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1 INTRODUCTION

The complexity of processor architectures is constantly increasing. The end of Dennard scaling [23],
which prohibits further strong increases in processor performance merely by ongoing miniaturiza-
tion of integrated circuits and rising clock speeds, leads to a wide spread of multi-core architectures
that enable further increases in computing performance via parallel execution [38]. Adding levels
of caches between memory and processor is supposed to abolish the von-Neumann bottleneck.
Vectorization adds a further level of parallelism. The exploitation of the available performance re-
quires ongoing research on optimizing compilers that can, ideally, adapt the target code to different
execution platforms. Effective cost models must take many different aspects into account.

In this context, iterative (or search-based) program optimization can help to improve the under-
standing of the characteristics of profitable program transformations, as it relies on few or no prior
assumptions. This technique may also help in deriving more effective cost models for compilers.

The polyhedron model [31] enables a systematic exploration of the set of legal transformations
of a given program [35, 56, 57]. Generally, it allows one to unify sequences of different loop
transformations, such as distribution/fusion [42], skewing [73], tiling [39], and interchange [2] in
one framework. Yet, the model imposes restrictions on the source programs that can be treated.
With this in mind, we proposed the iterative polyhedral optimizer Polyite [35]. Replacing the

model-based PLuTo algorithm [16, 19] in LLVM’s [45] polyhedral optimizer Polly [36] by Polyite
leads to significant speedups when optimizing for tiling and parallelization. Polyite searches at
random or by means of its genetic algorithm. The PLuTo algorithm enables tiling and improves
data locality. Depending on the PLuTo algorithm’s specific variant, parallelism is a byproduct of
improving data locality or can be targeted explicitly [71]. Recently, Zinenko et al. [74] improved a
variant of the PLuTo algorithm to account explicitly for spatial proximity of memory accesses.

A genetic algorithm (GA, for short) searches iteratively for a solution that is good in terms of a
fitness function. It derives new solutions from already existing solutions. Typically, the probability
of a solution to reproduce depends on its fitness according to the fitness function. A GA starts from
an, often randomly generated, set of solutions, its initial population. Using the fitness function,
it assesses each solution’s profitability. Mutation and crossover of solutions from the current
population cause a new population or generation to arise.

To determine the fitness of a candidate transformation, Polyite applies the transformation and
executes the resulting code. As might be expected, this process is time-consuming. One could try to
reduce the optimization time by benchmarking with very small data set sizes, but this would reduce
the effect of data locality optimizations and also the extent of parallelism. One way out is to replace
benchmarking with a less precise but cheaper performance prediction. The prediction can be based
on a surrogate model that has been trained on structural features of program transformations and
the execution time of the respective transformed code. The training data originates from previous
iterative optimizations. A feature is a property whose intensity is expressible with a numeric value.

Such a supervised machine-learning algorithm deduces a model from a set of training data. The
model serves to predict the value of a dependent variable from the values of independent variables.
In our case, the independent variables are the structural features of a program transformation and
the dependent variable correlates to the speedup in execution time yielded by the transformation.

For practicality, there must be features of program transformations that can be extracted at low
cost. Furthermore, the features must permit to learn a performance model from a training set of
transformations gathered during the iterative optimization of a set of programs. The model must
be transferable, that is, suitable to predict the profitability of transformations for unseen programs.
Our proposal is to reduce the execution time of Polyite’s GA by the use of a surrogate per-

formance model that allows a classifier (a predictor that assigns labels) to distinguish profitable
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from unprofitable program transformations. We train the model on features and performance data
of transformations generated in previous runs of Polyite. The features are meaningful for an
optimization of loop programs that can be expected to profit from coarse-grained parallelization
and tiling for an execution on modern multi-core CPUs.

In theory, there are infinitely many encodings of one program transformation in the polyhedron
model. This complicates feature extraction since a transformation’s feature vector may vary,
depending on its representation. Unnecessary noise in a program transformation’s representation
can also complicate further processing and yield unnecessarily complex code. To avoid this, we
propose a semantics-preserving simplification of program transformations. We have mentioned
this transformation briefly in our previous work [35]. Here, we elaborate on it.
Our evaluation indicates that replacing benchmarking by a classifier based on a surrogate

performance model can reduce the time consumption of Polyite’s GA by an average of 49%. We
lose an average of 15% of speedup for the optimized program. In particular, we can reduce the
benchmarking effort on the target hardware. We assume the presence of suitable training data.
It was to be expected and is also the case that a performance model learned from any program

cannot succeed in detecting profitable program transformations for another program. While we can
show that often this is possible, it would be wrong to claim that it works generally. This message is
important for the polyhedral community, as it strengthens the assumption that one model cannot
serve to optimize any program. In summary, we contribute the following:
• We devise a new GA for our iterative schedule optimizer Polyite. In the presence of suitable

training data that have resulted from previous iterative optimizations we can machine-learn a
surrogate performance model and mostly replace benchmarking with classification.
• We propose a set of schedule features that serves to learn a surrogate performance model from

sets of program transformations that originate from the iterative optimization of other programs.
• We present a semantics-preserving simplification of the representation of program transfor-

mations to make them suitable for feature extraction.
• We evaluate our approach on the PolyBench 4.1 benchmark set [60].

The data of the evaluation is available on the paper’s supplementary Web site [34].

2 BACKGROUND

Our approach relies on concepts of the polyhedron model and on machine-learning techniques. We
introduce these and recall the current state of Polyite.

2.1 Polyhedron Model

The polyhedron model [31] is a mathematical abstraction of loop programs. It models a program
as a union of polyhedra and relations between these polyhedra. Program transformations are
represented by multi-dimensional linearly affine functions. They operate on the model and change
the execution order of operations. The (transformed) model can be converted to new code.
Static Control.To be expressible in the polyhedronmodel, a code regionmust be a static-control part
(SCoP). A SCoP consists of nests of counting loops. The code must operate on linear data structures.
Loop bounds and indices of accessed memory locations must be linearly affine expressions of
structure parameters (integer variables that remain unchanged during the SCoP’s execution) and
the values of iteration variables. Wider definitions of static control exist [14]. We use the benchmark
syrk of PolyBench 4.1, presented in Listing 1, as a running example.
Iteration Domain. The polyhedron model represents programs at the statement-instance level. A
statement instance is the occurrence of a single execution of a statement. A statement instance is
represented as a point in a vector space whose dimensionality is the number of loops that encase
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the respective statement. A statement instance’s coordinates are called its iteration vector. The
restriction to static control enables the representation of the set of a statement’s instances as union
of polyhedra. Their bounds are specified by the SCoP’s loop bounds and branch conditions.

Example 2.1. Our example’s iteration domain is modeled by two polyhedra, one per statement:
IR = {(i, j) | 0 ≤ i < n ∧ 0 ≤ j ≤ i}, IR ⊂ Z

2; IS = {(i,k, j) | 0 ≤ i < n ∧ 0 ≤ k < m ∧ 0 ≤ j ≤ i}, IS ⊂ Z
3.

Listing 1. The code performs
a symmetric rank-k update. It
computesC = α ·AAT + β ·C .

1 for (i = 0; i < n; i++) {
2 for (j = 0; j <= i; j++)
3 C[i][j] ∗= beta; // R
4 for (k = 0; k < m; k++)
5 for (j = 0; j <= i; j++)
6 C[i][j] += alpha
7 ∗ A[i][k] ∗ A[j][k]; // S
8 }

Schedule. A SCoP’s iteration domain defines the set of all its state-
ments’ instances. But the statement instances’ order remains unde-
fined. Execution order is imposed by a multi-dimensional linearly
affine function, which is called a schedule. A schedule can be repre-
sented by a set of functions, one per statement. Each function’s domain
is the respective statement’s iteration domain. The codomain is a vec-
tor space. Execution order is defined as the lexicographic order (≺) on
the schedule’s range. We may assume that, in a SCoP, all statements’
schedules have the same codomain.

Example 2.2. Our running example has the following schedule func-
tions: ΘR : IR → Z4; ΘR (i, j) = (i, 0, j, 0); ΘS : IS → Z4; ΘR (i,k, j) = (i, 1,k, j).

Program transformation works by replacing the schedule in the SCoP’s model. If a schedule
is multi-dimensional, we call its one-dimensional components schedule dimensions. We call the
first dimension the outermost one and the last dimension the innermost one. To address a schedule
dimension, we superscribe the schedule’s name Θ with the dimension’s index d (Θd ). Analogously,
we denote ranges of schedule dimensions from dimension d to dimension e (e > d) by Θd ..e .
Memory Accesses and Data Dependences.A SCoP’s model must specify memory accesses. A data
dependence from one statement instance to another exists if both access the same memory address
and the former statement instance is executed prior to the latter. From memory accesses, iteration
domain, and schedule, data dependence polyhedra as relations between the statements’ iteration
domains can be computed. Transitive ones are omitted. Dependences of which at least one access
is a write may affect the schedule’s legality. A schedule is legal iff

(
∀ (®i, ®j) ∈ DO ,T : ΘO (®i) ≺ ΘT (®j)

)
for all dependence polyhedra DO ,T that involve write accesses [30].
In this context, let us mention two additional concepts that are crucial in the construction

of legal schedules. A schedule dimension d weakly satisfies a dependence polyhedron DO ,T if(
∀(®i, ®j) ∈ DO ,T : Θd

O (
®i) ≤ Θd

T (
®j)
)
. The dependence polyhedron is said to be strongly satisfied

if
(
∀(®i, ®j) ∈ DO ,T : Θd

O (
®i) < Θd

T (
®j)
)
. The first dimension of a schedule that strongly satisfies a

dependence polyhedron is said to carry the dependence polyhedron. There are constellations in
which the dependences in one dependence polyhedron are carried by different schedule dimensions.

With respect to a one-dimensional schedule Θ, a dependence polyhedron DO ,T can have a
direction. If for all (®i, ®j) ∈ DO ,T the value of sgn(ΘT (®j) − ΘO (®i)) is 1, then the direction is forward;
-1 is backward; 0 is orthogonal. The direction may also vary among a polyhedron’s elements.

Example 2.3. The following data dependence polyhedra of syrk affect the legality of schedules:
DR,S = {(i, j, i, 0, j) ∈ IR × IS | i < n ∧ 0 ≤ j ≤ i}

DS ,S = {(i,k, j, i, 1 + k, j) ∈ IS × IS | m > 0 ∧ i < n ∧ 0 ≤ k ≤ −2 +m ∧ 0 ≤ j ≤ i}.

Tiling. Tiling [39] can improve data locality. The transformation blocks some of a given loop nest’s
loops and permutes the loops that enumerate the blocks outward in the nest. It is also applicable to
imperfect loop nests [74]. In the polyhedron model, rectangular tiling may be applied legally to a
sequence of schedule dimensions iff these schedule dimensions are permutable (that is, if they all
weakly satisfy the same set of data dependences) [19]. Such a sequence is called a tilable band.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: October 2018.



Iterative Schedule Optimization with Surrogate Performance Models 1:5

ΘR ΘS

i j n m 1 i k j n m 1

1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

domain: IR ∪ IS

schedule: Θ1
R (i , j) = i ; Θ

1
S (i , k , j) = i , coincident : [1]

sequence

filter: IR

schedule: Θ3
R (i , j) = j

coincident: [1]

filter: IS

schedule: Θ3
S (i , k , j) = (k , j)

coincident: [0, 1], permutable: 1

Fig. 1. Schedule matrix (left) and schedule tree (right) of the SCoP in Listing 1.

Representing Schedules. A schedule function ΘS of a statement S can be represented as a schedule
(coefficient) matrix. Each of its rows contains a coefficient per iteration variable of the loops encasing
S , a coefficient per structure parameter, and a coefficient for the constant 1. Putting statement
schedules’ matrices side by side, the schedule of the entire SCoP is expressible in one matrix.

Schedule matrices are convenient for sampling schedules since, given a dependence polyhedron
DO ,T , the set of all rows that correspond to one-dimensional schedules that must weakly or strongly
satisfy the dependences in DO ,T is a polyhedron that can be computed using Farkas’s Lemma [29].

Schedule matrices are less convenient when it comes to analysis or transformation of schedules.
Schedule trees by Grosser et al. [37] make schedules more tangible. Other than matrices, schedule
trees can capture textual execution order uniquely with sequence nodes. This makes them more
suitable for transformation and analysis, since many operations, like tiling, process one branch of
the tree at a time. We recall the concept, to the extent necessary, using our running example.

Example 2.4. Figure 1 shows a schedule matrix and a schedule tree that both encode the execution
order of the source code of our running example syrk. The correspondence between the matrix
and the schedule functions in Example 2.2 is straightforward. Let us focus on the schedule tree.
The root of a schedule tree is a domain node. It declares all statements’ iteration domains. In

our case, the root’s child is a band node. Band nodes contain partial schedule functions. The band
node underneath the root encodes the outermost loop of our SCoP. Dimensions of a band node’s
schedule can be marked parallel (coincident). The band node’s child is a sequence node. Sequence
nodes partition the iteration domain. Per partition in the partitioning, a schedule is encoded in a
separate subtree. The partitions’ execution order is given by the subtrees’ order. The children of
a sequence node are filter nodes, which specify the iteration domain’s subset that is scheduled in
the subtree underneath. In the subtree on the right, we see a band node that is marked permutable,
which enables it for tiling. Branches are terminated by leaf nodes, which we omit in the figure.

2.2 Decision Trees and Random Forests

Classification and regression tree (CART ) [21] learning is a technique of supervised machine-learning.
A CART results from splitting a training set of samples repeatedly into two subsets until each subset
is homogeneous in terms of the dependent variable’s value or a splitting criterion is reached. Each
recursive split yields a node in a binary tree that stores the predicate on the independent variable
according to which the split was made. The final (homogeneous) sets of training samples are
represented by the tree’s leaf nodes, which hold the dependent variable’s respective values. Optimal
splitting predicates are identified by the use of entropy measures such as GINI [21]. To predict the
dependent variable’s value from an input vector of values for the independent variables, one must
start at the tree’s root, evaluate the inner nodes’ predicates, and descend further accordingly until
a leaf is reached. The prediction is the majority class of the values stored in the leaf node.

Decision trees are susceptible to overfitting. An overfitted classifier has a poor predictive power
and its model is overly complex since it reflects all details of the training data. Pruning of subtrees is
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a profitable technique to reduce overfitting in decision trees. Another technique is to set a minimum
number of training samples that are classified in a leaf of the decision tree.
Random forests [20] reduce the overfitting effect of CART. One learns several trees, each on a

subset of the training data. Predictions are the average predictions of the individual trees.

2.3 Polyite

Polyite [35] is an open-source tool for iterative schedule optimization in the polyhedron model. It
samples schedule matrices from the search space of legal schedules for a given SCoP. Its theoretical
foundation is the work by Pouchet et al. [56, 57]. Other than their approach, Polyite practically
considers the entire search space. Exploration may proceed either at random or guided by a GA.
The GA’s schema resembles that of Pouchet et al. [57], but it can traverse our wider search space.

Polyite’s GA starts from a randomly generated population of schedules. Strong diversity in this
population must be ensured. A population’s fitter half survives and is passed to the next generation
and reproduces until the full population size has been reached again. Mutations of schedules are
strong at the beginning of the search and are gradually dampened by an annealing factor.
There is little locality in the schedule search space in a sense that a very small change, like

replacing a single coefficient of an already profitable schedule, is unlikely to produce an even better
schedule [57]. Therefore, the initial population’s strong diversity, the strong mutations to schedules,
and the elitism [8], which lets the fittest schedules survive to the next generation, are indispensable.
Polyite relies on Polly [36] to apply schedules to code. Before passing a schedule to Polly,

Polyite transforms the schedule matrix to a meaningful simplified but equivalent schedule tree.
Polyite’s general sampling strategy has two phases. The first phase is to select randomly a subset

of the search space. For this purpose, we relax the multi-dimensional search space construction
by Pouchet et al. [57]. In the second phase, we select a schedule from the chosen subset of the
search space. Here, we rely on an extension [46] of Chernikova’s algorithm to represent polyhedra
geometrically. Regarding sampling with Chernikova, the important aspect is that the polyhedra
that model subsets of the search space are unbounded except for the preservation of legality. This
keeps their number of vertices low [35]. In contrast to the approach by Pouchet et al. [56, 57], the
schedules sampled by Polyite encode explicitly all loops of the transformed code.
By avoiding likely unprofitable subsets of the search space and sampling such that schedule

matrices tend to be sparse we can strongly increase the profitability of the best schedule found [35].

3 SCHEDULE TREE CONSTRUCTION AND SIMPLIFICATION

In this section, we present our conversion of schedule matrices sampled by Polyite to simplified
schedule trees [37], which suit further transformation and feature extraction better. While the
Integer Set Library (isl) [67] can convert from schedule trees to schedule matrices, there is no
sophisticated reverse transformation. With isl, the only option is presently to store the complete
schedule in a single band node [68], which does not improve over schedule matrices’ expressiveness.
Some of the schedule matrices that we sample happen to encode loops with only one iteration

and uselessly shifted loop bounds. Furthermore, schedule coefficients may be needlessly large. Two
different schedule matrices, even matrices with differing numbers of rows, may represent schedules
that prescribe the same execution order. Yet, for schedule classification to work, equivalent schedules
should have equal feature values. Thus, we convert schedule matrices to simplified schedule trees.
We also apply this conversion before passing schedules to code generation. Cohen et al. [25]
recognized the need for normalization of representations of schedules and SCoPs.

Basic Construction. We start by describing the conversion of schedule matrices to schedule trees.
Let us assume a SCoP with statements S1, . . ., Sm and respective iterations domains IS1, . . ., ISm .
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Let MΘ be an n-dimensional schedule matrix. MΘ can be decomposed into statement schedules
ΘS1, . . .,ΘSm . We define a partial order on the statements’ iteration domain:
ISx <

k ISy ⇔
(
∀ (®i, ®j) ∈ ISx × ISy : Θ0..k−1

Sx
(®i) = Θ0..k−1

Sy
(®j) ⇒ Θk

Sx
(®i) < Θk

Sy
(®j)

)
. Iteration domain

ISx precedes ISy iff, with respect to schedule dimension k , all iterations of Sx are executed before
the iterations of Sy . This is textual execution order of statements. The isl code generator [37] also
determines the statements’ textual order. Generally, polyhedral code generators determine textual
ordering, but at a finer-grained level that splits iteration domains [12, 37, 66].
There is another way to encode textual order in schedules. Let schedule dimension k encode

a loop around statements S1, . . ., Sm . Let the loop have stride (increment) αk ∈ N. If dimension k
of the statements’ schedules has the form αk · i + βk1, . . .,αk · i + βkm with i being some original
iteration variable and βk1, . . ., βkm ∈ [0,αk − 1], then schedule dimension k can be represented by a
band node with schedule α · i for each statement, followed by a sequence node that enumerates
the statements according to the values of βk1, . . ., βkm in ascending order. We could replace α by 1,
following Bastoul [13] and Grosser et al. [37], who proposed the same simplification, but, in our
case, this is taken care of by one of the simplification steps described further on. We denote this
partial order by <̃k . Grosser et al. call this technique shifted stride detection.

ALGORITHM 1: Basic Schedule Tree Construction (constructTree)
Input: I = {IS1 , . . . , ISm }: Set of statement iteration domains, ΘS1 , . . . , ΘSm : n-dimensional statement schedules,

k : current dimension, n: total number of schedule dimensions
Output: The constructed schedule tree.

1 Procedure Partition(J , ⊗) // Set of iteration domains, order predicate
2 return

〈
P1, . . . , Pl ⊆ J |

(
∀i , j ∈ {1, . . . , l } : (i < j) ⇒

(
Pi ∩ Pj = ∅ ∧

(
∀(ISx , ISy ) ∈ Pi × Pj : ISx ⊗ ISy

) ) )
∧

(
∀i ∈

{1, . . . , l } : ¬
(
∃Q ⊂ Pi : Q , ∅ ∧

(
∀ISx ∈ Q : (∀ISy ∈ (Pi \Q ) : ISx ⊗ ISy )

) ) )〉
3 if k > n then return LeafNode(I);
4 if ΘS1 , . . . , ΘSm == 0 then return constructTree(I , ΘS1 , . . . , ΘSm , k + 1, n) ;
5 children← ⟨⟩; ⟨P1, . . . , Pl ⟩ ← Partition(I , <k )

6 if l > 1 then
7 for i ∈ [1, l ] do
8 S ← {ΘSx |ISx ∈ Pi }; children.append(FilterNode(Pi , constructTree(Pi , S , k , n)))

9 return SeqNode(children)

10 ⟨P ′1, . . . , P
′
l ′ ⟩ ← Partition(I , <̃k

)

11 if l ′ > 1 then
12 for i ∈ [1, l ′] do
13 S ← {ΘSx |ISx ∈ P

′
i }; children.append(FilterNode(P

′
i , constructTree(P

′
i , S , k , n)))

14 return BandNode(ΘkS1
− βk1 , . . . , Θ

k
Sm
− βkm , SeqNode(children))

15 return BandNode(ΘkS1
, . . . , ΘkSm , constructTree(I , ΘS1 , . . . , ΘSm , k + 1, n))

Algorithm 1 illustrates our recursive construction of a basic, unsimplified schedule tree starting
from a set I of statement iteration domains and, per statement, an n-dimensional schedule matrix.
Finally, the algorithm requires a counter k to know the next schedule dimension to be processed.

If k > n, that is the schedule matrices have been processed, we are done and return a leave node.
If schedule dimension k is constant zero, we can ignore it and go on to dimension k + 1.

Next, we perform topological partitioning according to either of the partial orderings <k and <̃k

on I . In either case, the result is a partitioning of I . The resulting subsets are totally ordered. If, in
one case (the preference is for <k ), the partitioning has more than one element, we introduce a
sequence node to enumerate the subsets. If the sequence node is yielded by <̃k , it is preceded by a
band node. The sequence node’s children are constructed recursively by Algorithm 1.

If the partitioning according to both, <k and <̃k , has only one element, we construct a band node
that stores schedule dimension k and recursively call Algorithm 1 for I and k + 1.
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domain: IR ∪ IS

schedule: Θ1
R (i , j) = 2 · i ; Θ1

S (i , k , j) = 2 · i

sequence

filter: IR

schedule: Θ1
R (i , j) = 2 · i

schedule: Θ2
R (i , j) =m + 42 · j

schedule: Θ3
R (i , j) = i

filter: IS

schedule: Θ1
S (i , k , j) = 2 · i + 1

schedule:
Θ3
S (i , k , j) = −m + 21 · k

schedule: Θ4
S (i , k , j) = j

2.

2., 4.

1., 2.

3.

1., 2., 4.

1., 2.

domain: IR ∪ IS

schedule: Θ1
R (i , j) = i ; Θ

1
S (i , k , j) = i

coincident: [1]

sequence

filter: IR

schedule: Θ2
R (i , j) = j

coincident: [1]

filter: IS

schedule: Θ3,4
S (i , k , j) = (k , j)

coincident: [0, 1], permutable: 1

Fig. 2. Schedule tree of the schedule of Example 3.1, before (left) and after (right) simplification. The nodes
that are affected by schedule tree simplification are each annotated with the relevant simplification steps.

Example 3.1. We pick up the running example from Section 2. The following (needlessly compli-
cated) schedule prescribes the same order as the schedule in Example 2.2:

ΘR : IR → Z4; ΘR (i, j) = (2 · i, 42 · j +m, i, 0) ΘS : IS → Z4; ΘS (i,k, j) = (2 · i + 1, 0, 21 · k −m, j).

By calling Algorithm 1 for ΘR,ΘS , we obtain the schedule tree shown in Figure 2 on the left. The
initial call yields the band node and the sequence node directly underneath the domain node, as the
first schedule dimension encodes textual order according to <̃k . The sequence node separates the
two statements. Its subtrees result from calling Algorithm 1 individually for each of the statements
and their schedule. Further sequence nodes cannot occur, as there are only two statements.

Simplification. The conversion of the schedule matrix to a schedule tree is followed by a sim-
plification that preserves the tree’s semantics and exposes tilable bands and parallelism. At any
step during the simplification process, let I be the set of the statements’ iteration domains that are
scheduled in the subtree that we consider at this step. Let Θ be the original schedule and Θ′ the
result of simplifying Θ. One may verify that all of the proposed simplification steps comply with
the following properties that are necessary for a simplifcation step to be semantics-preserving.

Execution Order. The relative execution order of statement instances is preserved. Formally:(
∀ IX , IY ∈ I :

(
∀ (®i, ®j) ∈ IX × IY : ΘX (®i) ≺ ΘY (®j) ⇔ Θ′X (

®i) ≺ Θ′Y (
®j)
) )
.

Direction of Dependences. Given a data dependence from an instance of statement O with
iteration vector ®i to an instance of statementT with iteration vector ®j , their execution order must be
retained with respect to any dimension k of the transformed iteration space. If Θk

T (
®j) −Θk , has been

eliminated by simplification, we do not need to consider it further. Otherwise, then let dimension k ′
of Θ′ correspond to dimension k of Θ (the simplification may have changed the index). Prerequisite:

sgn
(
Θk
T (
®j) − Θk

O (
®i)
)
= sgn

(
Θ′k

′

T (®j) − Θ
′k ′
O (®i)

)
The second criterion is necessary, as the first does not distinguish between two schedules that
only differ by a skew of a nested loop. This is particularly relevant because we simplify the
schedules before the application of tiling. Essentially, this criterion preserves the forward only data
communication in permutable bands. We apply the following steps to simplify schedule trees:

1. Remove the constant offset (which includes multiples of structure parameters) from each band
node’s one-dimensional schedule that applies to every statement.

2. Divide a band node’s schedule’s coefficients by their greatest common divisor (GCD).
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Step 2 may modify loop strides with the goal of normalization. Polyhedral code generators adjust
loop strides to avoid guards in loop bodies. Given the set of all statements in a loop body, Bastoul
[13] determines the optimal loop stride as the GCD of the strides required by each of the statements
and expressions that correspond to the required lower loop bounds.

3. Replace subtrees whose ancestors encode an injective schedule by leaves.
4. Delete band nodes whose one-dimensional schedule Θk does not assign different execution

steps to any pair of statement instances that are executed in the same step according to Θ1,k−1.
Formally, a band node with schedule Θk can be deleted if the following condition holds:(

∀ IX , IY ∈ I :
(
∀ (®i, ®j) ∈ IX × IY : Θk−1

X (®i) = Θk−1
Y (®j) ⇒ Θk

X (
®i) = Θk

Y (
®j)
) )
.

Vasilache [65] showed the validity of steps 1 and 2. Step 4 and the detection of degenerate loops
by Grosser et al. [37] have the same purpose.
As we apply tiling as an additional schedule tree transformation after the simplification of the

schedule trees, the modification of loop strides by Step 2 may affect the number of statement
instances computed per tile. Since, for strides that exceed the chosen tile size, tiling would have no
effect, loop strides should be reduced before code generation.

Minimizing schedule coefficients’ absolute values is possible [35] but too expensive.
After simplification, we identify permutable bands and collect all in band nodes, which we mark

permutable. Finally, we mark parallel dimensions in band nodes’ schedules and, per statement,
we identify schedule dimensions that yield loops. The latter is due to the noisiness of iteratively
generated schedules and eases feature extraction (see Section 4).

Example 3.2. Figure 2 shows on the right the schedule tree of Example 3.1 after simplification.
The nodes of the tree on the left are annotated by the simplification steps that affect them.

4 SCHEDULE TREE FEATURES

Section 3 describes how we prepare schedules for feature extraction. Now, we present schedule
tree features that we use to learn a performance model and predict the profitability of schedules.
A feature must adhere to some properties to allow prediction. (1) It must be independent of

a SCoP’s size or complexity (e.g. the number of statements). Otherwise, models could only be
transferred to equally structured SCoPs. (2) Its value can be normalized to the interval [0, 1].
Otherwise, different value ranges for the same feature of different schedules would complicate
learning a pattern of profitable schedules. (3) Feature calculation must not exceed the transformed
code’s execution time. The features should express most of schedules’ performance aspects.
We expect that the inclusion of program features would, on the one hand, yield more accurate

models, but on the other hand, require a much large and comprehensive training set.
Schedule features are either structural, such as schedule matrices’ sparsity, without an obvious

relation to performance, or performance-related, such as coarse-grained parallelism. To define
features, we use the symbols in Table 1. The features’ definitions rely on the fact that our schedules
are linearly affine and that a statement can only occur in one branch of a schedule tree.

4.1 Structural Features

These features are not obviously performance-related. We discuss their relation to performance.
Schedule Tree Depth (FDepth). This feature is the depth of a schedule tree relative to the maximum
depth that any simplified schedule tree produced by Polyite can have. While the true maximum is
Γ = |I | +

∑ |I |
i=1 dim(ISi ) (excluding domain and filter nodes), we observed that Polyite produces

mostly schedule trees that have a depth lower than Γ′ = |I | +max |I |i=1 dim(ISi ) + 1. Our schedule
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Table 1. Symbols in features’ descriptions

dim(IS )Dimensionality of statement S ’s iteration domain
I The set of all statements’ iteration domains of a SCoP
dim(Θ) Dimensionality of the schedule
S The number of sequence nodes in a schedule tree
L The number of leaves of a schedule tree
A Total number of memory access relations in a SCoP
∆i The number of loops surrounding statement Si , or 1

in the absence of loops (max
(
dim(ISi ), 1

)
)

trees’ depths exceed this bound rarely. With γ denoting
the actual depth, the normalized feature is FDepth = γ/Γ′.
The feature’s value increases with loop distribution at dif-
ferent dimensions and one-dimensional bands that cannot
be grouped in a permutable band. A schedule that, as-
suming the absence of data dependences in the SCoP, has
exactly tree depth Γ′ = 5 is ΘX (i) = (i, 0, 0, 0, 0)T ;ΘY (i) =
(0, i, 1, 0, 0)T ; ΘZ (i) = (0, 0, 1, i, 1)T ; i ≥ 0.
Let us explain the theoretical bound Γ. Excluding domain node and filter nodes, the maximum

depth of any simplified schedule tree is Γ = |I | +
∑ |I |

i=1 dim(ISi ). |I | is the depth of a cascade of
sequence nodes where, at each level, one statement’s iterations become separated from those of the
remaining statements. At the tree’s bottom are leaf nodes. The second summand in the definition of
Γ represents the case that every band node’s schedule encodes just one loop around one statement.
Number of Sequence Nodes (FSeq). A schedule tree contains at most |I | − 1 sequence nodes. The
number is reached if each leaf node corresponds to exactly one statement and each sequence
node has two children. Thus, the normalized number of sequence nodes in a schedule tree is
FSeq = S/(|I | − 1). The feature relates to loop distribution, and to how many loops are split.
Number of Leaves (FLeaves). The number of leaf nodes is another feature that is related to the
degree of loop distribution. To normalize this features’ value, we rely on the fact that, in our case, a
schedule tree has at most |I | leaves. The feature is FLeaves = L/|I |.
It is not straightforward to relate the aforementioned three features to the profitability of

schedules. The balance between loop distribution and loop fusion is a trade-off between data
locality, on the one side, and activation of parallelism and tiling, on the other [17]. With this in
mind, Pouchet et al. [59] propose to determine the optimal balance between loop distribution and
loop fusion using iterative optimization and then schedule each loop nest in a model-driven way.

We could substantiate the widely held conjecture that the sparsity of schedule matrices correlates
to efficient transformed code [35]. Thus, we specified two features to express this property.
Sparsity of Iterators’ Coefficients (FSpIter). This feature expresses the proportion of iteration
variable coefficients that are zero. A high density of the iteration variables’ coefficients increases the
likelihood of skewing. Skewing shifts a loop’s iterations by a multiple of the iteration variable of an
encasing loop. While skewing can enable parallelism and tiling, it complicates index computations.
Sparsity of Structure Parameters’ Coefficients and the Constant (FSpP). This feature is defined
as the proportion of structure parameters’ coefficients and the constant’s coefficients that are zero.

4.2 Performance-Related Features

Besides structural features, there are a number of features that bear a known relation to specific
performance aspects. Since there are many ways of generating optimized code according to a given
schedule, performance-related schedule features must be adapted to the code generator that is being
used. For instance, a code generator can choose whether to parallelize the innermost parallelizable
loop of a loop nest. A parallelism feature should reflect this choice. The following features reflect
the behavior of Polly, which is the polyhedral code generator that we use in our experiments.
Parallelism (FPar). Polly parallelizes each loop nest’s outermost parallelizable loop. Themore state-
ments are encased by a parallelizable loop and the farther outside in the nest each parallelizable loop
is, the larger the feature’s value ought to be. The feature is FPar =

(∑ |I |
i=1ωi ·

dim(ISi )−δi
∆i

)
/

(∑ |I |
i=1ωi

)
.

Here, δi is the index of the outermost dimension in schedule ΘSi that generates a loop and does
not carry data dependences. If the outermost such dimension generates the outermost loop that
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encases Si , we have δi = 0. In our implementation, the ωi are constantly 1 but, to increase the
feature’s expressiveness, we could use them to weigh statements by their number of instances and
their amount of computation. The benefit of parallelism increases with the amount of computation.
Data Locality (FDataLoc). CPUs access memory through a hierarchy of cache levels. Data is trans-
ferred between memory and CPU in cache lines (that is, blocks of data). Since cache size is limited,
a replacement strategy must make space for new cache lines. Thus, to profit from caching, cache
lines must be re-accessed with few accesses to other cache lines inbetween. An exact model of
cache behavior would be an ideal locality feature. However, its computation seems too complex
for practical use [10, 24]. Recent work on analytical modeling of cache behavior [10] can handle
multi-level cache hierarchies and shows a promising tendency in observed time complexity.
Instead, we propose a computationally cheaper feature. The larger the volume of data commu-

nicated by the dependences in a dependence polyhedron DO ,T , the more deeply DO ,T should be
carried in the loop nest. Particularly in the case of a dependence that involves a large number of
memory cells, good temporal data locality is important, because otherwise intermediate memory
accesses to other memory cells can edge values out of the processor’s caches before they can be
reused. In this context, read-after-read dependences are relevant, too. To estimate the communicated
data volume ηR,S , we consider all pairs of memory accesses of O and T . Per pair, we calculate with
Barvinok’s counting algorithm [69] the number of memory cells accessed by both the source and
the target statement instances in DO ,T . ηR,S is then the calculated volumes’ sum. To be able to
compute the volumes, we need to know the structure parameters’ values. Say, the dependences in
our SCoP are modeled by k dependence polyhedra and dO ,T is the innermost schedule dimension
that carries instances of DO ,T . The feature is FDataLoc =

(∑k
i=1ηOi ,Ti · dOi ,Ti

)
/
(
dim(Θ) ·

∑k
i=1ηOi ,Ti

)
.

Tiling (FTile). Since tiling improves data locality, we express the extent to which rectangular tiling
is applicable to a schedule. The version of Polly used tiles permutable bands whose children are
leaves. In our tiling feature, we count, per statement Si , the number λi of loops encoded in the
tilable band node that is associated with the statement. The normalized feature is FTile =

∑ |I |
i=1

λi
∆i
/|I |.

Memory Access Pattern (FMemAcc). As described, a cache miss results not in the load of a single
memory cell but of a contiguous cache line into the CPU cache. Therefore, efficient programs
do not access memory randomly but, ideally, in a pattern along the innermost array dimension
with a small, positive stride. Alternatively, an access may target the same cell for one iteration
of the second-innermost loop. After transformation of the SCoP by the schedule, the feature is
FMemAcc = |A

′ |/|A|, where A ′ is the number of accesses adhering to one of the previous criteria.

4.3 Discussion

Together, our features cover the following aspects of a schedule: loop fusion and distribution,
sparsity of the underlying schedule matrix, parallelization, temporal and spatial data locality, and
tiling. All features’ value ranges are (approximately) normalized to the interval [0, 1]. To avoid
performance models that are only transferable among programs of very similar structure, no feature
relates directly to the structure of the source program. The features addressing textual execution
order are only reasonably applicable to schedules of SCoPs with at least two statements.
The proposed features are meaningful for optimizing loop programs that can be expected to

profit from tiling and coarse-grained parallelization for execution on multicore-CPUs. We are
convinced that an optimization for single-threaded processors, GPUs, or Intel Xeon Phi would
require a different set of features. Moreover, to find schedules that permit offloading of computation
to GPUs, for instance by using the PPCG compiler [70] as code generator, it would be necessary
to restrict the considered set of schedules to ones that yield tiles that can be computed in parallel.
Otherwise, one would encounter numerous schedules without this property.
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Fig. 3. Distribution of speedups yielded by the schedules in the GA’s generations for 3mm (left) and adi (right).

To cover programs that do not profit from coarse-grained parallelism or tiling, we could add
program features and would essentially learn a model per class of programs. The code genera-
tor’s configuration would have to be adapted per class of programs. Furthermore, the features

Table 2. Feature values
of the tree in Figure 2.

FDepth 0.67 FPar 1.00
FSeq 1.00 FDataLoc 0.56
FLeaves 1.00 FTile 0.58
FSpIter 0.62 FMemAcc 0.83
FSpP 1.00

correspond to a specific configuration of Polly as the code generator. Switch-
ing on loop transformations that require an enabling schedule, besides rect-
angular tiling, which we already cover, will make additional features neces-
sary. Among such transformations are strip-mining [72] and diamond tiling
[18]. Our features already cover multi-level tiling [43] in the rectangular
case. The criterion for rectangular tiling is also sufficient for unroll-and-jam,
which was noted by Sarkar [62] for the case of perfect loop nests. Other
transformations, like simple loop unrolling, require no extra feature.

Example 4.1. Table 2 shows the feature vector of the schedule tree in Figure 2 for n=2600, m=2000.

5 LEARNING A CLASSIFIER AND INTEGRATING IT IN THE GENETIC ALGORITHM

In this section, we describe how we learn a surrogate performance model to identify profitable
schedules from feature vectors and execution times of previously benchmarked schedules. That is,
we learn a function that approximates a schedule’s profitability from the schedule’s feature vector.
We describe how we integrate this function into Polyite as a surrogate for benchmarking.

Initially, we used regression learning with schedule features closely related to performance to
predict speedup. We obtained chastening results [27]. Two findings from the evaluation of Polyite’s
GA with benchmarking (GAB ) led us to devise a new approach based on classification. The first
one is that the speedup yielded by the iteratively generated schedules converges surprisingly fast.
Figure 3 illustrates this insight exemplary for the benchmarks 3mm and adi of PolyBench 4.1. The
GA’s population size was 30 schedules and it ran for 40 generations (630 schedules in total). The
boxplots in Figure 3 show the distribution of speedups over the sequential version (-O3) yielded by
the schedules in each population. For adi, the optimum is almost reached in the initial population.
For 3mm, 90% of the maximum speedup are reached after 11 generations (195 schedules). The second
finding is also apparent in Figure 3: the variance of speedups decreases fast. This is caused by
Polyite finding many profitable schedules and the GA’s elitism. These findings motivated us to
use a classifier that identifies likely profitable schedules as a surrogate for benchmarking.

To learn a model for a classifier, we use CART or random forests. To build the training set for a
classifier, we must label each training sample. That is, we must specify whether a certain schedule
Θ is profitable for a program P . To this end, we classify Θ as profitable when the transformed code
yielded by Θ runs, at least, half as fast as the code that results from the best schedule for P that is in
the training set. If none of the schedules for P yields a speedup higher than 1.2, we conclude that P
does not profit from optimization with Polyite and we label all schedules for P as unprofitable.
In our evaluation, we trained classifiers from different training sets. The outcome is always

a CART or a random forest, but the classifier’s structure depends on the training set used. The
supplementary Web site [34] shows an illustration of a CART learned from the entire training data.
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For running the GA with the classifier (GAC ), Polyite’s GA must be altered because in the early
generations profitable schedules may be rare. If more than half of the population is considered to be
profitable, then a randomly chosen subset of these schedules survives and reproduces. Otherwise,
all profitable schedules survive and as many randomly chosen unprofitable ones as are added to
reach half the regular population size. All elected schedules can reproduce, but schedules classified
as profitable are twice as likely to do so. The GA terminates after the classifier labels 95% of the
schedules in the current population as profitable or after a set maximum number of generations.

A conservative option would be to use classification only as a guard for benchmarking.

6 EVALUATION

The overarching goal is to make Polyite’s GA time-efficient to the point of practicality. We replace
the time-consuming fitness assessment of schedules, which is based on benchmarking, with a
classifier that uses a machine-learned surrogate performance model. Thanks to the classifier, only
the schedules in the GA’s final population require benchmarking. We train the classifier based on
feature vectors that we extracted from schedules that result from previous iterative optimizations,
for instance, from earlier versions of the same program. The classification of schedules must be
computationally cheap to achieve a saving of optimization time. Moreover, the surrogate model
must be transferable from the programs used for training to new programs. In the end, the whole
optimization process must still obtain sufficient speedups.

We study the following research questions to address these and other properties.
RQ 1 : Does the classification of schedules scale to large SCoPs?
For the presented approach to be useful, the classification of schedules must be cheaper than the
application of the schedules and the benchmarking of the transformed program. Also, it must scale
for large SCoPs. To answer this question, we evaluate the computational cost of the schedule tree
transformation (Section 3), feature extraction (Section 4), and the classification itself.
RQ 2 : Are our schedule features sensitive to profitability of schedules?
Not all features of Section 4 may be sensitive to the profitability of schedules. That is, not every
feature’s value may vary between schedules that yield different execution time of the transformed
code. Insensitive features can be excluded from the feature vector.
RQ 3 : Can our classifiers distinguish reliably between profitable and unprofitable program schedules?
Is it possible to express the difference between profitable and unprofitable schedules for a program
using the features of Section 4 and random forests? Can we learn a model on schedules of a set of
programs and then use it to classify schedules of another program correctly?
RQ 4 : Is our schedule classifier an acceptable surrogate for benchmarking?
We must compare running GAC (refer to Section 5) and GAB with respect to two criteria. The first
criterion is the time saved by the use of the classifier. The second one is the optimization’s outcome.

6.1 Experiment Setup

Implementation. We extended the iterative polyhedral optimizer Polyite which is written in
Scala (version 2.11). For machine learning, we use scikit-learn [55] (version 0.19.2). scikit-learn
runs in a Python (version 3.5.3) session that is a child process of Polyite. To handle polyhedra,
Polyite relies on Scala bindings for isl (commit cfebc0c6) and libbarnvinok (version 0.41).
Tool Chain. For SCoP extraction, tiling, and code generation, Polyite relies on the polyhedral
optimizer Polly. For comparability of the results, we use the same modified version of Polly
as in our previous study [35] (it is based on commit 2b618e01 of http://llvm.org/git/polly.git).
The modification extends Polly’s JSCOP format by an embedded schedule tree. Further, we
enabled Polly to apply its schedule tree optimizations, such as tiling, to imported schedules.
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Table 3. Characteristics of the benchmarks used and parameters of the training set for each benchmark.

benchmark

2mm
3mm adi

atax
bicg

cholesky

correlation

covariance

deriche

doitgen
durbin

fdtd-2d

floyd-warshall
gemm

gemver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d lu
ludcmp

mvt

nussinov

seidel-2d
symm

syr2k
syrk

trisolv
trmm

# stmts 4 6 9 3 2 4 13 7 11 3 10 4 1 2 4 3 9 2 2 2 3 20 2 8 1 5 2 2 3 2
# dep. polyhedra 6 10 64 4 4 8 19 12 25 8 43 24 18 2 6 3 23 171 16 56 8 89 2 24 59 21 2 2 5 4
max. loop depth 3 3 3 2 2 3 3 3 2 4 2 3 3 3 2 2 3 4 2 3 3 3 2 3 3 3 3 3 2 3
share prof. scheds 0.44 0.28 0.40 0.36 0.54 0.13 0.41 0.51 0.00 0.44 0.00 0.51 0.00 0.62 0.34 0.49 0.49 0.29 0.72 0.30 0.35 0.00 0.47 0.00 0.43 0.00 0.61 0.60 0.32 0.41
train. set size 1112

1060
1166

1184
1175

805
1136

1192
1070

1255
1231

832
590

1222
1165

1172
996

857
1167

1103
907

793
1086

1227
1201

1241
1209

1190
1094

1193

The relevant compiler flags that we use to tile (by a fixed tile size of 64) and generate code are:
-polly-parallel -polly-vectorizer=none -polly-tiling -polly-default-tile-size=64
-march=native. We transform the program further with -O3 -march=native.
Benchmarking. The experiments that involve execution time measurements of transformed code
were run on an Intel Xeon E5-2650 v2 CPU @ 2.6GHz with eight physical cores and 20MB of
L3 cache. All other experiments ran on the Intel Xeon E5-2690 v2 CPU @ 3.00GHz with ten
physical cores and 25MB of L3 cache. Hyperthreading and Intel Turbo Boost were disabled. The
operating system was Debian 9.5 with Linux 4.9. We ran Polyite with OpenJDK 8. For E 2 we
used Ubuntu 16.04 with Linux 4.4 and Oracle JDK 8. We executed each transformed program
version five times and took the shortest measured execution time. In an additional preceding run,
we verified the computation result. We purged any schedule that yielded incorrect computation
results. While all schedules are legal in theory, they can, for instance, trigger integer overflows in
the transformed programs. A schedule’s evaluation may fail for the following reasons: A timeout
(five minutes for compilation and 30 minutes overall), failed compilation, and mis-compilation,
which yields run-time errors. In previous work, we presented a statistics on these causes of failure.
Benchmark Set.We used the PolyBench 4.1 benchmark set, which contains 30 typical algorithms
from application domains for which the polyhedron model is relevant. We excluded the programs
floyd-warshall and seidel-2d, which are the only benchmarks that Polly models with a single
statement. Since some of our schedule tree features are not meaningful for SCoPs with a single
statement, models learned from the other benchmarks are not applicable to these programs. We use
the built-in timer of PolyBench to measure execution time. We set the configurable data set sizes
of PolyBench to “extra large” because, for smaller sizes, the arrays tend to fit into the L3 cache,
which undermines data locality optimizations. Table 3 shows characteristics of the benchmarks.
Configuration.A schedule matrix’s rows originate from a list of polyhedra, each row from another
polyhedron. By configuration, a row is the result of choosing a point on one of a polyhedron’s
minimal faces and adding a linear combination of the polyhedron’s bidirectional rays (lines) and a
conical combination of its unidirectional rays. At most two rays and lines have non-zero coefficients
with absolute values from {1, 2, 3}. Further, the sampling is configured such that schedules with
outer parallelism can occur. We found that these particular settings permit random exploration
to compete with GAB [35]. The GA starts from a random population. In our previous study, we
let it run for 40 generations (not counting the initial population) with population size 30 (630
schedules tested). We used these settings again to generate training sets. To assess the reduction
in optimization time that results from the use of the surrogate performance model, we needed to
know the execution time of GAB . For most benchmark programs in PolyBench 4.1, the number
of 40 generations is too high. We use it to ensure convergence against the reachable maximum
speedup. Instead, we analyzed the runs that had generated the training sets and analytically
determined a more suitable termination criterion forGAB . The optimization will terminate if, from
one generations to the next, the execution time yielded by the optimal schedule known did not
reduce by more than 2% over eight generations. Considering a smaller number of generations
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Fig. 4. Avg. duration of schedule tree transformation and feature extraction depending on the number of
dependences for floyd-warshall (left) and atax (right). The data points’ annotations are the corresponding
numbers of statements. The duration of computing the data locality feature is also shown separately.

would often cause too early termination. To account for the GA’s randomness, we used the average
duration of five runs of GAB with the restrictive termination criterion per benchmark.

For GAC , we increased the population size to 50 schedules to increase the populations diversity.
Also, an increased population size should not affect the processing time of GAC substantially. The
GA terminates either after 40 generations (1050 schedules) or as soon as 95% of the schedules have
been classified as profitable, followed by benchmarking of the schedules in the final population.
Training Sets. We generated training sets by running GAB over 40 generations (630 schedules)
once per benchmark. We generated another 630 schedules per benchmark with random exploration,
merged the two sets of schedules, and filtered for successfully benchmarked schedules. The result
is a set that covers reasonably the profitability range of the schedules in which we are interested.
We calculated all schedules’ feature values and labeled them as profitable or unprofitable according
to the rule described in Section 5. Table 3 shows characteristics of the training sets.

6.2 Experiments

E 1 : Sensitivity of Features (RQ 2). Given two schedules for a SCoP that yield strongly different
execution times of the transformed code, we call a feature sensitive to performance if its value differs
between the two schedules. The sparsity of parameters’ coefficients and the constant appears to be
the least sensitive feature. Its value is almost always between 0.75 and 1 and barely differs between
schedules with different profitability. Thus, we did not use the feature in the other experiments.
E 2 : Scalability of Schedule Simplification and Feature Extraction (RQ 1). To examine how
well schedule tree transformation, simplification, and feature extraction scale with the SCoP size, we
used a semantics-preserving technique proposed by Upadrasta and Cohen [64] to scale the number
of statements and dependences of a SCoP by partially unrolling outer loops. Per benchmark and
number of unrolled loop iterations, we generated 100 schedules. Then, per schedule, we measured
the duration of each step of the schedule tree construction and simplification, and of feature
extraction. Figure 4 shows, per number of dependences, the average duration of the schedule
tree construction and simplification, the total duration of feature extraction, and the duration of
calculating the data locality feature for the benchmarks atax and floyd-warshall (modeled with
two statements in the unrolled version). Note that, here, an increase of the number of dependences
implies an increase of the number of statements and schedule coefficients. One can see from the
plot of floyd-warshall that, asymptotically, the duration of the schedule tree construction and
feature extraction grows faster than linearly. In total, we have evaluated ten benchmarks. The
results are on the supplementary Web site [34]. The calculation of the data locality feature always
dominates feature extraction. By analyzing the algorithm to calculate the data locality feature, we
found that the costliest part is to determine the communicated volumes of data. The cost of this
step depends strongly on the number of memory access relations in the SCoP that address the same
memory location. This cost can be leveraged partly by caching results.
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Table 4. Average results per combination of benchmark and p for the optimal configuration of random forest
that we determined in E 3. Listed are, per benchmark and p, the average rate of false positives among the
unprofitable schedules, the average rate of false negatives among all profitable schedules, among the schedules
that yield ≥ 80% of the speedup, and among the schedules that yield ≥ 95% of the speedup. Finally, we
show the average rate of miss-predictions per combination of benchmark and p. In the absence of profitable
schedules for a benchmark the share false negatives is undefined, which we indicate by dashes.

p

2mm
3mm adi

atax
bicg

cholesky

correlation

covariance

deriche

doitgen
durbin

fdtd-2d
gemm

gemver

gesummv

gramschmidt

heat-3d

jacobi-1d

jacobi-2d lu

ludcmp
mvt

nussinov
symm

syr2k
syrk

trisolv
trmm

r
o
w

a
v
g
.

% false pos. 1 5 12 4 5 4 0 6 8 0 0 0 0 11 6 12 0 22 5 1 1 0 59 1 0 10 6 0 9 7

% false neg. 1 14 5 100 83 94 100 96 54 - 95 - 100 14 93 86 100 72 96 100 99 - 16 - - 8 60 100 72 72

% false neg. ≥ 80% 1 4 1 100 95 95 100 98 57 - 100 - 99 15 96 94 100 57 100 100 99 - 29 - - 5 71 100 77 74

% false neg. ≥ 95% 1 2 2 100 100 95 100 100 92 - 100 - 99 57 100 95 100 0 100 100 98 - 0 - - 2 100 100 83 75

total % mispred. 1 9 10 43 33 53 14 42 31 0 42 0 50 13 36 48 49 37 70 31 35 0 39 1 0 8 39 32 34 28

% false pos. 2 4 14 4 6 4 1 7 8 0 0 0 0 11 6 11 0 15 3 1 3 0 47 1 0 9 7 2 7 6

% false neg. 2 15 5 97 71 92 100 95 50 - 97 - 100 14 89 85 100 82 97 100 99 - 24 - - 7 56 99 75 72

% false neg. ≥ 80% 2 5 1 97 87 92 95 96 52 - 99 - 100 14 92 91 100 84 100 100 99 - 14 - - 5 65 89 76 72

% false neg. ≥ 95% 2 3 2 99 88 92 100 100 85 - 99 - 100 60 100 92 100 44 100 100 99 - 0 - - 2 91 99 81 76

total % mispred. 2 9 11 42 29 52 14 43 30 0 43 0 51 13 34 47 49 35 70 30 36 0 36 1 0 8 36 33 35 28

% false pos. 3 4 14 5 6 4 1 7 8 0 0 0 1 12 6 11 0 12 3 1 3 0 42 1 0 10 7 2 6 6

% false neg. 3 16 5 95 68 90 100 95 49 - 98 - 100 14 87 85 100 85 97 99 99 - 28 - - 8 55 99 71 71

% false neg. ≥ 80% 3 6 1 95 85 90 96 96 50 - 99 - 100 14 91 91 100 85 100 99 99 - 13 - - 5 63 92 68 71

% false neg. ≥ 95% 3 4 2 99 85 90 100 100 77 - 99 - 100 61 99 91 100 49 100 99 99 - 0 - - 3 88 98 72 75

total % mispred. 3 9 11 41 28 51 14 43 29 0 43 0 51 13 33 47 49 33 70 30 37 0 36 1 0 8 36 33 33 28

% false pos. 4 5 14 6 6 4 1 7 9 0 1 0 1 12 6 11 0 9 3 1 3 0 40 1 0 10 8 2 6 6

% false neg. 4 17 5 93 67 89 100 95 48 - 98 - 100 14 87 85 100 89 97 99 99 - 30 - - 8 54 98 71 71

% false neg. ≥ 80% 4 7 1 94 85 89 96 96 48 - 99 - 100 14 91 90 100 87 100 99 99 - 12 - - 5 62 94 66 71

% false neg. ≥ 95% 4 5 2 98 85 89 100 99 70 - 99 - 100 61 98 90 100 55 100 99 99 - 0 - - 3 88 97 70 74

total % mispred. 4 10 12 41 28 50 14 43 28 0 43 0 51 13 33 47 49 32 70 30 37 0 35 1 0 8 35 32 32 28

% false pos. 5 5 15 6 6 5 1 7 9 0 1 0 1 12 6 11 0 7 3 1 4 0 38 1 0 10 8 2 6 6

% false neg. 5 19 5 92 67 88 99 95 47 - 98 - 100 14 86 84 100 91 97 98 99 - 31 - - 8 54 98 69 71

% false neg. ≥ 80% 5 9 1 93 84 88 96 96 46 - 99 - 100 14 90 89 100 89 100 98 99 - 11 - - 5 62 95 62 71

% false neg. ≥ 95% 5 6 2 98 84 88 100 99 66 - 99 - 100 61 98 89 100 57 100 98 99 - 0 - - 3 87 97 65 74

total % mispred. 5 11 12 41 28 50 14 43 28 0 43 0 51 13 33 46 49 32 70 30 37 0 35 1 0 8 35 32 31 28

E 3 : Leave-p-Out Across Benchmarks (RQ 2, RQ 3). In this experiment, we determined the
extent to which knowledge regarding schedules’ profitability can be transferred from one program
to another. Further, we tested different configurations of the learning algorithm.
We removed the schedules of p benchmarks from the training set and learned a performance

model on the remaining ones. Then, we classified the removed schedules and verified the predictions.
This way, we were able to determine the extent to which our performance models are transferable
to unseen programs. The schema is known as leave-p-out. We scaled p from 1 up to 5 and tested
all combinations. Per combination, we investigated the choice between two classifiers – random
forests and CART – with respect to classification accuracy. Moreover, since hyper-parameters of
machine-learning algorithms can have a substantial influence on the classifiers’ accuracy, we tuned
the most important ones. We tuned the minimum number of data points that are classified in a leaf
node of a tree (min_samples_leaf). This parameter controls the tree’s depth and, if set properly,
prohibits overfitting. We tested the values 10, 15, and 20. With random forest, the number of trees
in a forest (num_trees) is another parameter that requires tuning. More trees yield more stable
predictions, but longer computations. We tested with 100, 200, and 300 trees. Each tree is learned
with a randomly chosen subset of the features (max_features). We tested the values 4, 6, and 8.

CART yields twice as many false positives at median as random forest. Among the random forest
configurations, the following yields the lowest median number of false negatives: num_trees = 100,
max_features = 8, min_samples_leaf = 20. We used this configuration in all other experiments.

Table 4 shows results for this optimal configuration of random forest. The average share of false
negatives decreases from 72% for p = 1 (75% for schedules with ≥ 95% of max. speedup) to 71%
for p = 5 (74% for schedules with ≥ 95% of max. speedup), while the share of false positives is low.
Some benchmarks have an extreme number of false negatives.
To characterize these benchmarks, we computed the features’ importance for splitting each

benchmark’s training set into profitable and unprofitable schedules. The heat map in Figure 5
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Fig. 5. A heat map that shows, per benchmark, the GINI importance of each feature.

shows the GINI importance [49] per feature and benchmark. The GINI importance of a feature F is
the sum of the decreases of GINI impurity at a decision tree’s nodes whose splitting criterion is
based on F . The impurity decrease is the difference between the GINI impurity at a node and the
weighted sum of the GINI impurity at its children. In case of random forests, the value is normalized
by the number of trees. On average, tiling is the most important feature, followed by parallelism
and data locality. Next comes the sparsity of iteration variable coefficients. We also calculated GINI
importances from all benchmarks’ training sets at once. Parallelism and tiling are almost equally
important, followed by data locality, and the sparsity of iteration variable coefficients.

To compute the GINI importances, we learned random forests with the following configuration:
min_samples_leaf = 20, max_features = 2 and num_trees = 500. The large number of trees
per random forest and the low number of features that we used to learn each tree in the forest
result in a diverse set of trees in each forest. In contrast, deriving the GINI importances from a
single CART learned with all features would primarily identify the most important feature per
benchmark, but it would not yield strong evidence for the other features.

FPar and FTile are unimportant or less important for correlation, jacobi-1d, jacobi-2d, lu,
and trisolv. With our transfer-learned classifiers, accurate predictions are not possible for these
programs. For fdtd-2d, adi, gramschmidt, and also correlation FPar, and FTile have unusually
low values. For bicg, FTile is unimportant and lower values for FPar are better. For cholesky, FTile
is important and for most profitable schedules the feature’s value is 1, but lower values of FPar are
better. In the case of doitgen, FTile is unimportant and the values of FPar are unusually low. The
schedules of gemver cannot be classified correctly due to a combination of effects.
E 4 : k-Fold Cross-Validation on the Full Training Set (RQ 2, RQ 3). In addition to E 3, we
carried out k-fold cross-validation on the full training set. That is, instead of leaving all schedules of
p benchmarks out of the training set, we removed a share of 1/k (k = 5, 6, . . ., 20) randomly chosen
schedules from the full training set. Then, we learned a performance model from the remaining
schedules using the configuration that we had elected in E 3. Using the model, we classified the
removed schedules. Per k , we repeated the experiment until the determined shares of false negatives
among profitable and false positives among unprofitable schedules became significant. Table 5
shows exemplary results for k = 5, 10, 15, 20. The complete data is on the supplementary Web site
[34]. The rate of mispredictions decreased from 9.64% for k = 5 to 9.41% for k = 20.
E 5 : Cost-Benefit-Analysis of Replacing Benchmarking with Classification (RQ 4). In this
experiment, we evaluated the cost and the benefit of replacing the GA’s fitness function based on
benchmarking with a classifier using a machine-learned surrogate performance model.
Per benchmark program, we used two measures to assess the classifier’s influence on the GA.

The first measure is the transformed code’s execution time after the application of each schedule
compared to the program’s execution time after it has been compiled with -O3. We can specify the
speedup yielded by each schedule. The second measure is the execution time of the GA plus the
time needed to benchmark each schedule in the final population. This includes the time needed for
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Table 5. Exemplary results from E 4. The complete data is on the supplementary Web site [34]. In the absence
of profitable schedules a benchmark’s share of false negatives is undefined, which we indicate by dashes.

k

2mm
3mm adi

atax
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cholesky

correlation

covariance

deriche

doitgen
durbin

fdtd-2d
gemm

gemver
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gramschmidt

heat-3d

jacobi-1d

jacobi-2d lu
ludcmp

mvt

nussinov
symm

syr2k
syrk

trisolv
trmm

to
ta
l

% false neg. 5 12 5 23 11 10 14 33 19 - 18 - 17 5 14 13 14 48 14 46 38 - 17 - - 6 10 21 16 17

% false pos. 5 3 6 8 5 6 2 9 9 0 6 0 5 10 8 11 2 13 4 13 9 0 9 0 0 10 9 10 9 6

total % mispred. 5 7 6 15 7 8 4 19 15 0 11 0 11 7 10 12 8 23 12 23 19 0 13 0 0 8 10 14 12 10

% false neg. 10 12 5 23 11 10 14 32 20 - 17 - 16 5 13 13 13 48 15 46 37 - 17 - - 6 10 21 16 16

% false pos. 10 4 6 8 5 6 2 9 10 0 6 0 5 10 7 11 2 13 4 14 8 0 9 0 0 9 9 10 7 6

total % mispred. 10 7 6 14 7 8 3 19 15 0 11 0 11 7 9 12 7 23 12 23 18 0 12 0 0 7 10 13 11 9

% false neg. 15 11 5 24 11 10 14 32 20 - 17 - 15 5 13 13 13 47 15 45 38 - 17 - - 6 10 20 16 16

% false pos. 15 4 6 8 5 6 2 9 10 0 6 0 5 11 7 11 2 13 4 14 8 0 9 0 0 9 9 10 7 6

total % mispred. 15 7 6 14 7 8 4 19 15 0 11 0 10 7 9 12 7 23 12 23 19 0 13 0 0 7 10 13 11 9

% false neg. 20 11 5 23 11 10 16 32 20 - 17 - 15 5 14 13 13 46 15 46 37 - 17 - - 6 10 20 16 16

% false pos. 20 3 6 8 5 6 2 9 10 0 6 0 5 10 7 12 2 14 4 14 8 0 9 0 0 9 9 10 7 6

total % mispred. 20 7 6 14 7 8 4 19 15 0 11 0 10 7 9 12 7 23 12 23 18 0 13 0 0 8 10 13 11 9

the classification of schedules. We assume that the training data for the classifier is already available.
To account for the randomness of the search, we optimized ten times with each configuration.

To generate schedules, we used a single thread. Also, the benchmarking of transformed program
versions was carried out on a single CPU. Polyite may classify 20 schedules in parallel.

This experiment has two steps. In the first step, we guided GAC with a model learned from
schedules of the program to be optimized. This allowed us to determine how well GAC performs
when it is guided by a performance model that resembles well the program to be compiled. Here, we
labeled any schedule as profitable that yields at least 50% of the speedup yielded by the best schedule
in the program’s training set. This deviates from the labeling rule described in Section 5. We use
the median of the maximum speedups yielded by the ten runs as GAC ’s result for a benchmark.
In the second step, we used the leave-one-out schema to evaluate how well transfer-learned

performance models direct GAC . We learned the models from the training sets of all programs
except the program to be optimized. We labeled the training data as described in Section 5.
As the baseline, we ran GAB with the termination criterion described in Section 6.1 five times

per program. We used the median of the maximum speedups reached as a baseline for GAC .
As a second baseline, we generated randomly ten sets of schedules per benchmark. Each set

contained 50 schedules, which equals the size of GAB ’s final population. If GAC ’s final population
does not differ from randomly generated schedules with respect to the distribution of the speedups
yielded by the schedules, GAC is nothing but random exploration. As a simple test, the schedules in
GAC ’s final population should yield higher average speedups than schedules generated randomly.

Table 6 shows the results of both of the experiment’s steps and the baseline.We list each program’s
sequential execution time (-O3), the speedup over sequential execution yielded by Polly and the
speedup yielded by a single run of GAB running for 40 generations (GAB40). Next, we list the
median number of generations produced by GAB and the median duration of the optimization
that we measured thereby. It follows the median of the maximum speedups in execution time of
the program to be optimized yielded by the best schedules found by GAB in each run. Next, we
report the results from the runs of random exploration. Per benchmark, we show the arithmetic
mean of the speedups yielded by all schedules in all of the sets that we generated randomly. Also,
we determined the maximum speedup yielded by the schedules in each set and determined the
median of the maxima. The last three columns contain the results from running GAC . We report
the median time saved compared to GAB , across the 10 GAC runs per benchmark, the median of
the maximum speedups in execution time of the program to be optimized across the replicated
runs, and the arithmetic mean of the speedups yielded by all schedules in GAC ’s final populations.

In the following, the term “average” refers to the geometric mean since we average normalized
data across different benchmarks [32]. A comparison of the optimal schedules found by each run
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Table 6. Results from E 5. The first ten columns show the baseline. On the right side, the first value per cell
corresponds to the well-fitting classifier; the second value corresponds to the leave-one-out schema.

benchmark exec.

time O3

(sec.)

Polly

speedup

GAB 40
speedup

GAB
median

# gen.

GAB
median

# scheds.

tested

GAB
median

duration

(min.)

GAB
median

max.

speedup

rand.

mean

speedup

rand

median

max.

speedup

GAC %

time saved

GAC
median

max.

speedup

GAC mean

speedup

2mm 37.75 13.81 18.88 15 255 340.37 19.88 4.46 15.47 81.17 / 75.75 17.90 / 18.10 10.87 / 9.36
3mm 51.33 13.39 20.20 18 300 783.15 18.83 2.55 11.37 61.82 / 63.44 15.60 / 16.46 7.79 / 6.97
adi 171.91 7.61 8.57 9 165 1139.65 8.41 2.55 7.90 66.52 / 28.18 8.03 / 7.71 5.08 / 1.76
atax 0.01 0.99 3.09 13 225 22.77 3.02 0.77 2.78 43.81 / 48.35 2.48 / 2.59 1.51 / 1.29
bicg 0.01 1.05 2.79 7 135 18.18 2.78 1.10 2.77 49.27 / 34.37 2.78 / 2.76 1.74 / 1.47
cholesky 13.47 2.68 5.81 9 165 3139.32 6.40 1.31 3.32 76.42 / 72.76 5.03 / 2.12 1.52 / 0.90
correlation 53.11 33.36 43.81 10 180 345.82 36.69 7.19 32.27 -14.29 / 20.70 32.04 / 31.23 11.06 / 13.76
covariance 53.09 33.44 42.24 7 135 160.18 36.40 11.35 35.17 44.38 / 7.20 36.22 / 36.17 23.72 / 23.80
deriche 0.86 1.07 1.12 7 135 282.65 1.07 0.67 1.01 63.94 / 34.65 1.02 / 0.83 0.68 / 0.64
doitgen 5.48 4.06 5.63 16 270 202.45 4.86 1.87 4.10 64.86 / 64.16 4.21 / 4.20 2.68 / 3.10
durbin 0.02 0.99 1.18 7 135 24.55 1.00 0.66 1.00 53.90 / -135.23 1.00 / 1.00 0.71 / 0.65
fdtd-2d 26.81 0.92 3.80 9 165 620.13 3.32 0.74 2.67 65.37 / 60.41 2.76 / 2.55 1.39 / 1.34
gemm 8.95 4.23 4.72 7 135 111.83 4.93 2.07 4.39 48.48 / 67.43 4.41 / 4.41 3.05 / 3.19
gemver 0.10 3.78 6.27 15 255 34.37 6.07 0.83 2.75 36.15 / 37.83 4.45 / 4.50 1.42 / 2.53
gesummv 0.03 3.13 8.99 7 135 15.70 9.04 2.74 8.93 30.15 / 18.05 9.00 / 8.82 6.35 / 4.99
gramschmidt 42.20 8.10 11.17 11 195 489.08 8.56 1.94 7.99 65.40 / 53.58 8.27 / 6.55 5.26 / 1.53
heat-3d 37.31 2.68 4.19 13 225 1211.03 3.65 0.82 2.81 67.13 / 61.06 2.60 / 2.94 1.16 / 1.06
jacobi-1d 0.01 0.88 1.37 7 135 21.35 1.37 0.62 1.36 66.00 / 10.23 1.36 / 1.35 1.01 / 0.75
jacobi-2d 32.82 1.13 4.21 7 135 600.45 4.19 0.97 4.11 66.55 / 40.99 4.16 / 2.78 2.15 / 1.16
lu 71.53 5.38 9.86 14 240 5772.47 9.44 2.24 6.99 76.97 / 75.46 7.75 / 6.39 5.14 / 1.70
ludcmp 69.19 0.97 1.03 7 135 3190.17 1.02 0.97 1.01 72.38 / 63.30 1.01 / 1.01 0.98 / 0.97
mvt 0.08 4.65 8.25 8 150 19.23 8.10 2.46 6.44 36.61 / 27.04 6.31 / 5.89 3.49 / 2.36
nussinov 80.98 0.96 0.98 7 135 973.80 0.97 0.96 0.97 52.25 / 71.29 0.97 / 0.97 0.96 / 0.96
symm 27.41 1.01 1.02 7 135 303.42 1.02 1.00 1.01 48.18 / 42.38 1.01 / 1.01 1.00 / 0.98
syr2k 91.40 21.57 25.97 7 135 197.87 25.99 11.72 25.80 68.46 / 74.18 25.91 / 25.90 19.88 / 20.68
syrk 18.36 13.76 17.27 7 135 105.07 16.14 6.95 16.47 56.64 / 63.09 16.17 / 15.54 11.23 / 10.96
trisolv 0.01 0.36 1.06 7 135 15.35 1.00 0.48 1.33 -6.62 / -5.37 1.00 / 1.00 0.83 / 0.75
trmm 18.86 2.02 22.43 10 180 146.17 22.41 6.42 21.38 70.23 / 57.94 21.46 / 19.83 11.56 / 8.76

of GAC and random shows that often random performs surprisingly well. On average, the optimal
speedups yielded by GAC are higher in case of the well-fitting classifier (factor 1.04) and lower
for leave-one-out (factor 0.97) (1). Yet, for most benchmarks, the arithmetic mean of the speedups
yielded by the all schedules in GAC ’s final populations is higher than the mean of randomly
generated ones (2). Consequently, GAC requires less benchmarking on the target hardware than
random under the precondition that suitable training data is available already. Of course, we assume
that the target hardware was available for the generating of the training data. Recall that random
exploration is configured such that it tends to generate sparse schedule matrices, and outer parallel
schedule dimensions are likely to occur. We illustrate the distribution of the speedups, in case of
random and GAC , using box plots on the supplementary Web site [34]. The best schedules found by
GAC are faster by an average factor of 1.51 than the schedules found by Polly in case of the well-
fitting classifier (3) and by 1.40 in case of the leave-one-out schema (4). We tested these differences
for significance using a paired Mann-Whitney U Test [3] with false discovery rate control [15]
((1) p = 0.0595 (well-fitting classifier); p = 0.16380 (leave-one-out); (2) p = 2.8 · 10−8 (well-fitting
classifier); p = 0.00307 (leave-one-out); (3) p = 1.1 · 10−5; (4) p = 0.00064). The significance test
is inconclusive regarding (1). The optimization with GAC is faster by an average factor of 2.39
in case of the well-fitting classifier and by 1.96 in case of the leave-one-out schema. In case of
some programs with an execution time below one second of their sequential version, the use of
GAC yields a slowdown in optimization time. Furthermore, GAC with the well-fitting classifier is
slower at median than GAB for correlation. Each run of GAC had tested 1050 schedules in this
case while GAB had tested only 180 schedules at median. The time needed to generate the 1050
schedules used up the time saved by using the classifier.
The reduction in the time needed for optimization and benchmarking comes at the price of a

lower speedup yielded by the optimal schedules found compared to GAB . On average, the speedup
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Table 7. Further results from the evaluation of GAC in the leave-one-out schema.

benchmark

2mm
3mm adi

atax
bicg

cholesky

correlation

covariance
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jacobi-2d lu
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nussinov
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median % profitable 82 80 75 78 84 64 94 96 72 68 0 63 96 79 87 0 74 78 57 65 0 93 80 0 96 96 78 71
% early exit 0 0 0 0 0 0 50 80 0 0 0 0 90 0 10 0 0 0 0 0 0 50 0 0 80 60 0 0
median # gen. 40 40 40 40 40 40 27 23.5 40 40 40 40 11.5 40 40 40 40 40 40 40 40 37 40 40 20.5 23.5 40 40
median # scheds tested 1050

1050
1050

1050
1050

1050
725

637.5
1050

1050
1050

1050
337.5

1050
1050

1050
1050

1050
1050

1050
1050

975
1050

1050+
562.5

637.5
1050

1050

yielded by GAC is slower by the factor 0.91 in the case of the well-fitting classifier, and by 0.85 in
case of the leave-one-out schema. Table 7 shows additional results from the leave-one-out schema.

Running GABwith the new termination criterion rather than for a fixed number of 40 generations
(630 schedules) reduces the speedup of the optimal schedule only by the average factor 0.95.

6.3 Discussion

From the result of E 2, we conclude that the answer to RQ 1 is that schedule tree construction /
simplification and feature extraction scale to some extent but not endlessly. Empirically, we found
that both steps have a time complexity that is worse than linear. Our algorithms rely heavily on
integer linear programming (ILP). In theory, the time complexity of ILP solving is exponential
but, in practice, chances are good that an integer linear program can be solved in polynomial
time [28]. The computation of our data locality feature involves Barvinok’s counting algorithm,
whose execution time is exponential in the input’s dimensionality [11]. Thus, the time needed to
compute the data locality feature grows primarily with the number of schedule coefficients.
In RQ 2, we asked whether all of the features in Section 4 are useful for prediction. In E 1, we

found that the sparsity of structure parameters is largely insensitive to speedup and purged it.
In E 3, we found that classifiers based on transfer-learned performance models fail to recognize

many profitable schedules. By contrast, the models yielded few false positives. An analysis of the
features’ importance and value distribution per program largely explains why transfer to some
programs is complicated. There are several programs, such as gemm and syrk in PolyBench 4.1,
that are transformed best by fully tiling each loop nest and parallelizing its outermost loop. These
programs’ simplicity may bias our performance models and decrease their applicability to more
complex programs. Indeed, in E 3 we observed that reducing the number of benchmark programs
in the training set does not decrease, but slightly increases the classifiers’ average accuracy. Our
features’ approximative nature may add to the classifiers’ inability to recognize some profitable
schedules: in the presence of partially fused loops, our parallelism feature may be unable to
recognize some parallelism. Yet, a precise identification of parallelism is generally impossible due
to parametric loop bounds and unknown parameter values. While we could identify partial loop
fusion and model it using sequence nodes in schedule trees, we would still be unable to decide
for every loop whether it will actually be executed at run time. The findings in E 3 indicate that a
normalization of the feature values may also be helpful to increase the classifiers’ precision.

The k-fold cross-validation on the entire training data in E 4 shows that a comprehensive training
set yields accurate predictions. In summary, the answer to RQ 3 is that, to a good extent, models
learned from the results of previous iterative optimization can be used to recognize profitable
schedules of new programs. The success depends on the similarity of the programs involved. There
are very profitable schedules of many benchmarks that we do not recognize as such. The inclusion of
program features in our feature vector would certainly improve our performance models’ accuracy,
but would also require a larger and comprehensive training set of programs. If learned from a
carefully chosen training set, such a model might be widely applicable. Here, we have studied to
which extent one can abstain from program features and learn from data that is available.
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The answer to RQ 4 is that a classifier that is based on a transfer-learned surrogate performance
model can help to accelerate the iterative optimization of new programs. Sometimes, the profitable
schedules cannot be recognized, though, because the characteristics of profitable schedules for the
program to be optimized differ too much from those of profitable schedules for the programs in
the training set. Also, the schedules found by GAC are a bit less profitable than the schedules that
can be found with GAB . While GAB never loses its best schedule found, GAC is not guaranteed to
keep it. Yet, the average performance of the schedules in GAC ’s final population is significantly
higher than the average performance of schedules generated by an informed random exploration.
Regarding the speedup yielded by the optimal schedule found, random exploration often performs
surprisingly well, but it tests more ineffective schedules on the target hardware than GAC . Under
the precondition that suitable training data is available this is a benefit.
For GAB , we set the population size to 30 and let it run for 40 generations (630 schedules). We

had increased this size to 50 for GAC and still let it run for at most 40 generations (1050 schedules).
The motivation was to increase the search space coverage by increasing the population size, since
our classifiers often miss actually very profitable schedules. To investigate this choice, we let our
GA with classification run again, but with a population size of 30 and for at most ⌈(50/30) · 40⌉ = 67
generations (1035 schedules). Again, we optimized each benchmark ten times. On average, GAC
with the reduced population size terminates after 54 generations (840 schedules). Compared to the
original configuration, the median share of schedules classified as profitable is 2.46% higher, on
average. The paired Mann-Whitney U Test is inconclusive regarding this difference. Although the
larger number of generations appears to improve the share of profitable schedules in GAC ’s final
population, the larger population size of 50 schedules increases the coverage of the search space.
Finally, let us explain the higher performance of the code optimized by Polyite compared to

Polly’s result exemplary for trmm and jacobi-2d. Polly yields a speedup of 2.02 over -O3 for trmm,
while Polyite yields 22.43 at best. Both, Polly and Polyite segregate trmm’s statements into fully
separate loop nests. While both schedules enable tiling of both loop nests, Polyite interchanges the
loops in the first nest. For jacobi-2d, the speedup yielded by Polly is 1.13 while Polyite yields
4.21. Polly fuses the two statements and cannot parallelize while Polyite splits the loop nest inside
the time loop and both inner loop nests can be parallelized at their outermost level.

6.4 Threats to Validity

Threats to Internal Validity. (Reproducibility of results) The search space of legal schedules for
a SCoP has an enormous size. Conceptually, it is infinite, but even the size of the finite subset of
reasonable schedules is thousands to millions strong. Our search space exploration is necessarily
incomplete and repeated runs may have different results. To mitigate the effect of randomness on
E 5, we executed each tested configuration repeatedly. Tables 6 and 7 show averaged results.
To control execution time measurement bias, we took several precautions. We benchmarked

every transformed program version five times. In the case of the very short time measurements in
E 2, we measured repeatedly until the mean result was significant. We disabled hyper-threading and
Intel Turbo Boost since they are known to destabilize time measurements. Our benchmarking
machines ran no other workloads in parallel. E 5 ran on machines with a two-socket NUMA design.
We pinned Polyite to one socket and the benchmarking of program versions to the other.

Threats to External Validity. (Generality of conclusions drawn) We use the benchmark set
PolyBench 4.1. It contains algorithms that occur in application domains for which the polyhedron
model is relevant. Yet, the benchmark set’s small size limits our conclusions’ generality. Furthermore,
our approach currently targets primarily programs that profit from coarse-grained parallelism. Its
applicability to very short running loop nests that operate on small data sets is limited.
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7 RELATEDWORK

There is wide consent that machine learning and iterative optimization, or combinations of both, are
necessary to increase a compiler’s awareness of programs and hardware. Hand-crafted heuristics
frequently cannot deliver optimal performance. Therefore, we proposed the iterative schedule
optimizer Polyite [35], whose theoretical foundation is the iterative optimizer LeTSeE by Pouchet
et al. [56, 57]. LeTSeE optimizes for sequential execution without tiling. The search space is more
restricted than the one of Polyite. Notable is the thorough search space sensitivity analysis.

There is also agreement that purely iterative compilation is too inefficient due to the enormous
number of configurations or program transformations that must be tested to reach optimality.
Machine-learning can help to reduce the effort. Most approaches that we found in literature share
their foundation on program characteristics, which rely on either static program features, such as
the number of instructions in a loop body, or dynamic features, such as performance counters.
Primarily, there are two ways of using machine-learned models in compilation. One way is to

use them to prune the search space of iterative optimization to an acceptable number of options to
be tested. Another way is to learn a model to directly select the best option.

Combined Machine-Learning and Iterative Approaches. Park et al. [53] evaluate different modeling
techniques for an iterative search for a good compiler phase sequence. They rely on performance
counters to characterize programs. Ashouri et al. [6] also rely on dynamic features to optimize
the order of compiler phases. That is, from profiling during a single program execution and a set
of hand-crafted rules, they deduce the impact on execution time by a specific sequence. Other
approaches rely on static program features. These can be features of code [1, 63] or characteristics
of hardware and code [40]. Cooper et al. [26] use virtual execution to find an optimal compiler
phase sequence. Ashouri et al. [4] use Bayesian networks to prune their exploration space and rely
on static and dynamic program features and control-flow graph features.
There are three iterative approaches that are based on the polyhedron model. Park et al. [54]

compose schedules from high-level polyhedral transformations (such as loop fusion, tiling, or
pre-vectorization). Each high-level transformation needs an enabling transformation that permits
to encode it into a schedule in a semantics-preserving way. They characterize programs using
performance counters. Long and O’Boyle [47] perform adaptive compilation based on the Unified
Transformation Framework (UTF) [41]. To optimize a program, they reuse known profitable
transformations for previously optimized similar programs. They express program similarity with
static code-features (e.g., the number of arrays used). The profitability of the transformations
applied is measured by run-time feedback. GAPS [50] uses a GA to find profitable schedules. GAPS
starts from a random population of potentially illegal transformations that is seeded by one legal
transformation. The fitness function either measures execution time of transformed programs or
estimates loop and synchronization overhead. GAPS suffers from finding mostly illegal schedules.

Machine Learning Approaches. Again, some approaches rely on dynamic features [5, 22, 53] and
others use static ones [33, 48]. Park et al. [51, 52] use both kinds of features. There is just one
approach based on the polyhedron model. Ruvinskiy and van Beek [61] build on the iterative
approach by Park et al. [54]. They learn a model to predict which of two sequences of primitive
high-level transformations is better for a given program. This enables them to choose directly a
single optimal schedule instead of having to benchmark several schedules.
Polyhedral features can serve other purposes than machine learning: Bao et al. [9] build on

the observation that careful reductions in processor frequency do not reduce execution time
significantly but can save energy. They employ polyhedral features that predict speedup from
parallelization and operational intensity to statically categorize program regions and then select
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a frequency. Kronawitter and Lengauer [44] use polyhedral schedule features in order to prune
schedules in an iterative schedule optimization for the domain of stencil codes.

Finally, there are improvements over the PLuTo algorithm [16] and its derivatives [19, 71] that
rely on static cost functions or limited iterative search. While loop distribution enables parallelism,
it reduces data locality. Loop fusion does the opposite. Bondhugula et al. [17] proposed a loop fusion
model that is expressible as an ILP. Pouchet et al. [58] iteratively find a good fusion structure and
use the PLuTo algorithm to schedule each loop nest. Zinenko et al. [74] improve over the variant
of Verdoolaege and Janssens [71] of the PLuTo algorithm to take explicitly spatial proximity of
memory accesses into account. Live-range reordering [7] improves the applicability of tiling.
To the best of our knowledge, besides GAPS, ours is the only combined machine-learning and

iterative approach that relies on a characterization of transformations instead of programs.

8 CONCLUSION

We propose to accelerate a genetic algorithm to optimize loop programs for data locality and
parallelization by mostly replacing its fitness assessment, which is based on benchmarking, with a
predictor that relies on a machine-learned performance model. The model’s training data originates
from previous iterative optimization. We can reduce the algorithm’s time consumption by 49% on
average. We lose an average of 15% in speedup of the optimized program. Our novel algorithm hits
a sweet spot between faster optimization and a strongly reduced benchmarking effort on the one
side, and a slight deterioration of the optimization result on the other. In fact, the best utilization of
our classifiers may be as a guard for benchmarking.
In contrast to many other approaches, we rely on a characterization of transformations rather

than programs. We were able to demonstrate that knowledge about transformations’ profitability
that has been learned on results of previous iterative optimization can serve to identify profitable
transformations of unknown programs efficiently. We use features to characterize transformation.
Analyzing each feature’s importance for prediction gives us the capability to reason about bench-
marks to which we are unable to transfer our models, and to explicate the premises of our approach.
In summary, we conclude that our approach can speed up the iterative optimization by Polyite, but
the degree of success depends on the similarity of the programs involved. The results strengthen
the assumption that a “one-fits-all” heuristic to loop optimization does not exist.
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