
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
TECHNISCHE FAKULTÄT • DEPARTMENT INFORMATIK

Lehrstuhl für Informatik 10 (Systemsimulation)

Generating an Interface for Parallel Multigrid Solvers and VisIt

Richard Angersbach

Bachelor Thesis

Generating an Interface for Parallel Multigrid Solvers and VisIt

Richard Angersbach
Bachelor Thesis

Aufgabensteller: PD Dr.-Ing. habil. Harald Köstler
Betreuer: M. Sc. Sebastian Kuckuk
Bearbeitungszeitraum: 05.02.2018 – 05.07.2018

Erklärung:

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angege-
benen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenom-
men wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.

Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Systemsimulation (Informa-
tik 10), wird für Zwecke der Forschung und Lehre ein einfaches, kostenloses, zeitlich und örtlich
unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der Bachelor Thesis einschließlich etwai-
ger Schutzrechte und Urheberrechte eingeräumt.

Erlangen, den 5. Juli 2018 .

Contents
1 Abstract 5

2 ExaStencils 6
2.1 Multigrid methods . 6
2.2 Multi-Layered Design . 7
2.3 Data partitioning . 8
2.4 Variable Localization . 9
2.5 Language Elements . 10
2.6 Configuration . 11

3 Scientific Visualization with VisIt 13
3.1 Architecture . 13
3.2 Visualization Pipeline . 14
3.3 Parallel Rendering . 15
3.4 In-situ visualization . 16
3.5 Libsim . 17

4 Implementation 19
4.1 Design . 19
4.2 Initialization . 19
4.3 Adapting the mainloop . 20
4.4 Data access functions . 22

4.4.1 Metadata . 22
4.4.2 Rectilinear meshes . 24
4.4.3 Variables . 26
4.4.4 Curvilinear meshes . 28
4.4.5 User defined commands . 29

4.5 Changes to the DSL code . 29

5 Example 31

6 Conclusion 34

A VisIt Installation Guide 35

4

1 Abstract
Scientific visualization is a branch of science directly involved with graphical illustrations which
represent the data produced by a simulation. Many simulation programs calculate an approximate
solution for partial differential equations (PDE) as they represent a wide variety of problems from
physics and natural phenomena. One popular and efficient approach to obtain this approximation
is to build a solver using the so-called multigrid methods.
Depending on the complexity, simulations are run on high performance computing (HPC) systems
to distribute the problem size among the involved processors. Programs running on these systems
are highly optimized towards the components they consist of in order to increase performance.
These optimizations will not be optimal for different components or HPC systems, resulting in a
partial revision of the code. One way to bypass this problem is the usage of domain-specific lan-
guages (DSL) where the problem is specified and code that is optimized towards the current system
is generated. The code generation framework ExaStencils with its DSL ExaSlang can be used for
this purpose. The framework has the ability to generate source code for parallel multigrid solvers.
Visualization tools are often used to illustrate and analyze the data they have been provided with.
In many cases the transportation of the data is done by formatting and writing the data into a
file. Once the simulation is finished, these files are opened by the visualization program and can be
visualized. One negative aspect of this approach is the heavy usage of I/O. Nowadays HPC systems
produce data at a higher rate than the bandwidth of I/O, which turns out to be a bottleneck. To
reduce the impact from I/O, the integrity of the data needs to be compromised, e.g by writing the
files less frequently. Another approach is to visualize the data in-situ. The visualization routines
are granted direct access to the simulation’s memory which nullifies the need of any I/O actions.
This approach also enables the functionality of simulation steering, allowing the user to make ad-
justments and control the flow of the simulation. The visualization tool VisIt provides a library to
visualize the data in-situ. In order to transfer the data from the simulation to VisIt, adjustments
to the code have to be made. The implementation for this purpose can be quite cumbersome be-
cause it differs for serial and parallel simulations. Also, in order to provide a visualization for the
whole integrity of data present, data access code for each variable and its belonging mesh has to be
written.
The goal of this thesis is to bypass this problem by integrating a visualization interface into Exa-
Stencils using VisIt’s in-situ approach with the objective that the necessary changes to the DSL
code are minimized.

5

2 ExaStencils
ExaStencils [2] is a code generation framework for highly optimized parallel multigrid solvers on
block-structured grids. Within this chapter, the basics of the multigrid methods are explained, the
conceptual design of the DSL ExaSlang is described and an introduction to its language elements is
given. However, the focus in this chapter lies in the ExaStencils data partitioning and the variable
localization since it is the most relevant information for the visualization.

2.1 Multigrid methods
In order to compute an approximation for the linear system of equations Ahuh = fh that arises
from the discretization of PDEs, multigrid solvers [10, 20] can be applied. But in many cases, these
matrices can be expressed with a more compact representation, the so-called Stencils. Multigrid
solvers make use of two principles. The first one is the smoothing property of iterative methods,
also called relaxation methods, that solve the linear system of equation with an initial guess of the
solution. Relaxation methods such as Jacobi or Gauss-Seidel are effective for reducing errors with
high frequency, enabling a high convergence rate in the first steps. However, this does not apply to
low frequency errors with the result that convergence rate is strongly reduced after some iterations.
This is where the second principle, allowing smooth functions to be approximated on coarser grids,
comes into place. Multigrid solvers make use of this principle to get an approximation of the error
from lower levels. This error is used to correct the approximate solution with it, since the exact
solution u∗h equals the sum of the approximate solution uh and the error eh. The error is contained
in the linear system of equations Aheh = rh, also called residual equation.
Figure 1 illustrates the steps for the current multigrid cycle k to calculate a new approximation

u
(k+1)
h = MGh

(
u
(k)
h , Ah, fh, γ, ν1, ν2

)
. (1)

The parameter γ denotes the number of recursions, ν1 the number of pre-smoothing steps and
ν2 the number of post-smoothing steps. The cycle begins at the highest level defined. Here, the
current solution u(k)h is smoothed, the residual rh is calculated and restricted R to the residual rH
on the coarser level. Afterwards the recursion begins. In order to solve the residual equation, the
initial guess e0H and rH are passed as function arguments. Once the coarsest grid has been reached,
the residual equation is either directly solved or approximated with methods such as the conjugate
gradient (CG) method and the result is returned to the successive finer grid. In dependency of γ the
recursion can be repeated and the received result e(j−1)

h is passed. The prolongation or interpolation
P of the error eH towards the error of the current level eh can be used to correct the approximate
solution u

(k)
h . Afterwards, post-smoothing is applied. The multigrid cycle is complete when the

finest level has been reached again.

if coarsest level then
solve Ahuh = fh exactly or by many smoothing iterations

else
ū
(k)
h = Sν1h

(
u
(k)
h , Ah, fh

)
pre-smoothing

rh = fh −Ahū(k)h compute residual
rH = Rrh restrict residual
for j = 1 to γ do

e
(j)
H = MGH

(
e
(j−1)
H , AH , rH , γ, ν1, ν2

)
recursion

end for
eh = Pe(γ)H prolongate error
ũ
(k)
h = ū

(k)
h + eh coarse grid correction

u
(k+1)
h = Sν2h

(
ũ
(k)
h , Ah, fh

)
post-smoothing

end if

Figure 1: The Multigrid algorithm (from [21]).

6

2.2 Multi-Layered Design
In general, DSLs can be categorized as external or internal. Internal languages make use of the
syntax and semantics from their corresponding host language, e.g. C++, whereas external languages
introduce their own syntax and semantics. ExaSlang belongs to the external DSLs, since these are
generally more flexible and expressive. It conceptually consists of four layers which, in general,
can be assigned to a group of users. Here, the three groups "Engineers & natural scientists",
"Mathematicians" and "Computer Scientists" are distinguished. Naturally, these groups do research
on different topics and expect language elements best suited for them [1, 22].

Figure 2: The four layers of ExaSlang (from [12]).

Figure 2 shows the four different layers of the DSL ExaSlang where abstraction decreases on higher
layers. Layer 1 is the most abstract and suited for the "Engineers & natural scientists" group. On
this layer, they are able to specify a continuous problem like an energy functional or a PDE with
mathematical formulations. This also includes specifications such as the computational domain and
its corresponding boundary conditions.
In Layer 2, the corresponding discretization of the problem is declared and restrictions to the grid,
e.g. if the grid is structured or block-structured, are made. This layer is most likely used by
"Engineers & natural scientists" and "Mathematicians".
The first appearance of the multigrid methods exists on Layer 3. The focus of this layer lies
on algorithmic components, parameter values and settings. For example, smoothers with their
corresponding coloring, inter-grid transfer functions such as prolongation/restriction operators and
multigrid cycles. This layer is best suited for "Mathematicians" and "Computer Scientists".
In comparison to the other layers, Layer 4 is the most concrete. Here, functions and classes in a
syntax similar to Scala can be integrated in order to apply various code optimization strategies,
parallelization techniques such as communication patterns or to add components from external
frameworks.
Another component of the ExaSlang design is the Target Platform Description Language (TPDL).
Specifications for the target platforms hardware, e.g. CPUs and software components such as
compilers take place here.
In addition to the various layers illustrated in figure 2, there is an intermediate representation (IR).
However, it is not accessible to the user and therefore not included in the figure. Nonetheless, the
IR is important for this thesis as it builds the bridge between Layer 4 and the resulting target code.
In the end, the target code contains elements from both. In regards to the visualization provided
in this thesis, elements from the IR are the functions which will be discussed in chapter 4. More
details about the layers can be found in [1, 21].

Workflow

The core of the code generation framework is its compiler written in Scala. The compiler can
either be used to translate the input in form of ExaSlang files towards a less abstract DSL layer

7

or in case that the most concrete layer is passed, target code for the programming languages C++
and CUDA can be generated. Besides the ExaSlang file, the generator also receives two additional
inputs. The first one is the settings file, which contains information about paths and files, e.g.
location for generated code or which ExaSlang files are passed towards the compiler. The second
file is the knowledge file which contains domain specific parameters. The workflow of ExaStencils
is to create highly optimized code by translating it from Layer 1 step by step. For each step,
hardware and domain knowledge is applied. The generation of the target code begins with parsing
the Layer 4 to the IR. Here, compiler-internal code transformations which describe the refinement
process from the input towards the output data by either modifying, adding, removing or placing
program elements, take place. In most cases, these transformations are used to apply optimization
techniques. However, in regards to the implementation of this thesis, transformations are used to
add the corresponding global variables and functions for the visualization to the target code. For
the execution of transformations, strategies that put a group of transformations to a certain step
in the generation process are needed. The generation of the visualization code is described with a
default strategy, which basically applies the transformations in their given order. More details can
be found in [22].

2.3 Data partitioning
In order to support data partitioning for a manifold of hardware configurations and parallelization
techniques, ExaStencils introduces a three-level hierarchy [12]. The focal point of this thesis lies on
the shared-memory and distributed-memory parallelization models, with the result that only the
mapping between the elements in the hierarchy and the corresponding technique is explained in
this section. Shared-memory parallelism is often realized with usage of the Open Multi-Processing
(OpenMP) interface, where threads sharing the memory amongst themselves are run in parallel.
Distributed-memory parallelism however describes the partitioning of data among the involved pro-
cessors, where every processor has its own memory. In case that data from another processor is
needed, communication between them takes place. For this technique, the Message Passing Inter-
face (MPI) is used and the processors are assigned to so-called MPI ranks. Naturally, there are also
hybrid approaches, where the most common is to spawn threads on each MPI rank.
Figure 3 illustrates the hierarchy’s elements that are used to partition data physically. The leaf
elements in the hierarchy are sets of grid points or cells and represent a part of the computational
domain. A fixed number of these leaf elements are contained in so-called unit fragments. These as-
semble the fragments, which represent the next level in the hierarchy. Their mapping to parallelism
corresponds to either one OpenMP thread per fragment or in case that the number of fragments
is too high, multiple fragments are assigned to an OpenMP thread. On the top of the hierarchy
are the so-called blocks, which consist of a single or multiple fragments. Here, a one by one ratio
between blocks and MPI ranks is used.

Figure 3: Hierarchy of data partitioning in ExaStencils (from [12])

In addition to the physical decomposition of the domain, a partition of leaf elements into logical
groups takes place. The first elements within this partition are the regular grid nodes or cells.
In a stencil code, these elements represent the values in the grid on which the stencil operator
is applied. In case that the stencil code is run on different resources, e.g. when a distributed-
memory parallelism is applied, grid values from the neighboring processors are required for the
stencil operations. For this reason, the so-called ghost or halo layers are introduced. As shown in

8

figure 4, these layers contain copies of the regular elements from other fragments and are updated
as soon as new data is required. Another group within the logical partitioning which requires data
from other processors are the so-called duplicate layers. These layers are contained by multiple
fragments as pictured in figure 4. On the contrary to the ghost layers, calculations take place on
these elements. Also, their position within the domain is completely independent of the current
multigrid level. The distinction between regular and duplicate elements is made because deviations
of the values between adjacent fragments may occur. One possible cause for these deviations is the
order in which the operands are applied. ExaStencils makes use of a synchronization strategy where
a dominant instance is declared. The values from the other adjacent instances are overwritten by
the ones coming from the dominant instance. The next logical group are the so-called padding
layers, which can be used for optimizations such as reducing the rate of conflict cache misses. The
order in which the different kinds of layers are applied can be seen in figure 4. The logical groups
are denoted as (P)adding, (G)host, (D)uplicate and (I)nner layer. Around the inner layers are the
duplicate layers which are also surrounded by ghost/padding layers.

Figure 4: Logical data partitioning and global index distribution between two fragments in 1D
(from [12]).

2.4 Variable Localization
In general, discretization describes the transformation of continuous data such as functions or
variables into a set of discrete points. As a result, vectors containing approximate values for
each discretization point arise. These vectors are declared as fields within ExaStencils. However,
in dependency of the problem that is solved, different discretization approaches are used. The
difference between these approaches mainly lies within the number of discretization points and
their coordinates. As a result, the localization of a field’s data points must be specified in its field
layout. As shown in figure 5, data points can be positioned on the centers of the grids nodes, cells or
faces. However, face-centered variables are mainly used in combination with cell-centered variables
in a so-called staggered grid, which are in most cases used for fluid flow simulations to obtain a
stable discretization [20]. Within the domain of geometrical multigrid solvers, the number of points
for a node-based discretization equals cdim∗2level+1 whereas the number of cells is cdim∗2level [12].
Examples for the factor cdim can be found in chapter 4.4. In staggered grids however, face-centered
variables exist for each dimension and the localization within the grid differs for each of them. In
general, these can be interpreted as node-centered in the dimension of its centering and cell-centered
for the other dimensions [13].

9

Node-center

Cell-center

Face-center in x

Face-center in y

Figure 5: Variable localizations supported in ExaStencils

2.5 Language Elements
As described in chapter 2.2, components from external frameworks are added towards Layer 4.
Also, it is possible to declare an application function which becomes the main function at the target
code [1]. The mandatory changes to the DSL code take place in Layer 4 and therefore a short
introduction for its language elements is given. However, this introduction only presents the most
important language elements in regards to the changes in the DSL code. For further information
see [13, 22, 21].

Level specifications

In the domain of multigrid solvers, level specifications are needed since the algorithm takes different
actions on each level, e.g. direct solving on the coarsest level. ExaSlang simplifies the declaration
of the levels with keywords. Functions and objects can be accessed on specific levels with these
keywords. The most relevant keywords are @all, @current, @finer, @coarser, @finest and
@coarsest. In addition, it is also possible to exclude certain levels with the @but as shown in
listing 1.

Function mgCycle@(all but coarsest) {
Smooth@(current) () /* calculateResidual@current, ... */
mgCycle@(coarser) ()
/* prolongate@current, ... */

}
Function mgCycle@(coarsest) {

/* solve directly or with many iterations */
}

Listing 1: Multigrid cycle with two different level specifications

Control flow

Besides functions, ExaSlang provides language elements such as branching with if-else statements
and loops which are categorized as temporal or spatial. Temporal loops are a sequence of steps
whereas spatial refers to an iteration over the whole computation domain. Temporal loops can
be expressed as repeat until <condition> or repeat <N> times and spatial loops have the
signature loop over <field>. Another important language element is the application function
shown in listing 2. This function corresponds to the main function in the C++ target code. In
relation to the visualization code, this function plays an important role since some of the provided
functions need to be added here.

Function Application () : Unit {
/* initialization */
repeat 10 times {

10

mgCycle@(finest) ()
}
/* de-initialization */

}

Listing 2: Application function

Data types and variables

The data types that are available in ExaSlang are categorized into the groups simple data type
and algorithmic data type. There are also so-called aggregate data types which represent complex
numbers, but these are not addressed in this thesis. Simple data types are denoted as Real for
floating-point numbers, Unit which is a functions return type with no value, and the familiar data
types from other programming languages Integer, Boolean and String. These simple data types
can be assigned to a Variable (in short Var) or to a constant Value (in short Val). Two examples
are shown in listing 3.

Val pi : Real = 3.141
Var twoPi : Real = 2.0 * pi

Listing 3: Variable and value assignment

Algorithmic data types are classified as data types used in numerical calculations. The most relevant
of those are the fields which were mentioned in chapter 2.4, since these represent the data which
is visualized. Fields are tied to a computational domain and therefore to its physical coordinates.
Another specification for them is the field layout. It consists of information such as the number
of layers from the logical data partitioning, the localization and the data type of the discretization
points. Additionally, boundary conditions such as None, Neumann or Dirichlet in form of an
constant value can be chosen. Listing 4 shows a three-dimensional, node-centered variable with
Dirichlet boundary conditions. It is surrounded by one duplicate and one ghost layer per dimension.
These properties apply to each multigrid level defined.

Domain global< [0.0, 0.0, 0.0] to [1.0, 1.0, 1.0] >

Layout NodeWithComm< Real, Node >@(all) {
duplicateLayers = [1, 1, 1] with communication
ghostLayers = [1, 1, 1] with communication

}
Field Solution< global, NodeWithComm, 0.0 >@(all)

Listing 4: Declaration of a field and its components

2.6 Configuration
Naturally, the generation of the visualization is strongly dependent on the input parameters passed
to the compiler. For the implementation of this thesis, following knowledge parameters are taken
into consideration:

• minLevel/maxLevel: coarsest and finest multigrid level.

• numLevels: equals maxLevel−minLevel+1.

• useDblPrecision: used to determine whether to use double or single floating point precision.

• mpi_enabled: determines whether MPI is used or not. In chapter 4 a simulation is referred
as parallel, when it is set to true.

• mpi_defaultCommunicator: used in callback functions for the synchronization between mas-
ter and slave processes.

11

• dimensionality: dimensionality of the problem that is solved.

• domain_numBlocks: total number of blocks within the domain. Also corresponds to the
number of MPI ranks.

• domain_numFragmentsPerBlock: total number of fragments in a block.

• discr_h*: constant step size for each available level and dimension (* equals x/y/z).

• domain_rect_numFragsPerBlockAsVec: number of fragments per block for each dimension.
Only relevant for rectilinear domains.

• domain_fragmentLengthAsVec: multiplier for the number of points in each direction for the
fragments.

• targetCompiler: compiler used for the target code.

12

3 Scientific Visualization with VisIt
The application VisIt [7] is an open source visualization and analysis tool which can be used on
Unix, Windows and Mac platforms. Users are granted the ability of interactive visual exploration
and analysis for massive data sets. VisIt’s customizable plug-in design gives the capability to add
components that allow a wide set of data formats as well as data visualization and manipulation
operators to be supported. This chapter describes the general architecture of VisIt, explains how
data is processed in a parallel visualization pipeline and which rendering techniques are used by
VisIt.

3.1 Architecture
Large data visualization

On many occasions, visualization tools such as VisIt might be overwhelmed with the data produced
by the simulation, in the meaning that the whole data set cannot be processed at once. However,
these simulation tools offer various solutions for this problem. One of them is out-of-core algorithm
streaming which makes use of the property that data does not have to be sent all at once, but
instead the data set is treated as a composition of pieces which are sequentially read and processed
by the pipeline. Another strategy is the selection of data that is relevant for the visualization
result instead of using the entire data set available. Query-driven visualization and multiresolution
processing make use of this principle. The most common approach however, is to distribute the
data along parallel resources and is called pure parallelism. More details can be found in [4, 17].

Components

VisIt embodies a distributed client-server architecture [7, 25, 27] where its component programs,
which are responsible for certain tasks of data visualization and analysis, are classified as client- or
server-sided. However, this does not necessarily mean that a visualization purely on the client side
is not possible. Nonetheless, it is often the case that an execution on a server, often represented
by a supercomputer, is required due to its computing capabilities and most of all, to handle data
which would overwhelm the client. Here, the pure parallelism approach is applied. Each processor
assembles the same so-called data flow network for the visualization pipeline and executes it on its
own share of the whole data. In dependency of number of primitives, either a reduced set of the
data, which is rendered on the client computer, or images rendered on the server are sent towards
the client. More details can be found in the next two sections.
Before visualization requests can be made, information regarding the server’s files and their contents
is necessary. One important component program for this task is the Database Reader, also called
mdserver. It is responsible for browsing the remote’s file system and also shows the user which
files can be opened. Depending on the properties of a file such as its format, a suitable plug-in
responsible for reading its content is loaded. Once it has been opened, metadata such as the list
of available variables is sent to the client and visualization requests can be made. The component
responsible for the processing of visualization and analysis requests is the Compute Engine. It
also loads a plug-in that reads the data from a file and additionally transforms it into VTK objects.
These are put into the visualization pipeline and the result is transferred to the client, where it is
displayed. The last server-sided component is the VisIt Component Launcher (VCL) and is
responsible for launching the other server-sided programs.
The client-sided applications are run on a local desktop and mainly used for rendering and interac-
tion. The Viewer creates plots for the current visualization and analysis request. The operations
of the viewer can be controlled by various interfaces. Figure 6 shows two example interfaces. VisIt’s
graphical user interface (GUI) is built with the Qt widget set. Its main menu consists of seven sub
menus that can be used to connect to remote hosts, browse their file systems with the information
gained by the database reader, change the attributes of plots and the operators that manipulate
them etc. For more details see [26]. The other illustrated interface is the command line interface
(CLI). VisIt has a Python interface that fulfills the same role as the GUI, with the only difference
that Python scripting is used. The CLI is basically an interpreter for the Python interface and
simplifies the process of running scripts. More information can be found in [16]. In addition, both

13

interfaces can be replaced with custom versions. Besides the other user interfaces shown in figure 6,
also Java and C++ clients can communicate with the viewer [8, 24].

Figure 6: VisIt’s client/server architecture (from [7])

3.2 Visualization Pipeline
Visualization pipelines often make use of the data flow network processing design. Data flow net-
works are considered as frameworks that provide an execution model, a data model that grants
various representations for the data and algorithms for the transformation of the data. This design
consists of the two base types data objects and components, which receive and produce data ob-
jects. Components are either sources, filters or sinks. A visualization pipeline consists of an ordered
sequence of components. Typically, it begins with the source which provides an output of data ob-
jects. The most common example for the source would be a file reader. The source is followed by a
number of filters, which transform the data. The output from the last filter reaches the sink, which
can be a file writer or a rendering engine. The components of a pipeline are interchangeable with
the condition that the output from a new component is accepted by the downstream input. For
further reading see [5, 17].
The flow of a visualization pipeline can be described with its execution model. These can be cate-
gorized into event-driven or demand-driven [17]. In an event-driven execution system the pipeline is
executed once data is available in the source. The source pushes the data towards the downstream
components, whose execution is triggered by the source, and, once completed, the results passed to-
wards the next component. In case that the demand-driven approach is used, the pipeline launches
as soon as data is requested. Here, the first step occurs at the sink, where upstream components are
asked for data until the source is reached. The second step begins once the data has been generated
by the source. Here, the data is passed downstream and processed. In VisIt’s pipeline the first
step is called update and the second execute [5]. In comparison to the event-driven approach, which
can be used when data is likely to change over time, demand-driven execution proves useful when
visualization requests are made by a user.
In general, the parallel execution of a visualization pipeline is realized by executing its components
concurrently. There are three different basic modes [17] that make use of this principle. One of
them is the task parallelism approach, where the pipeline is split into independent roles. These roles
are realized as sub-pipelines that are executed concurrently, making this approach applicable for
every kind of algorithm as the original pipeline structure stays the same. One disadvantage of task
parallelism is the low degree of parallelism that can be achieved because the number of independent
roles within a pipeline is limited.
Another parallelization strategy with a higher level of concurrency is the pipeline parallelism. Here,
different pipeline components are executed concurrently with usage of streaming. This mechanism
starts with reading the first piece and proceeds to the next downstream component. With the

14

parallelization of the components, the next piece can be read while the component processes the
the first piece. The read and processed piece can be passed downstream and with the continuation
of this approach, several pieces are in the pipeline.
The most common strategy to run components concurrently is with usage of data parallelism, where
the whole data set is also divided into a number of pieces. An identical visualization pipeline is
built for each piece. This method scales well, because large data can be distributed among processes
fairly easily, allowing a higher degree of parallelism. In addition, with evenly distributed pieces, the
execution of the identical pipeline enables good load balancing. For task and pipeline parallelism,
load balancing might be more of an issue since sub-pipelines or components do not finish their
execution at the same time.
VisIt uses a modified version of the demand-driven data flow network from the Visualization Tool
Kit (VTK) [23], which gives foundation for the data representations and algorithms [7]. One im-
portant modification takes place in its execution model, where contracts are introduced [4, 5]. The
principle behind contracts is to grant the capability of communication between the components
about their impacts on the pipeline. The initial version of the contract is located at the sink and
with every update request the contract is modified by the filters. Once the contract is complete,
the execution can begin. With this approach optimizations which are dependent on the pipeline’s
components can take place. One example is the data reduction of the data that is read when a
slice filter is applied. The addition of contracts also makes the VisIt plug-in architecture possible,
where unknown components developed by end-users are added to the pipelines and optimizations
for those are required.

3.3 Parallel Rendering
The main task within a rendering pipeline is to determine each scene object’s contribution to the
pixel with a certain view given. It can be divided into transformation and rasterization, where
transformation is responsible for the projection from model to screen space and rasterization for
the conversion of the geometry’s primitives into a raster image. Naturally, these stages are often
processed in parallel. However, when these stages are parallelized, a redistribution of the data
among the involved processors can occur anywhere in the pipeline. Therefore, the redistribution
can be interpreted as an sorting problem [11, 19].
When sort-first is applied, every processor is responsible for processing a part of the screen and takes
an arbitrary portion of the data. Each processor performs an initial transformation step to deter-
mine the screen position of each primitive and sends them to the processor with the corresponding
portion of the screen. Afterwards, the execution of the pipeline with its remaining transformation
and rasterization steps continues.
Sort-middle follows another strategy, where a logical or even physical distinction between transfor-
mation and rasterization processing units is made. Here, the transformation units fully execute the
transformation stage and pass the results to the rasterization units with their belonging portion of
the screen space.
In sort-last each processor executes the complete pipeline until the pixel values of each sub-image
are determined. In the end, every sub-image stores its pixel values into the z-buffer of the final
image.
When taking VisIt’s client-server design into consideration, there are use cases where it is a better
choice to send renderable geometry to the client and run the pipeline to completion. However, in
some use cases this approach is not applicable because the client may be overwhelmed by a higher
geometry count and therefore geometry must be processed on the server. VisIt provides a dynamic
strategy to switch between these rendering modes. Figure 7 illustrates which steps occur on client
and server side for both modes [3].
The Send-Images Partitioning, also called scalable rendering mode, makes use of the sort-last algo-
rithm. The advantage of this mode is that only images travel through the network. On the other
hand, it might be not applicable when it comes to interactive visualization, where a certain frame
rate is desired because there is latency in frame production and in the network.
The Send-Geometry Partitioning illustrated below, is more feasible for interactive visualizations. In
this case the geometry is sent towards the client and is additionally rendered. With this approach,
parameters (e.g. for viewing) resulting to a modified visualization of the current geometry do not
need any communication with the server. However it is not applicable when the memory of the

15

client is not sufficient for large geometries.

Figure 7: VisIt’s pipeline partitioning (from [3])

3.4 In-situ visualization
This thesis deals with the generation of a visualization interface using the in-situ approach. In
general, there are two different strategies for this approach. These are called tightly coupled and
loosely coupled in-situ visualization. There are also some hybrid versions combining both strategies.
However, all in-situ strategies have in common that simulation and visualization routines skip I/O.
After all, with post-hoc visualization the price for I/O is paid twice since the simulation results must
be written to a file and additionally read by the visualization program. With the tightly coupled
approach, simulation and visualization routines share the same resources. As a result the rate at
which data is accessed is higher, as also shown in figure 8. This allows visualization and analysis
routines to be performed on every time step, whereas in post-processing the number of files that
can be written are compromised due to the slow rate of I/O. One disadvantage that comes from the
shared memory is that simulation and visualization compete for the memory with the result that the
simulation may be affected by errors coming from the visualization. Another important advantage
is the minimal communication between simulation and visualization. As soon as the visualization
routines are integrated into the simulation code, the visualization can simply take place after each
simulation step in the mainloop, which will be described in chapter 4.3, and once the visualization
is done, the loop continues.
When the visualization is loosely coupled, the simulation data is sent towards dedicated visualization
nodes via network. This allows the concurrent execution of simulation and visualization with the
advantage that the simulation is not impacted by errors occurring at the visualization. As shown
in figure 8, the bandwidth via network is higher than the rate of I/O, but it is slower in comparison
to tight coupling. This brings up the issue that not as much data can be transferred, but it can
be reduced with usage of filtering or compression. Also, compared to the tightly coupled approach,
data needs to be duplicated when it is sent to the nodes. This might cause performance issues for
the simulation. Also, the communication between simulation and visualization is not as simple as
in the tightly coupled case, because it has to be ensured that data is sent and received correctly.
The hybrid approach finds use when neither pure strategies are applicable, for example when the
network or the compute node’s resources are exhausted. In this case, tightly coupled components
are used to reduce the data before it is passed to a dedicated visualization node via loose coupling,
where the visualization process is continued. With the combination of them, their advantages and
disadvantages are still valid to some extent. More information about both strategies can be found
at [6, 18]. A list of visualization frameworks using either of those strategies, results from use cases
and also a more detailed comparison between both approaches can be found at [11].

16

Figure 8: Comparison of bandwidth between post-processing and both in-situ approaches on the
Titan supercomputer at the Oak Ridge Leadership Computing Facility (from [18]).

3.5 Libsim
VisIt provides an in-situ visualization library called Libsim, which allows to access the data from a
simulation with the tightly coupled strategy. One step towards the coupling between a simulation
and the visualization tool VisIt is the linking with the library and the inclusion of the headers it
contains. From the perspective of a code generation framework user, this should happen automat-
ically. In fact it does, but it uses an environment variable SIMV2DIR (see appendix A) that should
be set by the user since the installation path may differ on each machine.
The library offers two interfaces which provide the analysis and visualization of data using the whole
tool set VisIt possesses. One of them is the data interface. It is a collection of interfaces allowing
to send data to a VisIt client when it is required. These interfaces offer allocation and getter/setter
functions for the data that is sent to VisIt. Normally, the plain data values from a simulation are
not enough to create a visualization with VisIt, as they need to be transformed into a suited format.
For this reason, data objects are used. They contain references to the data and are used to create
data structures that VisIt can visualize. The callback functions explained in chapter 4.4 will use
this representation. These callbacks use functions from the data interface to supply the data objects
with information. In order to distinguish the various kinds of data objects, handles are allocated
as an identifier for the corresponding kind. The data objects are then returned and additionally
transformed into VTK objects. VTK supports C data types like double, int, etc. Other data types
need to be transformed into one of these supported data types by copying and casting it into a
temporary variable. Libsim also offers function arguments that allow VisIt to free the variable from
the memory once the calculations are finished [25, 27].
The second interface is the control interface. It has the capability to expose itself to VisIt clients (see
chapter 4.2), creating a listen socket to detect connections coming from them and also to advance
the connection back. In case that the connection back towards the VisIt instance was successful, the
simulation can be seen on the VisIt GUI. Another key task is the handling of visualization requests,
which can be made in case callback functions have been provided. This also includes the notification
(see chapter 4.4.5) towards the viewer that new data was produced by the simulation [6].
Libsim consists of the two libraries illustrated in figure 9. The front-end is a lightweight static
library that contains functions from the control interface and is linked with the simulation. The
second is the heavyweight dynamic runtime library which is loaded by the front-end library as
soon as the connection has been completed. The runtime library contains functions performing
the visualization routines of a compute engine, which makes an instrumented simulation rather
similar to a compute engine. The simulation data is accessed with the callback functions that are
registered with the runtime library. One important feature that comes from the dynamic loading
of the runtime library is that the overhead is reduced to zero when not used [6, 27].

17

Figure 9: Connection between Simulation and Libsim (from [9]).

18

4 Implementation
To transport simulation results to a visualization program, changes to the simulation program need
to be made. For offline visualization, the data is transformed into a format that is supported by the
visualization program and is written into a file afterwards. For online visualization, a connection
between the simulation and the visualization program needs to be established and data access
functions that also transform the simulation data into a suitable format must be implemented. This
chapter describes mandatory changes to the simulation’s code to enable in-situ visualization. The
integration into the code generation framework and the outcome for a manifold of input parameters
declared in the DSL files will be explained in combination with these mandatory code changes.

4.1 Design
For the implementation of the visualization interface, following decisions regarding the coupling
between VisIt and ExaStencils have been made:

1. VisIt emphasizes the storing of simulation data in a typedef struct which, in general, represents
the state of a simulation. It should contain variables storing the number of time steps or
cycles, an indicator used to distinguish a running or stopped simulation and also pointers to
simulation results. The callback functions, that will be described in chapter 4.4 have a similar
signature which allow structs to be passed as an argument. This design allows the exposure of
the required data towards the callback functions without using global variables. This approach
will not be used within the scope of this thesis because the ExaStencils framework does not
provide data structures for the realization of structs and additional to that, algorithmic data
types such as fields must be declared as global within the DSL code anyways [21]. Instead of
the emphasized struct the callback functions receive a nullptr as an argument.

2. Libsim has the two different versions simV1 and simV2. Version simV1 is the older version
and uses structs (other than the ones mentioned earlier) that are filled with data and passed
to VisIt. This approach is very sensitive to not properly filled structs. This turned out to be
a cause for crashes. This problem does not occur when using the newer version simV2 which
offers a list of various functions that fill the previously mentioned data objects. Within this
implementation, the version simV2 is used as it fixes crashing issues and also offers additional
features like mesh types, etc. [25].

3. Libsim offers two different approaches for an in-situ visualization. The first one is the interac-
tive visualization mode. Here, simulation results are displayed as requested by the user on an
interface such as the GUI. One negative aspect is that data is only available for a limited time.
The second approach is the batch processing of Libsim, which allows to store the visualization
results into databases. However, in this approach the visualization steps are predetermined
and require many changes to the DSL code since the user must specify which plot is applied
at a certain time. Within this thesis, the interactive approach is used since it is easier to
use and a specification at which exact point of time data should be visualized is often not
possible [14, 18].

4.2 Initialization
After the interfaces and the static library have been added to the simulation successfully, initializa-
tion steps have to be made to establish the connection with VisIt. This chapter explains changes
to the code that have to be made in case that a serial or parallel simulation is coupled with Libsim.
The control interface contains the functions needed for this purpose.
The first two initialization functions are optional. The first function is VisItSetDirectory which
takes the path to the directory containing the VisIt executable. This path is set with usage of
the VISIT_HOME (see appendix A) environment variable. Calling it prevents version mismatches in
case that the user has several versions of VisIt installed and their executables added to the path
environment. It also proves to be useful if the path environment does not contain any VisIt exe-
cutables. For debugging purposes the VisItOpenTraceFile function can be called. It records every
operation that Libsim performed and dumps it into a text file. This might prove to be useful to

19

determine the origin of failures. At the de-initialization stage of a program, the trace file will be
closed using the VisItCloseTraceFile function. In case of a parallel simulation both functions
should be called from every processor [15].
Parallel simulations coupled with Libsim need to implement additional callback functions because
only the root process has a TCP connection with VisIt. These callbacks are needed to ensure that
each processor operates on the same task. The communication between them is realized with a sim-
ple broadcast from the root process. Libsim offers the functions VisItSetBroadcastIntFunction
and VisItSetBroadcastStringFunction to register the required callback functions for Integers
and Strings. As soon as these functions are registered, the functions VisItSetParallel and
VisItSetParallelRank can be called to tell VisIt that the simulation is run in parallel.
Another mandatory initialization step for both serial and parallel simulations is to call the function
VisItSetupEnvironment which extends the current environment with paths to find VisIt’s plug-ins
and libraries. Naturally, in a parallel simulation every processor has to call this function. There
is also an additional implementation VisItSetupEnvironment2 which is used when MPI permits
the creation of processes that are identifying the environment. In this case, only the root process
discovers the environment and additionally passes it towards the function to broadcast this value.
Therefore for parallel simulations, the second version is used to avoid conflicts with MPI and for
serial simulations, the first version is chosen [15, 25].
The last step is to call the VisItInitializeSocketAndDumpSimFile function. As soon as the
function is called, Libsim is initialized and the simulation listens for connections coming from a
VisIt client. The connection between simulation and client is realized with the opening of the .sim2
file that is created by the function. This file can be found in the ∼/.visit/simulations (Unix) or
%Documents%\VisIt\simulations (Windows) directory. The file contains information such as the
host name and the port that is needed to establish the connection. The function also has the option
to pass a custom user interface file that opens up more possibilities for simulation steering. Parallel
simulations should only call this function from the root processor because it is the only process
communicating with VisIt and only one .sim2 file should be created [15, 27].

• VisItSetDirectory

• VisItOpenTraceFile

• Parallel only initializations

VisItSetBroadcastIntFunction
VisItSetBroadcastStringFunction
VisItSetParallel(1)
VisItSetParallelRank(mpiRank)

• VisItSetupEnvironment(serial), VisItSetupEnvironment2(parallel)

• VisItInitializeSocketAndDumpSimFile, only called from root process if parallel

Figure 10: Initialization steps for serial and parallel simulations

4.3 Adapting the mainloop
As mentioned in chapter 3.5, Libsim is periodically listening for connections from a VisIt client
and also responds to a client’s commands. Therefore changes to the code that enable this kind of
interactivity must be made. Figure 11.a shows the event loop of a typical simulation. The starting
point is the Initialization. Normally, a simulation’s data will be assigned to an initial value and
some pre-calculations take place. After the Initialization phase is finished the program enters the
mainloop. In general, a mainloop performs a sequence of simulate timestep calls until the stopping
criteria illustrated in Check for convergence of the algorithm are fulfilled and the simulation reaches
the Exit state where the de-initialization and termination of the program begins.

20

Initialization

simulate
timestep

Check for convergence

Exit

(a) regular mainloop

Initialization

simulate
timestep

VisIt
Detect
Input

Visualization
requests

Complete VisIt
Connection

Process VisIt
Commands

Process
Console Input

Check for convergence

Exit

(b) VisIt mainloop (from [27]).

Figure 11: Comparison of the two mainloops

The comparison between figure 11.b and figure 11.a shows that the difference between both event
loops are the two states VisItDetectInput and Visualization Requests. The latter is responsible for
handling requests coming from a console or viewer and completes the connection between simulation
and VisIt. The VisItDetectInput state represents the function from the control interface, which
detects input coming from a VisIt instance once the socket has been initialized. This function takes
the arguments blocking and consoledesc. The argument blocking tells the function to wait until
input arrives or to continue the simulation. This argument will be used for the commands that
control the flow of the simulation. The consoledesc argument allows the user to use the terminal
to enter commands if a valid file descriptor has been passed and in case that this feature is not
needed, the value -1 can be used. Also, when the infinite blocking until input arrives is not desired,
another version VisItDetectInputWithTimeout, which takes an additional argument to set the
time until a timeout occurs, can be used. Based on both function’s return value different actions
need to be taken [25, 27]:
int visit_input = VisItDetectInput(int blocking, int consoledesc)

• visit_input < 0: An error occurred or the function was interrupted. In this case the function
should not be called anymore resulting to the termination of the program.

• visit_input = 0: A zero is returned when a timeout occurred or when the function did not
block. After a timeout the simulation should regain control and is realized by performing a
simulation step and additionally rejoining the mainloop again once it completed. Using the
second version VisItDetectInputWithTimeout would enable to listen for connections while
the simulation is running.

• visit_input = 1: An incoming connection from a VisIt client is detected and additionally
accepted by the VisItAttemptToCompleteConnection function. It also loads the dynamic
runtime library in order to use the compute engine’s visualization routines. Afterwards the
function tries to connect back to Visit and once the connection is complete, the simulation
is visible on the viewer. Still, requesting plots of the simulation data and controlling the
simulation flow by using the buttons on the GUI is not possible yet. For this reason the
callback functions that will be described in chapter 4.4 are registered here.

• visit_input = 2: Once the callback functions are registered and visualization requests have
been sent from the viewer, they have to be processed. The VisItProcessEngineCommand
function is responsible for this task. The return value zero indicates an error that occurred
during the process. In this case the simulation cuts the connection with VisIt and starts
running again. The function VisItDisconnect should be used for this purpose. It resets
Libsim completely and also allows the user to reconnect to the simulation.

21

• visit_input = 3: In case a valid file descriptor was passed to the VisItDetectInput function,
commands coming from the console can be read and processed. Their implementation is
almost identical to the one of the command buttons which will be explained in chapter 4.4.5.

In parallel simulations, only the root process should call this function because it is the only process
communicating with VisIt. The processes should work in unison, which means that the result of
VisItDetectInput should be broadcast among the other processes. The same should be done when
it comes to the execution of control commands coming from the console. Here, the root process reads
the commands with VisItReadConsole and writes it into a buffer. This command is broadcast to
the other processes and executed. When it comes to the execution of engine commands coming
from the client, the synchronization is a bit more complex. In order to tell the slave processes to
execute the command, a callback function broadcasting an indicator to them must be implemented
and registered. The root simply processes the command whereas the slave processes wait for input
such as the indicator or the return value from the VisItProcessEngineCommand function executed
by the root. In case that the current slave process is instructed to execute a command, it returns
the value passed from the root after the command has been executed [15, 25].

4.4 Data access functions
As previously mentioned in chapter 3.5, callback functions that transform the plain simulation data
into a VTK object must be implemented to enable plots to be created on demand. In addition, the
implemented callbacks must be registered with the dynamic runtime library after the connection
with VisIt is complete [27]. This chapter shows possible implementations for the data access func-
tions that provide a visualization for the data requested and describes, how these implementations
can vary depending on the parameters declared in the DSL files. The steps that make interactive
visualization and simulation steering possible, are also explained here.

Exposing data to the pipeline

In order to supply the data objects, which additionally are transformed into VTK objects and put
into the visualization pipeline, with information, functions from the data interface can be used.
These functions are the foundation for the callback functions introduced here. As mentioned in
chapter 3.5, VTK only supports C data types. In combination with the data types available in
ExaSlang, these are floating point numbers and integers. Figure 5 shows the signature of these
functions. Its arguments play an important role within this implementation. Especially the owner
argument is relevant, since it determines which instance is responsible for the memory management,
i.e. freeing the data whose pointer is passed towards the function. In the case that temporary
memory is allocated and passed as an argument, the ownership should be given to VisIt with
VISIT_OWNER_VISIT and the memory is freed after the calculations in VisIt are finished. Otherwise
ownership is given to the simulation via VISIT_OWNER_SIM where the memory is normally freed at
the de-initialization stage. The value nComps denotes the number of components that the values
passed consist of. For example nComps = 1 would be used for scalar fields whereas higher values
can be used when vectors, tensors, etc. are visualized. The argument nTuples describes the number
of values that are passed [25].

int VisIt_VariableData_setDataD(visit_handle obj, int owner,
int nComps, int nTuples, double *);

int VisIt_VariableData_setDataI(visit_handle obj, int owner,
int nComps, int nTuples, int *);

Listing 5: Function supplying the data objects

4.4.1 Metadata

Once the connection between simulation and VisIt is completed, the simulation is asked to provide
metadata [6]. In general, metadata is lightweight information describing the characteristics of the
actual simulation data. In this thesis, metadata will be provided to describe the simulation’s status,
meshes, variables, curves and custom commands. The data object returned from this function

22

contains a collection of the metadata that has been provided. As soon as the function has been
registered, the components from this collection including the control buttons for the commands are
visible on the GUI.

visit_handle SimGetMetaData(void* cbdata) {
visit_handle md = VISIT_INVALID_HANDLE;
if(VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY) {

/* update simulation status(time, cycle, mode) */
if(VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY) {

int mode = (visit_runMode == true)
? VISIT_SIMMODE_RUNNING : VISIT_SIMMODE_STOPPED;

VisIt_SimulationMetaData_setMode(md, mode);
VisIt_SimulationMetaData_setCycleTime(md, sim_cycle, sim_time);

}
...

Meshes are defined in two or three-dimensional space and required for the visualization of the field
data. One important attribute to describe a mesh is its type. In general, it describes how the
points in a discretized domain are connected to each other and which shapes the elements that
emerged from the connection between these have. Another important feature that is supplied by
this visualization interface is the illustration of one-dimensional data. VisIt offers a curve callback
function for this purpose [25], but it does not support multiple sub-domains. Therefore, curvilinear
meshes that consist of the variable’s values and their corresponding position in the domain are used
to provide a graphical illustration for one-dimensional fields on multiple sub-domains and to grant
an additional representation for two-dimensional variables as shown in chapter 4.4.4. Another
important metadata for meshes is the name it is given. As shown in the fraction for variable
metadata in listing 6, the name is used to appoint a mesh to place the variable on.

...
/* set mesh name and type, dimensionality and number of domains */
visit_handle mmd = VISIT_INVALID_HANDLE;
if(VisIt_MeshMetaData_alloc(&mmd) == VISIT_OKAY) {

VisIt_MeshMetaData_setName(mmd, "mesh2d");
VisIt_MeshMetaData_setMeshType(mmd, VISIT_MESHTYPE_RECTILINEAR);
VisIt_MeshMetaData_setTopologicalDimension(mmd, 2);
VisIt_MeshMetaData_setSpatialDimension(mmd, 2);
VisIt_MeshMetaData_setNumDomains(mmd, 4);

VisIt_SimulationMetaData_addMesh(md, mmd);
}

...
The visualization of variables can be interpreted as the mapping of values to certain elements of
the mesh such as points, areas or volumes. Libsim allows the placing of values onto a mesh’s nodes
or zones. The differences between them will be explained in chapter 4.4.3. Besides the nodal or
zonal variable centering, the variable type must also be specified. In this code fraction, metadata
for a scalar variable is provided. But the visualization of vectors, tensors and arrays is also possible.
With the variety of variable types, a specification for the number of components they consist of is
required. This specification takes place in the variable callback function.

...
/* specify mesh, variable type, name and centering */
visit_handle vmd = VISIT_INVALID_HANDLE;
if(VisIt_VariableMetaData_alloc(&vmd) == VISIT_OKAY) {

VisIt_VariableMetaData_setName(vmd, "zonal");
VisIt_VariableMetaData_setMeshName(vmd, "mesh2d");
VisIt_VariableMetaData_setType(vmd, VISIT_VARTYPE_SCALAR);

23

VisIt_VariableMetaData_setCentering(vmd, VISIT_VARCENTERING_ZONE);

VisIt_SimulationMetaData_addVariable(md, vmd);
}

...
The commands that are added here will be displayed on the Simulations menu on the GUI. There
is a maximum of six commands that can be displayed. This maximum can be exceeded by using
a custom .ui file. As already mentioned in chapter 4.3, it is also possible to process commands
which have been read from the command line. A generated target code will always provide the
functionality to control the simulation with a step, stop, run, switchUpdates command which
can be entered via the buttons on the GUI or the command line. In the territory of multigrid
solvers the commands level up and level down are also available. A brief explanation for each
command’s functionality can be found in chapter 4.4.5.

...
const char *cmd_names[] = {"step", "stop", "run", "switchUpdates"};
for(int i = 0; i < sizeof(cmd_names)/sizeof(const char *); i++) {

/* install commands */
visit_handle cmd = VISIT_INVALID_HANDLE;
if(VisIt_CommandMetaData_alloc(&cmd) == VISIT_OKAY) {

VisIt_CommandMetaData_setName(cmd, cmd_names[i]);
VisIt_SimulationMetaData_addGenericCommand(md, cmd);

}
}

}
return md;

}

Listing 6: Metadata callback function

4.4.2 Rectilinear meshes

In order to visualize two- or three-dimensional variables, a mesh callback function has to be imple-
mented first. This function returns a data object which is filled with information necessary for the
requested mesh. Depending on the mesh type, additional information or even additional callback
functions must be provided.
The focal point of this thesis is to provide a visualization for multigrid solvers on rectilinear domains
since their corresponding meshes are very memory efficient compared to others. These are aligned
to its specified coordinate values on each axis whereas other mesh types require the coordinate val-
ues for each discretization point. Listing 7 shows a possible implementation for a callback function
constructing a two-dimensional rectilinear mesh. Here, handles for the mesh and its coordinates
are allocated and the coordinate arrays coords[d] with numPoints[d] points are passed. No tem-
porary memory is allocated, so the simulation is responsible for the memory management. In fact,
a three-dimensional implementation is rather similar. The difference is an additional handle that is
allocated, filled with the third coordinate array and added to the handle returned by the callback
function.

visit_handle SimGetMesh(int domain, const char* name, void* cbdata) {
visit_handle h = VISIT_INVALID_HANDLE;
if(strcmp(name, "mesh2d") == 0) {

if(VisIt_RectilinearMesh_alloc(&h) == VISIT_OKAY) {
visit_handle handles[2];
VisIt_VariableData_alloc(&handles[0]);
VisIt_VariableData_alloc(&handles[1]);
VisIt_VariableData_setDataD(handles[0], VISIT_OWNER_SIM, 1,
coords[0], numPoints[0]);

24

VisIt_VariableData_setDataD(handles[1], VISIT_OWNER_SIM, 1,
coords[1], numPoints[1]);
VisIt_RectilinearMesh_setCoordsXY(h, handles[0], handles[1]);

}
}
return h;

}

Listing 7: Callback function for a 2D rectilinear mesh

Integration to the generator

As mentioned in chapter 2.2, the code transformations for the visualization code occur at the IR.
Here, the knowledge parameters described in 2.6 have been set by the input files for the compiler
and additional data structures are available. With the knowledge parameters it is possible to
construct a rectilinear mesh for each block. However, as shown in chapter 2.4 there are different
localizations which can be specified in a field’s layout. Also, in case of a staggered grid it is possible
that multiple localizations are present. In chapter 4.4.3 it will be shown that variables can be either
mapped onto the nodes or zones of a mesh and also that the mesh construction for node- and
cell-centered variables is the same. Nonetheless, nodal and zonal variables are the only options and
an adaption for face-centered variables must be made. The adaption is the creation of additional
meshes consisting of the face centers’ positions. In the generator, different localization types are
collected and for each type present, code responsible for the initialization and de-initialization of its
coordinate arrays is produced. Additionally, its corresponding metadata and mesh callback is added.
At the IR, these types can be collected by iterating over the IR_FieldCollection, which contains
an entry for each field and its levels declared in the DSL code. For each entry, the IR_FieldLayout
and its IR_Localization can be retrieved. In case that a new localization type is found, it is added
to the collection. The calculation of each block’s number of points per dimension uses following
parameters and variables:

• numFrags[d]: Alias for knowledge parameter domain_rect_numFragsPerBlockAsVec.

• fragLen[d]: Alias for knowledge parameter domain_fragmentLengthAsVec.

• level: Represents the current initialization level which is in range of the knowledge parameters
minLevel and maxLevel.

• isNodal[d]: This variable is either "1" or "0" per dimension. Node- and cell-based variables
can be put on the same mesh, which means that it is "1" in each direction for both. For
face-centered variables it is set to "1" for its nodal component, otherwise it is "0".

For the current localization type and level, the number of points contained in dimension d are
calculated as follows:

numPointsTotal[d] = numFrags[d] ∗ fragLen[d] ∗ 2level + isNodal[d] (2)

As soon as the number of points is known and the coordinate arrays are allocated, their correspond-
ing coordinate values must be set. The start position of each fragment and block per dimension is
required for this purpose. The IR layer has data types that contain the actual position and index
of each fragment within the whole domain, in the meaning that the global position of the block is
also taken into consideration. For the computation of the coordinate values, additional variables
are introduced:

• stepSize[d]: Stores the step sizes from the knowledge parameters discr_h*.

• fragPos[d]: Alias for the IR data type IR_IV_FragmentPositionBegin which returns the
global start position of the current fragment.

• center[d]: Depending on the localization and dimension this value is either "0" or "0.5". For
face-centered variables it is "0.5" for its cell-centered components, otherwise "0".

25

• fragIdx[d]: Equals the IR_IV_FragmentIndex data type which contains the global index of
the current fragment for each dimension.

The initialization of the coordinates is done by iterating over the fragments. Derived from equa-
tion 2, the number of points of fragment is calculated as follows:

numPoints[d] = fragLen[d] ∗ 2level + isNodal[d] (3)

For each discretization point i within a fragment, the coordinate value must be determined. For
dimension d, this value is computed in dependency of the current level and localization with:

coords[d][i+ startIdx] = fragPos[d] + (i+ center) ∗ stepSize[d] (4)

The value startIdx is used to determine the offset towards the current fragment’s first grid point
in direction d and can also be interpreted as the position of the duplicate layers shared by adjacent
fragments. In order to get a block-local offset towards its current fragment, the global index
retrieved from fragIdx must be mapped to a local index first. The offset startIdx towards the
current fragment in direction d is determined by:

startIdx = (numPoints[d]− isNodal[d]) ∗ (fragIdx % numFrags[d]) (5)

4.4.3 Variables

Once the data access function for the different kinds of meshes has been added and an appropriate
visualization for each mesh has been provided, the data access function placing the variable values
onto a mesh is ready to be implemented.
VisIt offers two approaches to place a scalar variable onto a mesh. The first one is the node-
based centering where variable values are placed onto the mesh’s nodes and within the zone that
a number of nodes span, interpolation takes place and a color gradient is built. Depending on the
dimensionality, the zone is represented as the area or volume of a mesh’s element, e.g. the volume
of a cube within a three-dimensional rectilinear mesh. The second approach is the zone-based
centering where the variable value is put onto the whole zone without performing any interpolation,
resulting that the whole zone has the same color [25].

Figure 12: Zonal and nodal variable placed on a 2D unstructured grid (from [25]).

Figure 12 illustrates the different visualization results of zonal and nodal variables placed on the
same mesh. It also shows that the number of values passed to the callback function is different for
both representations. In consideration of rectilinear meshes being used, the number of its zones is
one value less than the number of nodes per dimension and therefore the same mesh can be used
to place node- and cell-centered variables on. As described in the previous chapter, face-centered
variables have their own meshes consisting of the face centers’ coordinates. These variables will be
represented with a nodal plot.
Listing 8 shows a variable callback function for a two-dimensional zonal variable. It passes the
pointer of the variable directly to the VisIt_VariableData_setDataD function and therefore own-
ership is given to the simulation. Since the mesh has been constructed with numPoints[d] points
per dimension, numPoints[d]− 1 zones must be passed.

26

visit_handle SimGetVariable(int domain, const char* name, void* cbdata) {
visit_handle h = VISIT_INVALID_HANDLE;
if(VisIt_VariableData_alloc(&h) == VISIT_OKAY) {

if(strcmp(name, "u") == 0 && curLevel == 6) {
VisIt_VariableData_setDataD(h, VISIT_OWNER_SIM, 1,

(numPoints[0]-1)*(numPoints[1]-1), fieldData_u);
}

}
return h;

}

Listing 8: Callback function for a 2D zonal variable

Integration to the generator

The fields declared in the DSL code may have additional layers such as ghost and pad layers. By
adding these layers, the field’s number of points is greater than the ones of its mesh, resulting
in a wrong visualization. These layers are used for communication and optimization and will not
be visualized. The points that do not belong to those layers will be referred as inner points. In
order to prevent the visualization of the ghost or pad data, only the inner points are copied into
a temporary memory whose pointer is passed to the VisIt_VariableData_setDataD function and
therefore ownership must be given to VisIt.
In order to accomplish the goal of providing a visualization for the whole integrity of data, i.e.
every field declared in the DSL code, the IR_FieldCollection is iterated over. For each field,
an implementation in the metadata and variable callback is generated. Besides the fields’ various
properties such as localization and number of ghost/pad layers, there are also differences in their
range of levels, e.g. when a CG solver is applied on the coarsest level and its results are only
available on this level. In order to prevent mismatches between the field’s range of levels and the
current visualization level curLevel, it needs to be queried whether an visualization of the field is
possible as shown in 8. Since the field collection contains entries for each field and its corresponding
levels, data access code similar to this listing is produced for each entry. In case that a visualization
request for unavailable field data is made, an empty handle is returned by the variable callback and
the corresponding error message is visible on the GUI. As stated in chapter 4.4.2 the field layout
provides information of the field’s localization and depending on it, either zonal or nodal variable
centering is chosen in metadata and variable callback.
Within ExaStencils the field data arrays are linearized. The calculation of the offset towards
a variable’s inner points is dependent on its dimensionality and the number of total points per
dimension, in other words including ghost/padding layers. All this information is contained in the
field layout. In order to assemble an equation for this problem, following variables are introduced:

• numInnerPoints: Stores a variable’s number of discretization points per dimension. It is
determined by subtracting the index of the "rightmost" duplicate layer by the index of the
"leftmost" duplicate layer.

• numOuterLayers: Contains the number of ghost/pad layers on the "left" side per dimension
in order to calculate the offset towards the first inner point. As illustrated in chapter 2.3,
padding layers surround ghost and inner layers. For this reason, the number of outer layers
is computed with the subtraction of the index for the "leftmost" duplicate layer with the
"leftmost" padding layer.

• numTotalPoints: This value combines the number of inner and outer points and is calculated
by subtracting the "rightmost" with the "leftmost" duplicate layer.

For two-dimensional fields, the linearized offset can be calculated as follows:

offset2d = numOuterLayers[1] ∗ numTotalPoints[0] + numOuterLayers[0] (6)

Whereas for three-dimensional cases:

offset3d = numOuterLayers[2] ∗ numTotalPoints[0] ∗ numTotalPoints[1] + offset2d (7)

27

With the construction of a mesh containing the nodes of each fragment within a block, the same
should be done with the variables. In fact, the equations described in chapter 4.4.2 are also used to
forge the variable arrays from the fragments together with the important difference that isNodal
is zero for cell-based variables because of the zonal mapping. As a result, the temporary variable
also has numFrags[d]∗(numInnerPoints[d]− isNodal[d])+ isNodal[d] points and each fragment’s
startIdx equals (numInnerPoints[d]− isNodal[d]) ∗ (fragIdx % numFrags[d]). In case that the
offset is zero, which basically means that no outer layers exist, and a block consists of only one
fragment, no temporary memory is allocated and the pointer of the variable is directly passed to
the VisIt_VariableData_setDataD function and ownership for the memory management is given
to the simulation.

4.4.4 Curvilinear meshes

In addition to the visualization of variables mapped onto the nodes or zones of a rectilinear mesh,
the visualization interface also provides the illustration of one- and two-dimensional variables as
curvilinear meshes that are one dimension higher than the actual dimensionality of the problem
that is solved. The curvilinear meshes consist of variable values and their corresponding coordi-
nates of the regular mesh points. On the contrary to the rectilinear meshes which only need the
coordinate values on each dimension’s axis, curvilinear meshes require the coordinate values per
dimension for every discretization point. Figure 13 pictures the two visualization possibilities for
two-dimensional fields. On the left side the pseudocolor plot of a variable can be seen and its cor-
responding curvilinear mesh can be seen on the right side. However, it is often necessary to scale
the variable and therefore the command scale=<value> can be entered in the command line to
scale the variable values as they are copied. With this variable representation, a distinction between
node- and cell-based variables must be made since these are used to construct the mesh now instead
of being placed on a mesh. As a result, the coordinates of the cell-centers are used. The handling
of face-centered variables on rectilinear meshes can also be applied.

(a) 2D pseudocolor plot (b) 3D curvilinear mesh

Figure 13: Provided visualization possibilities for 2D field data

The strategy used to provide data access functions for these meshes is slightly different compared to
the rectilinear meshes. However, the initialization stage is rather similar in the meaning that also
localization types are collected and the belonging coordinate arrays for the meshes are generated.
The difference lies in the implementation of the data access functions. The callback function for the
curvilinear meshes can be seen as a combination of the callbacks for the rectilinear meshes and the
variables. Here, the field collection is iterated over and the localization type is retrieved from the
field layout and in case that ghost or pad layers are used, the field’s inner points are transferred to

28

temporary memory and ownership of the memory management for it is given to VisIt. Depending
on the localization, pointers to the corresponding coordinate arrays in addition to the values from
the current field are passed to VisIt.

4.4.5 User defined commands

The commands that have been declared in chapter 4.4.1 are visible in the viewer but they cannot
be used yet. To enable interactive visualization, these commands need to supply mechanisms to
control the state of the simulation. In other words, a callback function has to be implemented and
registered. These commands execute time steps and allow the switching between levels. Plot
updates must be explicitly requested within the source code. For this purpose the functions
VisItTimeStepChanged and VisItUpdatePlots can be used. VisItTimeStepChanged signals that
the simulation advanced a number of time steps and as a result, new metadata is sent. More im-
portantly the VisItUpdatePlots function tells VisIt that new data is demanded in order to update
the current plot and the display for time and cycle [15].
The implementation of the actions that are performed by each command can vary, but their detec-
tion is similar. Listing 9 shows a template for a control command callback function.

void ControlCommandCallback(const char* cmd, const char* args, void* cbdata) {
if(strcmp(cmd, "step") == 0) {

/* implementation for the command */
...

}
/* more commands */

...
}

Listing 9: Template for a control command callback

The visualization interface offers the following commands:

• switchUpdates: Used to determine whether the plot should be updated after the computation
of a time step. At the beginning of the simulation auto-updates are enabled.

• step: Simulation advances by performing a single simulation step. In addition the simulation
metadata will be updated automatically whereas the plots are updated depending on the
switchUpdates status.

• run + stop: Toggles an internal boolean variable that is used to determine if the VisItDetectInput
function should block or not.

• level down: This command decreases the current level used for the visualization by 1 until the
value of the knowledge parameter minLevel is reached. The plots are always updated when
one of the level switches is used.

• level up: This command increases the current level until maxLevel which is also the initial
visualization level is reached.

4.5 Changes to the DSL code
The objective of this thesis was to enable code generation for an in-situ visualization with only
minimal changes to the DSL code. This section shows which variables, functions and function calls
have to be added into the DSL code. In general, the names for the variables and functions that
are used in this chapter should be used as well because the generated visualization functions will in
fact access the variables and call the functions with these names.
The first additions are the global variables which are used to represent the simulation’s status.
They cannot be generated automatically since the DSL code for the algorithm depends on them.
Listing 10 shows the variables to be specified. The sim_done variable is used to determine the

29

simulation’s termination and to exit the mainloop. It has to be explicitly set to true within the
DSL code once the stopping criteria of the algorithm are fulfilled. As shown in chapter 4.4.1 the
current cycle and time of the simulation is passed as metadata towards the VisIt client. This is
used to give the user an overview of the current simulation state. For this purpose sim_time and
sim_cycle are used. The user has to specify when one or both of these values are updated.

Globals {
Var sim_done : Boolean = false
Var sim_time : Real = 0.0
Var sim_cycle : Int = 0

}

Listing 10: Mandatory global variables

The next step is the implementation of the simulate_timestep function. This function varies
depending on the problem that is calculated. In fact, the same applies to the stopping criteria of
the simulation, resulting that both states illustrated in figure 11 must be implemented by the user.
The following time-dependent implementation forges both together and can be used as a template:

Function simulate_timestep@(finest) {
if(sim_time < maxTime) {

/* perform calculations */
...

/* update time or cycle */
sim_time += dt

} else {
sim_done = true

}
}

Listing 11: Template for a time-dependent simulate_timestep function

The following changes to the DSL code occur at the application function. As pointed out in chap-
ter 4.2, initialization steps must be made to establish a connection between simulation and VisIt.
This also includes the allocation and initialization of the data structures used to build the mesh.
Therefore, it is important to call the visit_init function which is responsible for these steps after
the initialization of the global variables because the function calls for the connection establishment
require MPI related variables. Also, in case that several fragments or blocks are used, their num-
ber has to be known and for the coordinate variables the start position of the blocks/fragments
in each dimension is required. The most important step is to add the visit_mainloop function
that was discussed in chapter 4.3. The callback functions that are registered and the console com-
mands that are implemented in the mainloop are responsible for calling the simulate_timestep
function, when requested by the user. Additionally, once the visit_mainloop is finished, the
visit_destroy function which frees the memory from the data types needed for the visualization
and closes the trace files used for debugging as mentioned in chapter 4.2. At last the permission to
generate the required visualization code should be granted. For this purpose the knowledge param-
eter experimental_visit_enable should be set to true. Also, in order to prevent some generated
functions to be inlined, the opt_maxInliningSize parameter must be set to zero.

30

5 Example
To demonstrate the visualization capabilities, following three-dimensional Poisson’s equation has
been chosen:

−∆u(x, y, z) = f(x, y, z) (x, y, z) on Ω ∈ R3 (8)

The domain is defined as Ω = [0, 1]3 and Dirichlet boundary conditions have been set:

u(x, y, z) = g(x, y, z) on δΩ (9)

The right-hand side f and boundary conditions g are defined as:

f(x, y, z) = 0, (10)

g(x, y, z) = x2 − 0.5y2 − 0.5z2 (11)

The parallel multigrid solver makes use of a V(3,3)-Cycle and a CG solver on the coarsest level.
The field for the solution u(x, y, z) has been declared as shown in listing 12. Additionally, global
variables representing the simulation’s current state are defined.

Globals {
Var sim_done : Boolean = false
Var sim_time : Real = 0.0
Var sim_cycle : Int = 0

Var initRes : Real = 0.0
Var curRes : Real = 0.0
Var prevRes : Real = 0.0

}

Domain global< [0.0, 0.0, 0.0] to [1.0, 1.0, 1.0] >

Layout NodeWithComm< Real, Node >@all {
duplicateLayers = [1, 1, 1] with communication
ghostLayers = [1, 1, 1] with communication

}

Field Solution< global, NodeWithComm, 0.0 >@(all but finest)
Field Solution< global, NodeWithComm, vf_boundaryPosition_x ** 2 - 0.5 *

vf_boundaryPosition_y ** 2 - 0.5 * vf_boundaryPosition_z ** 2 >@finest

Listing 12: Domain, field and field layout declaration of u(x, y, z)

The implementation of the simulate_timestep function shown in listing 13 is instructed to call as
many V(3,3)-Cycles until the current residual is a millionth of the initial residual. In case that this
condition is met, the sim_done is true and the simulation terminates. The data partitioning can
be retrieved from listing 14.

31

Function simulate_timestep@finest {
if(sim_cycle < 100 &&

curRes > 1.0E-6 * initRes) {
sim_cycle += 1
mgCycle ()

communicate Solution
loop over Residual {

Residual = RHS - Laplace * Solution
}
apply bc to Residual

prevRes = curRes
curRes = ResNorm ()

} else {
sim_done = true

}
}

dimensionality = 3

minLevel = 2
maxLevel = 6

mpi_enabled = true
mpi_numThreads = 8

domain_onlyRectangular = true
domain_rect_generate = true
domain_rect_numBlocks_x = 2
domain_rect_numBlocks_y = 2
domain_rect_numBlocks_z = 2
domain_rect_numFragsPerBlock_x = 1
domain_rect_numFragsPerBlock_y = 1
domain_rect_numFragsPerBlock_z = 2

Listing 13: simulate_timestep function Listing 14: Knowledge configuration

The domain configuration is illustrated on figure 14. Also, the corresponding mesh for the coarsest
level is shown. Here, it can be seen that the step size in z-direction is half of the step size in the
other directions, since two fragments in z-direction have been set.

Figure 14: Domain decomposition and rectilinear mesh on coarsest level

The corresponding boundary conditions are pictured in figure 15. However, the values within the
cube are more interesting since the values for the boundary conditions are already known. Therefore
slice plots through the z=0.5 plane are shown in figure 16 after one, two and ten cycles. In addition
to that, the corresponding value of the residual is also shown.

32

Figure 15: Boundary conditions

(a) After 1 cycle: Residual=912071 (b) After 2 cycles: Residual=230815

(c) After 10 cycles: Residual=4.76353

Figure 16: Slice plot through z=0.5 plane after a certain amount of V-cycles.

33

6 Conclusion

Summary
The goals that have been set up in the course of this thesis have been achieved. The main goal
was the integration of a visualization interface for parallel multigrid solvers with usage of the
visualization tool VisIt into the code generation framework ExaStencils. To be more precise, an
in-situ visualization approach where simulation and visualization routines operate on the same
resources has been chosen. This approach enables techniques for interactive visualization, allowing
the user to explore the simulation results during runtime. Naturally, the integration into a code
generation frame requires the support of various parameter configurations where the domain to be
visualized differs for each of them. In fact, any configuration of the physical data partitioning such
as multiple blocks or fragments in each dimension is supported. In addition to that, combinations of
different logical groups such as ghost/padding layers and duplicate layers are also possible. Another
important goal of this thesis is to provide a visualization for the whole integrity of data, i.e. every
field declared in the DSL code. In general, two different graphical representations for the field
data exist: variables are mapped onto either nodes or zones of a rectilinear mesh or pictured as
a curvilinear mesh consisting of the variable values and their corresponding coordinates. The last
achievement is related to user experience. Here, only a handful of changes to the DSL code are
required to generate the desired visualization interface.

Future work
The implementation for the visualization interface developed in this thesis gives foundations for
following features and optimizations:

1. Within this thesis, the computational domain is always considered as rectilinear or at least
composed of rectilinear sub-domains. However, ExaStencils is capable of generating multigrid
codes for block-structured grids, which allow more complex domain layouts. The support for
those is yet to be integrated into the code generator.

2. An additional visualization interface for advanced users making use of the batch processing
supported by VisIt. The data access functions and a portion of the initialization steps provided
by the existing implementation can be used for the additional interface. However, this attempt
does not make use of the same mainloop where Libsim listens for connections and visualization
requests from VisIt. Since the plot requests in batch processing are predetermined, the user
would either have to specify it directly in the target code or through a simplified interface in
the DSL code.

3. One possible optimization for the current implementation is to introduce so-called ghost nodes
or cells. These are used for parallel simulations where multiple domains are rendered. In
comparison to a single domain, the external faces of each sub-domain are rendered despite
the fact that these belong to the internal of the whole domain and are only visible when the
plot is transparent [5, 25].

4. Another possible addition to the interface is the support for non-uniform grids. Until now,
the meshes are created with the step size retrieved from the knowledge parameters, which
are constant per multigrid level and dimension. However, the nodes or cells position for non-
uniform grids and their corresponding spacing model can be retrieved from data structures of
so-called virtual fields.

5. In the current implementation, variables are illustrated as scalar values which are either
mapped onto the mesh’s nodes or zones. But it is possible to visualize variables consisting
of multiple components such as vectors, tensors, arrays, etc. One possible realization of this
feature would be the combination of multiple fields. The user would specify which fields should
be combined, e.g. velocity in u and in v direction as a two-dimensional vector.

34

A VisIt Installation Guide
This section provides a guide for the installation of the visualization toolkit VisIt and describes
which environment variables must be added in order to get a successful linking of the target code
with the in-situ visualization library Libsim.

Installation
The installation of VisIt can either be carried out by downloading a pre-built binary or building it
from scratch. In general, it is recommended to use the pre-built binaries since the building process
takes approx. three hours with a fast build. Nonetheless, it is useful when the addition of self-made
plug-ins is desired or a parallel execution for the compute engine is desired. An overview of the
possible options for the build process can be found here.

Pre-built executable

Windows and Mac users should follow these steps:

• Download a suitable executable

• Follow the instructions in the install notes

The installation for Unix systems such as Ubuntu can be simplified with following script for the
newest version:

#!/bin/bash
Get binary and install script, change name of tar for other Unix distributions
wget http://portal.nersc.gov/project/visit/releases/2.13.2/visit2_13_2.linux-x86_64-ubuntu14.tar.gz
wget http://portal.nersc.gov/project/visit/releases/2.13.2/visit-install2_13_2
Execute install script, change argument of install script for other distributions
chmod 755 visit-install2_13_2
./visit-install2_13_2 2.13.2 linux-x86_64-ubuntu14 /usr/local/visit
Add VisIt's binary to user's search path
cd
echo "set path = ($path /usr/local/visit/bin)" >> .cshrc

Once the installation is complete, the following environment variables must be set in order to get
the correct path of the header files and libraries of Libsim:

• VISIT_HOME: Top level directory where VisIt is installed.
Example: export VISIT_HOME='/usr/local/visit'.

• SIMV2DIR: Path to the V2 directory of Libsim.
Example: export SIMV2DIR='/usr/local/visit/2.13.2/linux-x86_64/libsim/V2'.

As soon as these environment variables have been set, target code for the visualization can be
generated, compiled and executed.

35

http://visitusers.org/index.php?title=Build_visit_overview
https://wci.llnl.gov/simulation/computer-codes/visit/executables
http://portal.nersc.gov/project/visit/releases/2.13.2/INSTALL_NOTES

References
[1] “A Scala Prototype to Generate Multigrid Solver Implementations for Different Problems and

Target Multi-core Platforms”. In: Int. J. Comput. Sci. Eng. 14.2 (Jan. 2017), pp. 150–163.
issn: 1742-7185. doi: 10.1504/IJCSE.2017.082879. url: https://doi.org/10.1504/
IJCSE.2017.082879.

[2] Advanced Stencil-Code Engineering (ExaStencils). [accessed June 18, 2018]. url: http://
www.exastencils.org/.

[3] E. Wes Bethel and Mark Miller. “Remote and Distributed Visualization Architectures”. In:
High Performance Visualization—Enabling Extreme-Scale Scientific Insight. Ed. by E. Wes
Bethel, Hank Childs, and Charles Hansen. Chapman & Hall, CRC Computational Science.
http://www.crcpress.com/product/isbn/9781439875728, LBNL-6325E. Boca Raton, FL,
USA: CRC Press/Francis–Taylor Group, Nov. 2012, pp. 25–48. isbn: 9781439875728.

[4] E.W. Bethel, H. Childs, and C. Hansen. High Performance Visualization: Enabling Extreme-
Scale Scientific Insight. Chapman & Hall/CRC Computational Science. CRC Press, 2012.
Chap. 2, pp. 9–23. isbn: 9781439875735. url: https://books.google.de/books?id=
0zPOBQAAQBAJ.

[5] Hank Childs et al. “A Contract-Based System for Large Data Visualization”. In: Proceedings
of IEEE Visualization 2005. Minneapolis, Minnesota, 2005, pp. 190–198.

[6] Hank Childs et al. In situ processing. Tech. rep. Ernest Orlando Lawrence Berkeley National
Laboratory, Berkeley, CA (US), 2012.

[7] Hank Childs et al. “VisIt: An End-User Tool For Visualizing and Analyzing Very Large
Data”. In: High Performance Visualization–Enabling Extreme-Scale Scientific Insight. Oct.
2012, pp. 357–372.

[8] Creating a C++ Client for VisIt. [accessed June 14, 2018]. url: https://www.visitusers.
org/index.php?title=CreatingNewClientWithC%2B%2B.

[9] Jean M. Favre. Grid data visualization and VisIt. [accessed June 12, 2018]. 2016. url: https:
//comp-phys-2016.sciencesconf.org/conference/comp-phys-2016/pages/Grid_data_
visualization_with_Visit_1.pdf.

[10] Harald Köstler. “A multigrid framework for variational approaches in medical image process-
ing and computer vision”. In: 2008.

[11] James Kress. “In Situ Visualization Techniques for High Performance Computing”. In: 2017.

[12] Sebastian Kuckuk and Harald Köstler. “Automatic Generation of Massively Parallel Codes
from ExaSlang”. In: Computation 4.3 (2016). issn: 2079-3197. doi: 10.3390/computation4030027.
url: http://www.mdpi.com/2079-3197/4/3/27.

[13] Sebastian Kuckuk et al. “Towards generating efficient flow solvers with the ExaStencils ap-
proach”. In: 29 (May 2017).

[14] Libsim: Batch processing. [accessed Juli 2, 2018]. url: https://www.visitusers.org/
index.php?title=Libsim_Batch.

[15] Libsim: Control interface documentation. [accessed June 10, 2018]. url: https://fossies.
org/dox/visit2.13.2/VisItControlInterface__V2_8h_source.html.

[16] VisIt Python Interface Manual. Getting Data Into VisIt. [accessed June 13, 2018]. url: http:
//visit.ilight.com/svn/visit/trunk/releases/2.10.0/VisItPythonManual.pdf.

[17] K. Moreland. “A Survey of Visualization Pipelines”. In: IEEE Transactions on Visualization
and Computer Graphics 19.3 (Mar. 2013), pp. 367–378. issn: 1077-2626. doi: 10.1109/TVCG.
2012.133.

[18] Kenneth Moreland. “The Tensions of In Situ Visualization”. In: IEEE Comput. Graph. Appl.
36.2 (Mar. 2016), pp. 5–9. issn: 0272-1716. doi: 10.1109/MCG.2016.35. url: http://dx.
doi.org/10.1109/MCG.2016.35.

36

https://doi.org/10.1504/IJCSE.2017.082879
https://doi.org/10.1504/IJCSE.2017.082879
https://doi.org/10.1504/IJCSE.2017.082879
http://www.exastencils.org/
http://www.exastencils.org/
http://www.crcpress.com/product/isbn/9781439875728
https://books.google.de/books?id=0zPOBQAAQBAJ
https://books.google.de/books?id=0zPOBQAAQBAJ
https://www.visitusers.org/index.php?title=CreatingNewClientWithC%2B%2B
https://www.visitusers.org/index.php?title=CreatingNewClientWithC%2B%2B
https://comp-phys-2016.sciencesconf.org/conference/comp-phys-2016/pages/Grid_data_visualization_with_Visit_1.pdf
https://comp-phys-2016.sciencesconf.org/conference/comp-phys-2016/pages/Grid_data_visualization_with_Visit_1.pdf
https://comp-phys-2016.sciencesconf.org/conference/comp-phys-2016/pages/Grid_data_visualization_with_Visit_1.pdf
https://doi.org/10.3390/computation4030027
http://www.mdpi.com/2079-3197/4/3/27
https://www.visitusers.org/index.php?title=Libsim_Batch
https://www.visitusers.org/index.php?title=Libsim_Batch
https://fossies.org/dox/visit2.13.2/VisItControlInterface__V2_8h_source.html
https://fossies.org/dox/visit2.13.2/VisItControlInterface__V2_8h_source.html
http://visit.ilight.com/svn/visit/trunk/releases/2.10.0/VisItPythonManual.pdf
http://visit.ilight.com/svn/visit/trunk/releases/2.10.0/VisItPythonManual.pdf
https://doi.org/10.1109/TVCG.2012.133
https://doi.org/10.1109/TVCG.2012.133
https://doi.org/10.1109/MCG.2016.35
http://dx.doi.org/10.1109/MCG.2016.35
http://dx.doi.org/10.1109/MCG.2016.35

[19] Carl Mueller. “The Sort-first Rendering Architecture for High-performance Graphics”. In:
Proceedings of the 1995 Symposium on Interactive 3D Graphics. I3D ’95. Monterey, California,
USA: ACM, 1995, 75–ff. isbn: 0-89791-736-7. doi: 10.1145/199404.199417. url: http:
//doi.acm.org/10.1145/199404.199417.

[20] Christoph Pflaum. Lecture notes in scientific computing II. [accessed June 30, 2018]. 2017.
url: https://www10.informatik.uni- erlangen.de/media/filer_public/ae/ae/
aeae0eea-9cc8-4256-851c-14e3d694dd2e/siwirii_script.pdf.

[21] Christian Schmitt et al. “Systems of Partial Differential Equations in ExaSlang”. In: Soft-
ware for Exascale Computing - SPPEXA 2013-2015. Ed. by Hans-Joachim Bungartz, Philipp
Neumann, and Wolfgang E. Nagel. Springer International Publishing, 2016, pp. 47–67. isbn:
978-3-319-40528-5.

[22] C. Schmitt et al. “ExaSlang: A Domain-Specific Language for Highly Scalable Multigrid
Solvers”. In: 2014 Fourth International Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing. Nov. 2014, pp. 42–51. doi: 10.1109/
WOLFHPC.2014.11.

[23] The Visualization Tool Kit. [accessed June 18, 2018]. url: https://www.vtk.org/.

[24] VisIt Java Client API. [accessed June 14, 2018]. url: http://www.visitusers.org/visit/
2.3.0/javadocs/index.html.

[25] Brad Whitlock. Getting Data Into VisIt. [accessed June 10, 2018]. 2010. url: https://wci.
llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf.

[26] Brad Whitlock. VisIt User’s Manual. [accessed June 13, 2018]. 2005. url: https://wci.
llnl.gov/codes/visit/1.5/VisItUsersManual1.5.pdf.

[27] Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. “Parallel in Situ Coupling of Simu-
lation with a Fully Featured Visualization System”. In: Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization. EGPGV ’11. Llandudno, UK: Eurograph-
ics Association, 2011, pp. 101–109. isbn: 978-3-905674-32-3.

List of Listings
1 Multigrid cycle with two different level specifications 10
2 Application function . 11
3 Variable and value assignment . 11
4 Declaration of a field and its components . 11
5 Function supplying the data objects . 22
6 Metadata callback function . 24
7 Callback function for a 2D rectilinear mesh . 25
8 Callback function for a 2D zonal variable . 27
9 Template for a control command callback . 29
10 Mandatory global variables . 30
11 Template for a time-dependent simulate_timestep function 30
12 Domain, field and field layout declaration of u(x, y, z) 31
13 simulate_timestep function . 32
14 Knowledge configuration . 32

List of Figures
1 The Multigrid algorithm (from [21]). 6
2 The four layers of ExaSlang (from [12]). 7
3 Hierarchy of data partitioning in ExaStencils (from [12]) 8
4 Logical data partitioning and global index distribution between two fragments in 1D

(from [12]). 9
5 Variable localizations supported in ExaStencils . 10
6 VisIt’s client/server architecture (from [7]) . 14

37

https://doi.org/10.1145/199404.199417
http://doi.acm.org/10.1145/199404.199417
http://doi.acm.org/10.1145/199404.199417
https://www10.informatik.uni-erlangen.de/media/filer_public/ae/ae/aeae0eea-9cc8-4256-851c-14e3d694dd2e/siwirii_script.pdf
https://www10.informatik.uni-erlangen.de/media/filer_public/ae/ae/aeae0eea-9cc8-4256-851c-14e3d694dd2e/siwirii_script.pdf
https://doi.org/10.1109/WOLFHPC.2014.11
https://doi.org/10.1109/WOLFHPC.2014.11
https://www.vtk.org/
http://www.visitusers.org/visit/2.3.0/javadocs/index.html
http://www.visitusers.org/visit/2.3.0/javadocs/index.html
https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf
https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf
https://wci.llnl.gov/codes/visit/1.5/VisItUsersManual1.5.pdf
https://wci.llnl.gov/codes/visit/1.5/VisItUsersManual1.5.pdf

7 VisIt’s pipeline partitioning (from [3]) . 16
8 Comparison of bandwidth between post-processing and both in-situ approaches on

the Titan supercomputer at the Oak Ridge Leadership Computing Facility (from [18]). 17
9 Connection between Simulation and Libsim (from [9]). 18
10 Initialization steps for serial and parallel simulations 20
11 Comparison of the two mainloops . 21
12 Zonal and nodal variable placed on a 2D unstructured grid (from [25]). 26
13 Provided visualization possibilities for 2D field data 28
14 Domain decomposition and rectilinear mesh on coarsest level 32
15 Boundary conditions . 33
16 Slice plot through z=0.5 plane after a certain amount of V-cycles. 33

38

	Abstract
	ExaStencils
	Multigrid methods
	Multi-Layered Design
	Data partitioning
	Variable Localization
	Language Elements
	Configuration

	Scientific Visualization with VisIt
	Architecture
	Visualization Pipeline
	Parallel Rendering
	In-situ visualization
	Libsim

	Implementation
	Design
	Initialization
	Adapting the mainloop
	Data access functions
	Metadata
	Rectilinear meshes
	Variables
	Curvilinear meshes
	User defined commands

	Changes to the DSL code

	Example
	Conclusion
	VisIt Installation Guide

