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Automating the Development of
High-Performance Multigrid Solvers

Christian Schmitt, Stefan Kronawitter, Frank Hannig, Jürgen Teich, Christian Lengauer

Abstract—The purpose of a domain-specific language
(DSL) is to enable the application programmer to
specify a problem, or an abstract algorithm description,
in his/her domain of expertise without being burdened
by implementation details. The ideal scenario is that
the implementation detail is added in an automatic
process of program translation and code generation.
The approach of domain-specific program generation
has lately received increasing attention in the area of
computational science and engineering.

We introduce the new code generation framework
Athariac. Its goal is to support the quick implementa-
tion of a language processing and program optimization
platform for a given DSL based on stepwise term-
rewriting. We demonstrate the framework’s use on our
DSL ExaSlang for the specification and optimization of
multigrid solvers. On this example, we provide evidence
of Athariac’s potential for making domain-specific soft-
ware engineering more productive.

I. Introduction and Motivation
Contemporary high-performance computing platforms

are highly heterogeneous. While more than 95 % of the su-
percomputing systems ranked in the TOP500 list (Novem-
ber 2017) run on an x86-based CPU architecture, there
are major exceptions such as the TaihuLight, Sequoia, and
K computer, which use Sunway processors, PowerPCs, and
SPARCs, respectively. In the light of energy efficiency, the
ARM architecture as well as accelerators such as GPUs,
many-core accelerator cards, or field-programmable gate ar-
rays (FPGAs) are becoming increasingly popular [59]. Each
of these technologies has its own trade-offs and requires
different programming and optimization techniques, which
usually vary between vendors and hardware generations.
Beyond this issue, there are more details to consider such
as the network architecture and hardware, versions of
operating system or compiler, and specific communication
libraries such as vendor-specific implementations of MPI.
Thus, writing programs and optimizing them for a given set-
ting is tedious work that often requires a few months even
for an expert who knows all the programming techniques
and trade-offs of each platform. If done right, the program
will perform comparably on similar hardware. However, in
case of any new hardware or platform configuration, the
program has to be modified to take advantage of the new
features. In many cases, tuning has to be done over and
over again—usually by specialized, interdisciplinary teams.
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Here, domain-specific languages (DSLs) have an advan-
tage. They allow the separation of the description of the
algorithm from that of its implementation. Thus, when
new hardware must be supported, only one program has to
be modified: the DSL compiler. That done, it takes only a
recompilation of the unaltered DSL programs to make use
of the new features. If the DSL compiler supports generic
and platform-specific code optimization, this approach
leads to better performance, and we have performance
portability. An impressive example is SPIRAL [46], which
was extended to support new Intel SIMD instructions
purely on their technical documentation and long before
the availability of corresponding hardware, bringing perfor-
mance improvements to all its applications. SPIRAL was
also used to generate some of the Intel MKL library’s FFT
functions [41] and parts of the Intel IPP library. Another
potential advantage is that of programming productivity.
Since DSLs are programming languages specialized for
particular domains, they offer a much higher level of
abstraction and lower entry barriers for domain (but not
programming) experts by re-using concepts and terms of
the target domain [28].

In Project ExaStencils [38], it is our goal to raise the
level of abstraction of the specification and the degree of
automation of the generation of solvers of partial differential
equations (PDEs) with the geometric multigrid method
on structured grids. We expect automation to achieve two
different improvements: (1) to provide users with the liberty
of not having to worry about algorithm and implementation
details by making the—in whatever sense—best choices
for them during the code generation process, and (2) to
provide users and developers with a wealth of variants,
easily generated from the input code, in the search for the
best performance.

For users, we approach this goal by providing a DSL,
called ExaSlang, that features four layers of abstraction—
each targeting a different group of users. As depicted in
Fig. 2, abstractions range from the input of continuous
equations—ExaSlang 1—to the imperative programming
language ExaSlang 4 for the specification of concrete
algorithm implementations. The language is supported by
our compiler, which allows for the automatic discretization,
multigrid component and parameter selection, paralleliza-
tion and optimization of the equations or code provided.
One of the project’s main concerns is to explore how far
automation can be driven in this domain. Consequently,
we decided to design our own language, tailored especially
towards the project goals and the feature set we would like
to provide to the user via suitable abstractions. Our focus
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Fig. 1: Relationship between ExaSlang, ExaStencils, and
Athariac.

of choice is on multigrid methods [24, 62] since they scale
optimally (i.e., linearly with the number of compute nodes),
which is a prerequisite for the effective use of future exascale
machines. Furthermore, multigrid offers a vast variety of
solver implementations since, for every component of the
multigrid algorithm, different approaches exist that have
mutual advantages and drawbacks.

For the implementation of such an ambitious project,
a well-working foundation is needed for the developers
mentioned above, e.g., us as developers of ExaStencils.
Here, we present our code transformation framework
Athariac, which is simple to use, yet a powerful tool for
the implementation of compilers of DSLs. We show how
Athariac contributes to the implementation of ExaSlang
and its compiler by providing data structures to repre-
sent user programs and specify transformations—such as
optimizations—of the programs. As an example, we present
our implementation of two optimizations that are part
of our ExaStencils compiler—built on top of Athariac—
to demonstrate that implementing DSLs need not be a
cumbersome task. Finally, we propose a number of metrics
of programming productivity and performance to attest
that code generation is a viable approach for multigrid-
based numerical solvers in particular.

To summarize the introductions above, Athariac is the
code generation framework behind our ExaStencils code
generator (we will use the term ExaStencils compiler
synonymously). As input, our compiler takes the user’s
program in our DSL ExaSlang, and its output is in C++
plus MPI, OpenMP, or CUDA. Athariac itself, however,
is general enough to work on any input and output
language(s). A graphical representation of the relationships
is depicted in Fig. 1.

The rest of the paper is structured as follows. Section II
commences with some necessary information on the differ-
ent technologies on which ExaStencils relies. Section III
presents related work on programming and abstraction
models for the domain of computational science and
engineering as well as foundations for the implementation
of DSLs, followed by the introduction of our code trans-
formation framework Athariac in Section IV, which was
used to implement ExaSlang. Sections V and VI provide
implementation details of ExaSlang that make heavy
use of our framework’s features. Finally, in Section VII,
productivity advantages of DSLs are illustrated on the
example of ExaSlang, before we conclude and discuss
possible future efforts.

II. Background and Basics
Let us introduce some basics of DSLs, followed by an

overview of our own DSL ExaSlang. We conclude this
section with a brief review of multigrid methods, our
application domain.

A. Domain-Specific Languages
Modeling complex real-world scenarios in a machine-

readable form is more accessible for domain experts when
they can use concepts, objects, and terms of their domain.
These abstractions can be provided in a number of different
ways. One of the most popular approaches is by implement-
ing a domain-specific language (DSL) [43]. Such a language
can be created by extending and/or restricting an existing
programming language. Quite often, this host language
is a general-purpose language. The derived language is
called an embedded, or internal, DSL. Alternatively, it is
also possible to create a new language, a so-called external
DSL, from first principles [18].

The implementation of the DSL compiler or interpreter
depends on the type of DSL. Usually, for an internal
DSL, the host language compiler is modified whereas, for
an external DSL, a new compiler or interpreter must be
implemented. Consequently, an external DSL requires a
higher implementation effort, but also provides greater
freedom in the choice of syntax and semantics.

There are a number of popular domain-specific lan-
guages. The following is (by far) non-exhaustive list of
popular domain-specific languages: R has been proposed
for statistic computations, LATEX for typesetting of scientific
articles, and OpenGL for graphics. More generally, SQL is
ubiquitous in the realm of databases. Another example is
Extensible Stylesheet Language Transformations (XSLT)
for the transformation of XML documents to other XML
files, but also other formats, such as PDF, PNG, or HTML.

B. ExaSlang
ExaSlang aims at providing suitable abstractions for

three different groups of users: (1) engineers and application
scientists, (2) mathematicians, and (3) computer scientists.
Since each group has different needs and requirements,
ExaSlang is not a monolithic language, but a hierarchy of
four different language layers, as depicted in Fig. 2.

• ExaSlang 1 is the most abstract layer. It aims at
providing a suitable workbench for engineers and
scientists who need to solve a PDE as part of a bigger
project and, thus, are interested in getting the result
as quickly and exactly as possible, but do not care
much about the realization of the underlying solver. At
this layer, a continuous equation with a corresponding
computational domain and boundary conditions can
be specified.

• ExaSlang 2 is one refinement step more concrete. It
enables users to specify (or, if generated automatically,
modify) discretized versions of the equations at layer 1.
We consider this to be the main workplace for math-
ematicians experimenting with different approaches
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to discretization, as well as interested engineers and
scientists.

• ExaSlang 3 exposes the underlying multigrid algorithm
by allowing its components to be specified. This
layer is intended for mathematicians and computer
scientists who implement and evaluate new smoothers
or inter-grid operators with respect to convergence or
performance.

• ExaSlang 4 is the most concrete layer of the ExaSlang
hierarchy. It enables the full specification of a multigrid
algorithm and exposes aspects of the parallelization
and communication for modification by the user. We
consider this layer appropriate for computer scientists
interested in parallel efficiency and using the full
feature set of language, domain, and code generator.

The ordinal sequence of the ExaSlang layers traces the
process of solving a PDE: specification of the equation,
discretization, algorithm selection and implementation, and
finally parallelization and optimization. ExaStencils’ vision
is to make all selection processes eventually automatic,
such that the user must only specify the problem at layer 1
and make some simple, menu-driven choices concerning
the algorithm and execution platform. Currently, the
algorithmic properties of many elliptic PDEs that involve
the Laplace operator can be processed fully automatically,
i.e., we are able to discretize the operator using finite
differences and transform the computational domain, as
well as user-specified variables and boundary conditions,
to corresponding fields and functions. Subsequently, corre-
sponding smoothers and a complete solver implementation
are generated automatically. As our implementations of
these automatic transformations improve, we will also work
on the automatic selection of good or optimal feature
and parameter sets [20], e.g., to determine the problem-
specific and target-platform-specific optimal coarse-grid
solver and smoothers, the multigrid hierarchy size, or the
number of smoothing steps. Often, more experienced users
might want to experiment with concepts not implemented
or considered by our code generator’s automatic feature
selection process by working at the corresponding ExaSlang
layer(s). An example might be the use of finite elements
discretization, which currently requires the specification of
discretized operators and equations at layer 2. From there,
the remaining code can again be generated automatically.

In Project ExaStencils, we chose, for a number of reasons,
to design our own external DSL rather than reusing an
existing language. First, the majority of the existing DSLs
for the solution of PDEs and focused on the application
of stencils do not give full regard to multigrid, but make
it cumbersome to work with its hierarchy of grid sizes.
Frequently, it is hard to specify the grid hierarchy itself or
to declare operators that map values between different grid
sizes. A further reason is that, while ExaStencils focuses
on the solution of PDEs, another main concern of the
project is to explore how far automation can be driven
in this domain. As such, we need a flexible vehicle to
communicate the users’ specifications to our code generator.
With regard to the four abstractions layers of ExaSlang
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Fig. 2: Multi-layered approach of ExaSlang [54].

presented, among each other, they need to be consistent
in their syntax and terms, and, at the same time, need
to provide the corresponding abstractions and concepts
that provide enable automation. Effectively, this makes it
virtually impossible to reuse existing languages.

We implemented ExaSlang as an external DSL, since
only this approach allowed us to tailor each layer optimally
towards the designated user groups. Opting for an external
DSL obviously has the drawback of higher efforts not only
on the language implementation’s side, but also on the
users’ side, who have to learn a completely new language.
The former burden can be eased by a suitable toolkit, as
will be seen shortly. The latter can be overcome by making
the upper layers of the language increasingly comfortable
for domain experts via the inclusion of abstractions from
their domain. One might argue that re-using an external
language results in an even lower entry barrier. Yet, in
our experience, (novice) users often are confused by a
mix of different layers of abstraction in a language or
make assumptions—based on their knowledge of the host
language—that do not hold for the embedded DSL. A
typical example in many C-based stencil languages is the
absence of pointer arithmetic or the modification of the
memory layout.

At each ExaSlang layer, many automatic decisions may
require a profound knowledge of the target system. One
example is the automatic selection of the best smoother:
Jacobi smoothers tend to make better use of GPUs, since
every calculation is done independently, in contrast to
the Gauss-Seidel method. Another example is the choice
of SIMD extensions for vectorization, or cache sizes for
blocking. The system is specified in a separate language,
the target platform description language (TPDL), which
can be considered orthogonal to the four algorithmic
language layers. It features a template mechanism with
which available device descriptions can be combined to
descriptions of large systems such as supercomputers [53].

In what follows, we use and explain occasionally Exa-
Slang 4 code for illustration of examples. There is also
more detailed literature on ExaSlang [54, 55].

C. Multigrid Algorithm
The multigrid method [24, 62] is based on two principles:

(1) the smoothing property, that is, the fact that classical
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iterative methods such as Jacobi or Gauss-Seidel (GS) can
smooth the error after very few steps, and (2) the coarse-
grid principle, that is, the fact that a smooth function on
a fine grid can be approximated satisfactorily on a grid
with fewer discretization points. The multigrid method
combines these two principles into a single iterative solver.
The recursive algorithm alternates between fine and coarse
grids in a hierarchy of grids.

The basic multigrid algorithm is depicted in Fig. 3. In the
pre-smoothing step, high-frequency error components are
damped first. Subsequently, a new error approximation, the
residual, is calculated. Its low-frequency error components
are then approximated on coarser grids (the restriction of
the residual). Parameter γ governs the number of recursive
calls: γ = 1 defines a V-cycle, whereas γ = 2 defines a
W-cycle; see Fig. 4. Returning from the recursive call, the
residual is projected (prolongated) back to the finer grids
and eliminated there (coarse-grid correction). At the end,
remaining high-frequency error components are smoothed
again (post-smoothing).

Note our nomenclature: with level, we mean the level
in the hierarchy of grids, i.e., a grid of a certain size.
With layer, we refer to an instance in our hierarchy of
programming languages, as explained in Section II-B.

III. Related Work
Numerous research efforts exist that focus on easing the

modeling or implementation of science and engineering
problems. Programming abstractions can be classified
roughly into DSL-based or library-based. Of course, com-
binations of both also exist, e.g., embedded DSLs imple-
mented via template metaprogramming. For DSLs and
highly related to compiler research, a lively research topic
is the efficient implementation of languages and supporting
frameworks to aid language developers. Important to
language users is not only the modeling of algorithms but
also the tuning of implementations, either hand-written
or generated. As computing platforms are highly complex
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Fig. 4: Schemes of the V- and W-cycle.

and provide a wealth of options and parameters, many
researchers investigate the automation of finding the best
combination of all these factors.

A. Library-Based Approaches
Frequently, library-based approaches provide a familiar

programming environment to developers and allow the
reuse of existing code, but lack the automation of the
selection of suitable algorithmic components and imple-
mentation optimization. In contrast to the approach of
ExaStencils, a sophisticated transformation framework and
source-to-source compilation are not necessary for their
development and usage. Considering such approaches, one
well-established and mature project is DUNE [9], a C++
template library that provides support for different types
of grids and offers many linear algebra building blocks such
as BLAS routines and corresponding data structures as
well as various input and output data formats. hypre [16] is
another well-known library for the solution of large, sparse
linear systems of equations for Fortran, C, C++, Python,
and Java. It focuses on multigrid solvers for both structured
and unstructured grids. Its installation can be customized
for the target platform, e.g., by exchanging underlying
libraries and frameworks, such as MPI or BLAS libraries,
or by modifying configurations for certain solvers.

FETK [60] is an ANSI C-based bundle of libraries
supporting the implementation of finite element methods
(FEMs). Among others, it provides modules for meshes and
refinement, numerical computations (including specialized
libraries to solve equations such as Poisson-Boltzmann
or Smoluchowki), and visualization of data. In contrast,
ExaStencils employs at present finite difference (FD) and
finite volume (FV) discretizations. Chombo [14] is a library
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for FD and FV methods on block-structured adaptively
refined meshes that mixes two programming languages:
it uses C++ for high-level abstractions and Fortran for
calculations on regular patches. Like ExaSlang, it has a
hierarchical architecture that offers complete and parallel
implementations of applications, solver libraries, mesh
operators, data operators, and finally utility functions such
as data I/O. But it is a library, not a DSL.

Another well-known project is PETSc [7], a suite of data
structures and routines for C, C++, Fortran, and Python.

B. Domain-Specific Languages
Coming to DSL-based approaches, PETSc forms the

basis for Firedrake [48], an automated toolchain for solving
PDEs specified in a domain-specific language embedded in
Python. Internally, Firedrake employs the Unified Form
Language (UFL) [3] and FEniCS Form Compiler (FFC) of
the FEniCS project [40], which is another established col-
lection of routines, data structures, and other components
for the solution of differential equations, focused on the
FEM. For mesh data structures and solver implementations,
Firedrake relies on the PETSc as mentioned above, and
on OP2 [44] for system assembly. OP2 and PyOP2 [49]
target mesh-based simulation codes over unstructured
meshes, generating code for MPI clusters, multi-core CPUs,
and GPUs. Furthermore, the latter employs run-time
compilation and scheduling and is also used by Firedrake
for system assembly. In contrast, ExaSlang focuses on the
use of FD and FV methods on regular grids.

STELLA [23] targets stencil codes on structured grids,
with an OpenMP and a CUDA back-end currently under
development. In contrast to ExaStencils, it uses an inter-
nal DSL embedded into C++ and is based on template
metaprogramming. SDSLc [50] is an external DSL for
stencil computations that also supports embedment of
DSL blocks into C/C++ and MATLAB programs. Opti-
mizations applied to SDSLc programs include (nested)
tiling and improved register reuse in the case of high-
order stencils. Compared to ExaSlang, there is no focus
on multigrid methods and use of domain knowledge at the
algorithmic layer. Hipacc [42] targets the domain of geomet-
ric multigrid applications on two-dimensional structured
grids. It provides code generation for accelerators, such as
GPUs (CUDA, OpenCL, RenderScript) and FPGAs (C
or OpenCL code that is suited for high-level synthesis).
Originating from image processing, there is no support for
volume data or distributed-memory parallelism. Mint [63] is
a programming model for GPUs and focuses on the source-
to-source compilation of annotated C to CUDA. It does not
provide special syntax or semantics for multigrid solvers or
domain-specific transformations. SEJITS [12] is a Python-
based approach that uses LLVM to optimize relevant parts
of the code at run time. FLAME [22] derives loop-based
algorithms from a custom notation for dense linear algebra
while also checking the result for correctness. It focuses on
the efficient implementation of basic algorithmic building
blocks, instead of the holistic approach ExaStencils is
pursuing.

FFTW [19] specializes in the Fast Fourier Transform and
applies auto-tuning during installation to find the optimal
implementation. Halide [47] focuses on image processing
algorithms and generates code for a variety of platforms
from a DSL embedded into C++. The same description can
be transformed to Verilog code by Darkroom [26]. Halide is
also commercially used by Google to improve pictures taken
with Pixel 2 smartphones [35]. It is domain-agnostic but
has been used in a number of case studies involving Laplace
kernels on different hardware platforms. It is not a DSL for
the domain of scientific computations and does not provide
any domain-specific abstractions. Finally, SPIRAL [46]
provides abstractions for linear transforms and other
mathematical functions. In cooperation with ExaStencils,
SIRAL has recently also been used to prototype a multigrid
algorithm [10]. It is especially noteworthy as the main
inspiration for ExaStencils with its hierarchy of domain-
specific abstractions that are converted to highly efficient
code by transformations and use of domain knowledge.

C. Auto-tuning
To improve the performance of hand-written or generated

code, auto-tuning is a popular approach. It works by
comparing the performance results of variants of code.
These variants all provide the same functionality but differ
in their implementation, e.g., in memory layouts or tiling
factors. They might even use different technologies under
the hood. Consequently, for many codes, this results in
a search space so large that it is not feasible to check
every possible combination. Thus, most auto-tuners provide
heuristics to accelerate the process. In ExaStencils, it is
our goal to provide the best prediction already at the code-
generation phase, i.e., to have appropriate knowledge of
hardware and performance models a priori.

A very well-known project is ATLAS [64] for data- and
instruction-cache optimization that generates performance-
portable implementations of BLAS and LAPACK linear
algebra routines. Auto-tuning can also be used to com-
pose a program from a number of user-supplied building-
block variants. This approach is pursued, for example,
by PetaBricks [5]—which has also been used to optimize
multigrid implementations [13]—and Zettabricks [4]. Both
are aiming at finding the most efficient composition to
solve equations, e.g., PDEs. Related to Zettabricks, but
without the particular focus on scientific computing, is
OpenTuner [6], a generalized framework for building
domain-specific multi-objective program auto-tuners.

D. Language Transformation and Compilation
On the side of code generation and transformation

approaches, a highly popular project is LLVM [36], which
essentially provides a compiler infrastructure. By defining
an intermediate representation (IR) that can be compiled to
a runnable binary on many popular hardware architectures,
it can be used by different front-ends, of which Clang for
the compilation of C/C++ indeed is the most well-known.
Clang is a very popular target compiler for ExaStencils,
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i.e., works on input generated from ExaSlang. Athariac’s
does also ship with an IR, but it is much more abstract
compared to the low-level, single-assignment LLVM IR.
ROSE [39] is a similar infrastructure custom-designed to
build source-to-source program transformation and analysis
tools for C/C++, Fortran, Java, and others. Kiama [58] is a
lightweight language processing library for Scala centering
around strategy-based rewriting, which in turn is based
on the Stratego/XT language and library, now part of the
Spoofax Language Workbench [27]. However, it does not
provide its own IR and corresponding transformations.
Another Scala-based approach is Lightweight Modular
Staging (LMS) [52], a dynamic code generation library. It
is used by Delite [11], a framework for parallel DSLs, and
enables developers to employ abstractions at will, which are
then, in the staging phase, automatically removed to retain
performance. Compared to Athariac, LMS focuses on the
optimization of DSLs embedded into Scala. Delite has sup-
ports for task-based parallelism, and consequently needs its
own run-time system for execution of generation programs.
Athariac, in turn, allows the user to implement custom
parallelism schemes that do not need any dependencies for
at run-time.

AnyDSL [37] is a framework for the implementation
of DSLs. A core feature is the partial evaluation of
abstractions to improve the performance of the generated
code. It emits code for a number of back-ends, notably
LLVM and GPUs via CUDA and OpenCL. Similar to Delite
and in contrast to Athariac, programs rely on a run-time
library.

IV. Code Transformation

To refine user programs of some ExaSlang layer at the
next more concrete layer, and eventually emit C++ code,
we have developed a flexible framework for external DSLs,
called Athariac, that facilitates the easy specification of
code transformations. Its name is assimilated from the
Gaelic term atharrachadh, which can be translated to
“the act of altering, changing, modifying, or varying.” The
framework builds on the concept of stepwise term rewriting,
i.e., transformations work by replacing subterms of one
formula with other terms. Consequently, a program is
modified to its final form by a large number of small
transformations that are applied sequentially. Based on an
earlier evaluation [56], we have implemented it in Scala [45]
and we make extensive use of advanced Scala features, such
as parser combinators and pattern matching, as we explain
in the following subsections. The framework has been used
to implement the ExaSlang compiler but, in its core, is
highly agnostic of the DSL’s domain. Transformations and
optimizations can be divided into two categories: ExaSlang-
specific ones that are, e.g., crucial to our approach to
parallelization and communication, and others that can be
applied to a wide range of languages, such as constant
propagation and constant folding. In the rest of this
section, we describe the features of Athariac. We use
the term framework as a synonym for Athariac, whereas

compiler refers to the ExaSlang compiler, which has been
implemented with Athariac.

A. Parsing
The first step in the refinement of a domain-specific

program is the parsing of the source text. Scala provides
a number of different parser implementations that can be
combined via parser combinators. A parser combinator is a
higher-order function that applies transformation functions
to generate a parser from simpler parsers. Its output is a
parse tree, called the concrete syntax tree (CST), which
is composed of specialized data structures that usually
must be implemented by the DSL developer. Next, this
CST is transformed to an abstract syntax tree (AST) by
collecting and adding bits of information, such as data types
of variable accesses and function calls, or the resolution of
language-specific syntactic sugar. In ExaSlang, one example
of syntactic sugar is level specifications. An explanation and
details of their refinement by our compiler are explained
in Section V-A.

B. Data Structures
For the implementation of custom node structures of

the program tree, Athariac offers the base type Node. It
is not obligatory to inherit from it, but transformations
will only be applied to subelements if the element does
inherit. Additionally, inheriting from Node allows objects
to be annotated, which comes in handy to mark parts of
the tree or attach special information to certain nodes for
use in subsequent transformations. The data structures
offered by Athariac make up what we call the intermediate
representation (IR); their names are prefixed with IR_.

Additionally to inheriting from Node, it is highly rec-
ommended to implement data structures in the form of
Scala case classes, for which the Scala compiler emits pat-
tern matching functions automatically (see Section IV-C),
among others. This saves a lot of boilerplate code that
would need to be written otherwise. Case classes have
another advantage: a companion object of the same name
is created automatically, acting like a factory that allows
omitting the new keyword for object creation. This might
seem a minor detail but it improves code clarity when
nesting object instantiation, as depicted in Fig. 5.

For case classes, the equals function—for which the
equality operator == is an alias—will compare objects,
not by their reference, but structurally, which is actually
used quite frequently, e.g., when comparing function calls,
consisting of a function name, a number of typed argu-
ments, and an expected return type. Thus, the automatic

1 var x = FunctionCall(”sin”,

2 BinaryExp(”+”, BinaryExp(”*”, IntConst(2),

3 DoubleConst(3.14)), IntConst(1))

Fig. 5: Clearer generation of nested objects via companion
objects of case classes.
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generation of such functions saves a lot of boilerplate code.
However, case classes also have one drawback: careful class
and inheritance design may be required because there is
no inheritance from case classes.

For the implementation of ExaSlang, we rely on
Athariac’s data structures in combination with custom
ones tailored especially for the domain, such as the repre-
sentation of matrix and vector data types, specialized loop
constructs, and communication-specific data structures.
In turn, many of the custom data structures make use
of Athariac’s structures. For many of the custom data
structures, companion objects have been defined to ease
usage of some of the more complex types, or to provide
appropriate conversion of instantiation arguments.

C. Transformations
Transformations make extensive use of Scala’s rich

pattern matching capability to follow Athariac’s term-
rewriting approach. (Strategic) term rewriting is a technique
and corresponding formalism for performing analysis and
modifications of tree-structured data [8]. One particularly
powerful feature intensively used by Athariac is the so-
called deep matching that facilitates the match of an entire
subtree pattern at once. In Fig. 7, we defined a pattern to
check whether exp matches a binary operation with the
double constant of 3.14 as the right operand, regardless of
the left operand or operator, as indicated by the wildcard
symbol underscore. If the expression matches, it is assigned
to variable myexp and output. A match statement can
specify multiple patterns, as well as default cases, as shown
in line 5 in Fig. 7.

Our transformations contain one or more patterns by
giving their input and output type Node. A single node
can be transformed to multiple nodes (aggregated in a list),
e.g., when unrolling a for-loop. To remove a node from the
tree, transformations may either return the empty list or
Scala’s special object None. An element can be modified
or replaced with a newly instantiated one. Transformations
may contain a default case but need not; in the latter case,
the transformation is simply not applied to the node.

Transformations are reapplied recursively, i.e., even after
a match, the matching node’s subnodes are taken into
account. The recursion can be disabled by setting a flag;
however, the transformation will still be applied to other
nodes, just not to the subnodes of the matching object.
One use case is a transformation that should only touch
the outer-loop of a loop nest.

Transformations can be restricted to a subtree by
specifying the subtree’s root node. This saves the effort

1 case class BinaryExp(operator : String,

2 left: Expression, right : Expression)

3 extends Expression

4 case class FunctionCall(name : String,

5 arguments : List[Expression])

6 extends Expression

Fig. 6: Definition of Scala case classes.

1 exp match {

2 case myexp @ BinaryExp(_, _,

3 DoubleConst(3.14))

4 => println(”Found Pi: ” + myexp)

5 case _ => println(”Did not match”)

6 }

Fig. 7: Pattern using variable binding, deep matching, and
a default case.

of traversing potentially unwanted parts of the AST, and
allows for the transformation of specific parts of the code
while leaving others untouched.

D. Strategies
Frequently, transformations must be processed in a

fixed order, for instance, preliminary transformations
that check for errors in the AST, add information to
nodes, unify different types of nodes, or do similar work
before subsequent transformations can be applied. Thus,
it is desirable to group transformations in what we call
Strategies. For the implementation of simple strategies
that just apply a series of transformations consecutively,
Athariac offers the base class DefaultStrategy. It acts
as a container that guides, logs and prints transformation
execution progress and some statistics about the number
of matches. Sometimes, the sequential execution of a series
of transformations is not sufficient, for example, when a
certain transformation needs to be applied conditionally or
repeatedly. In such cases, custom strategies may be imple-
mented by inheriting from the default strategy class. Under
the hood, strategies interact with Athariac’s StateManager,
which we explain in the next subsection. In our ExaStencils
compiler, the simplification strategy is an implementation
of a custom strategy. Among other purposes, it is used
for constant folding, i.e., the compile-time evaluation of
(constant) expressions. For example, an expression such
as 3 ∗ (1 + 2) is evaluated in two steps. Consequently, the
strategy applies its transformations not only once, but as
long as modifications take place.

E. StateManager
The StateManager controls the transformation process

by providing the interface strategies used to apply trans-
formations. When a transformation is to be applied to a
node, the StateManager first checks its type. If it inherits
from Node, the transformation can be applied directly.
For any type of collection, such as lists, maps, or arrays,
the transformation is applied to each element if it is of a
compatible type (i.e., a node or collection). Notably, the
StateManager will also iterate over all user-defined fields
of the given node.

A frequent case is to check for the presence of, or work on,
a list of certain nodes, regardless of their order or position
in the AST. To this end, the StateManager offers functions
such as find and findAll that allow the specification of
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1 class VariableCollector extends Collector {

2 private var ctx : List[HashMap[String, Datatype]] = Nil

3

4 override def enter(node : Node) : Unit = node match {

5 case _ : ForLoop => ctx ::= HashMap[String, L4_Datatype]()

6 case x : VarDecl => if(!ctx.isEmpty) ctx.head += ((x.identifier.name, x.datatype))

7 case _ => // else: do nothing

8 }

9

10 override def leave(node : Node) : Unit = node match {

11 case _ : ForLoop => ctx = ctx.tail

12 case _ => // else: do nothing

13 }

14

15 override def reset() : Unit = values.clear()

16

17 def get(name : String) : Option[Datatype] = {

18 for (it <- ctx) {

19 val dt = it.get(name)

20 if (dt.isDefined) return dt

21 }

22 return None

23 }

24 }

Fig. 8: Definition of a context-building collector that keeps track of variable declarations in for-loops.

a predicate (i.e., a pattern) and return the first, respectively,
all matching nodes of the entire AST or some subtree.

For other features of the StateManager, such as trans-
actions and checkpoints, we refer the interested reader to
previous work [54].

F. Collectors
Collectors implement the observer design pattern for

AST traversal. Figure 8 shows a simple collector to
aggregate variable declarations inside for-loops, i.e., to
build what in compilers generally is called a context. Here,
we create and remove context representations whenever
the enter or leave function is called on a for-loop.
When encountering a variable declaration, we extract
identifier and data type and save them in the current
context. However, most transformations do not need this
kind of profound knowledge, so we can save the overhead
of notifying observers for each traversal by allowing on-
demand registration and removal of collectors.

G. Annotations
To attach extra knowledge to the AST, nodes can be

annotated. Annotations consist of an identifier and an
optional value, and can be set, modified, or removed
anytime inside or outside a transformation. There is no
limit to how many annotations can be added to a node.

A frequent use case is the specification of a node’s origin,
i.e., the line number and filename of the user-specified
program that led to the instantiation of this node by
the parser. Another example is presented in Fig. 10, in
which annotations are used to generate unique names for
temporary variables. Here, expressions are annotated with
the matrix element’s position they will yield so that the

expressions can be substituted accordingly in subsequent
transformations.

V. Transformation Workflow for ExaSlang
To demonstrate the specification and application of

transformations in our framework, let us exemplify the
refinement of vector-valued to scalar operations for the
generated C++ code. We only have space to illustrate this
at the most concrete ExaSlang layer. In ExaSlang 4, one
may define and use higher-dimensional data types, such
as vectors and matrices, for variables, constants, fields,
and stencils. This feature is used in many application, e.g.,
in the computation of the optical flow [55] presented in
Section VII.

A. Level Specifications
The very first step in the ExaStencils processing chain

starting at layer 4 is a parse of the source file that yields
a tree with a number of accesses, i.e., usages of identifiers
that represent variables, stencils, or fields. Their types
have to be inferred, so subsequent transformations have
the information necessary. Additionally, accesses may carry
level specifications that must be resolved appropriately, as
explained in the next paragraph.

In ExaSlang, a level specification is one way of specializ-
ing the language for the targeted domain—here, multigrid—
and allow the definition of grid-level-specific functionality or
definitions. This mechanism also enables the specialization
of certain aspects on a per-level basis. In the syntax, level
specifications are suffixes to definitions and accesses and
begin with the symbol @, followed, for example, by keywords
(such as all, current, coarser, finer, …), a single
integer referring to one specific grid size, a range of levels,
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1 Func VCycle@(all but coarsest) () : Unit {

2 Smoother@current ()

3 CalculateResidual@current ()

4 Restriction@current ()

5 SetSolution@coarser (0)

6 VCycle@coarser ()

7 Correction@current ()

8 Smoother@current ()

9 }

10

11 Func VCycle@coarsest () : Unit {

12 /* ... solve directly ... */

13 }

Fig. 9: ExaSlang 4 implementation of the multigrid V-cycle
using level specifications to exit recursion.

a list of levels, or any combination thereof. A frequent use
case is the implementation of the multigrid method itself,
as shown in Fig. 9, which implements the algorithm in
Fig. 3 for γ=ν1=ν2=1. Here, the first function, starting
at line 1, works on all grid sizes other than the smallest
(i.e., coarsest). A function is free to reference elements at
other levels as well as, for example, in the restriction of the
residual. In line 6, the VCycle function for the next more
concrete multigrid is called. If this happens to be the most
concrete multigrid level, the function defined at line 11
is called, which terminates the recursion and invokes the
coarse-grid solution.

In an ExaSlang 4 program, one object reference using
@current might refer to varying object declarations,
depending on the multigrid level. Since our goal is to
optimize the code as best as possible, we need to convert
these compact statements to independent functions, e.g., in
order to take grid sizes and, thus, loop bounds into account.
This requires a chain of preparation and execution steps:

• We start with a function definition for all levels. Inside
its body, we specify a range of levels and iterate from
the next-to-coarsest to the finest level in this range.
The range excludes the finest level of all, level 4. The
lower and upper bounds of the range will be resolved
by our code generator in the following step.
Func foo@all () : Unit {

Var x@(coarsest + 1 to finest, not(4))

: Int = 0

}

• In the first refinement step, the constants @coarsest
and @finest are replaced by values specified by the
user in a separate file or determined automatically
by other means such as a convergence analysis, while
@all is replaced by the corresponding constant range.

• Expressions can now be evaluated.
• Next, exclusions from ranges can be resolved by simply

removing the according items from the list.
• At this point, the only level specifications left will be

constant values, or lists thereof, and the @current
specification. To resolve these, functions and declara-
tions such as (global) variables, fields, stencils, etc. are
duplicated for each level specification.

• Finally, remaining @current specifiers, which—by
definition—can only be used in scopes that carry an
absolute level specification, are resolved accordingly.

Duplicating entities for individual multigrid levels, and
optimizing each level separately, obviously has the draw-
back of code explosion and, consequently, increased work-
load for subsequent transformations and the production
compiler. On the other hand, it permits more effective
optimizations since level-specific knowledge can be taken
into account. For duplication, there are two different
approaches: the developer may either implement and call
his/her own copying functions, or use the framework-
supplied cloning methods via the Duplicate object,
which works with reflection. Scala’s compiler also generates
default copy functions for case classes, but code frequently
works on references to abstract base classes or traits, for
which such functionality is not available, which calls for
an implementation by the DSL developer. In the future,
Athariac will provide a cleverer solution to this problem
than code duplication.

B. Conversion to Scalar Data Types
After having resolved the level specifications, we can now

concentrate on the specifics of the higher-dimensional data
types. Here, the main transformation challenges are func-
tions and in-line matrix expressions. Since user-specified
functions may have side-effects, such as a modification
of global variables per function call, we must maintain
the exact number of function calls as specified by the
user. Thus, our next step is to extract the function calls
from any expression tree before unfolding it to scalars,
so a function is still called only once, and not as part
of every scalar operation. We ensure this by replacing
every function call returning a matrix by an access of a
temporary variable holding the call’s result. Furthermore,
this has to be done recursively, since one function call
might appear as an argument of another. The actual
implementation is divided into a number of transformations.
Preparatory transformations look at expression trees and
copy any function call to a temporary variable before the
expression is used, and annotate the original function call
with an ID that is used to construct the unique variable
name. Next, the actual replacement transformation, shown
in Fig. 10, replaces the function call with the access.
Since the workflow of extracting in-line anonymous matrix
expressions is quite similar, we usually implement the
resolution of both with the same transformations.

Since we would like to flatten the higher-dimensional data
types to scalars, functions can no longer return a matrix
but are modified to write their result to the temporary
variable that is now passed by reference to the function.
Accordingly, the function call is modified. For the function
itself, all return statements specifying a return value are
replaced by appropriate assignments and return statements
without value.

Finally, variable, field, and matrix accesses in higher-
dimensional expressions are dissolved into scalar operations
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1 this += Transformation(”Replace by variable accesses”, {

2 case call : IR_FunctionCall if (call.hasAnnotation(”ResolveMat_counter”)) => {

3 IR_VariableAccess(”_fct” + call.popAnnotation(”ResolveMat_counter”), call.datatype)

4 case exp : IR_MatrixExpression if(exp.hasAnnotation(”ResolveMat_counter”)) => {

5 IR_VariableAccess(”_mat” + call.popAnnotation(”ResolveMat_counter”), exp.innerDatatype)

6 }})

Fig. 10: Definition of a transformation that replaces function calls and in-line matrix expression with variable accesses
by checking the objects’ annotations.

by duplicating them, annotating the target element’s
position, i.e., row and column, and then reducing them to
scalars in a subsequent transformation.

VI. Target-Specific Optimizations

Another essential part of our code generator is the
optimization of the generated code [31]. The supported
optimization strategies vary both in complexity and po-
tential benefit. The classic transformations, such as loop
unrolling or address pre-calculation [2], are also part of
some production compilers. But, since we explicitly support
several different architectures and systems, we cannot focus
on a single compiler, which justifies implementing these
classic optimizations directly in our code generator.

The more advanced techniques contain, e.g., polyhedral
optimizations and different redundancy eliminations [30].
The latter focus on reducing the computational effort, while
the former can be used to apply a temporal blocking to
increase the performance of memory-bandwidth bound
codes. Additionally, the results of an exact polyhedral data
dependence analysis are input to several other strategies,
e.g., vectorization.

As an example of how these optimizations can be
implemented in and benefit from the features of our
framework, let us take a closer look at a specialized
vectorization strategy. It consists of a sequence of four
steps:

1) the detection of loops with vectorization potential,
2) the generation of vectorized versions of the loops,
3) the elimination of redundant load operations,
4) the selection of vector instructions suitable for the

target architecture.
Steps 2 and 3 should not be merged since other strate-
gies may potentially apply between them, such as loop
unrolling. There exist several more advanced vectorization
strategies [29, 50, 51], which could be implemented, too.
However, their effectiveness depends on the structure of
the loops to be vectorized. Another option would be to
implement multiple techniques and select the best fit for
each loop individually.

To provide insight into how the vectorization works and
how it makes use of the features of Athariac, let us take a
closer look at the following example:
for (int x = start; x < end; x++)

out[x] = 1.2 * in[x] - 0.2 * in[x + 1];

A. Detection of Loops to be Vectorized
The first step, the detection of loops to be vectorized,

uses deep pattern matching to select only parallel innermost
loops with an appropriate loop header. Figure 11 shows
a small excerpt of what this pattern matching looks like.
Line 1 contains the match for the loop node. The first
field of an IR_ForLoop stores the initialization part of
a classic C-like loop. Only loops with an integer variable
declared and initialized (the last field of the declaration
must be Some(..), not None) in the loop header are
being matched here. Then, the upper bound is extracted
from the exit condition if it is either a lower (line 4) or
a lower-equal (line 7) expression and its left-hand side is
an access to the variable declared in the initialization part
(lines 5 and 8).

The loops detected in this process are not certain to be
vectorizable, but the loops passed over are certain not to
be. This means that, if any construct occurs that cannot be
handled, one must be able to cancel the transformation for
this loop and restore the original version. This is achieved
by working on a copy of the original syntax tree until the
vectorization can be completed. Note that ExaSlang does
not support aliasing; thus, no special checks are required
in this case.

B. Loop Vectorization
The second step performs the actual modifications of

the code. Even though the vectorization process is, in
general, architecture-independent, the vector sizes must
be known and the decision of whether to allow unaligned
memory accesses must be taken at the beginning. The first
store operation in the example code accesses out[x]. The
framework ensures that the array itself is aligned properly,
which means that the first value of the loop iterator must
also be evenly divisible by the vector size if an aligned
store is required. This can be achieved by splitting the
loop and creating a prologue. Additionally, if the number
of loop iterations is not evenly divisible by the vector size,
a second split creates an epilogue.

Next, the loop stride is updated and the expressions in
the loop body are replaced by their vectorized counterparts.
Variable and array accesses are replaced by new tempo-
raries, which are declared directly before their first usage.
This reduces the number of load instructions required and
allows the reuse of values already present in a register.

If a function call is found, the vectorization of this loop
is canceled, unless a call to a function from the math
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1 case IR_ForLoop(IR_VariableDeclaration(IR_IntegerDatatype, itName, Some(init)),

2 condExpr, incrExpr, body, /* ... */) =>

3 val upperBoundExcl : IR_Expression = condExpr match {

4 case IR_Lower(IR_VariableAccess(bName, IR_IntegerDatatype), upBndExcl)

5 if itName == bName =>

6 upBndExcl

7 case IR_LowerEqual(IR_VariableAccess(bName, IR_IntegerDatatype), upBndIncl)

8 if itName == bName =>

9 IR_Addition(upBndIncl, IR_IntegerConstant(1))

10 case _ => /* abort vectorization for this loop */

11 }

Fig. 11: Excerpt from the loop header testing for the vectorization strategy.

1 // prologue [...]

2 simd_vec vec0 = simd_set1(2.0);

3 simd_vec vec2 = simd_set1(1.2);

4 for (int x = vecStart; x < vecEnd; x += 4) {

5 simd_vec vec1 = simd_load_aligned(&in[x]);

6 simd_vec vec4 =

7 simd_load_aligned(&in[x + 4]);

8 simd_vec vec3 =

9 simd_conc_shift(vec1, vec4, 1);

10 simd_vec vec5 =

11 simd_madd(vec0, vec1,

12 simd_mul(vec2, vec3));

13 simd_store_aligned(&out[x], vec5);

14 }

15 // epilogue [...]

Fig. 12: Vectorized loop using intermediate vector instruc-
tions.

library is found for which a vectorized version is externally
available. Figure 12 presents a vectorized version of the
example code using architecture-independent intermediate
instructions. The special instruction simd_conc_shift is
necessary since, in this example, vectors starting at both
in[x] and in[x + 1] are needed, which can obviously
not be aligned both at the same time. Therefore, this
instruction consumes two vectors, concatenates them, and
returns a new vector that contains the elements starting
at the position given by the third argument. For example,
simd_conc_shift(vec1, vec4, 1) returns a vector that
contains all but the first element from vec1 in positions 1
to 3, while its last element is the first of vec4. The resulting
loop is also annotated with information about the epilogue
loop. In case of a subsequent unrolling, this information
suppresses the generation of an additional epilogue.

C. Redundancy Elimination
The third step aims at removing redundant load opera-

tions inside a single and between subsequent loop iterations.
This applies to variables vec1 and vec4 in Fig. 12: vec4 in
iteration x is equivalent to vec1 in iteration x+4. Removing
such a redundancy is straight-forward, but the detection
might require some kind of prior normalization of the index
expressions. To this end, we have implemented a separate,
advanced normalization technique that can also be applied
to a small subtree as part of the vectorization or any

Transformation SortLoads:
sort loads & array index normalization

register
collector Analyze

Transformation: Find and annotate
duplicates with collector Analyze

unregister Analyze

Transformation Modify :
remove annotated nodes

Fig. 13: Basic structure of the custom strategy to remove
duplicate vector loads.

other optimization [30]. Other redundancies introduced
by unrolling are also removed.

The basic structure of this elimination strategy is shown
in Fig. 13. The first transformation uses the partial function
SortLoads to permute the load instructions in a way
that eases the elimination of redundancies. This means
that, if a vector loaded in the previous loop iteration
should be reused, the variable holding it must not be
overridden before its value can be stored in another
temporary. The actual redundancy detection is performed
by the collector Analyze. It does not modify the syntax
tree, but adds annotations specifying necessary changes.
The collector is derived from Athariac’s StackCollector
class, whose purpose is to maintain a stack of ancestor
nodes. This provides an easy access to the statement
and the surrounding loop of a load expression. The last
transformation Modify executed in this strategy finally
incorporates all changes prepared by the previous analysis.

D. Selection of Target-Platform Instructions
The final step of the vectorization replaces the

intermediate instructions by a suitable set of target-
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specific ones. For example, on newer Intel processors
with an FMA3 extension, simd_madd(a, b, c)

is replaced by _mm256_fmadd_pd(a, b, c). For
processors without FMA3 extension, the combination
_mm256_add_pd(_mm256_mul_pd(a, b), c) applies.
The intermediate instruction simd_conc_shift requires
a more careful selection, since AVX does not have a
corresponding machine instruction. Depending on its third
argument, a combination of shuffle, permute, and blend
instructions is generated. simd_conc_shift(a, b, 1),
for example, results in _mm256_shuffle_pd(a,

_mm256_permute2f128_pd(a, b, 0x21), 0x5). In
contrast to Intel processors, IBM’s BlueGene/Q has a
corresponding instruction that can be used directly. As a
huge benefit of the architecture-independent intermediate
instructions, code can be generated for the vector units of
all x86-based processors, including the Intel Xeon Phi, as
well as for the IBM BlueGene/Q and ARM architectures
featuring the Neon extension. Additionally, adding support
for a new vector unit is straight-forward.

VII. Evaluation

In previous work, we have already demonstrated that we
are able to generate code for a variety of applications and
target platforms. We have demonstrated scalability and run-
time results for up to the full JUQUEEN machine of 458,752
cores across 28,672 nodes for Poisson’s equation, employing
several parallelization and communication strategies [54,
33]. We have demonstrated the feasibility of implementing
imaging algorithms for execution on workstations [55], and
we have conducted case studies of code generation for
more exotic platforms such as embedded devices featuring
ARM cores [34] and even FPGAs [57]. Here, we focus on
productivity gains achieved with the DSL ExaSlang and
its code generator by exploiting the large difference in
software complexity of source and target code. To this end,
we have selected a number of applications on which we
have previously reported in the literature:

• The Poisson equation with constant factors on a
two-dimensional unit square [54], parallelized with
OpenMP. This application uses seven different sizes
of grids with up to 4,225 unknowns. A number of
V(3,3)-cycles with Jacobi smoothers are executed until
the convergence criterion is met.

• The same application with variable coefficients on
the three-dimensional unit cube [34]. Parallelization is
done via MPI and OpenMP for a multigrid hierarchy
of four levels with up to 35,937 unknowns. Again,
V(3,3)-cycles with Jacobi smoothers are executed until
the convergence criterion is met.

• Optical Flow in 3D [55], shared-memory parallelized
with OpenMP. It uses seven multigrid levels for a total
of 2, 1 ·106 unknowns that are solved by executing five
V(3,3)-cycle with Jacobi-style smoothers.

• Simulation of non-Newtonian fluids [32] using five
multigrid levels (35,937 unknowns), parallelized with
OpenMP. V(3,3)-cycles with red-blacks Gauss-Seidel

smoothers are executed for each of the five fields with
35,937 unknowns until the convergence criterion is
met.

For each example, we switch automatic vectorization on
and off.

To quantify productivity gains for users, we rely on Hal-
stead’s complexity measures [25], which quantify software
based on the number of operators and operands. Halstead’s
metrics are an approach to an objective basis for comparing
different codes, independently of programming styles of
individuals or enforced by the programming language.
Therefore, they are much more significant than the popular
lines of code (LoC). Basically, Halstead works with the
total and the unique number operators (N1 and η1) and
operands (N2 and η2) in a program. With these four
numbers, different metrics can be formed. In Table I, we
use three of Halstead’s metrics:

• Volume: V = (N1 +N2) · log2(η1 + η2)
The “size” of the program.

• Difficulty: D = η1

2 · N2

η2

The difficulty of writing or understanding the program.
• Effort: E = V ·D

The effort of writing or understanding the program.
This can be translated to a time span by division
with a constant. Halstead proposed T = E

18 seconds.
However, this is a controversial choice, so we disregard
it here.

In fact, many more metrics can be calculated, such as the
time required for implementation, or the number of bugs
delivered. To get an impression of code complexity that
feels more “natural” to programmers, we also included
the LoC, as well as the number of defined methods and
corresponding calls, in Table I. Because ExaSlang’s source-
to-source compiler emits C++ code, the Halstead numbers
listed are comparable for any supported target platform.

Note that code generation times (TG) are in the range
of seconds for every test case, making the generation of
different code variants feasible, e.g., for a search-space explo-
ration to find the best-performing code for a given combina-
tion of application and platform. Additionally, compilation
times using a single thread (TC,1) and four, respectively,
eight parallel threads (TC,4, TC,8) were measured, and we
see that code-generation run times are, at most, of the same
order of magnitude. The speedup factor of 4 for compilation
times can be attributed to the test system’s four physical
cores, which Power8 SMT cores. Another observation is that
the activation of vectorization increases code sizes (LoC)
and numbers of method calls dramatically. Difficulty drops,
which is easily explained when looking at its definition: it is
the product of the number of distinct operators multiplied
by the average occurrence of all operands. As vectorization
introduces numerous short-lived operands, the average
drops, leading to the counter-intuitive observation that
vectorized programs are less difficult than non-vectorized
ones. The effort is defined as the product of difficulty
and volume. Thus, an increase in volume, which is a
side-effect of vectorization, is not always able to repeal
this effect. Another effect of vectorization is the huge
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TABLE I: Halstead complexity measures, number of files, lines of code (LoC), method and method calls, and generation
and compile times of ExaSlang 4 DSL programs and compared to generated target code.

Poisson Var. Coeff. Opt. Flow Fluids

ExaSlang 4
Files 1 1 1 1
LoC 240 296 351 902
Methods 12 15 17 15
Calls 66 101 57 288
Volume [·105] 0.10 0.23 0.20 0.81
Difficulty 111 178 216 159
Effort [·107] 0.11 0.41 0.44 1.29

Target code
Vectorized no yes no yes no yes no yes
Files 60 60 70 70 96 96 224 224
LoC 2,475 3,362 12,916 15,490 5,225 9,032 9,623 15,154
Methods 59 59 69 69 95 95 223 223
Calls 215 964 1,241 3,246 124 6,190 591 3,173
Volume [·105] 2.4 3.1 16.4 18.8 16.4 24.6 20.9 29.8
Difficulty 203 180 323 280 562 418 403 326
Effort [·107] 5.0 5.6 53.0 52.5 91.9 10.3 84.4 97.0

Times
TG [s] 4.3 5.0 13.3 13.4 11.4 12.5 22.3 24.2
TC,1 [s] 14.9 26.2 49.9 60.7 101.9 120.3 60.0 104.5
TC,4 [s] 4.4 7.3 14.5 17.2 27.7 32.3 18.1 29.3
TC,8 [s] 3.6 5.8 11.5 13.5 23.2 26.7 14.4 23.5
MFLOPS 708.4 764.3 1,935.0 2,073.8 3,098.2 4,507.7 2,003.0 2,085.2
Bandwidth [MB/s] 598.5 728.4 199.8 163.3 2,263.1 6,553.5 720.6 890.2
Solved Unknowns [1/s] 3.52 · 106 3.84 · 106 1.00 · 106 1.03 · 106 0.32 · 106 0.93 · 106 3,748.9 3,631.9

Target code file count and lines of code do not include auto-generated header files, support libraries (e.g., image handling for the
optical flow test case), and other auxiliary files such as Makefiles. Code generation (TG) and compilation times were measured for
sequential (TC,1) and parallel (4 threads, TC,4 and 8 threads, TC,8) on an Intel i7-6700 CPU using Scala 2.12 and Java 1.8 for
the framework, and GCC 7.2.0 as back-end compiler. To illustrate the impact of vectorization, MFLOPS and bandwidth were
measured on one core of an Intel Xeon E5-2630 v2 CPU, using GCC 4.8.5 as back-end compiler.

increase in the number of (unique) operators, because
vector intrinsics appear as method calls to the parser. Since
the parser works at a purely syntactical level, it is unable
to consolidate a scalar operation (such as an addition using
the + operator) and a corresponding vector intrinsic (e.g.,
simd_madd). MFLOPS and memory bandwidth for the
generated solvers were measured using the likwid tool suite
[61]. To highlight vectorization impacts, OpenMP and MPI
parallelizations were disabled for these measurements. As a
measurement of memory bandwidths was not available on
the Intel Skylake platform, the benchmarks for MFLOPS
and bandwidth were run on one core of an Intel Xeon
E5-2630 v2. For comparison with results of established
benchmarks, HPGMG [1] achieved 1134.1 MFLOPS and
a memory bandwidth of 40.1 MB/s on the same machine,
solving 70,456.5 unknowns per second. The problem that
HPGMG computes is equivalent to the ExaSlang Variable
Coefficients test case. These measurements were restricted
to the pure benchmark runs, i.e., after the warm-up phase,
using a configuration similar to our test cases: A V-
cycle structure with Jacobi smoothers and solution on the
coarsest grid using the CG method. Again, these numbers
were measured using likwid. In a future publication, we will
show and discuss detailed performance results. Here, we
merely intend to make the point that our approach works
and yields usable target code with reasonable performance.

Additionally, it is a further illustration of the feasibility of
code generation: compared to ExaSlang 4 code (see Table I),
HPGMG’s source code1 is more complex and lower-level,
making it hard to implement or improve for unexperienced
users.

VIII. Conclusions and Future Work
Building on the techniques presented, among others,

we were able to generate code for a large spread of
different problems, platforms, and variants from the very
same ExaSlang 4 code. However, there is room for many
further exciting features to be realized with the ExaStencils
approach. For our domain-specific compiler, we are look-
ing at extending the application range to support also
the solution of linear elasticity problems. Another goal
worth pursuing would be the implementation of other
communication libraries, such as GPI [21] or libOMPSS
[17] as an alternative to the MPI+OpenMP platform. For
accelerators, we already support NVIDIA graphics cards
by emitting CUDA code. Here, OpenCL might prove a
viable alternative such that not only AMD GPUs can be
addressed, but also Altera FPGAs that are programmed
using a vendor-specific OpenCL dialect [15].

At the user front-end, we are already exploring means
to lower the entry barrier to our language and compiler

1https://bitbucket.org/hpgmg/hpgmg
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for novice users. One approach is to provide a web-
based graphical user interface (GUI) similar to IPython2

for Python scripts, JSFiddle3 for HTML and JavaScript
experiments, or Overleaf4 for typesetting documents with
LATEX that invite users to interact with the language and
develop directly in a web browser, without the need for any
modification of the local system. For our project, this would
mean that the user would get the resulting C++ code from
a remote ExaStencils compiler as a simple download via
mouse click, or even the opportunity to execute the code
in the browser’s context. Going further in this direction,
we could explore the possibilities of enabling more natural
input in ExaSlang 1 such as hand-written mathematical
expressions, written on a mobile device or even on a white
board and submitted to the web front-end via a mobile
app.

For the transformation framework Athariac, we plan
to release a stand-alone version such that other DSL
developers can use it for implementation of their languages
or in education. At the same time, it might be worth
looking at the possibility of providing a pretty-printer to
emit code for a number of different platforms as part of
the framework. This will require a generalization of some
of the data structures in our ExaStencils compiler, and
modification of existing transformations and optimizations
that will be shipped as part of the framework.
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