ON DENOTATIONAL VERSUS
PREDICATIVE SEMANTICS

Manfred Broy* and
Christian Lengauer

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-87-29 July 1987

Abstract

Two definitions of a language of communicating programs are offered: one by denotational semantics,
and one by predicative specifications. The equivalence of both definitions is established. Both partial and
total correciness semantics are considered. Nondeterminism and its interaction with recursion is studied.
The main contribution is a comparative study of the descriptive and the prescriptive viewpoint of program
semantics.

This paper is also available as tech. report MIP-8713 of the
Fakultit fir Mathematik und Informatik, Universitit Passau.

#Falnlch fiy Mathematik und Informatik, Universitht Passau, Postfach 2540, D-8390, Passau, FR.G.

Table of Contents
. Introduction
. Syntax
. Program States
. Deterministic Programs
4.1. Denotational Semantics
4.2. Predicative Semantics
4.3. Connection Between the Two Semantics
4.4. Partial Correctness and Predicative Semantics
4.5. Robust Correctness and Predicative Specifications
5. Nondeterministic Programs
5.1. Denotational Semantics
5.2. Predicative Semantics
5.3. Predicative Specifications as Sets of Functions
6. Correctness of Nondeterministic Programs
6.1. Partial Correctness and Predicative Semantics
6.1.1. Considering only Finite States
6.1.2. Connection Between the Two Semantics
6.2. Robust Correctness and Predicative Specifications
6.2.1. Considering only Total States
7. On Nontermination
8. Conclusions
References

GO DO ke

=3 Gt sk B et e

O T I e
CH WU UT UT G0 D D RO ke b (D

=g

DO bt ot
[T ‘o BN 0 ¢]

1. Introduction

The purpose of this paper is to clarify the relationship between two distinet styles of formally defin-
ing the semantics of a programming language: the denotational style and the predicative style. Of the
two, the denotational style has been arcund longer [8] and is better understood; the predicative style is

more recent [5, 6]. We shall compare the two styles on a specific language that is very similar to Hehner’s

. -
language of communicating processes 5.

Our treatment is composed of three parts:

(i) basic concepts and definitions (Sects. 2 and 3),
(ii) deterministic programs (Sect. 4), and

(iii) nondeterministic programs (Sect. 5).

The correspondence between the denotational and predicative semantics of deterministic programs
will be quite straight-forward. Essentially, the denotational definition will be based on the »-calculus,
while the predicative definition will be based in first-order predicate logic. For the description of repeti-
tive constructs, we will offer two alternative induction schemes that will entail alternative correctness

proof techniques. The two schemes are based on computational induction and fixed point induction,

respectively.

In the presence of nondeterminism, the choice of induction scheme will be crucial and will depend on
the notion of correctness that we are interested in. We will distinguish three notions of correctness [3]:
partial correctness, robust correctness, and total correctness. Pariial correciness specifies a superset of the
program’s possible input-output behaviors; it considers the question whether a program produces just cor-
rect answers, if any. Robust correciness {which is traditionally called *total correctness") describes a
subset’ of the program’s possible input-output behaviors; it considers the question what outcomes of the
program are guaranteed. Finally, (what we call) total correciness describes the precise set of the

program’s possible input-output behaviors.

2. Syntax

We propose a simple language of communicating programs. The BNF-style syntax of our language is

defined as follows:

<stat> = <{pvi> = <{exp> {
| if <exp> then <stat> else <(stat> fi (
E <ici> 7 <pvi> {input)
| <oci> | <exp> {

}‘Actuaiiy} one usually takes the upward closure of this subset [8].

<stat> ; <stat> {sequential composition)

|

| <stat> || <stat> {parallel composition)

| <stat> [1 <stat> {nondeterministic choice)
i chan <ici> + <oci> @ <stat> {channel connection)

| < prog-id > (refinement call)

| < prog-id> 1 <stat> {refinement definition)

Nonterminals are taken from the following disjoint sets of identifiers:

PV1 is the set of identifiers < pvi>> representing program variables,
ICI is the set of identifiers <ici> for input channels,

OCI is the set of identifiers <oci>> for output channels, and
PROG-ID is the set of identifiers < prog-id> for programs.

i

|

For convenience, we introduce the set ID of identifiers:
D = PVIUICIuOCI.

The language of expressions, EXP (the sentences derived from nonterminal < exp>>}, is assumed as given.
STAT refers to the set of sentences derived from the start symbol of the grammar, <(stat>, i.e., to the
entire programming language. Parallel composition must obey Hehner’s context condition [5]: the iden-
tifiers from PVI that denote assigned variables in the two statements of the composition (i.e., that appear
on the left side of assignments or in input statements) and the set of channels, i.e., identifiers from ICI U

OCI must be mutually disjoint.

3. Program States

States are mappings from identifiers to values. We assume a given set, D, of values that does not
contain |. Value | denotes undefinedness. We write D for set D with the additional element _| . For
elements d1, d2 € D*L, the partial ordering T is defined by:

diEd2 & di=d2 v di=_]

The history of communications on a channel is modelled by a finite or infinite sequence of messages
called a stream. We write D* for the set of finite sequences of D elements, and D™ for the set of infinite

sequences of D elements. The set of streams is defined as:

STREAM(D) = (D* X {1})uD*uD® .
A (finite) stream in D* represents a history in which the sender terminates. A {finite) stream in D* X
{1} represents a history in which the sender diverges after having sent a finite number of messages (and

where it is not known whether the communication will be continued). A (infinite) stream in D%

represents a history in which the sender does not terminate but generates an infinite number of messages.

Our language distinguishes input and output channels. An input channel 1s broken if its wvalue is
stream < |>. An output channel is broken if its value is a stream that ends with §. Streams that end
with | are called partial. All other streams are called total. For streams sl, s2 € STREAM(D), the

partial ordering & is defined by:

s1 Cs2 & sl=s2 V (353 €D* s4 € STREAM(D): (s1 =153"< 1>} A (52 =153"54))
Here, = denotes concatenation, and <a> denotes the one-element sequence consisting of just the value a.

We use the following operations on streams:

&: D x STREAM(D) — STREAM(D)
first: STREAM(D) — D+
rest: STREAM(D) — STREAM(D)

They are defined by the equations:

<a>~s if asé |
ad&s ==
<1> if a=_]

first.e = |
first.(a & s) = a
rest.€ = >

js il ast)

rest.(a & s} = l "
<> if a=

We write s for first.rest'.s, where rest’.s = s, and rest'*l.s = rest.rest'.s. In addition, we define the special

left-strict concatenation operation on streams:
@: STREAM(D) X STREAM(D} — STREAM(D)

by the following equations:

€ @s2 == 82
(a&s1)@s2 = a&(sl@s2) for a€ DATA-L
<i{>@s2 = <>
That is, if sl is a partial or infinite stream then, for all streams s2, s1 @ s2 == sl and, if sl is a finite

total stream, then sl @ s2 = s17s2.

We distinguish between terminating and nonterminating programs. Terminating programs produce
finite total streams as output. Nonterminating programs produce infinite or partial streams as output. If

all output streams of a nonterminating program are partial, we speak of divergence.

Our domain of program states is tailored for a strict semantics - either all or none of the output

streams are {inite and total:

STATE = {o:ID — D USTREAM(D):

[(YxePVIUICL ox=) A {nontermination)
(VxeOCLoxe(D*x {L})uD®) | v

[(YxePVLoxeD) A {termination)
(VxelCLoxe (D* X {L}HuD™) A
(¥ x € OCL o.x € D¥) 1}

Tn the case of nontermination, the *{inal® states of all program variables and input streams are undefined
and all output streams are either infinite or partial. Since our language does not provide a means of
testing whether an input channel is empty, i.e., whether no input will be supplied ever more, there is no
point in distinguishing partial and total input streams. We require input streams to be either partial or
infinite. A state indicates termination if all program variables are defined, all output streams are total,

and input streams are either infinite or partial.

When modelling a program’s execution, we shall model nontermination by “smashing” the program

state. The postfix operator | indicates a smashed state:

[ox@< > if xe€OCI

oslx =
1 if x € PVIUICI
In smashing, only the output produced so far is kept. All other information is destroyed. Smashing is
idempotent, i.e., o1} =o]. A predicate NT (for NonTermination) recognizes a smashed state:

NT.oc = (Vxe€PVIUICL ox= |)A(Yx€ OCLx¢gD¥)

We denote a pointwise state change as usual: given a state o, a value d, and an identifier x, o[d/x]

represents the state that maps x on d and every other identifier y on o.y. Formally, for x € ID:

-

oy if xo£y A (x€PVI = d£1) A (x€OCI = deD)
old/x]ly = A d if x=y
oly otherwise

By this definition, o[d/x] is a smashed state whenever dis | or a partial stream.

For states ol, 02, the partial ordering T is defined elementwise:

o1 C o2 & (Yxe€IDiolx E 02x)

4, Deterministic Programs
Initially, we describe only deterministic programs, i.e., we do not consider programs that contain the

choice operator [J. Following {5], one distinctive property of our language is that channel communication,

per se, does not induce nondeterminism.

4.1. Denotational Semanties
Our denotational semantics represents a deterministic program by a function {rom states to states.
[X — X] denotes the set of continuous functions from X to X, and N denotes the set of natural numbers:
PROG-FUNC = {f€ [STATE — STATE]:
(Vo € STATE: .
(VceICL (i€ Nu{co}: rest'o.c = foc) A
(vd e OCL (s € STREAM(D): 0.d @ s = f.5.d))}
where the superscript on rest is, again, functional iteration and rest®.s== | . If the program terminates
then, for input channel ¢, the stream f.o.c, which is a postfix of o.c, denotes the input values not con-
sumed by the program and, for output channel d, the stream f.o.d, for which o.d is a prefix, contains the
values added by the program to d. All elements of PROG-FUNC only take from the input streams and

add to the output streams.

For functions f1, 2 € PROG-FUNC, the partial ordering L. is defined elementwise:
flCf2 & (Voe€STATE: flo L f2.0)

Functions that represent programs are monotonic in the sense that an extension of the input streams in o

implies an extension of the output streams in {.o.

An environment associates program functions with program identifiers. As we shall explain later (in
Sect. 5.2), nondeterministic programs will be modelled by sets of functions, not by relations. In view of

that, the environment maps to the (non-empty) powerset of PROG-FUNC:

ENV = [PROG-ID — (P(PROG-FUNC) - {g})] .
We assume as given a function, V, that gives meaning to expressions:

V: EXP — STATE — DL .
The strictness of V translates into the requirement: V[E].o= | if NT.c. We define the semantics of
statements in our language by the meaning function:

B: STAT — ENV — (P(PROG-FUNC) - {g}) .
B,[S] is defined by induction on the structure of S. Since B,[S] is a set of functions, the definition of
B,[S] is of the form:

BJs] = {» o: h.f.o: f € B,[SO]}
where SO represents the subcomponents S is composed of and h represents the way they are composed. We
shall instead write more concisely:

BJs] = (e h.BS80].0) .
If 8 is deterministic, § is a one-element set, and so is BéﬂSB. We will now give define the meaning of

deterministic programs. Let x be a program variable, ¢ an input channel variable, and d an output chan-
nel variable. For 6 € ENV:

B [x = E] = (X o: o[V[E].o/x]}

&
B,[if E then S1 else 52 fi] = (o IF(V[E].o, B,[St].0, B,[S2].0))
 fo if bo
where F.b.o fo go) = ‘% g.0 if —b.o
L ol if b= 1
B,c ? x| = () o: o[first.o.c/x, rest.o.c/c})
B,[c ' E] = (X o:ol{oc.d @ <V[E].o>)/d])
BJfst;s2] = (o B,[s2].B,[S1].0)
Bstf[sz] = (o par.(B,[S1], B,[S2], 7))
210 if =NT.fl.o
with par.(f1, 2, 0) = ¢ f1.f2.0 if =NT.f2.¢

join.(fl.o, f2.0) if NT.fl.o ANT{f2.0
where join is defined, on smashed states,

~

feolx if e2x L olx
by join.(o1, 02)x = <
ko’?.x if olx L o2x

If one operand of the parallel composition terminates but the other does not, we may derive the output
state of the terminating computation first and apply to it the nonterminating computation. If both
operands do not terminate, the more defined operand determines the final state of the parallel composi-
tion. When both operands terminate, their order of application is irrelevant. This is guaranteed by the
context condition that we imposed on parallel composition (Sect. 2). Thus, when several cases apply
simultaneously, the alternative definitions coincide. Remember that S1 and S2 are required to have no

update conflicts. Therefore we know, in the case of termination, i.e., when ﬂNTBJSI}}.g and

~NT.B,[S2].0, that B[S1]B,[S2] o = B,[s2] B/[s1] 0.

B,[chan ¢ « d: S] = (o feedbackc)d.BEHS]].a)
(o2]o.c/c, 0.d/d] if —~NT.o2
where feedback f.o = {
o2[(c.d @ < >)/d] if NT.o2
with 02 = (pol €STATE: folol.d/c, e/d])

Here, (¢ f € M: G.f) denotes the least fixed point of function G in set M. Since all our language constructs
are monotonic, the fixed point exists and is unique. Channel connection feeds output channel d of
programs S into input channel ¢. That is, in the input state of program S, ¢ coincides with the output

produced by S on d. This *feedback® does not affect the values of ¢ and d.

Here is why channel connection must be a fixed point and why ¢2 is the right one. Say BéﬁSE is the
one-element function set {f}. The following sequence of states models communications along channel con-
nection ¢ + d:

o, = ol<i>/e €/d]

o, = foflfo.d@<i>)/e, ¢/d]
State o, models the i-fold feedback along ¢ + d. In particular, the state o, is the result of applying fto ¢

with stream <_| > for input channel ¢ and the empty stream ¢ for output channel d. State o, is obtained

by applying { to o, with stream o.d for ¢ and ¢ for d, and so on. A fixed point is reached by this se-
quence of applications of { if the output stream o..d is no longer increased, even not by substituting o.d
for ¢. By continuity of f (guaranteed by our choice of language constructs), the fixed point, the limit of
this application sequence, exists and is ¢2.

B,lp = 8] = {p{€ PROG-FUNC: Bé[f/p} Ish

Bﬁ[{pﬂ = §p

With the context condition for parallel composition, all programs in our language are deterministic.

The denotational semantics given above reflects the following design decisions:

{1) Smashed states remain smashed. Le., for a state o with NT .o, it is ensured that B[S].c = 0.

This is a simple consequence of the strictness of V and the definition of o[d/x] for partial
streams d.

(2) All language constructs are strict - also the parallel composition S1||S2. If S1 does not ter-
minate for an input state o1, then 02 =B,[S1].01 is a smashed state and B/[S2].02 =02. If

one of the operands S1 and S2 in the parallel composition S1{|S2 diverges, so does S1]|32.

Following Hehner [5], and contrary to other approaches, parallel composition and channel connection

are independent concepts and are represented by distinct operators.

4.2, Predicative Semantics
The second definition of our programming language is in terms of predicates, i.e., relations between
states, not functions from states to states. A predicative relation on the states o, ¢’ is an element of
PRED = {p CSTATE X STATE: (V¢‘, ¢’ € STATE: p.(¢*, ¢’} =

(VcelCL (3ie Nufoo}: rest .ot = o)l A
(vd € OCIL (3 s € STREAM(D): o‘.d @ s = ¢’.d))}

A state-transition function can be viewed as a special case of a predicative relation. A predicatlive
spect fication is a first-order formula that represents a predicative relation. Technically, a predicative
specification is a formula equivalent to the proposition p.{cf, o’} where the relation, p, is defined as: We
call o* (read: "sigma in") the input state and o’ (read: "sigma out") the output state. Following Hehner
[5], we equip references to variables in the predicative specification with the according apostrophe,
depending whether they refer to the variable’s value in of or ¢’. For variable x, we write x‘ for o‘.x and ¥’
for o’.x. For expression E, we write E° for V[E].c* and E’ for V[E].c’. We also write def.E‘ for
V[E].o¢ % 1 and NT’ for NT.o’. #c denotes the length of the stream for channel ¢, i.e., with a € D:

H#1 = #e = 0,
#la &) = 1+,

-

#Hr = oo for r € D% .
Let LOG-ID be a set of logical identifiers disjoint from all other sets of identifiers. The following function
maps programs to predicates on the input state ¢* and the output state o’

PS: STAT — PRED

Before we define PS, let us, again, talk about smashed states. Let P be a predicative specification with

free identifiers o and ¢’. Then P] is the predicative specification:

P| = NI’A{YdeOCl o€STATE: Plo/o’] = (d’=0.d @ < >})) .
The definition of PS follows Hehner’s predicative specifications [5]:

PS[x :=E] = (~deflE‘A o’ =0‘])V (del.E‘ A o’ =0'[E'/x])

PS[if E then Slelse S2fi] = (~del.E‘A o’ =0'])V (E' A PS[S1]) Vv (-E* A PS[S2])

PS[ec ? x] = (F#c=0A 0 =0)V (#c>0 A 0" =o[first.c’/x, rest.c’/c])

PS[d ! E] = (=~defE‘A o’ =0"}) V (def. E° A 0 =0'[(d @ <E*>)/d])

PS[S1;S2] = (NT'APS[S1]) v (3 0 € STATE: (PS[S1] A -NT’)[o/o’] A Ps[s2]lo/o])
(PS[S1] A PS[S2] A =NT’) v

PSSt |1 s2] = (PS[S1] A PS[S2]{ A NT") v

(PS[s2] A PS[S1]{ A NT?)
Channel connection and refinement definition contain recursion. In denotational semantics, recursive
definitions are phrased as fixed point equations. As long as the functionals that define the meaning of the

language are continuous, we can interpret a recursive definition in two semantically equivalent ways:
- as the least upper bound of functional iteration, i.e., by computational induction, and
- by the least fixed point of the respective functional, i.e., by fized point induction.
Both techniques can be used as a basis for a predicative semantics, but they lead to rather distinct for-
mulas.
Channel Connection by Computational Induction:
Let a, b, ¢ € LOG-ID be pairwise distinct:
S0 = (3 a: PS[S]le/d}, b/d’, a/c’])
P, = So[< 1 >/cf]
(3 e: (3 0: Ple/bl[o/0’] A PS[S][e/c]))

P. is a predicate that depends on ¢°, ¢’, and on the logical identifier b. It indicates what result
i

i1

b is available on d’ after i functional iterations {i.e., i times identifying output stream d’ with
£

input stream c¢‘). Based on Pi’ we define:

PS[chan ¢+ &:S] = (-NT’ A (3i€ N:(3b:P, APS[S][b/c]))) Vv
(NT* A (V y € OCI, j € N:

(VieN:(3o,b:Plo/o’] A

(FieN:(3g, b: Piio’/o”} A

v A
D)

Iim

oy,
Yj
oy,

The two disjuncts cover the cases of termination and nontermination. In the case of termina-
tion (the first disjunct), the approximation sequence (Pi)ieN becomes constant at some point.
In the case of nontermination, the approximation sequence may never assume its least upper

bound.
Channel Connection by Fized Point Induciton:
Let x0, y0, x1, y1 € LOG-ID be pairwise distinct and not free in PS[S]:
PS[chan ¢« d: S] = (3 x0, y0: Q.(x0, y0) A (Vx1, yI1: Q.(x1, y1) = x0 C x1 Ay0 C y1))
where Q.x,y) & PS[S]ly/c, ¢/d°, x/¢’, y/d] .
The first conjunct expresses that PS[ehan ¢ + d: S] is a fixed point; the second conjunct ex-

presses that it is the least fixed point.

The definition of channel connection in [7] is essentially based on fixed point properties:
PS[chan ¢« d: S] = (3¢, d: PS[S][d’/¢’, ¢/d])
The right side of the equation corresponds to the formula:
(3 x, y: PS[S]ly/<", ¢/d", x/<’, y/d))
which is equivalent to the equational formula:
(3 x0, x1, 0, yL: {{c‘=d’) A (d° =€) A PS[S])[y0/c, x0/d*, y1/c’, x1/d’]}
Note the similarity with the left conjunct of our fixed point semantics for e¢han ¢ « d: S. However, the

right conjunct of our definition, i.e., the least fixed point property is not expressed here.

The predicative specification of refinement definition can, again, be based on either computational

induction or fixed point induction. Again, the definitions proceed by the previous case analysis.
Refinement De finition by Computational Induction:

With auxiliary definitions:

p, = [(o7=0)
P, = PS[S]p,/PS[p]]
we define:
PS[p 8] = (3ieN:p A-NT}V

(NT’ A (¥ y € OCL j € N:
(VieN: (3o, b:plo/o’] A 7.y = yj’)) A
(FieN: (3o, biplo/a] A .y =y}_’)))

Refinement Definition by Fized Foint Induction:
For the fixed point semantics, we introduce identifiers for relations on states:

PS[p::S] = (3q€PRED:q(o', 0’ AQqA
(¥ g1 € PRED: Q.ql =
(V o1, 02 € STATE: ql.(¢1, 02) =
(3 03 € STATE: (63 C 02 A q.(o1, 03))))

where Q.q is specified by

(V o, o’ q.(of, ¢’} & PS[S]la.lef, o”)/PS]p]]) .
Again, the first conjunct expresses that PS]p :: 8] is a fixed point; the second conjunct ex-
presses that it is the least fixed point. Compare this definition of p : S with the denotational

one. Substitution is expressed in the A-calculus much more gracefully than in the predicate

caleulus.

We do not explicitly state the predicative semantics of the refinement call. For a program identifier p,

the predicative semantics PS[p] can be understood as an identifier for a predicative relation.

4.3. Connection Between the Two Semantics

The following theorem states the consistency of our denotational and predicative semantics.

Theorem: (Consistency Theorem}

For all states ¢° and ¢’, and for all programs S in our programming language,
o’ =B,[8].c° = PS[].

The proof is deferred to an appendix. It proceeds by structural induction on S.

A predicative specification is a logical formula representing a predicate on states, namely, the input
state o' and the output state o’. Let the predicative formula p.(¢f, o), where we write x‘ for ¢‘.x and ¥’
for ¢’x, stand for a predicative specification, and let S be a program; we define a satisfaction relation,
sat, on programs and specifications:

S sat p.(o*, ¢’) = (Vo€ STATE: p.(o, BaﬁS]].o'))

It follows immediately from the Consistency Theorem that a program satisfies its own predicative
specification, i.e., S sat PS[S]. With our translation of programs to predicative specifications, the for-
mula S sat p.(o¢, o’} is equivalent to:

PS[s] = p.(¢*, 7'} .

We say then: program S is correct with respect to (is a correct implementation of) predicative specifica-
tion p.(¢*, ¢’). Trivially, sat can be extended to a relation between specifications:

p0.(c*, 0’) sat pl.(o*, ¢’) = pO.(o*, ¢’} = pl.c‘, o’} .

Often, one is only interested in particular satisfaction relations such as those of partial, robust, and
total correctness. Brief definitions of the notions of partial, robust, and total correctness have been
provided in the introduction (Sect. 1). For more precise definitions, see [3]. As an example, consider the
program

S x:=1[abort.

The statement abort denotes nonterminating programs (without any free output channels). For example,
abort might stand for the program p :: p, or the program chan ¢ « d: c?x. Partial correctness gives

program S the behavior of x:=1, robust correctness that of abort, and total correctness either of the two.

10

Ezamples:
Let the set ID contain program variables x and y, input channel ¢, and output channel d.
(1) The following program may execute infinitely without producing any output.

p i if odd(x) then dix else p fi sat
(odd(x') = (-NT* A (£ =x) A (¥ =¥) A (¢ =€) A (& = d @ <x>))) A
(even(x‘) = (NT’ A (d’=d‘ @ <1 >)))

{2) The following program, when executing infinitely, will produce an infinite sequence of outputs.

p : if odd(x) then dlix else dlx ; p fi sat
(edd(x) = (PNT A (X =x)A ' =7)A{=Cc) A (=4 @ <x>))) A
(even(x') = (NT" A (3t € STREAM(D): (t =x‘ & t} A (d’=d* @ t}}})

Predicative specifications equate a program with a logical formula. While the program is concise and
easy to read, the logical formula is precise and hard to read. The program notation is, more implicit, for

human consumption; the logical notation is, more explicit, for formal reasoning.

4.4. Partial Correctness and Predicative Semantics

For the partial correctness of deterministic programs, given the predicative specification p.(¢*, o’), we
need only consider the weaker predicate (3 o: ¢’Co A p.(o, o}). This defines, trivially, a predicative
semantics suitable for partial correctness proofs. Since we add with every state o such that p.(o*,0) all

states o’ such that o’ Lo, we speak of a *downward closure® of the set of final states.

Partial correctness expresses safety properties: a program is partially correct with respect to a
specification if it does not produce output that is incorrect with respect to the specification. However, the
program may not be guaranteed to produce output {other than 1) at all. We define accordingly: a deter-
ministic program S is partially correct with respect to a predicative specification p.(o¢, ¢’} if

(V o, 0’ € STATE: (0’ =B[S].0) = (30 € STATE: o’Co A p.(o*, 7))},
or, equivalently,

(V o' € STATE: (3 0 € STATE: B[S].0‘'Co A p.{o", 0))) .

We suggest the shorthand: 8§ sat p.(¢f, o).

4.5. Robust Correctness and Predicative Specifications
A program S is called robustly correct with respect to a predicative specification p.(o*, ¢’} if
(V o, 0’ € STATE: (0’ =B,[S].0‘) = (30 € STATE: 0Co’ A p.{¢*, 7))} ,
or, equivalently,
(¥ o' € STATE: (3 0 € STATE: 0CB,[S].o° A p.(o*, 7)) .

We suggest the shorthand: S sat p.(of, o)

i

i1

5. Nondeterministic Programs
Before we extend our semantic definition to incorporate nondeterministic choice, let us point out a

severe problem that arises. Consider the three programs:
81 all; all; abort
52 1 all; abort
33 : abort

Our deterministic predicative semantics distinguishes these three programs in all three cases: partial,

robust, and total correctness.

Let us now consider nondeterministic programs:
S4:: S1383
S5 S1[S2083
S4 either produces no output and diverges, or it produces two 1’s on output channel a and diverges then.

S5 may, in addition, diverge after output of only one 1 on channel a. We want to explore our options of

predicative semantics that distinguish S4 and S5 from each other and from S1, $2, and S3.

We shall propose several distinct semantic models for our language that aim at different issues and

lead to different ways of distinguishing S4 and S5.

5.1. Denoctational Semantics
If S is a nondeterministic program, environment § is a multi-element set of functions, and so is BéﬁS]].
Let us first explain, why we must represent nondeterministic programs by sets of functions and not by

relations (i.e., set-valued functions). Consider the following simple situation:

C: ex

Ao dir;all
B dli;bll
Pi: A;C
P2:: B;C

Q:: (chanc+ d: P10P2)
For compositionality, it is highly desirable that choice distribute over recursion:

(chan ¢ «+ d: P10P2) = (chan ¢« d:P1)0O(chan ¢ « d: P2)
This precludes behaviors that mix steps of both recursions like, in our example, behaviors that exhibit
communications on both a and b. However, a definition by relations or, equivalently, by set-valued func-
tions permits such behaviors. Set-valued functions carry less information than sets of functions. The use
of sets of functions instead of set-valued functions will avoid the combination of nondeterministic alter-

natives that must belong to distinct computations.

12

We proceed with the definition of meaning function B in the face of nondeterminism. For all lan-
guage constructs but one, B remains defined as before. Only the meaning of refinement definition must be

revised to the least fixed point of the following equation, as described in [2]:
B,[p = 5] = {feF: F—-——B{S{F/p}ﬁSﬂ}
The sense in which fixed point F is "least® is not easily formulated. This reflects the inherent problems

in the connection of nondeterminism with recursion.

We also add the choice construct:

Bstos2] = B,s1]uB,[s?]

5.2. Predicative Semantics
The first definition of nondeterministic choice that comes to mind is:
PS[s1mos2] = PS[s1] v Ps[s2].
Unfortunately this definition creates problems in the presence of recursion. The reason is that our

predicative definition specifies a set-valued function from STATE to P(STATE), not a set of functions
from STATE to STATE (see previous section).

Brock and Ackerman [1] drew attention to this problem. The following program replicates their by
now famous *anomaly® (see Fig. 1} in our programming language:

D: c?a;eola;eola; D

Merge == (ei?x ; zolx) OO (vi?x ; zolx) ; Merge

P1: gi?y1;DO

where DO 1 zily2 ; wolyl ; dlyl ; yl:=y2 ; DO

P2 0 zity ; woly; dly ; P2

Plusl = wilz ; z:=z+1 ; volz ; Plusi
Now define for k= 1,2:

Rk :: (chan ei « eo: (chan zi « zo: D || Merge || Pk))

Qk : (chan wi « wo: (chan vi + vo: Rk || Plusl))
With the previous definition of [, PS[R1] = PS[R2], but PS[Q1] 5 PS[Q2]: if we assume, for instance,
¢t ==1&< | >, then d’ = 1&2&... is a behavior of Q2 but not of Q1.

5.3. Predicative Specifications as Sets of Functions

Hehner’s predicative notation is very elegant: he expresses relations between input states, o, and out-
pu‘t states, o’, nicely as predicates in the program variables - x‘ stands for o‘.x and x’ stands for o’.x. The
predicative description of sets of functions between states seems much more difficult. We make the follow-

ing suggestion.

i3

e
a

D
eo
VO
l ei Vi
Merge Plusl
Z0 .
, wi
Ve
P
d WO

Figure 1. The Brock-Ackerman Anomaly

A set of functions is specified by a predicate on the continuous functions {rom states to states {the set
PROG-FUNC). Employing a similar trick as before, we use in the predicate a special free identifier {.
This free identifier is a place holder for continuous state-to-state functions that satisfy the predicate.
More precisely, we use in our predicative definitions predicates ¢ with the particular free identifiers f, o,
and ¢’, where we always assume the relationship [.o‘ = ¢’. The predicate ®.(f, o°, o’} specifies the set of
{unctions

{f e PROG-FUNC: (V o', 0’ € STATE: fo' =¢" = &.f, o', 0"))}
Then, we define the predicative specification of the nondeterministic choice operator as follows:

PS[S10S2] = ((Vo',o:fo'=0c = PS[SI]) v (Vo, 0 fo'=0" = PS[S2]))

Note that we do not assume that nondeterministic choice distributes over recursive program definitions.
In this sense, we have not given a complete predicative specification so far. Obviously, a complete predica-
tive specification requires a rather complicated predicative formalism. However, we can greatly simplify

the predicative specification if we restrict ourselves to partial or robust correctness.

i4

6. Correctness of Nondeterministic Programs

8.1. Partial Correctness and Predicative Semantics

8.1.1. Considering only Finite States

For partial correctness, we may consider only finite states, i.e., states without infinite streams. This
avoids infinite elements altogether. Every infinite state o2 is uniquely characterized by the set of finite
states ol such that ¢1L 02, Let STATEfin denote the set of finite states, i.e., states that contain only

finite streams. We introduce a new meaning function specifically for partial correctness:

FPS: STAT — ENVpc — PROG-I’*’UI\IOpc

where
PROG-FUNC = {fe P([STATE, — STATE_ |):
pe fin fin
(Vo e STATE: '

(VcelIOL (3i€ N:restioc ="foc)) A
(vdeOCL(F3se€D u(D X {1})od@s="{od))}

ENV = [PROG-ID — PROG-FUNC _]

pe pe

FP¢ is defined as:
F?CHS]] = {fe€ PROG-FUNCPC: ERIN= FSHS}}: f1 0}
For partial correctness, the consideration of finite states is sufficient because only the absence of incorrect

output is required. Since every infinite stream is uniquely determined by its set of finite approximations,

output that is incorrect with respect to some specification will always show up in a finite state.

Let LOG-ID be a set of logical identifiers disjoint from all other sets of identifiers. We now propose
the predicative specification PSpc for partial correctness. PSPC{[SE is a predicate &.(f, o°, ¢’} on a function {
and on input and output states o° and o’. We shall also employ a kind of *closure* on &, namely the
predicate CLOSE.®.(f, o¢, ¢”), with only free identifier {, defined by:

CLOSE.®.(f, 0, 0") = (Yo', 0’ € STATE: fo'=0" = &.f, o', o))

CLOSE is a predicate transformer that takes a predicate in three free variables - a function and two
states - and binds the two state variables.? Note that ¢.(f, o, ¢’) = CLOSE.®.(f, o*, ¢’) if o* and o do
not occur freely in &.(f, o, o).

PSpch =E] = ¢ E o[E‘/x]

PS?C{[if E then Si else S2 fi]

= (=defE‘A{c’ E ¢'})) VIE A PSPCKSQ}) Vv (-E‘ A PSPC{{SQE)

: PS?CHC ? x] = ¢ L o‘[first.c’/x, rest.c‘/c]

2CLOSE is very similar to Dijkstra’s square brackets [4].

i5

PS [dIE] = ¢ Eo¢(d@<E>)/¥]
pe
PSpcﬁSl ; 82] = (NT A PSPC{{SIE) vi{3fi,2e PROG—FUNOPC:
CLOSE,PSPC{[SIE[H/{} A CLOSE.PSPCHS?,M??/Q A (o' =12.11.0°)
PSPC{[SI Il s2] = PSPC[{SI]] A PSDCHSQI}
PSPCESI 0 82] = CLOSE.PSpCﬁSlﬁ v CLOSE.PSPCESQI]
Channel Conneciion by Computational Induction:
PSpc]‘[chan c+«d:S] = (Jge PROG—FUNCPC: CLOSE.PSPCHSE g/ A
(Vo' (Vie N: f.o' T oo'c/c, 0.d/d]))
where o, = o<L>/c, e/d]

0., = sglo'lo;d/c, ¢/d])
Channel Connection by Fized Point Induciion:
Let x, y € LOG-ID be pairwise distinct and not free in PSPC{[SE:

PSPC[chan ce«d:S] = (Zge PROG—FUNCPC: CLOSE.PSPC[[SIHg/f} A
(¥ o: B, v: oly/e, x/d] = g(ofx/e, e/d])) = L.oEo)))
Refinement De finition by Computational Induction:
With auxiliary definitions:

p, = CLOSE(c’=0‘])

Py = CLOSE.PSPCIIS]]{pi/PSchpm
we define:
PSpcﬁp 8] = (YieN:p)

Refinement De finition by Fized Point Induction:
(V&: (v, g CLOSE.® A glf = CLOSE.®[g/f]} A (V1: CLOSE.PSPCKSE == CLOSE.®})} == CLOSE.[)
Here, we express again a least fixed point property. For partial correctness, if several fixed
points exist, then non-least fixed points may produce incorrect results. However, this does not
affect the partial correctness of the program, if the least fixed point produces only correct, not

incorrect results.

8.1.2. Connection Between the Two Semantics

Let S be a program; then:

(3geB,S]: kg = CLOSE.?SPCQS]])
The boolean expression PSPCQSE that contains x‘ and x’ as identifiers for data objects (where x € P'VI) and
¢* and ¢’ as identifiers for streams (where ¢ € ICI U OCI) is a shorthand for the predicate that we obtain
from PS[S] by replacing x* by o°x, x’ by o’x, ¢’ by ¢'.c, and ¢’ by o’.c. Furthermore, PSPCQSB may
include free occurrences of the function identifier {. CLOSE‘PSPCESE contains only the identifier f freely

(but no longer o* and ¢”), and therefore is the specification of a set of state-to-state functions.

18

8.2. Robust Correctness and Predicative Specifications

Again, predicative specifications of robustly correct programs require only slight modifications. It is
even possible to use simpler fixed point definitions, because it is no longer necessary to capture the
properties of least fixed points exactly. (Every fixed point is C-greater than a least fixed point. Therefore
the output states ¢’ of any fixed point are [-greater than the output states of the least fixed point.)
Thus, it is also not necessary to work with sets of functions. The meaning function for robust correctness
is:

B STAT — ENV — P{PROG-FUNC)

B’ is defined as:

BY[S] = {f€PROG-FUNC: (Vo € STATE: B,[S].c L f.0)}

PSrc is obtained from PS by eliminating most of the references to NT in basic {i.e., not composed)
statements and weakening a conjunction in the rule of composition to an implication:
PS [x:=E] = E/XLEd
PSYC[[if E then S1 else S2 fi]
— {(~delE‘ Aol T o) V(E A PSNHSH]) v (-E A PSTCHSQB)

PS_[c?x] = o¢‘[first.c’/x, rest.c/c] & o’
PS [d!E] = o'l(d @ <E>)/d] C o’
Ps [S1;82] = (3 0€STATE: (PS_[s1]lo/o’} A(¢E0” ANT.o Vv (-NT.o A PS_ [S2][o/o])))
(Ps_[s1] APS_[S2] A -NT’) v
Ps [st][s2] = (PS_[S1] A PS_[S2]l ANT)V
(Ps_ [S2] A PS_[S1]] A NT’)
PSS [s1 O s2] = PS_[S1] v Ps_[s2]
Channel Connection by Computational Induction:
Let a, b, e € LOG-ID be pairwise distinct:
S0 = (Fa:Ps_[Slle/d", b/d’, a/e])
P, = S0[<1>/¢]
P, = (3 e: (3 0: Ple/b][o/0’] A Sle/c]))

These definitions correspond exactly to the ones for PS in Sect 4.2.
PS [chanc<«d:S§] = (VieN:(3o, b: Plo/o’l Aolo’)
Channel Connection by Fized Point Induciion:
Let %, y € LOG-ID be pairwise distinet and not free in PSNKSE:
PS, [chan ¢ « d: Sl = (@x y:PS [Slly/c, ¢/d, x/c’, v/d7)
This formula expresses the fixed point property that ¢/ == d’ must follow from PSrﬁS}} le/d]. is

a fixed point.

17

Refinement De finition by Computational Induction:

With auxiliary definitions:

Py = true
p,, = FS_[Slp/PS [pll
we define:
Ps_[p = S] = (VieN:(o:PJo/o’] Aolo’))

Re finement De finition by Fized Point Induction:

For the fixed point semantics, we introduce identifiers for relations on states:
Ps_[p = S] = (3 q€ PRED-REL: q(¢°, 0’) A (VY o, 0’ € STATE:
a(o1, 02) & PS_[S][q.(e*, o")/PS_ [P]]))
This formula expresses that PS[p :: S] is a fixed point.

For robust correctness, the Brock-Ackerman merge anomaly does not arise. The Brock-Ackerman
merge anomaly reflects the fact that, for set-valued functions (i.e., for relations) it is not always possible
to distinguish least fixed points from other fixed points. For robust correctness such separations are not
required. Robust correctness considers all functions that are approximated by the least fixed points. But
these functions coincide with the set of all functions that are approximated by some arbitrary {ixed point,

since every fixed point is approximated by a least fixed point.

8.2.1. Considering only Total States
If we are interested only in robust correctness, we may disregard partial states altogether and con-
sider only total states. Note that, for every partial state o1, there exists a total state o2 such that o1 T o2,

Let STATEtoL denote the set of total states. We introduce a new meaning function:

B": STAT — ENV — PROG-FUNC,

where
PROG-FUNC' = iSTATEt — P(STATE, .}
ot tot
ENV}_ = [PROG-ID -%PROG-FUNCT}

B’ is defined as:

B[Sl = {o € STATE,_: (3 ¢’ € STATE: ’Co A (¢ € B,[S].oN}
Nontermination is modelled by associating with an input state the set of total states that are ap-
proximated by the partial output state. Nondeterminism leads to pathologies in this approach. For ex-
ample, the strictness of sequential composition is not easily specified. Tricks that circumvent this
problem lead to unpleasant effects (such as the nonassociativity of sequential composition [5]). Let us

consider, as a simple example, a program with only one boolean variable x and, therefore, with =z finite

state space:

18

(1) (x:==true O x:={alse} ; if x then x:=x else x:=true fi

(2) p;if x then x:=x else x:=true fi where p : (x:=true [x:={alse O p)

Especially from the viewpoint of robust correctness, the two programs should be distinguished: Program 1
always terminates, but Program 2 may not terminate. However, without the special element | for diver-

gence the programs cannot be distinguished.

7. On Nontermination
There are two distinct ways in which communicating programs may refrain from terminating:

(1) Infinite Output: a program may define a computer behavior with infinitely many observable
actions, e.g., Hehner’s ONES :: d!1 ; ONES.

(2) Divergence: a program may define an infinite computer behavior without any further observ-
able action like output, e.g., p :: p.

Nontermination can never be observed in finite time. But we can conclude it from an inspection of the

(infinite) set of all possible finite observations.

It is debatable whether programs that fail to terminate for certain input are useful - in some sense,
they are if they are used in a *safe® environment - and whether the explicit specification of nontermina-
tion is relevant. In our language, the predicative specification of program ONES contains conjunct INT’ to
make nontermination explicit. Hehner deals only with total states. He replaces partial states by sets of
total states that approximate them. This leads to a number of irritating little problems with sequential

composition and programs over finite state spaces (as Hehner points out in [5]).

8. Conclusions

The appropriate choice of a predicative semantics depends closely on the concept of correctness and
combination of features in the programming language. While certain combinations lead to elegant
predicative specifications, others lead to a number of technical problems. We found that arbitrary fixed
points suffice for the robust correctness, while least fixed points are required for the partial correctness of

recursion. Fixed point induction is best suited for robust correctness, while computational induction is

best suited for partial correctness.

In the presence of recursion, nondeterministic choice has to be defined carefully - by sets of functions

rather than by set-valued functions, in the case of partial or total correctness.

We have shown that denotational and predicative semantics can be chosen to be isomorphic. One
may ask why the two different definitions should then be given at all. The answer is: because they em-
phasize different aspects of a programming language - much like two programming languages which are

Turing-equivalent emphasize different aspects of an algorithm.

18

A denotational semantics makes certain mathematical properties such as monotonicity, continuity,
fixed point properties, and the existence of an output state for every input state more explicit. Moreover,
a denotational semantics translates programs into a functional calculus (the A-calculus), the formiilas of
which can again be understood as representations of algorithms. That is, denotational semantics aims at
implementations. A predicative semantics translates programs into logical formulas which can be reasoned

about conveniently. That is, a predicative semantics aims at proofs.

References

1. Brock, J. D., and Ackerman, W. B. Scenarios: A Model of Nondeterminate Computation. In
Formalization of Programming Concepts, J. Diaz and 1. Ramos, Eds., Lecture Notes in Computer
Science 107, Springer-Verlag, 1981, pp. 252-259.

2. Broy, M. Fixed Point Theory for Communication and Concurrency. IFIP TC2 Working Conference
on Formal Description of Programming Concepts 11, 1983, pp. 125-147.

3. Broy, M. Extensional Behaviour of Concurrent, Nondeterministic, Communicating Programs. In
Control Flow and Data Flow: Concepts of Distributed Programming, M. Broy, Ed., NATO ASI Series F:
Computer and Systems Sciences, Vol. 14, Springer-Verlag, 1985. (2nd printing: Springer Study Edition}..

4. van Gasteren, A. J. M., and Dijkstra, E. W. Remarks on Notation. AvG19/EWD-815, Departrnient
of Mathematics and Computing Science, Eindhoven University of Technology, Mar., 1982.

5. Hehner, E. C. R. “Predicative Programming (Part I and II}*. Comm. ACM 27, 2 (Feb. 1984},
134-151.

6. Hoare, C. A. R. Programs are Predicates. In Mathematical Logic and Programming Language s,
C. A. R. Hoare and J. 8. Sheperdson, Eds., Series in Computer Science, Prentice-Hall Int., 1985, pp.
141-155.

7. Lengauer, C. *Technical Correspondence: Predicative Programming®. Comm. ACM 27, 5 (May
1985}, 537-538.

8. Smyth, M. “Power Domains®. JOSS 16 (1978), 23-26.

9. Stoy, J. E. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. The MIT Press, 1977.

20

Appendix: Consistency Theorem

Theorem:
For all states ¢‘ and o’, and for all deterministic programs S in our programming language:
" o’=BSl.e' = PS[s]
provided for identifiers p for programs occuring in S we can assume the same predicates
o’ =B,[p].0° & PS[p] .

(If S is deterministic, B,[S] has exactly one element f which we denote by B,[S].)

Proof: (by structural induction on S)
Assume (*) holds for proper substatements.

(1) Assignment: Let S = x := E; then we have X == {x}. According to the definitions we obtain
for (*):

(V[E].o' 5% | = o’x=0'[V[E].o'/x].x) A (V[E].0 = | = o’ x =0} X)
& (~def.E° A o’ =0']) V (del. E* A ¢’ =0‘[E‘/x])
This is equivalent to

(=V[E].o‘5£ 1 vV o’ =0 [V[E].6]) A (-V[E].oc' = 1L V ¢’ =0"])
& (~V[E].o'st | Ao’=0c']l) V (VIE]l.o's£ | Ao =o' [V[E].o"/x])

which trivially is true, of course.

(2) Conditional: Let S = if E then S1 else S2 fi; then we obtain for (*):
(V[E].o* = o’ =B,[S1].0°) A (=V[E].0* = ¢’ =B,[S2].0) A (V[E].o' = | = o' =0*])
& (—defl.E‘ A o’ =0"]) v (E¢ A PS[S1]} v (-E* A PS[S2])
We have to consider three cases:
{a) V[E].c* holds, then we have to prove:
o’ =B][81].0° & (E* A PS[S1])
which is equivalent to the induction hypothesis (since E* = V[E].c'):
o’ =B,[S1].0* « PS[S1]
{b) —~V[E] holds, then we have to prove:
o’ =B,[S2].c & (-E‘ A PS[S2])
which is equivalent to the induction hypothesis:
o’ =B,[S2].0° = PS[S2]
(¢} V[E] = L holds, then we have to prove:
o=0'] & o =g‘]

which is trivially true.

21

(3) Receive statement: Let S = ¢ ? x; then we obtain for (*)
(first.o.c % | = o’ = o‘[first.o’.c/x, rest.o’.c/c]) A (first.oc= 1 = o' =0'])
= ((#c=0 Ao =0c']) V(#>0 A 0’ = o[first.c’/x, rest.c’/c]))
We have to consider two cases:
(a) first.o.c ¥ 1 ; then we obtain (by #¢‘>0) for (¥)
o’ == o'[first.o*.c/x, rest.o’.c/c] & o’ = o[first.c/x, rest.c’/c]

which is true, of course.

(b) first.o.c = | ; then we obtain (by #c‘ = 0) for (*)
0.’:6‘1 ﬁ 0‘7:0"1‘

which is trivial.

(4) Send statement: Let S = ¢ ! E; then we obtain for (*)
(V[E].o* 5% L = o’ =o¢‘[(o{c) @ <V[E].0*>)/c]) A (V[E].o' = | = o’ =0'])
o (~defEf A 0’ =0']) V (def B A 0 = o*[(d* @ <E*>)/d])
We consider two cases:
(a) V[E].c 5% 1; we obtain for (*)
o’ = o'[(o(c) @ <V[E].o*>)/c] = o’ =0o[d' @ <E*>/d]

which is trivially true.

(b) V[E].c* = L; we obtain for (*)
g7$gﬁi¢=}g7=ali

which is trivially true.

(5) Sequential composition: Let S = (S1 ; S2); we obtain for (*)
ol == BéﬁSZ]} B,[s1].o*
= (NT’ APS[S1]) v (3 0 € STATE : (PS[S1] A = NT’}[o/c’] A PS[S2][o/5])
We consider two cases:
(2) NT.B,[S1].0°; then we obtain for (*)
o’ =B,[S1].0°] & NT’ A PS[S1]
which is equivalent to the induction hypothesis
o’ =B,[S1].0* &= PS[S1]
(b) =NT.B,[S1].0; then we obtain for (*)
o’ =B [52].B,[S1].0*
= (30 € STATE : (PS[S1] A -NT’)[¢/¢’] A PS[S2][o/c"]

Now set o = B [S1].0°; then we obtain for (¥)

22

g’ = B5§:"52§.§ e ((PS[S1] A =NTYe/o’] A PS[52]ls/c])
which can be proved from
(07 =B,[S2].0 & PS[S2][o/o]) A (¢ = B,[S1].0° & PS[S1][o/0])

which is equivalent to the induction hypothesis.

(6) Parallel composition: Let S = (S1 || S2}; we obtain for (¥)

(-NT.B,[S1].0° = o’ =B,[S2] B,[S1].0°) A
(~NT.B,[82] .o = o’ = B,[S1].B,[S2] o) A
(NT.B,[S1].0° A NT.B,[S2].0°) = o’ = join.(B,[S1].c*, B[S2].0)

& (PS[S1] A PS[S2] A = NT’) v
(PS[S1] A NT’ A PS[S2]!} v
(PS[S2] A NT” A PS[S1]{)

We consider three cases:
(a) -NT.B,[S1].0%; then (*) can be proved from
o’ = B,[S2] B,[S1].0*
= (PS[S2] A NT” A PS[S1]}) v (PS[S1] A PS[S2] A = NT’)
We consider two subcases:
(i) ~NT.B,[S2].0°; then (*) reads
o == Ba[{S2]].Béf[Sl]].a‘ = (PS[S1] A PS[S2] A -~ NT")

which can be concluded from the induction hypothesis due to the independence of
S1 and S2.

(ii) NT.B,[S2].0%; then (*) reduces to
o —BJS2] BJS1].c* = (PS[S2] A NT" A PS[S1]1)

which can be concluded from the induction hypothesis and the independence of S1
and S2.

(b) ~NT.B,[S2].0°; then (*) can be proved in analogy to (a).
(¢) NT.B,[S1].0° A NT.B,[S2].0%; then (*) can be proved from
o’ = join.(B,[S1].0°, B,[S2].o*) & (PS[S1] A NT’ A PS[S2])

which follows from the induction hypothesis, the definition of join and the independence
of 81 and S2.

(7) Channel connection: Let S = [chan ¢ — d: S1]; then we define 02 as the least fixed point
of the state-to-state function

f = (x o : Bj[S1].0'[o(d)/¢, €/d])

f is continuous; thus, the following equation holds for 02 as defined in the denotational seman-
tics of channel connect:

02 = sup{fi(w): i € N}

where

23

fg.w———-w

i+l ="fw
and
WX == | forallxeID
By induction hypothesis we have
o = BéﬁSlﬁ.a‘ + PS[S1]
We prove by induction on i
(%) (0"="uw) = Pd/b)
{a) if i =0 we obtain
o’ =B,[S1].0'[<1>/c, ¢/d] & (3 a: PS[S1][e/d, b/d’, a/c’])[<L>/c][d"/D]
which simplifies to
o’ =B,[S1].0°<1>/¢, ¢/d] & (3 a: PS[S1][¢/d", <1>/c])

which is a simple consequence of the induction hypothesis.

(b) Assume (**) holds for i; then
(0=1"w)= Boo=fwAdc =10)
& (30:Plo/o’)[d’/b, ¢’/a] A o’ =BS1].0'lc.d/c, ¢/d]) =
(e (3o :Ple/bllo/o’] A Sile/c]))[d’/b]

Either —-NT.sup{fi.w: i€N} or not. In the first case there exists some i such that -NTf,.w

which implies the first line of the predicative specification (together with (**)). The second
case implies the second half of the predicative specification (together with (**}).

The fixed point definition of the channel connection is a simple consequence of the least fixed
point property of (i o: f.o). I & is a fixed point of f, then

o =B,[S1].0[0.d/c, ¢/d]
If -NT.o then
o’ =B[chan ¢ — d: S1].o¢
which is equivalent to
o’ = (B,[S1].0'[o.d/c, ¢/d])[o*(c)/¢, o¢.d/d]
which is {with y == 0.d, x = 0.¢) equivalent to
(B x, y: o'[x/c, y/d] = By[81].0]y/c, ¢/d])
which is (by induction hypothesis) equivalent to
(3% y: PSISIfy/c", ¢/d, x/<", y/&)

This proves the first half of the predicative specification from ¢’ = Bé[{chan ¢ — d: 81]. The
second half is obtained the same way by the least fixed point property of o.

(8) Recursive definition: Let S=Bp = S0]; according to our definitions Blp :: S0] is the

least fixed point of the continuocus function

24

r= (X f: By [SO])

With the auxiliary definitions used for specifying PS[p
obtain

p, & o =700
where (2 is defined by
Oo=0]
and 7 is defined by

7‘.0-—-—.(2
Pl f=rf

The equivalence (*) follows from

sup{7.f2: ieN} == B,[p :: S0]

:: 80] by computational

induction we

For the fixed point definition of PS[p :: SO] the given formula is a simple consequence of the
least fixed point property of Béﬁp :: 80] with respect to 7.

follows by assumption.

25

(9) Refinement Call: Let S = p, where p is a program identifier. The statement of the theorem

(End of Proof)

