International Journal of Parallel Programming, Vol. 28, No. 4, 2000

Introduction

Parallel programming has been around for at least three decades and has
remained a difficult field. The biggest challenge arises when the main pur-
pose of parallelism is to improve performance. It is notoriously difficult to
make parallel programs operate correctly and efficiently. Although progress
has been made on the semantics and verification of parallel programs in
certain domains, no practical, general technique is known for the creation
of reliable, portable parallel application code.

One approach towards this goal is to unburden the programmer from
the difficult task of handling parallelism and delegate this to the compiler
or the machine architecture. The research area that gives the programmer
and compiler the control over coarse and medium-grained parallelism is
parallelizing compilation, the research area that lets the compiler and the
machine automatically extract very fine-grained parallelism is instruction-
level parallelism (ILP).

This and the following issue of the International Journal of Parallel
Programming contain work presented at the Dagstuhl-Seminar on Instruc-
tion-Level Parallelism and Parallelizing Compilation, held at Schloss Dagstuhl
on April 18-23, 1999. The aim of the seminar was to bring together these two
research areas, which have developed side-by-side, but with little exchange
of results. Both areas deal with similar issues: dependence analysis, synchro-
nous vs. asynchronous parallelism, static vs. dynamic parallelization, and
speculative execution. But the different levels of abstraction at which the
parallelization takes place call for different techniques and impose different
optimization criteria.

At the instruction level, the parallelism is transparent to the program-
mer, since it is automatically extracted from program parts that are atomic
at the level of the programming language. The emphasis is on driving
the parallelization process by the availability of architectural resources.
Compile-time parallelization has been targeted at very long instruction
word (VLIW) architectures and run-time parallelization at superscalar

321

0885-7458/00/0800-0321$18.00/0 © 2000 Plenum Publishing Corporation

322 Introduction

architectures. Heuristics are being applied to achieve good but, in general,
suboptimal performance.

In parallelizing compilation, parallelism visible at the level of the
programming language must be exposed. The programmer usually aids the
parallelization process with program annotations, or by representing the
program in a certain syntactic form. The emphasis has been on compile-
time parallelization methods. One can apply either heuristics or an optimizing
algorithm to search for best performance. Resource limitations can be
taken into account during the search, or they can be imposed in a later
step, e.g., through tiling or partitioning the computation domain.

The present issue is devoted to ILP and embedded systems, specifically,
to the following topics.

Compilation for Embedded Systems

Embedded software has traditionally tended to use low-level languages
and hand-crafted techniques for optimizing execution time and memory
usage. Given the scope for exploiting parallelism in embedded software,
especially in multimedia applications, and the emergence of ILP processors,
such as VLIW machines, there is a growing body of work investigating the
automatic parallelization of high-level programs aimed at ILP targets. The
challenge, of course, is to match the performance, under tight resource
constraints, of traditional hand-crafted techniques.

Rohou, Bodin, Eisenbeis, and Seznec adopt a global constraint-driven
strategy for guiding program optimization. Global criteria such as overall
speed, code size and instruction cache behavior guide the decisions for code
optimizations which, in turn, inform the choice and sequence of optimiza-
tion strategies at the local levels. The authors present results for a linear
optimization strategy which takes into account the code size and execution
cost of loops in embedded programs, minimizing one while constraining
the other.

Sub-Word Parallelism

The traditional instruction sets of processors have been extended to
exploit sub-word parallelism efficiently. In these multimedia extensions,
a number of short data elements are packed in a single register and data-
parallel operations are executed on them. Examples include the Visual
Instruction Set for the UltraSPARC processor, the AltiVec for the PowerPC,
the MMX extension for the Pentium processor, and the MAX-2 instruction
set of the PA-RISC processor. At present, there is little or no compiler

Introduction 323

support to exploit sub-word parallelism—the user is expected to handcode
large parts of the application in assembly languages.

Krall and Lelait of the University of Vienna use the technique of
vectorization by unrolling to automate this process. Data dependence
analysis and dynamic run-time checking are used to handle unaligned
memory accesses. Sreraman and Govindarajan of the Indian Institute of
Sciences, Bangalore, use standard vectorization techniques on loops which
are tailored for short vector lengths.

Microarchitecture of Embedded Systems

The microarchitecture of future processors has been the subject of
intense debate and is the topic of the paper by Corporaal, Janssen, and
Arnold of the Technical University of Delft. They recognize that future
architectures have to contend with varying workloads and longer com-
munication and memory latencies and observe that communication is of
primary importance in the design of future microarchitectures. In the trans-
port-triggered architecture that they advocate, communication between
functional units, and with the register files, is programmed explicitly; the
computation is now a side-effect, triggered by the communication. All
communication inside the microarchitecture is visible to the compiler,
which leads to a number of communication-level optimizations that the
compiler can perform to enhance performance. Embedded programs can be
analyzed and implemented on a transport-triggered architecture with an
optimal number of functional units and communication patterns.

The following issue will be devoted to parallelizing compilation.

D. K. Arvind (Edinburgh)

K. Ebcioglu (Yorktown Heights)
C. Lengauer (Passau)

R. Schreiber (Palo Alto)

Guest Editors

