International Journal of Parallel Programming, Vol. 28, No. 6, 2000

Index Set Splitting

Martin Griebl," Paul Feautrier,? and Christian Lengauer

Received January 2000; revised March 2000

There are many algorithms for the space-time mapping of nested loops. Some
of them even make the optimal choices within their framework. We propose a
preprocessing phase for algorithms in the polytope model, which extends the
model and yields space-time mappings whose schedule is, in some cases, orders
of magnitude faster. These are cases in which the dependence graph has small
irregularities. The basic idea is to split the index set of the loop nests into parts
with a regular dependence structure and apply the existing space-time mapping
algorithms to these parts individually. This work is based on a seminal idea in
the more limited context of loop parallelization at the code level. We elevate the
idea to the model level (our model is the polytope model), which increases its
applicability by providing a clearer and wider range of choices at an acceptable
analysis cost. Index set splitting is one facet in the effort to extend the power of
the polytope model and to enable the generation of competitive target code.

KEY WORDS: Automatic loop parallelization; scheduling; polytope model.

1. INTRODUCTION

Space-time mapping methods for the automatic parallelization of loop
nests relate every instance of every statement to a virtual point in time
(schedule) and a virtual processor (allocation).'":* Linear algebra and linear
programming are typically employed in the search for schedules and alloca-
tions. The information this search is based on is the set of dependences
between different instances of the statements.

For the case of uniform dependences, Darte et al.® proved that there
are methods which yield a schedule with (asymptotically) optimal latency.

" FMI, Universitit Passau, D-94030 Passau, Germany. E-mail: {griebl, lengauer} @fmi.uni-
passau.de.

2 PRiSM, Université de Versailles, 45 avenue des Etats-Unis, F-78035 Versailles, France.
E-mail: Paul.Feautrier @ prism.uvsq.r.

607

0885-7458/00/1200-0607$18.00/0 © 2000 Plenum Publishing Corporation

608 Griebl, Feautrier, and Lengauer

However, for the case of affine, nonuniform dependences, this optimum is
sometimes missed by orders of magnitude. The use of different schedules
for different iterations of the same statement frequently improves this situa-
tion. Thus, the idea of this paper is, to partition the index sets of all state-
ments independently of the problem size into a fixed number of parts and
compute individual schedules for each part.

In the same way, it turns out that a piecewise defined placement function
might improve the quality of an allocation, but this has never been pointed
out in the literature.

2. DEFINITIONS

We are given a dependence graph whose nodes are statements and
whose edges are dependences. Each node S is associated with a subset
1(S) of N?s, where pg is the nesting depth of S. An edge e from S to T is
associated with a dependence d,, a relation from I(S) to I(T).

The elements of I(S) are called iteration vectors. Each iteration vector
is associated with an execution of statement .S, which we also call an opera-
tion. The execution of S for iteration vector x is denoted (S, x». In more
abstract contexts, operations are denoted by letters like u, v,.... The fact
that v depends on u is written u ¢ v. The set of operations, i.e., the disjoint
union of all /(S) is named €.

In the following, all index sets and dependence relations are parametric
polytopes. In other words, they are defined by systems of affine constraints
with parameters. To simplify the presentation, only one parameter, named 7,
is taken into account, meaning that the size of the index set increases with n.
We assume 7 to be unbounded.

A schedule is a function @ from the set of operations to the set of
integers which satisfies the following causality condition:

Vu,veQ:udv=00u)+1<0(v) (2.1)

As a matter of fact, one can omit the integrity condition on schedules
since, if 0 satisfies the causality condition, then so does 0'(u) =] 0(u)_ .

From a causal schedule, one can deduce a parallel program whose
figure of merit is its latency:

L =max 0(u) —min 0(u)
ue ue2

The latency can be interpreted either as the running time on a parallel
computer with “enough” processors, or as the minimum number of

Index Set Splitting 609

synchronization points. Whatever the interpretation, it is clear that the
latency must be minimized.

3. STATEMENT OF THE PROBLEM

It is not generally possible to find an arbitrary schedule with minimum
latency. Usually, one restricts the search to a subset of all possible func-
tions, the functions which are affine in the loop counters. Conceptually, one
builds an affine template for every schedule function (i.e., an affine function
with unknown coefficients) and writes inequality (2.1) for all possible
values of u and v. The unknowns are the coefficients of the scheduling func-
tions, and it is easy to see that the resulting constraints are affine in these
unknowns. This must be done for all values of n, yielding an infinite set of
constraints. Fortunately, thanks to special properties of affine functions,
this set can be shown to be equivalent to a finite set of affine constraints,
which can be solved by the usual linear programming methods.

For some problems, the resulting linear program is found to be
infeasible. In this case, one resorts to multi-dimensional schedules. One can
find a maximal subset of the dependences which still gives a feasible
program. The resulting function is the first component of the multi-dimen-
sional schedule. Then one applies the same algorithm to the unsatisfied
dependences, obtaining the next component of the schedule, and so on
until all dependences are satisfied.

One may wonder whether the schedule found in this way bears any
relation to the minimum latency schedule. It has been proved®’ that, when
all dependences are uniform, the two schedules are equivalent in the
asymptotic sense. However, there are well known counter examples
showing that this is not true for arbitrary affine dependences.

Example 1. Consider:

do i = 0, 2*n
a(i) = a(2+*n-i)
end do

The index set and its dependence graph are given in Fig. 1. The best affine
schedule is:

0,(i)=i/2 (3.1)

610 Griebl, Feautrier, and Lengauer

d!
e @ ¢ & & o o e e o o
T
d(l

Fig. 1. Simple example showing the necessity of splitting.

while the minimum latency schedule is:

0,()=0 if 0<i<n (3.2)

=1 if n<i<2n (3.3)

0, can be found by splitting the index set into two subsets, I, =[0, n]
and I,=[n+1, 2n], and postulating two separate scheduling functions in
I, and I,. The details of the resolution method are not affected by the
splitting; the number of unknowns, however, is doubled. This splitting can
also be interpreted as a code transformation yielding the program:

doi=0,n
a(i) = a(2#n-i)
end do
do 1 = n+l, 2#*n
a(i) = a(2*n-1i)
end do

followed by the application of any convenient scheduling algorithm.
Our aim in this paper is to derive an algorithm for deciding when
splitting is useful, and for finding these splits.

4. RELATED WORK

Our notion of index set splitting seems very similar to tiling:'® both
techniques partition the index sets. Tiling is still a very active research
area.”” However, the goal of tiling has been either to increase granularity
(e.g., Ref. 8), or to block for cache optimization (e.g., Ref. 9), or simply to
map virtual processors to real processors. In all these cases, the idea is to
enumerate the given index set in a higher-dimensional space: one set of

Index Set Splitting 611

dimensions for the tiles and another set of dimensions for the points inside
a tile; all tiles are treated equally. In contrast, index set splitting does not
change the number of dimensions but benefits from an individual treatment
of the various partitions.

Like index set splitting, the scheduling method by Feautrier'® ") can
also result in piecewise affine functions. However, the schedules found are
minima of a finite set of affine functions, and most piecewise affine
schedules cannot be cast in this form. Example 1 is a case in point.

The idea of index set splitting goes back to Wolfe,('® and further to
Allen and Kennedy,'® and Banerjee."” Our method expands on these
seminal efforts by incorporating them into the polytope model.

The work most closely related is by Jemni and Mahjoub>!® and
deals with partitioning the index set at points where the type of a
dependence changes, e.g., from true to anti. Since their method is not based
on a model, they can separate the index set only along planes parallel to
the coordinate directions.

Note that index set splitting is a postprocessing phase of dependence
analysis; it is applicable independently of whether the analysis is more
restricted but exact!”) or less restricted but approximate;'® it inherits the
restrictions and precision from the preceding dependence analysis tool. On
the other hand, it is a preprocessing for model-based (hence automatic)
parallelization; in contrast to Pugh and Wonnacott,'® we need not check
any interference of our method with every existing parallelization technique
individually; by applying index set splitting followed by some model-based
parallelizer, we get the result of (a suitable combination of) unimodular
transformations, loop peeling, strip mining, etc. directly and automatically.

5. ANALYSIS

Let us first explain why schedule (3.1) is suboptimal. An arbitrary
affine function can be written as follows:

0({S, x>)=15.x+0g
and obviously has the property that the equation
0(<S, x+y))—0({S, x))=15.y

depends on y but not on x. Suppose that there is a dependence from
(S, x> to (S, x+ y) for some x and y. Then:

0(<S, x+y))—0({S,x))=15.y21

612 Griebl, Feautrier, and Lengauer

Iterating this result k times, we obtain:
O({S, x+kyy)—0({S, x>) =k (5.1)
The concept of latency can be extended to individual statements S:

Lg= max 0({S,x))— m}(r;) 0({S, x>)

xelI(S)

and it is clear that the latency of a statement is a lower bound on the
latency of the program. From (5.1) we deduce:

Lg>max{k | x+kyel(S)—min{k | x+kyel(S)}

Since /(S) depends linearly on a size parameter n, we may expect that Ly
also increases linearly with n.

In Example 1, we have a one-dimensional dependence vector, y =(2),
from instance n—1 to n+ 1. Since y can be iterated n times within the
index set, we have a latency of at least n for the execution of statement .S,
which is exactly the latency of schedule (3.1).

Suppose now that I(.S) has been partitioned into two subsets, /; and 1,,
and that xel; and x+ y e l,. This reasoning no longer applies, since the
schedule 6 is not necessarily the same affine function in 7, and 7,. Hence,
this estimate of the latency of S no longer holds, and we may hope for a
better schedule.

If we split the index set of the target statement of a dependence d
into I;, which contains the image of d (and therefore has to satisfy the
schedule constraints for d), and 7,, which contains the rest of the index set
(and therefore need not satisfy constraints which are due to d), we get a
constant schedule for 7, (if d is the only dependence). If there are no depen-
dences inside /;, i.e., the domain of d is contained in 7,, we also get a
constant schedule for 7,.

For our example, the dependence analysis gives us the information
that only the instances n + 1...,, 2n are in the range of the existing depen-
dences. Since iterations 0,..., n are not images of any dependence, they need
not satisfy any scheduling condition and, thus, should be given an indi-
vidual schedule template. This splitting enables us to find schedule (3.2),
which has a constant latency.

The same reasoning applies to placement problems. Here the goal is to
find a placement function 7(<{S, x)) = Ag.x + ug which gives the number of
the processor that executes operation < S, x). The goal is that two opera-
tions which access the same memory location are executed on the same

Index Set Splitting 613

processor. If {S, x> and <{ S, x + y) access the same memory cell, we must
have

({8, x))=n({S, x+y))=4As.y=0

and all operations <X, x+ky)» will use the same processor as {S, x),
whether there is a reason or not. On the other hand, putting (S, x> and
{S, x+ y) in different subsets of the index set invalidates this reasoning
and may result in better parallelism. In the case of Example 1, the existence
of a dependence vector y = (2) entails 14=0, all operations are on the same
processor, and there is no parallelism. After splitting, the only condition is
that operations (S, x» and {S, 2n—x) are on the same processor, which
can be arbitrary. The degree of parallelism is .

6. A FIRST, NAIVE SPLITTING ALGORITHM

As we have seen in Section 5, suboptimal schedules result from the fact
that some parts of a statement’s index set are in the image of a dependence,
and some are not. If the distinguished statement is the target of several
dependences, we should apparently subdivide its index set, each part
corresponding to a selection of the incoming dependences. Furthermore, if
there is a dependence d, from statement R to statement S and a depen-
dence d, from S to T, we should use the composite dependence d,-d; for
splitting I(T'). Thus, a naive approach for index set splitting proceeds as
follows:

1. compute all possible paths in the dependence graph

2. split every statement according to all incoming paths.

Even though some drawbacks are obvious, let us analyze this method
in more detail, in order to illustrate the limits of what we can expect from
the final algorithm to be presented in Section 7.

6.1. Merging Multiple Incoming Paths

First, we realize that a single statement can be reached via several
paths. Thus, independently from the chosen splitting algorithm, we will
have to merge the splits of multiple incoming dependences. In principle, we
split the index set according to the first incoming dependence, then split
every part according to the next incoming dependence, and so on.

It is important to see that the order of treating the incoming depen-
dences is irrelevant: to merge splits means to compute a conjunction of the

614 Griebl, Feautrier, and Lengauer

image (or its complement which we call the nonimage) of an incoming
dependence and the parts already split, and conjunction is associative and
commutative.

The complexity of merging the splits of k arbitrary incoming (com-
posite) dependences is 2%, i.e., in general, we must expect an algorithm with
at least exponential time complexity. Therefore, our main concern must be
to reduce the number k of different incoming (composite) dependences as
much as possible, in order to get an efficient algorithm.

Note: If the dependence graph is a tree, the complexity is only linear
in the length of the paths, which is the depth of the tree: various incoming
paths can only differ in length (for two different paths reaching a tree node,
one must be a postfix of the other). Therefore, the image of the longer path
is a subset of the image of the shorter path, i.e., we never need to split the
nonimages, which avoids exponential growth.

6.2. Numbers of Paths

We have just seen that, in a tree, the number of different paths to a
given node is linear in the tree’s depth, i.e., logarithmic in the number of
nodes. How many paths are there in a directed acyclic graph (DAG)?
From graph theory we know that there can be exponentially many paths
between two nodes in a DAG. Hence, if we consider all different paths from
s to t, we end up with exponentially many incoming splits in ¢, which must
then be merged with the exponential method as explained in Section 6.1.
All in all, this results in a doubly exponential algorithm, which we consider
impractical.

Obviously, the naive method is not effective if there are loops in the
statement dependence graph since, within strongly connected components,
the number of different possible paths is unbounded. As simplest example,
take a single statement with one self loop: every different number of loop
traversals results in a different path. Note that, in this simple situation of
only one self loop, the number of splits would increase linearly instead of
exponentially (like in the earlier case of the tree), but it is still unbounded.

6.3. Preparing an Effective Algorithm

As we have just seen, directly using paths as descriptions of composite
dependences results, in general, in a doubly exponential algorithm. Hence,
our splitting algorithm must abstract from precise paths in order to be
efficient.

Index Set Splitting 615

For this purpose, we treat composite dependences systematically by
associating a finite automaton with the dependence graph. The states of
this automaton are the statements and the transitions are the dependences.
There are well known algorithms (e.g., by Kleene—see Floyd and
Beigel ') for associating any two states S and T with a regular expression
representing all paths from S to 7. The letters in this regular expression are
dependence names, and the operators are the dot (concatenation), the ver-
tical bar (set union), and the Kleene star. The composite dependence from
S to T is obtained by replacing in this expression each dependence name
by the dependence itself, the dot by relation composition, the vertical bar
by relation union, and the Kleene star by transitive closure. In suitable
cases, one can compute the composite dependence in closed form by using,
for instance, the Omega calculator.*® However, since the transitive closure
of an affine relation is not always affine, the above computation does not
always succeed. Our proposal is to ignore a composite dependence when a
closed form cannot be computed.

However, if we base our splitting algorithm on the path descriptions
given by the Kleene algorithm, we find many practical examples which
cannot but should be split. This is because the use of the operators | and
x entails a loss of precision. In fact, we lose all information on the delay
associated with the composite dependence.

Example 2. Consider the following program:

doi=0,nm
do j = 0, 2%n
a(i,j) = a(i,2#n-j) + a(i-1,j+2)
end do
end do

The iteration dependence graph is depicted in Fig. 2. The range of the
combined dependence d=d, yaras | aownwaras 18 [0, m] % [0,21]\[0, 0] x
[0,n], as is the range of d*. The desired split into [0,m] x[0,n] and
[0, m] x[n+1,2n], which leads to a linear execution time (see Fig.2), is
not found if we base the algorithm on Kleene’s path descriptions only.

The difficulty in this example is that the different dependences have
individual properties, which are merged by the union operation, making
the distinctions invisible. However, treating all dependences separately is
too costly, in general, as shown in Section 6.2.

616 Griebl, Feautrier, and Lengauer

-0
o0

ne

.

P SN s

&

9>~

B

o
{ .

2
o ¢ el.e e

°_
e

Fig. 2. Splitting due to the initial
phase.

Our heuristic solution is to consider (in addition to all combined
paths) every single dependence once, and split the index set of its target
statement into its range and the rest. This guarantees that the properties of
different dependences are considered at least once, and that complexity is
increased by only a linear factor (D dependences instead of 2” paths). In
other words, by splitting the index set I(S) of the target statement S of
every single dependence d into the range of d and the rest, we already have
a conservative approximation of the range of all paths to S whose last
dependence is d.

Our idea is then to propagate these ranges of d along every path to all
other statements, where we now accept the loss of information by using the
path descriptions from Kleene’s algorithm, in order to keep the computa-
tional effort reasonably small.

Our examples have illustrated that this mixture of working with
separate dependences on the one hand and combined path descriptions on
the other exhibits a good balance between power and execution complexity
of our algorithm.

7. THE PROPOSED SPLITTING ALGORITHM

With the ideas in the previous section, we can now formulate a first
version of the effective splitting algorithm:

1. For all dependences d, compute a polytope R, (as small as
possible) containing the range of d, and split the index set /(7") of
the target statement of d into R, and I(T)\R,.

2. Compute a description for the set of all paths in the statement
dependence graph, using Kleene’s algorithm.

Index Set Splitting 617

Rdl

Fig. 3. An illustration of the splitting algorithm.

3. For every pair of statements (7, S) and for every dependence d
with target statement 7" and every path p from 7 to S do: interpret
path description p as a composition of relations which maps
points of the index set I(7) to points of the index set I(S), and
compute the image p(R,) of this composed relation when applied
to the polytope R, computed in Step 1. This will divide the index
set 1(S) into a part which is in the image of R, under p, and the
rest. Usually, this step can be computed with the Omega
calculator.®® However, if p contains a cycle whose transitive
closure cannot be computed precisely by Omega, then delete the
cycle form p before the propagation.

4. For any statement S, combine all splits obtained in this way as in
Section 6.1.

The algorithm is illustrated in Fig. 3. In Step 1, the index set of S, is
split into the image R, of d; and the rest. Step 2 computes all paths
between every pair of statements. Assume that there are two paths from S,
to S,, denoted with p, and p,. Step 3 computes the image of R, w.r.t.
p1 | p, within the index set of S,, where the possible images are all in the
dark subset.

Basically, this algorithm computes, for every statement, the approximate
ranges of all (transitively) incoming dependences. It is obvious that, for
each such range, we might obtain a different possible schedule and, thus,
want a separate template.

However, in practice, there are some additional considerations:

o It is easy to see that splitting an index set due to a uniform
dependence is worthless, since the range of a uniform dependence
d is (approximately) the complete index set of the target statement
of d. Therefore, we optimize the algorithm by applying Step 1 only
to nonuniform dependences. Note that, in Step 3, we still need to
consider uniform dependences, as we shall see in Example 4.

618

Griebl, Feautrier, and Lengauer

e Due to the condensed description of the set of all paths and the

overestimation of the reflexive transitive closure by Omega, it often
happens that we lose precision and, thus, do not find precise splits
and sometimes even not all splits (if two approximations yield the
same set).

Note that these overestimates by Omega are due partly to the
theoretical impossibility of computing the reflexive transitive closure
as a finite union of polyhedra and partly to technical limitations
inside Omega.

Sometimes it is useful to unroll a cycle a fixed number of times, in
order to achieve the optimal split (cf. Example 6). If, for a cycle c,
we can find this fixed number k£ by the methods described in
Appendix A, we extend the computation of p(R,) in Step 3 of our
splitting algorithm: if the propagation path p contains ¢, we rewrite
p as p,.c*.p,, and we compute p,.c’. p,(R,) for 0 <i<k instead of
the approximation p,.c*. p,(R,).

8. EXAMPLES

Let us reconsider our initial example and modify it in several ways in

order to get a feeling for the performance of our method.

Example 3. Let us apply our algorithm to Example 1. The index

set is the set [0, 2n] and the range R of the two dependences is [n + 1, 2n].
The set of all paths in the statement dependence graph is given by
(d,| d,)*. Propagating R along d* (* meaning at least once) is not
possible since the domain of d* does not intersect R. Thus, the algorithm
already terminates after the initial step and splits the index set into [0, n]
and [n+1,2nr], as expected.

Example 4. Extending the program of Example 1 to a two-dimen-

sional example, let us consider:

do i = 0, 2%n
do j =0, m
a(i,j) = a(2*n-i,j+m) + a(i,j-1)
end do
end do

Index Set Splitting 619

o o © |e je & &
" : S

© ®

© <

® ®

® Y

¢ ‘e

Fig. 4. Splitting a two-dimensional index
set by propagation.

For the uniform dependence, no split is derived. The nonuniform true
dependence has range [n+1,2n]x[0,0]. Propagating along the com-
bined self-dependence leads to the desired split into [0, 7] %[0, m] and
[n+1,2n] x [0, m] (see Fig.4). The nonuniform anti-dependence has the
range [n, 2n] x [m, m], which is not increased by propagation. So, finally,
we end up with three subsets: [0,7n]x[0,m]\{(n, m)}, the singleton
{(n,m)}, and [n+1,2n] x [0, m].

Note that, in the previous example, treating the singleton individually
does not improve the schedule and, hence, should be avoided in practical
implementations, if possible. However, in general, it is impossible to decide
locally, i.e., at one given statement, whether a split is useful or not, since
global information of the dependence graph is necessary. In other words,
we would have to run the scheduler in order to detect whether we should
split the input of the scheduler! Thus, in our current implementation, we
accept possibly useless splits.

Example 5. In order to get a better feeling for the behavior of our
algorithm in the case of multiple statements and imperfect loop nests, let
us consider:

do 1 =0, 2*n
S1: a(i,0) = a(2*n-i,m)
do j=1, m

620 Griebl, Feautrier, and Lengauer

S2: a(i,j) = a(i,j-1)
end do
end do
do i = 0, 2*n
do j =1,k
S3: a(i,j+m) = a(i-1,j+m-1)
end do
end do

In this example, we find two uniform true dependences and four non-
uniform dependences (three true and one anti), i.e., we obtain four initial
splits. After propagating each of them along the combined path to each of
the three statements, we have to merge the four initial splits with the 12
propagated splits. After simplification, we get the desired splits as indicated
in Fig. 5.

Fig. 5. Splitting for imperfect loop nests.

Index Set Splitting 621

Example 6. In the case of a self-dependence d, a constant number
of propagations may give us an interesting schedule. Let 7 be the domain
of the dependence. Successive propagation yields subsets I\d([), d(I)\
d*(I),..., d"(I)\d" *'(I) and, in the interesting case, there exists a constant k
such that d*= (¥. It can be proved that k is bounded by the cardinality
of I, but this bound depends on the size parameters of the program and
cannot be evaluated at compile time. The problem can be solved in the
special case that d is defined by a square matrix 4 in one of the following
senses:

{x,yyed=x=Ay or {x,yyed=y=Ax

One can prove (see the Appendix) that, if A* =1, then d*(I1(S)) = . k can
be determined by computing the characteristic polynomial of 4 and testing
its divisibility by the cyclotomic polynomials of degree less than the dimen-
sion n of the index set of S, i.e., the number of loops surrounding S. For
likely values of n, the number of tests is very small.

Consider the following program:

doi=1,n

do j =1,n
do k =1,n
a(i,j, k) = a(j,k,i)
end do
end do
end do

Classical scheduling yields 6(i, j, k)=(;.), or O(n) parallelism. There are
two dependences:

dy={i,i, kY - ik, iy | i<k}

For brevity, we have omitted the bound constraints 1 <i<n and the like,
which stay invariant in the splitting process.
010
d, is generated by the matrix: 4 = <0 0 1> whose characteristic poly-
100

nomial is P(x)=x*—1=(x—1)(x*+x+1). This is the product of the

622 Griebl, Feautrier, and Lengauer

cyclotomic polynomial of order 1 and 3, and suggests the computation of
A? which is found to be the unit matrix. The corresponding subsets are:

d\(I(S))={i, j k| k<i}
BU(S)) = {0, j k| k<iyi<j}
di(1(S)) = &
The domain of d, is disjoint from the domain of d,, hence we are
justified in handling both dependences independently. We leave it to the

reader to check that d5(1(S)) is empty. All in all, the latency is 2 and the
degree of parallelism is O(n?).

Example 7. Consider now:

doi=1,n

do j =1,n
a(i,j) = a(2*i+j, i+j)
end do
end do

The dependences are associated to the matrix 4 = (7 |), whose characteristic
polynomial is P(x) = x*> — 3x + 1. P is not divisible by either x — 1 or x + 1 or
x?+x + 1, and hence there is no k such that 4“ = I. As a consequence, there
is no hope of improving the schedule by repeated propagation.

9. ITERATIVE SPLITTING

The method described so far treats the program as a whole and
searches for all potentially useful splits for improving the schedule.
However, especially for large programs, it is desirable to apply index set
splitting only when and where it is necessary. Furthermore, we are often
only interested in increasing parallelism by orders of magnitude, but not by
constant factors.

Our method can be easily adapted to these situations. The basic idea
is that we first schedule the program without splitting and, if the result is
not satisfactory, try to improve the solution by index set splitting:

1. As a first step, compute a schedule according to one of the usual
methods!' -2 22) without any splitting.

Index Set Splitting 623

2.

Analyze the schedule, with a view of selecting an interesting
candidate for splitting. For this purpose, take the satement S with
the highest dimensionality of the schedule. If there are several
possible candidates, choose one which is minimal w.r.t. the order
imposed by the acyclic condensation of the statement dependence
graph.

As we have seen in Section 5, significantly improving a schedule
for S means opening a cycle going through S. Edges of such cycles
belong to the strongly connected component (scc) of S in the
dependence graph. Thus, we must split the statements in the scc
according to the algorithm in Section 7:

(a) For all nonuniform dependences d of the scc, compute the
initial split as in Step 1 of the original algorithm.

(b) For every pair of statements (7, R) of the scc, propagate the
initial splits of 7" to R as in Step 3 of the original algorithm.
If the composite dependence d from R to R is nonuniform
and generated by a matrix 4 of index k (see Example 6),
continue propagating the split through d k—1 times.

Schedule the new dependence graph.

When the dimensionality of the schedule is satisfactory or when all
scc’s of the dependence graph have been considered, then stop; else
start again at Step 2.

Note that this algorithm—as all ideas about index set splitting so far—
tries to increase parallelism. This is not useful for statements which have
more parallel instances than there are real processors available. Taking this
into account, we get an additional selection criterion for Step 2:

(a)

The basic idea is to find the statement which contributes the
most to the parallel execution time of the program, and which
holds some hopes of improvement. To this end, we need to know
the “characteristic size” N of the problem and the number P of
processors. The important factor is, in fact, the least exponent «
such that N*>> P.

Let S be a statement with an ng-dimensional index set and a
ps-dimensional schedule. If N*s™?s>> P or ng— pg>a, all pro-
cessors are occupied, the running time is N”s/P, and cannot be
improved by modifying the schedule.

On the other hand, if ng— pg<a, then the running time is N?#s
and can be improved by reducing pg.

624 Griebl, Feautrier, and Lengauer

(d) Hence the rule is to select the statement S with the largest pg
among those verifying ng— pg<a.

Remark: Note that the original method is completely automatic,
whereas the iterative splitting approach just described leaves more freedom
and, thus, is better used for interactive loop parallelization. In the original
setting, index set splitting was considered as a preprocessing phase for the
loop program to be parallelized—any other parallelization method can
then be applied as usual (except for a potentially increased complexity due
to the fact that split parts are considered as individual statements).

In the iterative setting, the user first runs a parallelization algorithm
(e.g., computes a schedule), and then decides whether the the result is
satisfactory or not. If not, the user calls index set splitting, reapplies the
parallelization, and decides again. It is unclear how this decision can be
fully automated.

Remark: Note that our iterative splitting approach yields less splits
than the original algorithm: dependences which are not part of a strongly
connected component are never considered. On one hand, this limits the
complexity of the target code and, on the other hand, the detected
parallelism is still in the same order of magnitude as if we used the original
algorithm.

10. CONCLUSIONS

We have proposed a method to split the index set s of loop nests into
parts in order to obtain better space-time mappings. It can be used to
improve any space-time mapping algorithm which is based on templates
(templates are typically used, e.g., for dealing with different statements in
the loop body).

10.1. Trading Off Quality for Time

Our method can be adapted simply for trading off quality of
parallelism for analysis time:

e One can search for more splits and, thus, even satisfy a variety of
optimality criteria, but at the cost of a doubly exponential search.

¢ One can turn off the propagation phase in order to save compilation
time at the price of a loss of some useful splits (e.g., in Example 4).

Index Set Splitting 625

e On the other hand, one can try to improve the solution by
propagating a split through cycles more than once, as indicated in
Example 6.

o Alternatively, one can also first schedule a program without splitting
and afterwards try to split only those statements which are responsible
for a possibly bad quality of the schedule, as shown in Section 9.

10.2. Implementation Notes

In our experiments, we decided to use the algorithm as presented in
Section 7, which seems to be a good compromise between analysis time
and quality of the resulting splits. More experiments on practical examples
with our prototype will have to confirm this observation.

For this purpose, we are currently implementing the described
methods in the prototype parallelizer LooPo.® This implementation takes
as input the results of the existing dependence analysis modules and is very
close to the algorithm in Section 7, with the following technical modifications:

e In Step 1, we do not actually execute the splits but just store them
per statement in a list, in order not to increase the number of
statements in this phase.

o In Step 3, we only compute the images; the computation of the rest
(i.e., the nonimages) does not commence before the end of Step 4
and, again, the derived splits are just stored in lists in order to limit
complexity.

o In Step 4, we first merge all stored splits and then compute the rest,
i.e., the nonimages—which may lead to further splitting, due to
technical limitations, if the nonimages cannot be described by a
single polytope but only by a union of polytopes. Finally, every
split, i.e., description of a subset of the original index set gets a copy
of the body statements and, thus, can be viewed by all subsequent
parallelization phases as if it were a separate statement with sur-
rounding loops in the input program. Note that our model-based
approach saves us from computing a loop nest which really
enumerates all these split subsets; this is advantageous because the
construction of such a loop nest would be very costly.

10.3. Putting the Method into Context

Finally, let us recapitulate what we set out to do and what we have
achieved.

626 Griebl, Feautrier, and Lengauer

The principal idea of index set splitting is that every dependence d
causes irregularities in the target statement 7" of d: some instances of T are
in the image of d—and, thus, have to satisfy some constraints, e.g., for
scheduling—and some are not in the image of d.

The same is true for paths of dependences instead of single dependences.
Hence, the basic task is to compute every dependence path p and split the
target statement of p into the points in the image of p and the rest.

Since the number of paths is unbounded (in the absence of cycles
bounded but still exponential) or, to be more precise, dependent on the
problem size, we must find a different representation of the set of all paths
which is problem-size independent.

Kleene’s path descriptions satisfy this condition and can be computed
in cubic time. However, with the use of these path descriptions we leave the
classical polytope model: the price for the cubic description of an unbounded
number of paths is a loss of precision, as illustrated, e.g., by Example 2.

Our approach deviates in one point notably from typical methods
based on the polytope model: we make extensive and central use of
heuristics.

Our heuristic solution for the trade-off between precision and efficient
computation is to use dependences for two separate tasks:

o For every single dependence, we compute the split, i.e., a partitioning
of the iteration dependence graph.

e« We propagate every initial split along the path descriptions of the
statement dependence graph.

The first task requires no heuristics—it can be computed precisely with
standard methods of the polytope model.!!” The second task is solved with
methods outside the classical polytope model, and incurs a possible loss in
precision, for the following reason: in effect, we compute precisely the
images of all paths p; of length 1 and, since the image of some path p,. p,
is a subset of the image of p,, we accept a possible approximation of its
image, because we already have an upper estimate: the image of p;.

Another case in which we apply heuristics is selective splitting (Section 9).
In this scenario, we are not interested in optimal solutions (within the
model). By concentrating on the order of magnitude by which the running
time is reduced, we achieve a significant reduction in the cost of the com-
pile-time analysis.

Our trick is to apply the powerful but costly polytope model only to
subproblems for which it is cost-effective. Following the same idea, one can
first apply simpler but fast scheduling techniques and re-schedule with
more elaborate methods only those strongly connected components of the

Index Set Splitting 627

statement dependence graph which have the highest latency. Other
approaches like iterative array data flow analysis® have a similar potential.

In this sense, the polytope model can be viewed as a powerful alter-
native to be applied to subproblems for which simple heuristics do not
yield satisfactory solutions. We believe that this is a role which it can play
effectively in practical parallelizing compilers.

APPENDIX

Let us consider the case of a dependence d from a statement S to itself.
We will pretend that d is the sole dependence with target S: in this way,
we will obtain a lower bound on the latency of S.

If we split iteratively dccording to d, we generate a succession of sets

I(S\A(I(S)), d(S)\d*(I(S))...., d"(I(S))\d" T1(I(S)). The question is: is there
a k for which this process termmates because d*(1(S)) = &?

The answer is yes, and k is bounded by the cardinality of I(S). The
proof is left to the reader. (Hint: remember that if y depends on x then
x << y, where << is lexicographic order.)

This result is not useful for a compile time analysis, since the size of
1(S) is likely to be unknown at compile time. Are there cases where k can
be computed a priori?

We have been able to answer the question only in the case where d is
a function or the inverse image of a function. In this case, there exists a
matrix A4 such that either (x, y>ed=x=Ayor (x, yp>ed=y=Ax. A is
a square matrix of size nxn, where n is the dimension of I(S), i.e., the
number of loops surrounding S. This constellation is quite frequent. For
instance, if we have decided to consider only dataflow (or value-based)
dependences, then the dependence relation will always be the inverse of a
function.!”? We are ignoring the possibility that there is a constant term in
the expression of the dependence, since symbolic and numeric constants
can be subsumed by the use of homogeneous coordinates.

One can prove that, if there exists an integer k such that A% =1, then
d*(I(S)) = . The reason is that, if d*(1(.S)) is not empty, then there exists
an operation x such that x << A¥x = x, a contradiction.

Every square matrix 4 can be put into Jordan normal form:

A=U"'DU
where D either is diagonal or has some nonzero elements in the first sub-

diagonal. The diagonal elements of D are the eigenvalues of 4, ie., the
roots of the characteristic polynomial P ,(x)=det(A4 — xI).

628 Griebl, Feautrier, and Lengauer

If A*=1, then D¥=1 One can prove that this implies that D is
diagonal and that the eigenvalues of 4 are mth roots of unity, where m | k
(m divides k). The primitive roots of unity are roots of the cyclotomic poly-
nomial:

Culx) = (x —e?mm)

The polynomial C,(x) has integral coefficients, is irreducible over Z[x],
and has degree ¢(x) where ¢ is Euler’s function:

¢(m)=m [] (1—1/p), pis a prime number

plm

Since C,, is irreducible, either the gcd of P, and C,, is 1, and the mth roots
of unity are not eigenvalues of 4, or C,, divides P . In the latter case, the
degree ¢(m) of C,, is at most n. Hence, a first version of an algorithm for
finding £, if it exists, is:

e Compute P, and set P=P .
e For m=1 to L do:
— While C,, | P do: set P=P/C,,.
— If P=1, stop; k is the least common multiple of all m for which
the division has been successful.
« Stop; there is no k such that A*=1.

If this algorithm terminates successfully, one must test whether the Jordan
normal form of A is diagonal, which can be done most simply by direct
computation of 4% in time O(n> log k). This test can be avoided if all eigen-
values of A4 are simple, i.e., if the While loop in this algorithm iterates at
most once.

It remains to state how to select L. The correct value is:

L=max{m | ¢(m)<n}

However, we have to prove that this L exists, and this is difficult since the
behavior of ¢ is chaotic. Let us consider instead the obvious minorant:

¢'(m)=m [] (1—1/p)

psm

Index Set Splitting 629

One can prove that ¢’ is nondecreasing and that:

X

P(x)xe”
log x
where y is Euler’s constant (see Hardy and Wright,®*® Thm. 429). Thus, we
can define L’ by:

L' =max{m | ¢'(m)<n}
and either use this value in this algorithm or compute a tighter value of L:
L=max{m|m<L, ¢(m)<n}

Recall that n is the number of loops surrounding S and is never very
large. For instance, for n =3, there are exactly five candidate divisors. This
number goes up to 20 for the unlikely value n =10. Hence, the cost of this
test is likely to be very small.

ACKNOWLEDGMENTS

Financial support was gratefully received from the German Research
Foundation (DFG) under project RecuR and from the French-German
exchange programme PROCOPE through DAAD and APAPE.

Thanks to Mohamed Jemni for discussing his method with us in
Passau, which started off this work. We are grateful to Jean-Francois
Collard and Bernhard Lehner and to the participants of Dagstuhl Seminar
991613 for fruitful discussions. Thanks to Gottlieb Leha and Niels
Schwartz for mathematical advice; the second author acknowledges the
help of Vital Chauve with the material in Example 6 and the Appendix.

REFERENCES

1. P. Feautrier, Automatic parallelization in the polytope model, The Data Parallel
Programming Model, G.-R. Perrin and A. Darte (eds.), Springer-Verlag, Lecture Notes in
Computer Science, Vol. 1132, pp. 79-103 (1996).

2. C. Lengauer, Loop parallelization in the polytope model, CONCUR’93, E. Best (ed.),
Springer-Verlag, Lecture Notes in Computer Science, Vol. 715, pp. 398-416 (1993).

3. A. Darte, L. Khachiyan, and Y. Robert, Linear scheduling is nearly optimal, Parallel
Processing Letters 1(2):73-81 (December 1991).

4. P. Quinton, The systematic design of systolic arrays, Automata Networks in Computer
Science, F. F. Soulié, Y. Robert, and M. Tchuenté (eds.), Chap. 9, Manchester University
Press, pp. 229-260 (1987). [Also: Technical Reports 193 and 216, IRISA (INRIA-
Rennes), 19837].

630

S.

10.

11

12.

17.

18.

19.

20.

21.

22.

23.

Griebl, Feautrier, and Lengauer

A. Darte and F. Vivien, On the optimality of Allen and Kennedy’s algorithm for
parallelism extraction in nested loops, Euro-Par’96: Parallel Processing, Vol. I, L. Bougg,
P. Fraigniaud, A. Mignotte, and Y. Robert (eds.), Springer-Verlag, Lecture Notes in
Computer Science, Vol. 1123, pp. 379-388 (1996).

. C. Ancourt and F. Irigoin, Scanning polyhedra with DO loops, Proc. Third ACM

SIGPLAN Symp. Principles Practice of Parallel Programming (PPoPP’91), ACM Press,
pp. 39-50 (1991).

. J. Ferrante, W. Giloi, S. Rajopadhye, and L. Thiele (eds.), Tiling for optimal resource

utilization. Technical Report 221, SchloB Dagstuhl (August 1998).

. R. Andonov, S. Rajopadhye, and N. Yanev, Optimal orthogonal tiling, Euro-Par’98:

Parallel Processing, D. Pritchard and J. Reeve (eds.), Springer-Verlag, Lecture Notes in
Computer Science, Vol. 1470, pp. 480-490 (1998).

. R. Barua, D. Kranz, and A. Agarwal, Communication-minimal partitioning of parallel

loops and data arrays for cache-coherent distributed-memory multiprocessors, Languages
and Compilers for Parallel Computing (LCPC’96), D. Sehr, U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua (eds.), Springer-Verlag, Lecture Notes in Computer Science,
Vol. 1239, pp. 350-368 (1997).

P. Feautrier, Some efficient solutions to the affine scheduling problem. Part I. One-dimen-
sional time, IJPP 21(5):313-348 (1992).

P. Feautrier, Some efficient solutions to the affine scheduling problem. Part II. Multi-
dimensional time, IJPP 21(6):389-420 (1992).

M. Wolfe, Optimizing supercompilers for supercomputers, Research Monographs in
Parallel and Distributed Computing, MIT Press (1989).

. J. R. Allen and K. Kennedy, Automatic translation of FORTRAN programs to vector

form, ACM Trans. Progr. Lang. Syst. 9(4):491-542 (October 1997).

. U. Banerjee, Speedup of ordinary programs, Ph.D. thesis, Department of Computer

Science, University of Illinois at Urbana-Champaign, Report 79-989 (October 1979).

. Z. Mahjoub and M. Jemni, Restructuring and parallelizing a static conditional loop,

Parallel Computing 21(2):339-347 (February 1995).

. Z. Mahjoub and M. Jemni, On the parallelization of single dynamic conditional loops,

Simulation Practice and Theory 4:141-154 (1996).

P. Feautrier, Dataflow analysis of array and scalar references, IJPP 20(1):23-53
(February 1991).

W. Pugh and D. Wonnacott, Static analysis of upper and lower bounds on dependences
and parallelism, ACM Trans. Progr. Lang. Syst. 16(4):1248-1278 (July 1994).

R. W. Floyd and R. Beigel, The Language of Machines—An Introduction to Compatibility
and Formal Languages, Chap. 4.4, Computer Science Press (1994).

W. Pugh and D. Wonnacott, Eliminating false data dependences using the Omega test,
Proc. ACM SIGPLAN Conf. Progr. Lang. Design and Implementation (PLDI'92), ACM
SIGPLAN Notices 27(7):140-151 (July 1992).

A. Darte and F. Vivien, Automatic parallelization based on multi-dimensional scheduling.
Technical Report 94-24, Laboratoire de I'Informatique du Parallélisme, Ecole Normale
Supérieure de Lyon (September 1994).

A. Darte and F. Vivien, Optimal fine and medium grain parallelism detection in
polyhedral reduced dependence graphs. Technical Report 96-06, Laboratoire de I'Infor-
matique du Parallélisme, Ecole Normale Supérieure de Lyon (April 1996).

M. Griebl and C. Lengauer, The loop parallelizer LooPo—Announcement, Languages and
Compilers for Parallel Computing (LCPC’96), D. Sehr, U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua (eds.), Springer-Verlag, Lecture Notes in Computer Science,
Vol. 1239, pp. 603-604 (1997).

Index Set Splitting 631

24. J.-F. Collard and M. Griebl, A precise fixpoint reaching definition analysis for arrays,
Languages and Compilers for Parallel Computing (LCPC’99), J. Ferrante (ed.), Springer-
Verlag, Lecture Notes in Computer Science (to appear).

25. D. K. Arvind, K. Ebcioglu, C. Lengauer, and R. S. Schreiber, (eds.), Instruction-Level
Parallelism and Parallelizing Compilation, Schlo3 Dagstuhl, Report 237 (1999).

26. G. H. Hardy and E. M. Wright, 4An Introduction to the Theory of Numbers, Oxford Science
Publications, Fifth ed., Oxford University Press (1990).

Printed in Belgium

