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Abstract

Simulations play an important role in many �elds. This is especially true for �uid �ow simula-
tions. This theses will describe �uid �ow simulations that are based on the lattice Boltzmann
model. A framework that implements this model is waLBerla, a massively parallel multi-
physics software framework. The huge amount of data created by simulations has to be made
human comprehensible, in order to analyze it. This is done with the help of visualization
software. One of these is VisIt, an open source, interactive, scalable, visualization, animation
and analysis tool.
There are di�erent approaches to visualize the data. Usually simulations store their data, so
it can be visualized later. Another approach is to visualize the data, while the simulation is
running. Tools like VisIt are able to run in in situ mode, which means they are capable of
visualizing data, as it is created.
VisIt o�ers a library, which programmers can use to "build the bridge" between the simu-
lation code and the visualization tool. It will be explained how this library works and how
it integrates into an existing simulation code. Furthermore the waLBerla framework was
extended, using the VisIt library. This makes it possible to connect to a running waLBerla
simulation with VisIt and analyze the data, as it is created. Furthermore it was explored,
which possibilities VisIt o�ers to steer the execution of the running simulation.
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1 Introduction

Simulations play an important role in many �elds. They are used for technical, as well
as scienti�c purposes, to simulate scenarios that would be di�cult or expensive to test in
reality. In order to simulate with high resolution of the data, often supercomputers are used,
that exploit massive parallelism techniques. One important �eld of simulation are �uid �ow
simulations. For these the so called Lattice Boltzmann Models are often used. They are also
implemented in waLBerla, which is a massively parallel multiphysics software framework,
designed to simulate �uid �ows at a high parallelity rate.
Simulations create huge amounts of data, which are far too huge to be analyzed by looking at
values. To analyze the data, it has to be visualized, which means the data is transformed into
human comprehensible images. There are di�erent approaches to do this. Often simulations
store their data, so it can be visualized later. Another approach is to visualize the data, while
the simulation is running. There are di�erent visualization tools, one of which is VisIt, that
are capable of connecting to a running simulation and visualizing data as it is created.
VisIt o�ers a library, which programmers can use to "build the bridge" between the simulation
code and the visualization tool. The main goal of this thesis was to build this bridge, in order
to be able to visualize the data as it is computed, using VisIt [19]. Furthermore it was
explored, which possibilities VisIt o�ers to steer the execution of the running simulation.
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2 Visualizing Simulations

This chapter it will be described how �uid �ow simulations, based on the lattice Boltzmann
method, work. Furthermore it is explained how simulation data is visualized and which
concepts are used for that. Especially techniques that are used for parallel visualization and
simulation are shown.

2.1 Simulations

2.1.1 The Lattice Boltzmann Method

Lattice Boltzmann Models (LBM) are methods for the simulation of �uid �ows. They are
based on Lattice-Gas Cellular Automata (LGCA) proposed by Frisch et al. in 1986 [8]. To
simulate �uid �ow inside a domain it is discretized into discrete locations. LGCA uses �ctive
particles, which are either present in such a location or not and can only move in certain
discrete directions. That is, in the direction of neighboring discrete locations. Time is also
separated into timesteps. Each timestep consists of a collision and a propagation step. In the
collision step the particles exchange momentum while following the basic physical principle
of conserving the overall momentum and mass. In the propagation step the particles move
along their associated direction to their next neighbor node. LBMs improve this concept by
using continuous Particle Distribution Functions (PDF) instead of single particles. LGCA
and LBM use a "bottom-up" approach meaning that they use a discrete microscopic model,
namely the particles respectively the PDFs. Macroscopic values like density can be de�ned,
using the PDFs. More information on LCGAs and LBMs can be found in [24].
LBM simulations also use discrete velocities. For simulations in two dimensions the d2q9
(�gure 1) model is often used. For three-dimensional simulations the d3q19 (�gure 2) is very
popular. These models discretize the velocity space, so for example the d3q19 model has 19
discrete velocities in three dimensions. There also exist other models with di�erent numbers
of discrete velocities, like the d3q27 model. In general such schemes have the form dDqQ,
with D being the number of dimensions and Q being the number of discrete velocities.

Figure 1: d2q9 [18] Figure 2: d3q19 [18]

For Q velocities the discretized Lattice Boltzmann equation can be written as:

fα(~xi + ~eαδt, t+ δt) − fα(~xi, t) = Ωα(f), α = 0, ..., Q− 1
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where fα is the α-th particle distribution function. The whole domain is split into cells and xi
is the i-th cell in the discretized simulation domain. Ωα denotes the LBM collision operator
and eα is the α-th discrete velocity.
Simulations now have to solve this equation in each timestep in order to update the PDFs
per cell. Usually the cells are cubic and are part of a uniform grid, that forms the simulation
domain. The equation can be solved in a two step procedure, so each timestep is separated
into two steps. The �rst step is the collision step (1) and the second one is the streaming step
(2). For this the equation is rewritten as:

fα(~xi + ~eαδt, t+ δt) = fα(~xi, t) + Ωα(f)

This can be separated in into the two steps:

f ∗
α(~xi, t) = fα(~xi, t) + Ωα(f) (1)

fα(~xi + ~eαδt, t+ δt) = f ∗
α(~xi, t) (2)

f ∗
α is the post-collision value of the distribution function fα. Solving the collision equation
(1) does not depend on any information from neighboring cells, which makes it well suited
for parallel simulations. In order to solve the equation one has to �nd a good model for the
collision function Ωα. Di�erent approximations exist, examples being the Single Relaxation
Time (SRT) model proposed by Bhatnagar et al. [2] and Two Relaxation Time (TRT) model
proposed by Ginzburg et al. [9].
The result f ∗

α of the collision step is the distribution function of the neighboring cell along
its associated discrete velocity vector eα. So in the streaming step (2) the distribution func-
tions of the current node are copied into their associated neighbour cell. Depending on the
implementation the values can also be pulled from the neighbor cells instead of pushing the
values.

2.1.2 Domain Decomposition

Because of the large amount of data simulations often have to exploit parallelism. Simulations
use parallel computers or clusters with enough memory to hold the data that is needed by
the simulation. Parallel computers often consist of multiple nodes where each node contains
multiple cores. These cores share the memory of their node but have no knowledge of the
memory of other nodes. In order to synchronize the computation a mechanism is needed to
share data between nodes. For this purpose distributed-memory parallelism techniques are
required [1]. The most commonly used approach for this is message passing. This means the
processes exchange data using messages, which are sent over a network connecting the nodes.
For this normally the Message Passing Interface (MPI) [16] is used.
Shared-memory parallelism techniques can be used to increase performance within a node.
This is possible as all processors on one node have access to a common memory. The ad-
vantage is that all processes can access all data directly and can communicate through their
common address space. The problem is, however, that locking mechanisms are required to
synchronize data access of di�erent processes. The shared memory techniques do not have to
be implemented, as the processors can also use message passing to communicate instead of
using the common memory.
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In order to distribute the whole simulation domain among the processes, it has to be split into
subdomains. This splitting is called domain decomposition. After the splitting every process
gets one (or more) subdomains, which it is responsible for. The simulation domain is usually
discretized into a uniform Cartesian grid, consisting of equidistant cells. So the subdomains
consist of a subset of these cells.
Simulations mostly use purely distributed-memory techniques, so the the individual processes
do not have access to the whole domain but only to their subdomain, which is stored in the
local memory of the process. A big advantage of LBMs is that the collision step is purely local,
as mentioned in 2.1.1. This makes them well suited for parallel simulations, as the simulation
domain can be split into data independent subdomains. The streaming step, however, needs
information from neighboring cells.
To access the data a common approach is to add an additional ghost layer of cells to each
subdomain. This can be seen in �gure 3, where two neighboring subdomains are shown. Each
of them stores the outermost layer of computational cells of the neighboring subdomain in
their ghostlayer. This way the data of all cells can be calculated in each timestep, even on
the outermost cells, as the information needed from the neighbouring cells is available in the
ghost layers. Then after each timestep there is an extra communication step, which exchanges
data between the processes by sending messages over the network. These messages contain
the information needed to update the ghost data of each subdomain.

Figure 3: ghost layer

There are di�erent algorithms for the domain decomposition. The goal should be to split the
domain in a way that its computational load is uniformly distributed on the nodes and that
the communication time is minimal.

2.1.3 Accessing macroscopic values

One is interested in macroscopic values like density or �uid velocity. As mentioned in 2.1.1
these macroscopic values can be related to the microdynamic model. For LBM simulations
one has to calculate them from the PDFs at each cell.
For Q discrete velocities the density ρ inside a cell xi is given as:

ρ(~xi) =
Q−1∑
α=0

fα(~xi)
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For the calculation of the momentum ρ~u (~u is the �uid velocity of the cell) we additionally
need the discrete velocities cα:

ρ(~xi)~u(~xi) =
Q−1∑
α=0

fα(~xi)~cα

2.1.4 Boundary Conditions

Simulations are limited to a �nite domain. The problem that arises is how to handle the �uid
�ow at the boundaries. Should the �uid behave like there is a solid wall or should it behave
like there is no wall at all? There exist di�erent models to simulate such and other boundary
conditions.
First there is the so called no-slip boundary condition, which is used to simulate �uids that
hit static walls and applies a certain amount of friction to the �uid. In lattice-Boltzmann sim-
ulations the distributions which would be streamed into an obstacle cell are simply reversed,
as can be seen in �gure 4.

Figure 4: no-slip boundary condition [14]

The second popular condition is the free-slip boundary condition, which models walls without
friction. For this the PDFs, pointing to an boundary cell are re�ected along their component
normal to the wall (�gure 5).

Figure 5: free-slip boundary condition [14]

Then there is the in�ow and out�ow conditions. They are used to simulate �uid entering or
leaving the simulation domain by setting constant PDFs in the boundary cells. This way they
hold constant velocity and density values.
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As these conditions are used to model the boundaries of the simulation domain, it is reason-
able to store them in the ghost layers at the domain border. Another possibility is to de�ne
the domain boundaries as periodic, which means that data streamed out of the domain enters
at the opposite side. They also can be used to model obstacles inside the domain. One could
for example set up a solid obstacle by applying the no-slip boundary condition to a set of cells
inside the simulation domain.

2.2 Visualization

2.2.1 Software Design

There are many ways to design a visualization framework that is capable of handling the
often huge amounts of data, that are produced by simulations. One way to deal with large
data sets is data subsetting. This means that only the salient pieces of the data set are
processed and the parts that do not a�ect the �nal picture are ignored. Another method is
multiresolution processing. This method processes the data at �ner resolutions only when
necessary. These two methods take advantage of the fact that not the whole data set has
to be processed. There also is the streaming technique, which splits the data into multiple
pieces and processes these one at a time. Another method is in situ processing, which means
that the simulation data is visualized, using the resources allocated for the simulation code.
The last technique is pure parallelism, which means that many processors are used to read
the entire data set into primary memory. More information about these techniques can be
found in the book by E. Wes Bethel et al [1].
Visualization frameworks commonly use so called Data Flow Networks. These are frameworks
which provide an execution model, a data model and algorithms to transform data. One of
the most popular examples is the Visualization ToolKit (VTK) [15]. Data Flow Networks
send the data through a pipeline to create a visualization. The pipeline consists of di�erent
modules, which are either sources, sinks or �lters. They perform algorithmic operations on
the data as it �ows through the network. Data �ow networks are very �exible, as modules can
be replaced to handle di�erent data types or to perform di�erent operations. For example a
source can be a �le reader, which opens a �le containing simulation data and creates a mesh
containing data values in its cells. Then di�erent �lters are applied to the data, like eg. an
isosurface �lter, which creates isosurfaces from the data values. In the end a rendering sink
can be used to transform the data into an image.
As for simulations, the most common approach to handle huge data sets is parallelization.
The above mentioned methods also normally occur in combination with parallelism. Paral-
lelization is supported by all modern visualization frameworks, like for example VisIt, the
framework that will be discussed later on in this theses. These visualization frameworks use
parallel computers or clusters with enough memory to hold the data, needed for the visualiza-
tion. The distributed-memory and shared-memory parallelism techniques, mentioned in the
Simulations chapter (2.1.2), are also used by visualization programs.
Pure parallelism is the most common way to process data. Similar to simulations, visualiza-
tion frameworks distribute the whole domain, that should be visualized, over the available
processes. Each process operates simultaneously on its portion of the data set without com-
munication with the other processes. The processes usually use a data �ow network to read
and process the data of its subdomain. In the end the data is rendered. Rendering is a
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quite complicated step, as it requires parallel coordination in order to combine the data, pro-
duced by the processes. More detailed information about pure parallelism and examples on
visualization at extreme scale concurrency can be found in [1].

2.2.2 Distributed Visualization

Many visualization frameworks support a distributed mode of visualization. This means that
parts of the visualization pipeline are run on a remote machine (�gure 6), for example a super
computer. The resulting data is then sent to the client, which executes the remaining steps
of the pipeline. There are three possible ways of partitioning the pipeline. Send Data, Send
Images, and Send Geometry [1].

Figure 6: The Visualization Pipeline

Send Data partitioning means that simulation data is sent to the client, that has not been
transformed to geometry. This approach has become increasingly impractical as the data
amount, especially in scienti�c applications, grow and the data may exceed the client com-
puters memory. Moving full resolution source data over the network also is a huge bottleneck
for big simulations.
A more common approach is the Send Geometry partitioning. Here the simulation data is
transformed to geometry data by the server. The client then receives renderable data. Ide-
ally only the geometric primitives, that lie in the view-frustum are sent,in order to optimize
network usage. A disadvantage is that, depending on the visualization operations, the size of
the renderable geometry data may be even bigger than the original data set, although that is
usually not the case.
The most common approach, especially for huge data sets, is the Send Images partitioning.
This means all visualizations steps, up to a viewable image, are done on the server. Scalable
rendering operations produce images on the high performance server, which are then sent to
the client. This has the advantage that there is a �xed maximum size of the images sent
over the network, thus the network load is �xed. A problem is however that, especially for
interactive simulations, every time a new frame is requested, it is rendered on the server and
sent through the network. So if the client wants to explore the data and needs to update the
image often, the network can again be a bottleneck.
Hybrid approaches exist, which can switch between the above mentioned partitionings, in
order to save network load and memory usage. This is also supported by VisIt.
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2.2.3 In Situ Processing

Visualization of large data is usually done as a post processing step, using reduced data sets,
which were produced by a simulation. In situ processing is used to visualize data as it is gen-
erated, without the need of expensive I/O operations. I/O is one of the primary bottlenecks
of simulations, as it needs time to write the data to the disk. Furthermore the data written is
usually compressed, which introduces additional errors to the original simulation data. There
are two types of in situ processing.
Co-processing [4] means the visualization routines are part of the simulation code and can
directly access the simulation`s memory. The visualization routines could be implemented in
the simulation code. This is, however, time consuming and not very �exible. There exist
richly featured visualization software, which is more �exible an can be integrated into almost
any simulation code, although it may cost a bit of performance as it is not optimized for a
particular simulation. The biggest advantage of co-processing is, that the simulation data
can be accessed in a very e�cient way, as the co-processing routines can read it directly. The
biggest disadvantage is, that the memory and network bandwidth available to the simulation
is reduced by the visualization routines.
Second there is concurrent-processing, which means the visualization program runs separately
on distinct resources and the simulation data is transferred to the visualization resource
through the network. This is quite similar to post-processing visualization, with the di�er-
ence that the data is not stored to the disk, but sent over the network instead. This way
simulation and visualization are separated as it is the case in post-processing, but expensive
I/O operations are bypassed. However, the size of the data that has to be transferred over
the network, is increased.
There are hybrid forms, which combine these approaches. Here the simulation data is pro-
cessed by the co-processing routines to a certain degree. It is then sent over a network to a
visualization resource, which executes the remaining visualization steps. VisIt also is able to
use this hybrid form of in situ processing [22], as will be seen later in this thesis.

2.2.4 Adaptor Layer

As mentioned before, an in situ simulation, which uses co-processing, integrates the visual-
ization routines into its code. So the routines operate in the same address space. In order to
provide the simulation data to the routines, a so called adaptor layer is needed. The adaptor
layer is responsible for exposing the simulation`s data structures in a way that is compatible
with the visualization routines. In the best case the data layout of the simulation and the one
of the visualization system are very similar. If this is the case developers may be able to sim-
ply share pointers to the simulation`s data with the visualization code, which does not require
any copying. However often the data structures defer, which makes it necessary to implement
an adaptor layer, which reorganizes the simulation data. Depending on how big the di�erence
is, this can have a huge impact on the simulations performance. It can be necessary to copy
the whole simulation data structure into an object, which is compatible with the visualization
pipeline. This means additional computation time is needed as well as additional memory to
store the copied data, decreasing the memory available to the simulation.
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3 The Visualization Tool VisIt

This theses focuses on the high performance visualization tool VisIt [19]. VisIt is an open
source, interactive, scalable, visualization, animation and analysis tool. It is available on
Windows, Unix and Mac platforms. VisIt is designed to handle extremely large data sets
created by supercomputers, but is also suitable for desktop sized projects. It is build on top
of the Data Flow Network VTK. This chapter will especially describe how to use VisIt in in
situ mode, as this will be used in the practical part.

3.1 Design

VisIt consists of multiple programs and provides a client/server architecture in order to sep-
arate visualization and data analysis into di�erent component programs [3, 11, 22]. The
following three components are usually run locally on the client computer, so that they can
use its fast graphics hardware. The �rst component is the GUI, which provides a graphical
user interface and menus. It is build from the Qt-widget set. There is also the Command Line
Interface (CLI), which is a command line user interface where the VisIt Python Interface is
built-in. The last client-side component is the Viewer, which displays all of the visualizations
in its visualization windows. It is also responsible for keeping track of VisIt's state and for
talking to the rest of the components.
The server components are intended to run on a remote machine, for example a supercom-
puter. There is the Database Server, which is the program that browses the remote �le system
and passes information about the �les there to the GUI. It also opens the �les and reads their
metadata (eg. the list of variables). Then there is the Compute Engine. When the user
requests a plot, it is instructed to actually read the data �les, assemble the requested data
�ow networks, generate plots from the data using the data �ow networks, and send the plots
to VisIt's viewer where the plot can be displayed. The last server-side component is the VisIt
Component Launcher (VCL), which is the program that is responsible for launching other
VisIt components on remote computers. For example it starts the Compute Engine or the
Database Server there. The connection between the components can be seen in �gure 7.
VisIt o�ers multiple processing modes. These are multiresolution processing, in situ process-
ing, and out of core processing. The most often used mode, however, is pure parallelism. VisIt
uses the Message Parsing Interface (MPI) for its pure parallelism mode. When a request is
made by the client, every MPI task of the Compute Engine executes an identical data �ow
network, but on di�erent pieces of the simulation`s data set. VisIt`s data �ow networks are
based on VTK and extend these by contracts. Contracts [6] are a mechanism to apply di�er-
ent optimizations to the data �ow networks depending on the requested operations.
As mentioned in the Distributed Visualization chapter (2.2.2), VisIt also splits the tasks of
the visualization pipeline. Based on the size of the resulting surface data, VisIt decides if
the data is rendered on the server or if it is to be sent to the client [5]. So surfaces with a
small number of primitives are sent to the client and rendered by its graphics hardware, if
available. When VisIt`s heuristic detects that this is not reasonable anymore, it switches to
sending images. Each process then creates an image, that is equal in size and contains depth
values. After that the images are sent to the client, which composes the �nal result, using
the images depth values. More on these rendering techniques can be found in [13] and [12].
The heuristic, which decides which rendering method to use, can be set by the user and the
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user can decide to use a �xed rendering mode.

Figure 7: Connection between VisIt Components [11]

3.2 Instrumenting a Simulation Code

As mentioned earlier, VisIt is able to run in in situ processing mode. So you can augment
a simulation code in a way that it does not have to write �les to the disk, so there are no
expensive I/O operations. This chapter will describe how the in situ coupling of VisIt and a
simulation code is done. More detailed information about the in situ coupling can be found
in [3, 21, 22].
VisIt`s in situ mode uses co-processing, which means the simulation and the visualization
routines share the same memory. The routines are included in VisIt`s library called libsim.
Libsim is a library that is available as a C version for simulations written in C or C++ and as
a Fortran version for Fortran simulations. This thesis however will only target the C version,
as it is the one used in the implementation part. Using the library with a simulation code
allows to use VisIt as a runtime graphics package.
There are two interfaces in libsim: The �st one is the Control Interface, which contains the
functions to communicate with VisIt clients. So it can listen for incoming connections, connect
back to the client, handle requests and tell the client when the simulation has new data. The
second one is the so called Data Interface, which contains the functions to get data into VisIt`s
processing pipeline. More information on that follows in the Data Access chapter (3.4).
The component that processes data is the Compute Engine. When integrating the functions
de�ned by the interfaces into a simulation, it behaves like a Compute Engine. That makes it
possible for users to create plots from a running simulation, almost the same way as creating
them from data �les.
When augmenting a simulation one �rst has to include the header �les. Then a struct should
be created, which contains the global state of the simulation. For example it could look like
this:
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1 typede f s t r u c t {
i n t cy c l e ;

3 double time ;
i n t runMode ;

5 i n t done ;
i n t par_rank ;

7 i n t par_size ;
i n t nTotalDomains ;

9 i n t nDomains ;
Domain∗ domains ;

11 } simulat ion_data ;

The �rst two variables contain information about the current cycle and the current time.
This can be displayed by the Viewer in the visualization window. "runMode" is used to tell
if the simulation is running or if it is stopped. "done" is set to true when the simulation
should end. "par_rank" is the MPI rank of this process and "par_size" is the total number
of simulations processes. "nTotalDomains" is the number of all subdomains of the whole
simulation domain, "nDomains" is the number of locally allocated domains and "domains" is
a array that holds information about these subdomains. More on the subdomains follows in
the Domain Decomposition chapter (3.3). Of course this is only an example and one could
store other information describing the simulation`s global state.
Then the simulations mainloop, which executes the discrete timesteps, has to be restructured.
A restructured mainloop consists of the following: At the beginning of the mainloop, process 0
checks for inbound VisIt connections, via the function VisItDetectInput(blocking, cmdinput),
while the other processes wait in MPI_Bcast until process 0 also calls MPI_Bcast.

1 i n t b lock ing , v i s i t s t a t e ;
do

3 {
b lock ing = ( sim−>runMode == VISIT_SIMMODE_RUNNING) ? 0 : 1 ;

5 /∗ Get input from Vi s I t or timeout so the s imu la t i on can run . ∗/
i f ( sim−>par_rank == 0)

7 v i s i t s t a t e = Vis I tDetec t Input ( b lock ing , f i l e n o ( s td in ) ) ;

9 MPI_Bcast ( v i s i t s t a t e , 1 , MPI_INT, 0 , MPI_COMM_WORLD) ;

11 /∗ Do d i f f e r e n t th ing s depending on the output from Vis I tDetect Input . ∗/
switch ( v i s i t s t a t e ) {

13 case 0 :
/∗ There was no input from VisIt , r e turn con t r o l to sim . ∗/

15 case 1 :
/∗ Vi s I t i s t r y ing to connect to sim −

17 t ry to complete the connect ion and
r e g i s t e r c a l l b a ck func t i on s ∗/

19 case 2 :
/∗ Vi s I t wants to t e l l the eng ine something . ∗/

21 case 3 :
/∗ Vis I tDetect Input detec ted conso l e input −

23 do something with i t . ∗/
}

25 } whi l e ( ! sim−>done ) ;
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In a parallel simulation only the �rst process communicates with the Viewer. The return value
of VisItDetectInput is broadcast to the other processes via the call to MPI_Bcast which then
ends the blocking and all processes can process the request simultaneously. VisItDetectInput
can be instructed to block inde�nitely or to time out after a given period of time allowing
the simulation to run while periodically listening for connection requests. Depending on the
return value di�erent actions are initiated:

• The return value was 1: There was a connection request. Now libsim`s dynamic runtime
library is loaded, which is now needed for Compute Engine operations. Also the callback
functions for the data access are registered, as they are used by libsim. After that, the
simulation connects back to the viewer. It is now fully connected and appears in the
GUI`s "Compute Engines" and "Simulations" windows. Once connected subsequent
calls to VisItDetectInput return di�erent values depending on what VisIt wants to tell
the simulation.

• The return value was 0: There was no input from VisIt so the simulation can simply
executes one timestep.

• The return value was 2: There was input from VisIt`s viewer which has to be pro-
cessed. It could be a command to generate plots or to do other interactions with the
simulation. The request is handled in a way, which ensures all processes call the VisIt-
ProcessEngineCommand function. On all processes VisItProcessEngineCommand reads
the commands coming from the viewer and processes them.

• The return value was 3: The user has entered a command in the console. The simulation
can do something with it. Commands from stdin can be registered, as �leno(stdin) was
provided to VisItDetectInput in the example. If no commands should be detected -1 is
given to this function and this case can not happen.

3.3 Domain Decomposition

The simulation data is usually split into subdomains, which was discussed in chapter 2.1.2.
VisIt`s libsim has to know which subdomain belongs to which process, in order to identify the
subdomain in the data access functions. The subdomains are identi�ed via an integer value.
One should create a struct for subdomains, in order to relate this value to a subdomain and
it`s data. An example for this could look like:

typede f s t r u c t {
2 i n t g loba l Index ; // g l oba l domain number

4 i n t nNodesX ; //number o f nodes in x−d i r e c t i o n
i n t nNodesY ; //number o f nodes in y−d i r e c t i o n

6 i n t nNodesZ ; //number o f nodes in z−d i r e c t i o n

8 double ∗x ; //1D coo rd ina t e s o f the o f nodes in x−d i r e c t i o n
double ∗y ; //1D coo rd ina t e s o f the o f nodes in y−d i r e c t i o n

10 double ∗z ; //1D coo rd ina t e s o f the o f nodes in z−d i r e c t i o n

12 double ∗ v e l o c i t y // data array f o r v e l o c i t y
double ∗ d en s i t i y // data array f o r dens i ty

14 } Domain ;
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Where "globalIndex" is the unique value, that identi�es the subdomain. Additionally the
struct contains the information about the data of this domain. That is the number of nodes
in each direction, the coordinates for each direction, and variable data. The coordinates are
used to create the mesh, that represents this subdomain and the variable arrays hold the data,
that "lives" on the mesh.

3.4 Data Access

VisIt`s Data Interface uses data access callback functions to read data from the simulation`s
memory. These callback functions are provided by the augmented simulation. Simulations
decide, which callback functions they want to implement. They are registered when the run-
time library is loaded, which will call them on demand. The data access callback functions
call library functions to allocate handles to data objects like metadata, meshes, and variable
objects, and write the corresponding data into the objects.
As soon as a connection to the viewer is established, metadata is requested from the simu-
lation using the metadata callback function. The metadata contains the list of meshes and
�elds, that are visualizable and also information about the subdomains, if the simulations
domain was split. Parallel simulations have to provide a callback function for the domain list.
This list contains the information which subdomains of the whole simulation space belong to
which process.
When the user requests a plot, VisIt starts executing the corresponding data �ow networks.
This invokes only the data access functions, that are needed for the requested visualization
operations. The request by the client contains constracts, which �ow through the data �ow
network upstream to the data source. Each �lter of the network then modi�es the contract
[5]. At the end the contract is used optimize the size, dimension, extents and ranges of the
data, the sources (eg. a �le format reader or the SimV2 database reader plug-in) have to
read. More precisely it eliminates data, that does not a�ect the �nal picture, assigns data to
di�erent processors in an optimal way and eliminates unnecessary ghost data.
VisIt uses VTK data sets, which �ow through it`s data �ow networks. Ideally the simulations
data array layout matches that of VTK and the simulation runtime library can create a VTK
object without copying data. Otherwise the simulation has to provide an adaptor, as stated
in chapter 2.2.4 to expose the data to the visualization routines.

A simple data access callback function that returns data stored on the cells looks like this:

v i s i t_hand le SimGetVariable ( i n t subdomain , const char ∗name , void ∗ cbdata )
2 {

simulat ion_data ∗ sim = ( simulat ion_data ∗) cbdata ;
4

/∗ Find the r i g h t domain . ∗/
6 Domain ∗dom = NULL;

f o r ( i n t i = 0 ; i < sim−>nDomains ; ++i ) {
8 i f ( sim−>domains [ i ] . g l oba l Index == domain ) {

dom = &sim−>domains [ i ] ;
10 break ;

}
12 }

14 v i s i t_hand le h = VISIT_INVALID_HANDLE;
i n t nComponents ;
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16 //nTuples = number o f c e l l s in t h i s domain
i n t nTuples = (dom−>nNodesX−1)∗(dom−>nNodesY−1)∗(dom−>nNodesZ−1) ;

18

i f (dom != NULL && VisIt_VariableData_al loc (&h) == VISIT_OKAY){
20 i f ( strcmp (name , " dens i ty " ) == 0) {

nComponents = 1 ;
22 VisIt_VariableData_setDataD (h , VISIT_OWNER_SIM, nComponents ,

nTuples , dom−>dens i ty ) ;
24 } e l s e i f ( strcmp (name , " v e l o c i t y " ) == 0) {

nComponents = 3 ;
26 VisIt_VariableData_setDataD (h , VISIT_OWNER_SIM, nComponents ,

nTuples , dom−>ve l o c i t y ) ;
28 }

}
30 re turn h ;

}

In this example, when the user requests a plot containing the density variable, this callback
function is called with the char string "density" for every subdomain of the processes. Which
subdomains belong to which process, is known from the domainlist. First the data, that
belongs to the subdomain has to be found. It is stored in the Domain struct "dom". On
every process, we search for the Domain struct with the requested global index number.
Then a handle for the data object is allocated via VisIt_VariableData_alloc(handle) and the
corresponding variable array is connected to the handle. VISIT_OWNER_SIM means that
the simulation is responsible to destroy the array at some point. When an adaptor has to
be used and data has to be copied one can change this, so VisIt takes care of destroying the
copied data array when it is not needed anymore. For the density only one component is
needed, while for velocity three are needed (in this example a 3D velocity). The number of
tuples means the number of variables in the mesh corresponding to the subdomain, that was
given as parameter.

3.5 Running an instrumented simulation

To connect to an augmented simulation the "visit" command has to be set in the path
variable, as libsim needs this to �nd the libsim runtime library. This is especially important
if VisIt component should be run on a remote machine. Instrumented simulations create a
.sim2 �le every time they are run. This �le contains all the information needed to connect
to the simulation, including the hostname of the computer running the simulation and the
port, used to connect to the simulation. In VisIt`s GUI the �le can now be opened as any
other �le and VisIt connects to the sim, using ssh. VisIt knows that the data comes from a
simulation as the �le will be opened with VisIt`s SimV2 database reader plug-in [21]. After
a successful connection the metadata is read, using the metadata access callback. The name
of the simulation appears in the Compute engines window and the Simulations window, and
plots can be requested.

3.6 Control Functions

There are di�erent methods that can be implemented to control an already running simulation
with libsim [21]. Either using the command line, or via reserved buttons in the GUI. One can
also specify a user provided .ui �le, or control the simulation via the visualization windows.
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3.6.1 via the command line

If you want to monitor the console for typed commands, pass �leno(stdin) to VisItDetectInput,
as shown in chapter 3.2. If a user typed command is registered, the entered string is read. If
the simulation speci�ed a function for the entered string this function is run.

3.6.2 via the reserved buttons in the GUI

VisIt o�ers the possibility to specify user de�ned commands in the metadata object. If
commands were speci�ed they appear in the GUI`s simulation window. It is possible to de�ne
up to six commands this way. This can be seen in the Implementation chapter in �gure 8.
Also a control command callback function has to be registered. When clicking one of the
buttons, it causes a chain of events that ends up calling the command callback function,
which executes function, corresponding to the pressed button. These custom commands give
the opportunity to perform limited steering of the simulation from within VisIt.

3.6.3 via a user provided .ui �le

Via the above method button clicks can be registered, but what if the user wants to send
values to the simulations or if the desired steering possibilities require more than six buttons?
VisIt o�ers the possibility to specify a .ui �le, which makes it possible to add user-de�ned
interface elements to the GUI. Files in the. ui format describe the user interface con�guration
of a program. They are stored in an XML format and contain de�nitions of Qt-widgets.
The �les can be easily created with, for example, the tool Qt-Designer [17]. If such a �le
was speci�ed, one button in the simulations window with the name "Custom..." appears. By
clicking the button a new window opens, which is constructed from the descriptions of the
.ui �le. In the simulation there has to be a callback function registered for each interactive
widget. Depending on what widget is used, the callback function either takes a value as input
or not. For example a button click ends up simply calling its callback function, which executes
the associated function. A change to a SpinBox ends up calling its callback function, which
takes as parameter the value, the SpinBox shows in the window. There are also functions for
sending values from the simulation to the widgets of the user de�ned window. An example of
a window, containing the widgets, can be seen in the Implementation chapter in �gure 9.

3.6.4 via the visualization windows

VisIt o�ers some operators to restrict the area, that is being plotted and that can be interac-
tively changed in the viewer`s visualization windows. An example is the box operator, which
removes areas of a plot, that are either partially or completely outside of the volume, de�ned
by an axis-aligned box. Now changes to this operator have to be registered by the simulation.
VisIt`s CLI is a command line interface, which uses the VisIt python interface. It is connected
to the viewer and updates its state based on what the viewer sends [23]. VisIt's CLI provides
a callback function mechanism, that lets one install custom Python callback functions on
changes to this state. This way changes, to eg. the the box operator, can be registered in
the callback function. The callback function then sends the list of box attributes to viewer,
which sends it to the simulation. In the simulation the registered control command callback
is called (the same as, when a button is clicked), with the box command and its arguments.
So now the arguments can be used in the simulation for example to specify the selection area.
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4 Fluid Simulations with WaLBerla

WaLBerla [20] is a massively parallel multiphysics software framework. It is centered around
simulating �uid �ows with the lattice Boltzmann method (LBM).

4.1 Design

WaLBerla is written in C++ and is designed to give excellent runtime performance on mas-
sively parallel architectures [7]. This is, among other things, achieved by using heavily tem-
plated classes and functions in low level codes. It has a modular design, which makes the
integration of new simulation scenarios and numerical methods possible.
The waLBerla framework splits the whole simulation domain into so called blocks, which are
equal in size [10]. WaLBerla o�ers block structures, which are able to represent the simulation
data in a octree. This means the blocks can be further subdivided into eight subblocks in
order to provide �ner resolutions on parts of the domain, where it is desirable. The blocks
consist of cells arranged in a uniform grid. The actual simulation data is stored in so called
�elds, which are assigned to the blocks. Each block can hold multiple �elds.
For parallel programs waLBerla uses MPI. When running in parallel, all blocks are distributed
among the available processes by waLBerlas load balancer. Depending on the load balancing
strategy one process can get either one block, multiple blocks, or no blocks. This is especially
useful if the computation load per block varies signi�cantly. The structure holding the blocks
is also fully distributed, which means each process can only access the blocks, that were as-
signed to it and has no knowledge about other blocks. This way the processes don`t allocate
data they never touch and dont easily exceed their memory in huge simulations. Of course
communication has to be done, if cell values depend on their neighbors.
As mentioned before, simulations are discretized into timesteps. Often these timesteps are
executed in a simple while loop. WaLBerla executes the timesteps in so called Sweeps. Sweeps
are functions, that operate on a single block and modify its data. The user decides which
operations to apply to the block`s data. The Sweeps are executed iteratively in the so called
Timeloop, which is a class that manages the execution of the Sweeps. The Timeloop class
allows to add functions that should be executed before the Sweeps and functions that should
be executed after them. A typical function to add before the Sweeps is one that does the
communication, if it is needed.
Especially in LBM simulations, it is reasonable to use a parameter �le due to the large amount
of parameters, that in�uence the simulation. This is because one can change the parameters
(eg. boundary conditions or initial velocities) for the simulation without having to recompile
the application. For smaller simulations waLBerla also o�ers its own GUI, which is able to
view slices of the �eld data. Alternatively one can output a VTK �le.

So the basic steps when running a simple simulation with waLBerla are:

1. Create an Environment object (this for example initializes MPI info and reads in a
parameter �le, if speci�ed)

2. Create the blocks by setting up a block structure. This assigns the blocks to each process

3. Add �elds to the blocks, which hold the cell data (eg. a �eld of scalars for density and
a �eld of vectors for velocity). The �elds are identi�ed by a unique ID (BlockDataID)
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4. Initialize the �eld values (waLBerla o�ers some functions to do this automatically eg.
by using grayscale images)

5. Create a Timeloop and add Sweeps to it

6. Run the Timeloop

More detailed descriptions on how to use the waLBerla framework can be found in the docu-
mentation [20].

4.2 LBM Simulations with waLBerla

One of waLBerla`s core features is �uid simulation, using lattice Boltzmann methods. LBM
simulations are based on a lattice model. This is mainly de�ned by the following two features.
As described in chapter 2.1.1 LBMs use discrete velocities, de�ned by models like d2q9 to
describe the neighbor cells, that should be taken into account. In WaLBerla, these models
are implemented in so called Stencils. The lattice models, currently provided by waLBerla
for LBM simulations, are based on the d2q9 model for 2D simulations and the d3q19 and
d3q27 models for 3D simulations. The other important feature of the lattice model is the
collision model (also described in 2.1.1), which de�nes which method to use in the collide
step. WaLBerla o�ers some prede�ned collisions models, like SRT and TRT, but users can
also implement their own models.
As described in the Domain Decomposition chapter (2.1.2), waLBerla also uses a ghost layer
in LBM simulation, as this is important to calculate the values on the block boundaries.
For LBMs there is a special type of �eld, called PdfField. It stores the particle distribution
functions for each cell and is a ghostlayer �eld with the additional layer. It also provides
member functions to calculate macroscopic values, like density or velocity.
The information about boundary conditions and geometry is stored in a FlagField. It stores
information for each cell about its type (eg. NoSlip boundary cell). The boundary conditions,
that should be used for the simulation are grouped together in the BoundaryHandling class,
which provides some common Lattice Boltzmann boundary conditions, like eg. NoSlip and
FreeSlip, which were shortly described in chapter 2.1.4. Users can add implementations of
their own boundary conditions. WaLBerlas geometry module can be used to set up the
domain (usually consisting of a FlagField and a PdfField) by using the given parameters. It
can initialize the boundary conditions at the domain borders, place obstacles by using eg.
images, etc.
Communication is necessary as the ghost layers need to be synchronized. For that the PackInfo
class is used, which creates messages containing the ghost layers. It also writes the message
data into the communication partners corresponding ghost layer. In order to know where to
send the messages waLBerla uses a so called scheme. The scheme de�nes which processes need
to communicate and sends the packages over MPI. It communicates with all direct neighbors,
de�ned by the stencil, used for the simulation.
For LBM simulations multiple Sweeps are added to the Timeloop. First we have to add the
Sweep for the communication. Secondly we add the Sweep for the boundary handling, which
sets valid PDF values at the boundaries. Thirdly the LBM Sweep is added, that contains the
code for the stream and collide step.
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4.3 Accessing Macroscopic Values

The macroscopic values have to be calculated from the PDFs. WaLBerla o�ers adaptors,
which can be used to calculate the values. These adaptors behave like �elds. The di�erence
is that they do not store values, but calculate them based on the PdfField, using the lattice
model. For other types of simulations, other adaptors can be implemented.
They are added to the blockstorage via a special function (addFieldAdaptor), which returns
the BlockDataID for the adaptor. So the adaptors can be used like any other �eld. They are
identi�ed by their ID in a block and their values are read, via their data access functions,
which are the same as for a normal �eld.
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5 Implementation

The practical part of this theses was to "build the bridge" between the visualization framework
VisIt and the simulation framework waLBerla. Also it was to be found what possibilities there
are to control the running simulation. The following chapters describe how the connection
works, how VisIt`s libsim library integrates into the simulation code, and what mechanisms
where implemented to steer the simulation.

5.1 General Design

The goal was to implement a class that can be used instead of the GUI class provided by
waLBerla and integrates similarly into the code, written by waLBerla users. So instead of
using waLBerla`s GUI class, users can use the VisitGUI class. This class adds routines to do
the communication with a VisIt client. Using VisIt`s GUI on the client machine, the user can
request plots to analyze the data, while the simulation is running. He can also steer the exe-
cution of the waLBerla code, eg. instruct the simulation to run or halt. Furthermore he can
place obstacles inside the simulation domain and set density and velocity values interactively,
for LBM simulations.
When using the VisitGUI class, the user has to call its registerAdaptor(adaptor) method in
order to register an adaptor object, which a instantiation of a subclass of the abstract Visi-
tAdaptor class. These adaptors are used to expose the simulation data to VisIt`s visualization
routines. When the user wants a �eld, he added to waLBerla`s blockstorage, to be visualize-
able, he has to create an adaptor object for it. There are three di�erent types of adaptors,
which are the FlagFieldVisitAdaptor, the ScalarFieldVisitAdaptor, and the VectorFieldVisi-
tAdaptor. Depending on the types of �elds the user wants to visualize, he has to include the
corresponding header �le.
When compiling an application, that should use VisIt, one has to set the CMake switch WAL-
BERLA_ENABLE_GUI to ON, as described in waLBerlas documentation [20]. If it is set to
OFF the application will compile a version of the VisitGUI, that simply calls the Timeloop`s
run() member function. In other words, if the switch is not enabled the simulation runs as if
no GUI was used. Applications that include the VisitGUI.h �le, have to add the visit module
to its dependency list, so it is linked to the application. As waLBerla o�ers the possibility
to be compiled without using MPI, when the WALBERLA_BUILD_WITH_MPI switch is
set to OFF, the visit module also uses the de�nitions of the switch and can be compiled as a
serial version.
If the user wants to interactively set values in a �eld, he has to call the VisitGUI`s register-
Interaction(interaction) member function, in order to register an object of a subclass of the
FieldInteractions class. Currently there is only the PdfFieldInteractions class, which provides
functionality to set density and velocity values or to set up obstacles. As the name suggests,
this class only works with PdfFields, because it uses functions from the PdfField class to set
the values.
The PdfFieldInteractions class is not part of the visit module, although the VisitGUI class
can use it to set values on �elds. This is because it includes headers from the lbm module. If
it was part of the visit module, every time an application depends on the visit module the lbm
module would also have to be compiled and linked to the applications executable. As the lbm
module itself depends on many modules, there would be many unnecessary modules linked
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to the simulation. As a consequence this class is part of the lbm module, so only applications
that actually use waLBerla`s LBM functions need to compile and link to the module.

A (shortened) example for a simple user application may look like this:

1 // wa lber la i n c l ud e s
. . . .

3

// i n c l ud e s important f o r the v i s i t module :
5 #inc lude " v i s i t /Vis i tGui . h"
#inc lude " v i s i t / Sca la rF i e ldV i s i tAdapto r . h"

7

us ing namespace wa lber la ;
9

i n t main ( i n t argc , char ∗∗ argv )
11 {

// s e t up the environment and c r ea t e a block s to rage
13 . . .

15 //add a s c a l a r f i e l d to the b l o ck s to rage
typede f GhostLayerField<real_t ,1> Sca l a rF i e l d ;

17 BlockDataID f i e l d ID = f i e l d : : addToStorage<Sca la rF i e ld>
(

19 b locks torage , // the block s to rage
"nameOfField" , // name o f the f i e l d

21 ) ;

23 // Create a communication scheme
// and add a PackInfo that packs /unpacks our f i e l d

25 . . .

27 // I n i t i a l i z e the f i e l d
. . .

29

// Create Timeloop
31 . . .

33 // Reg i s t e r i ng the Sweep
t imeloop . add ( )<< BeforeFunct ion (myCommScheme, "Communication" )

35 << Sweep ( MySweep( f i e l d ID ) , "MySweep" ) ;

37 VisitGUI gui ( t imeloop , b locks torage , argc , argv ) ;
v i s i t : : Sca la rF ie ldVi s i tAdaptor<Sca la rF i e ld> f i e ldAdaptor (

39 // the BlockDataID o f the f i e l d
f i e l d ID ,

41 // the name that was de f ined when adding the f i e l d to
// the storage , could be any other name though

43 b locks torage−>ge tB l o ckData Id en t i f i e r ( f i e l d ID )
) ;

45 gui . r eg i s t e rAdapto r ( f i e ldAdaptor ) ;
gu i . run ( ) ;

47

re turn 0 ;
49 }

In this application a GhostLayerField, which holds scalar values (real_t in this case), is
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created. The �eld is added to the blockstorage, which returns a BlockDataID, which uniquely
identi�es the �eld. After that, a communication scheme is set up, which is needed in this
example, as a GhostLayerField is used and the ghost data has to be synchronized. Then the
�eld is initialized, for example with the use of an image �le. Afterwards a Timeloop object
is instantiated and its add() method is called, to register the communication function and
the Sweep, that the user created. Finally the VisitGUI object is created, which uses the
Timeloop and the block storage objects. As the �eld used in this example holds scalars, the
ScalarFieldVisitAdaptor is used. Its constructor is given the BlockDataID of the �eld and
a unique name. The ScalarFieldVisitAdaptor.h �le has to be included, which only includes
�les necessary to view scalar values. The adaptor is then registered and the run() method is
called, which starts the communication with VisIt.

5.2 Communication with VisIt

Most simulations contain a main loop, that executes the timesteps of the simulation. As
described in 3.2 an augmented simulation`s main loop waits for incoming connections from
a VisIt client. In waLBerla, the class, that manages the execution of the Sweeps, is the
Timeloop class. In simulations, that run without waLBerla`s built-in GUI, an object of the
Timeloop class is instantiated, its run() method is called and the execution of the Sweeps
starts. When the GUI is used the, timeloop object is passed to the GUI. Then the GUI
controls the execution of the Sweeps, via the Timeloop`s functions.
To implement the connection between VisIt and waLBerla the VisitGUI class was created,
which replaces the built-in GUI. It also takes as input the Timeloop object and steers its
execution.
The run() method is structured like this:

void VisitGUI : : run ( ) {
2 whi le (1 ) {

visitCommStep ( ) ; // communication with V i s I t
4 i f ( sim . done == 1) {

break ; // s imu la t i on i s done
6 } e l s e i f ( ! executeTimestep ) {

cont inue ; // V i s I t sent a command
8 }

. . .
10 timeloop_ . s i n g l e S t ep ( ) ; // execute one t imestep

. . .
12 }

}

Before each of waLBerla`s timesteps, the communication method visitCommStep() of the
VisitGUI object is called, to connect to VisIt or handle commands. It contains the VisItDe-
tectInput() function and is very similar to the code example of the communication loop in
chapter 3.2. Depending on the input from VisIt, this method is called several times. If no
input was registered (VisItDetectInput() returned 0 and "executeTimestep" was set to true)
the waLBerla code continues to execute. This means the Timeloop executes its registered
functions and Sweeps. So if there was no input from VisIt the waLBerla simulation runs as
usual.
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5.3 Using VisIt`s Domain Concept

As mentioned in chapter 4.1 waLBerla splits the simulation domain by using so called blocks,
which hold the �eld data. In serial simulations waLBerla assigns all blocks to one process.
In parallel programs, waLBerla`s load balancer distributes all blocks among the available
processes. Depending on the load balancing strategy one process can get either one block,
multiple blocks, or no blocks.
Libsim o�ers a mechanism to deal with that situation. It can identify parts of the simulation
domain by assigning a unique integer value to each subdomain. These subdomains represent
a block in waLBerla. Blocks, however, are identi�ed by a unique IBlockID. So the the IBlock-
IDs have to be linked to a subdomain number. They can`t be used directly as libsim uses
consecutive integer values in it`s callback functions. Because of that a Domain struct (similar
to the one in 3.3) is used, which links a unique integer value to each IBlockID:

1 typede f s t r u c t
{

3 i n t g loba l Index ; // g l oba l domain number

5 // the BlockID o f the block , that i s r ep r e s ented by t h i s domain
shared_ptr<IBlockID> blockID ;

7

i n t nNodesX ; //number o f nodes in x−d i r e c t i o n
9 i n t nNodesY ; //number o f nodes in y−d i r e c t i o n

i n t nNodesZ ; //number o f nodes in z−d i r e c t i o n
11

double ∗x ; //1D coo rd ina t e s o f the o f nodes in x−d i r e c t i o n
13 double ∗y ; //1D coo rd ina t e s o f the o f nodes in y−d i r e c t i o n

double ∗z ; //1D coo rd ina t e s o f the o f nodes in z−d i r e c t i o n
15 } Domain ;

Where "globalIndex" is the global index number, that uniquely identi�es the subdomain.
"blockID" is the IBlockID, that uniquely identi�es the block corresponding to this subdo-
main. The struct also contains the number of nodes in each direction and the coordinates for
each direction. They are used to create the subdomain`s mesh.
Everytime a plot is requested, the data access callback functions (see chapter 3.4), correspond-
ing to the requested variables, are called. They are called for each subdomain, so that every
part of the whole domain is processed. When libsim calls a data access callback, it provides
the global index number of the subdomain as parameter. The callback now has to know which
block belongs to this global index. This struct is now used to �rst identify the subdomain by
the "globalIndex" value and to get the corresponding block by using the "blockID" value.

The global index values were initially assigned to the blocks like this:

i n t index = 0 ;
2

std : : vector< shared_ptr< IBlockID > > blockIDs ;
4

//Returns the block ID o f every l o c a l b lock in the s imu la t i on
6 sim−>blockForest−>getAl lB locks ( blockIDs ) ;
f o r ( std : : vector<shared_ptr<IBlockID >>:: i t e r a t o r blockID_it =

8 blockIDs . begin ( ) ; blockID_it != blockIDs . end ( ) ; ++blockID_it ) {

10 const BlockID blockID = ∗dynamic_cast<BlockID∗>(blockID_it−>get ( ) ) ;
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AABB aabb ;
12 sim−>blockForest−>getAABBFromBlockId ( aabb , blockID ) ;

// every proce s s ge t s zero , one or more g loba l Index va lue s
14 i f ( : : wa lber la : : MPIManager : : i n s t anc e ( )−>numProcesses ( ) == 1 | |

sim−>blockForest−>blo ckEx i s t sLoca l l y ( blockID ) )
16 {

// the block e x i s t s l o c a l l y −> add i t to the proce s s domain l i s t
18 Domain_ctor(&sim−>domains [ sim−>nDomains ] , index , ∗blockID_it , aabb ) ;

sim−>nDomains++;
20 }

index++;
22 }

First the IBlockID of every block in the simulation is stored in a vector. Note that this
will only work if the application con�gured the blockstorage, so that it contains global block
information after creating the blocks. In serial simulations this does not matter as there is
only one process, which contains the BlockIDs of all blocks. In parallel simulations by default
only the local BlockIDs are maintained.
Then it is checked for each block, if it is exists locally, meaning it is allocated on this process.
If it is, a Domain struct for this block is created. In Domain_ctor() it is populated with data,
including the global index and the IBlockID of the current block. Then the index value is
incremented. This way every process gets a unique global index number, which starts with 0
and is numbered consecutively.

5.4 Data Adaptor

Libsim o�ers �ve functions, that can be used to expose arrays of di�erent data types to the
visualization pipeline. These functions exist for int, long int, double, �oat and char. The user
can store any type of data in the simulation`s �elds. When accessing the �eld data in the
callback function, it has to be determined which of these functions has to be used, depending
on the data type. Another problem is, that the data arrays must have the same data layout
as the VTK objects use in the pipeline. So the data has to be reorganized. Also the callback
functions are called with the name (as character string) of the variable that is to be sent
(again, see chapter 3.4). So we also have to know, which �eld corresponds to this string.
These problems are solved by using the abstract VisitAdaptor class. It contains many over-
loaded functions. Five of them are:

void VisIt_VariableData_setDataT ( v i s i t_hand le obj , i n t owner , i n t nComps , i n t
nTuples , char ∗ data ) {

2 VisIt_VariableData_setDataC ( obj , owner , nComps , nTuples , data ) ;
}

4 void VisIt_VariableData_setDataT ( v i s i t_hand le obj , i n t owner , i n t nComps , i n t
nTuples , i n t ∗ data ) {

VisIt_VariableData_setDataI ( obj , owner , nComps , nTuples , data ) ;
6 }
void VisIt_VariableData_setDataT ( v i s i t_hand le obj , i n t owner , i n t nComps , i n t

nTuples , f l o a t ∗ data ) {
8 VisIt_VariableData_setDataF ( obj , owner , nComps , nTuples , data ) ;
}

10 void VisIt_VariableData_setDataT ( v i s i t_hand le obj , i n t owner , i n t nComps , i n t
nTuples , double ∗ data ) {

VisIt_VariableData_setDataD ( obj , owner , nComps , nTuples , data ) ;
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12 }
void VisIt_VariableData_setDataT ( v i s i t_hand le obj , i n t owner , i n t nComps , i n t

nTuples , long ∗ data ) {
14 VisIt_VariableData_setDataL ( obj , owner , nComps , nTuples , data ) ;

}

They are used by subclasses of the VisitApdaptor, in order to send �eld data of any type to
VisIt. Depending on the data type, the right VisIt_VariableData_setDataT is chosen, which
calls the correct libsim function. The VisitApdaptor class also contains further versions of
VisIt_VariableData_setDataT, for other data types (eg. unsigned int), but these have to be
cast or can not be used, as there is no corresponding libsim function to them.

As mentioned in chapter 5.1 the VisitAdaptor has three di�erent subclasses:

1. ScalarFieldVisitAdaptor: used for �elds holding a scalar value

2. VectorFieldVisitAdaptor: can currently only be used for �elds that hold Vector3 values
(waLBerla`s representation of three-component vectors)

3. FlagFieldVisitAdaptor: used for FlagFields. It can be set up to send either the �rst
char of the boundary string or the integer value representing the boundary.

Their constructors have the following two arguments. First the identi�er of the �eld (Block-
DataID) and second a string, which should be unique, as it is used to identify the adaptor
in the data access callback functions. This string is also the name, which will appear in
VisIt`s GUI plot selection window. These classes have a template parameter, which expects
the exact type of the �eld (eg. a �eld registered in the ScalarFieldVisitAdaptor can be a
Field<valuetype,1> or a subclass of it, with "valuetype" being a scalar type).
Each adaptor implements the virtual method setDataInVisit(handle, currentBlock, nNodesX,
int nNodesY, int nNodesZ). This method is used to expose the variable data arrays to the vi-
sualization pipeline. First the �eld data is read from the current block, using the BlockDataID
of the �eld, that is represented by this adaptor.

1 const f i e l d_t ∗ f i e l d = currentBlock . getData< f i e l d_t > ( f ie ldID_ ) ;

This is why the template parameter "�eld_t" is important, as it is needed for the block`s get-
Data(�eldID) method. After that, the variable data is set via VisIt_VariableData_setDataT.
But �rst the data has to be transformed, to match the VTK format.
This has to be done as waLBerla`s �elds internally use padding to store the data, in order to
increase performance. The libsim functions, however, use a 1D array without padding. So the
current solution is to simply copy the data into the new array. Of course this is not an e�cient
solution, as computation time and memory is needed. For the ScalarFieldVisitAdaptor this
code segment looks like the following:

1 // I t e r a t e over the f i e l d
f o r ( i n t z=0; z<nNodesZ−1; z++){

3 f o r ( i n t y=0; y<nNodesY−1; y++){
f o r ( i n t x=0; x<nNodesX−1; x++){

5 va r i ab l e [ x+y∗(nNodesX−1)+z ∗(nNodesX−1)∗(nNodesY−1) ] =
f i e l d −>get (x , y , z ) ;
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7 }
}

9 }
VisIt_VariableData_setDataT ( obj , VISIT_OWNER_VISIT, 1 , nTuples , v a r i ab l e ) ;

The other adaptor types basically work the same way and mostly defer in what they have to
provide VisIt_VariableData_setDataT(handle, owner, nComps, nTuples, data) as the value
for nComps (eg. 3 for VectorFieldVisitAdaptor, as the vectors have three components).

5.5 Manipulating Field Data

The FieldInteractions class is the base class for manipulating data in a �eld. The PdfFieldIn-
teractions currently is the only subclass. It provides functionality to set density and velocity
values or to set up boundary conditions in a given selection area. As the name suggests, this
class only works with PdfFields, because it uses functions from the PdfField class to set the
values. Its constructor takes the BlockDataID of the PdfField and the name of the �eld. It
also takes the BlockDataID of the BoundaryHandling object, that was added to the block-
storage. This is important to be able to manipulate boundary �ags. Also one has to provide
template parameters, which are the type of the PdfField and the type of the BoundaryHan-
dling object.
When the user instructs the simulation to set the variables, he speci�ed before, it is iterated
over all blocks. For all blocks, that are within the selection area, the density and velocity
values are set via the PdfField`s setDensityAndVelocity(cell, velocity, density) method:

f i e l d_t ∗ pd fF i e ld = ( f i e l d_t ∗) currentBlock . getData< f i e l d_t > ( f ie ldID_ ) ;
2 f o r ( C e l l I n t e r v a l : : c on s t_ i t e r a to r cu r rCe l l_ i t = s e l e c t i o n . begin ( ) ;

cu r rCe l l_ i t != s e l e c t i o n . end ( ) ; ++cur rCe l l_ i t )
4 {

pdfFie ld−>setDens i tyAndVeloc i ty (∗ cur rCe l l_ i t , v e l o c i t y , dens i ty ) ;
6 }

In this code snippet "�eld_t" is the typename of the PdfField. It is needed for the block`s
getData<�eldtype>(�eldID) method, which returns the PdfField, identi�ed by the Block-
DataID "�eldID_". Then the density and velocity values are set on all cells of the block, that
are inside the selection. When setting the values one has to be very careful, as the numerical
stability of the simulation can break, if values are set, which are too high or too low. If a
stability check was registered, the simulation will abort in that case.

Boundary values can be set via the provided BoundaryHandling object. It uses a FlagField
to store which boundary condition is applied in which cell. For all blocks, that are within the
selection area, the boundaries are set like this:

houndary_handling_t ∗ bh = ( houndary_handling_t ∗) currentBlock . getData<
houndary_handling_t>(boundaryHandlingId_ ) ;

2

//assume that the re i s a "NoSlip " boundary cond i t i on
4 BoundaryUID boundaryUID_NoSlip ( "NoSlip " ) ;

6 typename houndary_handling_t : : f l ag_t noS l ip = bh−>getBoundaryMask (
boundaryUID_NoSlip ) ;
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8 i f ( noS l ip == typename houndary_handling_t : : f l ag_t (0 ) ) {
WALBERLA_LOG_WARNING("boundary handl ing does not conta in a boundary cond i t i on

with the name \"NoSlip \"" ) ;
10 } e l s e {

bh−>forceBoundary ( noSl ip , s e l e c t i o n ) ;
12 }

"boudary_handling_t" is the typename of the boundary handling class. As in the code above
this snippet, the type is needed for the getData method. The �ag for the boundary condition
with the name "NoSlip" is set via the forceBoundary(boundaryFlag, selection) method. This
is an experimental piece of code, as it is simply assumed, that the boundary handling object
contains a �ag for a boundary condition with the unique BoundaryUID("NoSlip"). If no �ag
is found, for this boundary ID, no boundaries are updated.

5.6 Steering the Simulation

As mentioned in chapter 3.6, VisIt o�ers four mechanisms to control a running simulation.
They have been implemented in this project.

5.6.1 via the command line

The simulation monitors the console for typed commands, as �leno(stdin) was passed to
VisItDetectInput. If the user types a command in the terminal, it is registered by VisItDe-
tectInput, which returns the value 3. In this case ProcessConsoleCommand() is called, which
is responsible for processing the command. In this function the string from the console is
read via VisItReadConsole(). Then the function that corresponds to the string is executed.
To show a list of available commands one can type "help" in the console.

5.6.2 via the reserved buttons in the GUI

VisIt o�ers the possibility to specify user de�ned commands in the metadata object. If
commands were speci�ed they appear in the GUI`s simulation window. In this project the
following �ve button commands were registered in the metadata access callback function:

/∗ Add some custom commands . ∗/
2 const char ∗cmd_names [ 5 ] = {" ha l t " , " s tep " , "run" , "update" , " proc id_plot " } ;

4 f o r ( unsigned i n t i = 0 ; i < s i z e o f (cmd_names) / s i z e o f ( const char ∗) ; i++)
{

6 v i s i t_hand le cmd = VISIT_INVALID_HANDLE;
i f (VisIt_CommandMetaData_alloc(&cmd) == VISIT_OKAY)

8 {
VisIt_CommandMetaData_setName(cmd , cmd_names [ i ] ) ;

10 VisIt_SimulationMetaData_addGenericCommand (md, cmd) ;
}

12 }

With these commands the simulation can be instructed to halt or run. It can also be instructed
to execute a single timestep ("step"). "update" requests new metadata and updates the plots,
selected in the GUI. Finally, "procid_plot" instructs the augmented simulation to plot which
process is assigned to which part of the simulation. This is done by sending VisIt CLI Python
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commands to the CLI. The commands are sent to VisIt in a non-blocking fashion and VisIt
later translates the commands into requests to the simulation.
When clicking one of the buttons in the simulations window, it causes a chain of events that
ends up calling the command callback. The callback then executes the function, corresponding
to the pressed button. It is the same, as if it was called through the command line.

Figure 8: Simulation Window

5.6.3 via a user provided .ui �le

The implementation invokes a .ui �le, which is stored in waLBerla`s src/visit/ directory. It
has to be copied manually into VisIt`s .visit/ui/ folder, as libsim will search for the �le there.
As such a �le was speci�ed in the implementation, when connecting to the simulation, the
sixth button is now labeled "Custom...". When clicking on it a window opens up, which is
constructed based on the de�nitions of the .ui �le (�gure 9).
It contains the same commands as in the simulation windows, but also adds new functionality.
The "Step Size" command is used to increase the number of timesteps that are executed,
when the "Step" button is pressed. The "Update Interval" �eld de�nes how many timesteps
have to be executed until the simulation automatically updates, without having to press the
update button (0 means: do not automatically update). The buttons in the "Steering" tab
are used for setting velocity or density values in a PdfField. They only have an e�ect if
a FieldInteractions object was registered via the VisitGUI`s registerInteraction(interaction)
method. The density and velocity values are set when the "Set Variables" button is pressed.
The values are set inside the bounding box, that can be set via "Draw Selection". "Set
Obstacle" sets the "NoSlip" �ag inside the selection.
There is a callback function registered for each interactive widget. The callback functions for
the Spinbox widgets get the value, that is displayed in the window, as parameter. They are
called a soon as the user changes the value. So when the user types a new value into the
"Density" �eld, its callback function is called by libsim and the value is used in the waLBerla
method for setting density values. Currently, only integer values can be registered this way,
as VisIt provides only callback functions for integers.
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Figure 9: user de�ned interface, created from .ui �le

5.6.4 via the visualization windows

The implementation can set density and velocity values inside a given selection area. This
area is de�ned by using the box operator. The "Draw Selection" button (�gure 9) executes a
Python script via the CLI, which installs the callback function, in order to register changes
to the box operator. When the user changes the selection area, the callback is invoked as
described in 3.6.4. The Python callback sends the box operator information to the simulation,
which updates the selection values, which are stored in its simulation_data struct. The
selection will be used as the area, where the values are set, when the user presses the "set
Variables" button.
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6 LBM Example

The example simulation is a lid driven cavity problem. Here all cells at the domain border
are set to no-slip, except for the cells at the top. They are marked with a velocity-bounce
back-�ag. The velocity-bounce-back boundary condition internally works with one constant
velocity.

6.1 Parameters

In this example an LBM simulation was run. The simulation uses the d3q27 model and
the SRT collision model. It is con�gurable via a parameter �le, which uses the following
parameters:

DomainSetup
2 {

b locks < 4 , 3 , 2 >;
4 c e l l sPe rB l o ck < 25 , 20 , 10 >;

p e r i o d i c < 0 , 0 , 1 >;
6 maxnrOfBlocksOn1Process 0 ;
}

8

Boundaries
10 {

Ve loc i ty0 < 0 . 2 , 0 , 0 >;
12

Border { d i r e c t i o n W,E, S ; wa l l d i s t an c e −1; NoSlip {} }
14 Border { d i r e c t i o n N; wa l l d i s t an c e −1; Ve loc i ty0 {} }

}

The blockstructure is created by using the DomainSetup parameters. "blocks" is the number
of blocks in x, y and z direction and "cellsPerBlock" is the number of cells of each block in
each direction. After the initialization, there is a blockstorage, which contains 24 blocks. The
last two parameters mean that the domain is periodic in z-direction and that each process
can be assigned any number of blocks by the load balancer.
The boundary conditions are set via the "Boundaries" options. The "Velocity0" parameter
is used to create a SimpleUBB (velocity bounce back) boundary condition on the north side
of the domain. It works with one constant velocity, which is <0.2, 0, 0>.The west, east, and
south sides use the NoSlip boundary condition. Bottom and top are periodic.
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6.2 Registering Field Data

Here is an excerpt from the code, where the newly implemented classes are used to register
�elds (or �eld adaptors in this case), so that they can be displayed in VisIt. Also the PdfField
is registered for interaction.

1 BlockDataID dens i tyF ie ld ID = f i e l d : : addFieldAdaptor<DensityAdaptor_T> ( blocks ,
pdfFie ldId , " dens i ty " ) ;

BlockDataID ve c l o c i t yF i e l d ID = f i e l d : : addFieldAdaptor<VelocityAdaptor_T>(
blocks , pd fF ie ldId , " v e l o c i t y " ) ;

3

5 std : : s t r i n g density_name = blocks−>ge tB l o ckData Id en t i f i e r ( dens i tyF ie ld ID ) ;
std : : s t r i n g velocity_name = blocks−>ge tB l o ckData Id en t i f i e r ( v e c l o c i t yF i e l d ID ) ;

7 std : : s t r i n g flags_char_name = blocks−>ge tB l o ckData Id en t i f i e r ( f l a gF i e l d ID ) ;
std : : s t r i n g f lags_scalar_name = blocks−>ge tB l o ckData Id en t i f i e r ( f l a gF i e l d ID )+"

_scalar " ;
9 std : : s t r i n g pdfField_name = blocks−>ge tB l o ckData Id en t i f i e r ( pd fF i e ld Id ) ;

11 VisitGUI gui ( t imeloop , blocks , argc , argv ) ;
v i s i t : : Sca la rF ie ldVi s i tAdaptor<DensityAdaptor_T> dens i tyFie ldAdaptor (

dens i tyFie ldID , density_name ) ;
13 gui . r eg i s t e rAdapto r ( dens i tyFie ldAdaptor ) ;

v i s i t : : VectorFie ldVis i tAdaptor<VelocityAdaptor_T> ve loc i tyF i e ldAdaptor (
vec l o c i tyF i e ld ID , velocity_name ) ;

15 gui . r eg i s t e rAdapto r ( ve l o c i tyF i e ldAdaptor ) ;
v i s i t : : F lagFie ldVis i tAdaptor<FlagField_T> f lagF ie ldAdaptor ( f l agF i e ld ID ,

flags_char_name , f a l s e ) ;
17 gui . r eg i s t e rAdapto r ( f l agF ie ldAdaptor ) ;

v i s i t : : F lagFie ldVis i tAdaptor<FlagField_T> f lagF i e ldAdapto rSca l a r ( f l agF i e ld ID ,
flags_scalar_name , t rue ) ;

19 gui . r eg i s t e rAdapto r ( f l agF i e ldAdapto rSca l a r ) ;
lbm : : Pd fF i e l d In t e r a c t i on s <PdfField_T , BoundaryHandling_T> in t e r a c t i o n (

pdfFie ldId , pdfField_name , boundaryHandlingId ) ;
21 gui . r e g i s t e r I n t e r a c t i o n ( i n t e r a c t i o n ) ;

gu i . run ( ) ;

The simulation uses two �eld adaptors to calculate the macroscopic values density and velocity
from the lbm::PdfField. The names, that are passed to the VisitAdaptors, are the ones that
are displayed in VisIt to select the corresponding plot. Also a PdfFieldInteractions object is
registered, to manipulate the simulation. In this example the same names are used for the
objects, which were speci�ed when adding the �elds to the blockstorage. After registering all
objects, the communication with VisIt is started via the run() method.
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6.3 Running the Simulation

This example was run using �ve MPI processes. Which blocks where assigned to which
process can be seen in �gure 10. This plot was generated using the "procid_plot" command,
described in chapter 5.6.2.

Figure 10: process assignment

Then 100 timesteps were executed. The following two images show the density (�gure 11)
and velocity (�gure 12) values after these timesteps. The plot used for density is a so called
pseudocolor plot, which maps scalar variable values to colors, which are then drawn onto the
mesh. The velocity variable uses the vector plot, which shows the velocity cell data as vectors.
Size and colors of the vectors depend on their magnitudes. In the plots, one can see how the
SimpleUBB boundary condition in�uences the �uid. It models a wall that moves with a speed
of 0.2 along the x-axis. So the �uid also moves along the wall, which causes lower density
values in the top left corner, as the �uid is carried away by the wall. Higher density values
occur on the top right corner as the �uid is pressed against the wall, which has the NoSlip
boundary condition.
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Figure 11: density pseudocolor plot

Figure 12: velocity vector plot
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In the same timestep, there were two obstacles set, with the NoSlip boundary condition, which
was done by using the "Draw Selection" and "Set Obstacle" commands. So �rst the selection
was set via the box operator and then the cells inside the selection were set to contain the
NoSlip boundary conditions. This can be seen in �gure 13. It shows the velocity plot, shown
before, and a pseudocolor plot of the FlagField. The threshold operator was applied to this
plot. This operator restricts the value range, which the plot contains. In this case only cells
are displayed, which contain the �ag for the NoSlip boundary condition (four in this case), in
order to visualize the obstacle. Also the current selection area can be seen. It is visualized
by a mesh plot of the area and the currently active box tool, which is used to manipulate the
box operator with the cursor.

Figure 13: after placing two obstacles

Figure 15 shows the simulation after 200 further timesteps. It is visualized how the �uid
�ows around the obstacle and how density and velocity values are in�uenced by it. Figure 14,
shows VisIt`s Plots window, which contains all plots that are currently used. The threshold
operator was applied to the density and velocity plots. It can also be set up to use a di�erent
variable than the plot it is assigned to. In this case it removes all cells from the density
and velocity plots, which contain a boundary condition in the �ag �eld. Furthermore the
isosurface operator was applied to the density plot. An isosurface is a surface, on which every
point has the same value. So the 3D data is sliced into such surfaces.
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Figure 14: VisIt`s plot window

Figure 15: density isosurface plot after 300 timesteps

Finally density and velocity values were set. This can be seen in �gure 16 (density = 1100
and velocity = <150, 150, 100>). For that, a new selection area was speci�ed, via the box
operator, in the bottom right corner. Every cell in the selection area contained the speci�ed
value, after the command to set the variables was executed. The impact on the simulation
(40 timesteps later) can be seen in �gure 17. The higher velocity and density values created
turbulence, which will relax in further timesteps.
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Figure 16: setting density and velocity variables

Figure 17: after setting the variables
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7 Future Work

The implementation currently has the following limitations:

1. WaLBerla`s �elds internally use padding to store the data, in order to increase perfor-
mance. The VisIt functions, that are used in the implementation for setting variable
data, use an array without padding. So the current solution is to simply copy the data
into a new array, which costs computation time and memory. This could be optimized
by �nding a way to expose the data without copying or at least speed up the copy
process.

2. The PdfFieldInteractions class can only manipulate PdfFields. Other subclasses of the
FieldInteractions class could be implemented, in order to be able to manipulate other
types of �elds. The PdfFieldInteractions class currently assumes, that there is a �ag for
the boundary condition with the name "NoSlip". If this �ag is not found, no boundaries
are updated. The code could be extended, so that other boundary conditions can be
set.

3. Currently, the callback functions for the Qt-widgets can only register integers, as VisIt
provides only callback functions for Qt-widgets, which use integers.

4. Another problem arises from the domain decomposition. In cases where interpolation is
needed to perform a visualization operation, the connections between the subdomains
become visible. In order for VisIt to interpolate correctly, one has to provide additional
ghost data. There are functions for sending ghost data to VisIt, which are described in
the Getting Data Into VisIt manual [21]. These could be implemented in the future.

5. Furthermore, as mentioned earlier, waLBerla is able represent the blocks in an octree.
The current implementation is only able to visualize blocks with a �xed cell size. This
is because a VisIt rectilinear mesh was used, which is populated with the cell data.
However, VisIt o�ers more complex mesh types, which should be able to represent data,
with changing cell sizes. The AMR (Adaptive Mesh Re�nment) mesh could be used,
which is a structured mesh in which rectangular parts can be subdivided in regions
where more detail is required [21].
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