–546.
IEEE, 2011.

[18] S. Chaudhuri and R. Alur. Instrumenting C programs
with nested word monitors. In Proc. SPIN, LNCS 4595,
pages 279–283. Springer, 2007.

[19] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement. In Proc. CAV, LNCS 1855, pages 154–169.
Springer, 2000.

[20] D. Dams and K. S. Namjoshi. Orion: High-precision
methods for static error analysis of C and C++
programs. In Proc. FMCO, LNCS 4111, pages 138–160.
Springer, 2005.

[21] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. In Proc. ICSE, pages 411–420. ACM, 1999.

[22] M. B. Dwyer, A. Kinneer, and S. G. Elbaum. Adaptive
online program analysis. In Proc. ICSE, pages 220–229.
IEEE, 2007.

[23] R. Fraer, S. Ikram, G. Kamhi, T. Leonard, and
A. Mokkedem. Accelerated verification of RTL

assertions based on satisfiability solvers. In Proc.
HLDVT, pages 107–110. IEEE, 2002.

[24] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous Java performance evaluation. In Proc.
OOPSLA, pages 57–76. ACM, 2007.

[25] P. Godefroid, M. Y. Levin, and D. A. Molnar. Active
property checking. In Proc. EMSOFT, pages 207–216.
ACM, 2008.

[26] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A.
Sanvido. Extreme model checking. In Verification:
Theory and Practice, LNCS 2772, pages 332–358.
Springer, 2003.

[27] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy abstraction. In Proc. POPL, pages 58–70. ACM,
2002.

[28] J. K. Hollingsworth, B. P. Miller, M. J. R. Goncalves,
O. Naim, Z. Xu, and L. Zheng. Mdl: A language and
compiler for dynamic program instrumentation. In
Proc. PACT, pages 201–212. IEEE, 1997.

[29] F. Ivancic, G. Balakrishnan, A. Gupta,
S. Sankaranarayanan, N. Maeda, T. Imoto,
R. Pothengil, and M. Hussain. Scalable and
scope-bounded software verification in Varvel. Autom.
Softw. Eng., 22(4):517–559, 2015.

[30] F. Ivancic, G. Balakrishnan, A. Gupta,
S. Sankaranarayanan, N. Maeda, H. Tokuoka, T. Imoto,
and Y. Miyazaki. Dc2: A framework for scalable,
scope-bounded software verification. In Proc. ASE,
pages 133–142. IEEE, 2011.

[31] Z. Khasidashvili, A. Nadel, A. Palti, and Z. Hanna.
Simultaneous SAT-based model checking of safety
properties. In Proc. HAV, LNCS 3875, pages 56–75.
Springer, 2005.

[32] A. V. Khoroshilov, V. Mutilin, A. K. Petrenko, and
V. Zakharov. Establishing Linux driver verification
process. In Proc. Ershov Memorial Conference,
LNCS 5947, pages 165–176. Springer, 2009.

[33] G. A. Kildall. A unified approach to global program
optimization. In Proc. POPL, pages 194–206. ACM,
1973.

[34] O. Kupferman and M. Y. Vardi. Model checking of
safety properties. In Proc. CAV, LNCS 1633, pages
172–183. Springer, 1999.

[35] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT
techniques for fast predicate abstraction. In Proc. CAV,
LNCS 4144, pages 424–437. Springer, 2006.

[36] C. Loiacono, Marco Palena, P. Pasini, D. Patti, S. Quer,
S. Ricossa, and D. Vendraminet. Fast cone-of-influence
computation and estimation in problems with multiple
properties. In Proc. DATE, pages 803–806. ACM, 2013.

[37] V. O. Mordan and V. S. Mutilin. Checking several
requirements at once by CEGAR. In Proc. Ershov
Memorial Conference 2015, LNCS 9609, pages 218–232.
Springer, 2015.

[38] D. E. Muller. Infinite sequences and finite machines. In
Proc. SWCT, pages 3–16. IEEE, 1963.

[39] E. M. Novikov. An approach to implementation of
aspect-oriented programming for C. Programming and
Computer Software, 39(4):194–206, 2013.

[40] R. Purandare, M. B. Dwyer, and S. G. Elbaum.
Optimizing monitoring of finite state properties

360

through monitor compaction. In Proc. ISSTA, pages
280–290. ACM, 2013.

[41] X. Qin, M. Chen, and P. Mishra. Synchronized
generation of directed tests using satisfiability solving.
In Proc. VLSI, pages 351–356. IEEE, 2010.

[42] F. B. Schneider. Enforceable security policies. ACM
Trans. Inf. Syst. Secur., 3(1):30–50, 2000.

[43] O. Šerý. Enhanced property specification and
verification in Blast. In Proc. FASE, LNCS 5503,
pages 456–469, 2009.

[44] M. Y. Vardi and P. Wolper. An automata-theoretic
approach to automatic program verification. In Proc.
LICS, pages 332–344. IEEE, 1986.

[45] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green:
Reducing, reusing and recycling constraints in program
analysis. In Proc. FSE, page 58. ACM, 2012.

361

	Introduction
	Preliminaries
	Loom CPA: On-the-fly Weaving
	Decomposing Property Sets
	Decomposition Framework
	Decomposition Strategies

	Evaluation
	Research Questions
	Setup
	Results
	Discussion
	Threats to Validity

	Conclusion
	Acknowledgments
	Artifact Description
	References

