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Abstract
In scientific computing, researchers often use feature-rich software frameworks to simulate
physical, chemical, and biological processes. Commonly, researchers follow a clone-and-
own approach: Copying the code of an existing, similar simulation and adapting it to the
new simulation scenario. In this process, a user has to select suitable artifacts (e.g., classes)
from the given framework and replaces the existing artifacts from the cloned simulation.
This manual process incurs substantial effort and cost as scientific frameworks are com-
plex and provide large numbers of artifacts. To support researchers in this area, we propose
a lightweight API-based analysis approach, called VORM, that recommends appropriate
artifacts as possible alternatives for replacing given artifacts. Such alternative artifacts can
speed up performance of the simulation or make it amenable to other use cases, without
modifying the overall structure of the simulation. We evaluate the practicality of VORM—
especially, as it is very lightweight but possibly imprecise—by means of a case study on
the DUNE numerics framework and two simulations from the realm of physical simula-
tions. Specifically, we compare the recommendations by VORM with recommendations by
a domain expert (a developer of DUNE). VORM recommended 34 out of the 37 artifacts
proposed by the expert. In addition, it recommended 2 artifacts that are applicable but have
been missed by the expert and 32 artifacts not recommended by the expert, which how-
ever are still applicable in the simulation scenario with slight modifications. Diving deeper
into the results, we identified an undiscovered bug and an inconsistency in DUNE, which
corroborates the usefulness of VORM.

Keywords Software variability · Configuration · Variability extraction · Variability analysis
1 Introduction

In scientific computing, natural and artificial processes are simulated in a computer-aided
way. Examples of these processes include physical, geological, and biological processes,

Communicated by: Laurence Duchien, Thomas Thü m and Paul Grünbacher
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such as convection, blood flow, root–soil interaction, and the large deformation contact
problem. One efficient way to simulate these processes is by modeling them as partial dif-
ferential equations and by applying grid-based methods to solve these equations. The idea is
to discretize the typically continuous domain into a finite grid of elements, volumes, or dif-
ferences. For example, instead of computing or keeping track of the temperature in a solid
at any real point, one considers only a set of points arranged by a grid structure. At this
general stage, we refer the reader to standard text books on numerical simulations, such as
these by Braess (2007) or Knabner and Angerman (2003).

Mathematical properties of the processes to simulate constrain the choices of the dis-
cretization techniques and, in turn, the choice of the discretization strategy constrains the
choices of the grid-based method one can use for solving the equations (Grebhahn et al.
2017). To support researchers in selecting optimal data structures and algorithms when writ-
ing their simulation code, there are different frameworks and toolboxes available, such as
DUNE (Bastian et al. 2008a, b), UG4 (Vogel et al. 2013), HYPRE (Falgout and Yang 2002),
and FEniCS (Alnæs et al. 2015). The key benefit of these frameworks is that they provide
reusable implementation artifacts, which substantially reduce the implementation effort of
new simulation code (Remmel 2014). These implementation artifacts can be classes, structs,
or enum values. For example, there might be different implementations of a grid, describing
the geometric properties of the data or different solvers that offer methods for solving the
system of equations represented by the elements of a grid.

For illustration, we show an excerpt of a simulation code for the convection–diffusion
problem in Listing 1, which can be used to simulate the transport in a fluid or porous media,
for instance. In Lines 3–6, a two-dimensional grid is initialized, which is used later to
discretize the partial differential equation and its solution on entities of the grid. The Leaf-
GridView object is necessary for iterating over all entities to perform calculations on each of
them. In Line 9, LeafGridView is passed as a template parameter to ProblemA containing the
convection–diffusion model problem. Different implementation choices represent options
and alternatives to accomplish similar objectives in a simulation. Depending on the math-
ematical properties and assumptions of the simulated process, some of these choices are
invalid and some are more suitable than others. For example, Grebhahn et al. (2017) have
shown that, depending on the discretization and the characteristics of the problem to solve,
only a subset of existing strategies can be used to simulate the process efficiently.

The main obstacle of using scientific frameworks is their complexity and high vari-
ability: They provide a large number of artifacts that are applicable only for certain
scenarios (e.g., DUNE provides 11 artifacts to describe the geometry of the computational
domain). Identifying suitable artifacts for a specific scenario requires knowledge of (i) the

Listing 1 Excerpt from a simulation code solving the convection-diffusion problem
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mathematical properties of the numerical methods, (ii) the physical properties of the process
to be simulated, and (iii) the set of available artifacts provided by the framework that can
be used for the specific purpose. For example, Grebhahn et al. (2017) discuss in detail the
variability and constraints when solving partial differential equations arising in the domain
of porous media flows. In the example of Listing 1, the structured grid as implemented by
YaspGrid<dim> is usually a good choice to simulate flow and transport in porous media,
while for industrial applications with complicated geometries, an unstructured grid such as
UGGrid<dim> is more appropriate.

Typically, researchers who conduct simulations often have no professional background in
software engineering (Remmel 2014). Hence, they fall back to a clone-and-own approach,
in which they copy code of existing simulations and adapt it to the new simulation scenario.
However, the artifacts that are used in the copied code might not be the best choice for the
newly considered simulation. To support researchers in adopting real-world scientific simu-
lations, we propose a lightweight, semi-automatic, API-based analysis approach, VORM.1

VORM analyzes the code and the documentation of the given framework to identify arti-
facts of the framework that can be used in an application (a scientific simulation, in our case)
instead of a currently used artifact. In our example of Listing 1, VORMmight suggest other
grids that might be more suitable for the considered simulation (e.g., UGGrid<dim> instead
of YaspGrid<dim>, for complicated geometries). In general, the set of alternative artifacts
can be reviewed by a user to remove false positives or to reduce the number of considered
artifacts. This procedure can be repeated if multiple artifacts need to be replaced.

After selecting a set of suitable alternative artifacts, VORM can generate one running
configuration of the simulation for each alternative artifact or combinations thereof. These
configurations can then, later on, be used to assess resource usage, find errors, or to identify
the best combination of artifacts with respect to execution time. For example, a researcher
who is interested in an alternative solver implementation for a given problem can generate
a set of configurations of the simulation, where each configuration uses a different solver
type (e.g., Jacobi and Richardson), and then benchmark the different variants to identify the
performance-optimal solver for the specific use case.

It is important to note that VORM is a lightweight approach that uses only information
provided by the API of the framework for identifying alternative artifacts and thus does
not consider information from program analysis or runtime. Without this information at
hand, the recommendations of VORM are necessarily imprecise, which is a prerequisite for
making VORM scale to real-world code.

In a real-world case study, we apply VORM to DUNE, which is a scientific computing
framework offering a large number of strategies to solve partial differential equations using
grid-based methods.2 Our overarching question is:

1VORM stands for extracting the Variability based on the dOcumentation to identify Relations among
Modules.
2https://www.dune-project.org/

https://www.dune-project.org/
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In more detail, we aim at answering the following research objectives:

RQ1: Can VORM identify the same alternative artifacts to a given artifact that have
been proposed by a domain expert?

RQ2: Can VORM discover relations among artifacts of the framework or inconsisten-
cies within the framework not previously known to the domain expert?

To answer RQ1 and RQ2, we consider two simulations written using DUNE: LINEAR-
SOLVER and ELLIPTICPROBLEM. From each simulation, we select 8 artifacts used from
DUNE for which alternatives shall be found. Then, a framework developer (domain expert)
of DUNE3 proposes a set of alternative artifacts for each of the 8 artifacts. We compare these
manually selected alternative artifacts with the ones automatically identified by VORM.

Our case study shows that VORM is able to automatically identify a large number of suit-
able alternatives that have also been proposed by the domain expert. Note that researchers
using the framework might not be as knowledgeable as a developer of DUNE, which
provides us already with a tough baseline. Overall, VORM identifies 94 artifacts to be alter-
natives for the 8 original artifacts used in the two subject simulations. Of these alternative
artifacts, 34 were also proposed by the domain expert. From the remaining 60 alternative
methods, 31 are alternatives that can be used in the simulation with only slight modifica-
tions on the simulation (as confirmed by the domain expert); 2 artifacts were missed by
the domain expert but are still applicable; 28 artifacts are false positives. After having a
deeper look at the artifacts not identified by VORM but proposed by the domain expert, we
identified a bug and an inconsistency in DUNE, which were not known beforehand. These
findings underline the usefulness of VORM in practice.

Based on these results, we conclude that VORM’s lightweight, API-based approach (1)
can identify meaningful alternatives to given artifacts, (2) can identify artifacts that can be
used in a slightly different scenario, and (3) can unveil bugs or inconsistencies in the frame-
work to a developer. While a more sophisticated approach that also considers information
from program analysis or runtime might increase accuracy of the recommendations, it is
certainly much more heavy-weight.

2 Background

In this section, we explain the fundamental concepts underlying VORM. In Section 2.1, we
give an introduction into the DUNE framework, which we use as case study for the evalua-
tion of VORM. In Section 2.2, we introduce the basic terminology that we use throughout
the article.

2.1 DUNE

DUNE, which stands for “Distributed and Unified Numerics Environment”, is a scientific
framework, written in C++, which is being developed to solve partial differential equa-
tions with grid-based methods. DUNE provides reusable implementation artifacts for a
large number of different mathematical concepts. They can be combined in various ways to
solve discretized partial differential equations from different domains. For example, DUNE
provides 11 grid implementations to describe the geometry of structured and unstructured

3Who is our domain expert and also one of our co-authors.
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Fig. 1 Structure of the DUNE framework. Five core modules build the foundation, a range of higher level
modules provide a rich body of functionality

computational domains and 34 implementations to describe the finite element space basis
of a simulation.

The DUNE development process started in 2002. It has a modular structure (see Fig. 1)
with five core modules providing basic functionality. A range of specialized features and
higher-level functionality are available as extension modules, such as the flexible Finite
Element Method abstraction of DUNE-PDELAB. The core modules have a combined size of
approximately 160 thousand lines of C++ code; the discretization module DUNE-PDELAB,
including all ten dependent modules, has a size of over 340 thousand lines. The modules
we consider offer 3 022 different artifacts that can be used in simulations to solve or specify
certain parts of the simulation.4

Overall, DUNE implements the following basic concepts (Bastian et al. 2010): The (i)
separation of data structures and algorithms, (ii) use of generic programming techniques,
and (iii) reuse of existing finite element software.

Similar to the Standard Template Library of C++, DUNE separates data structures and
algorithms, offering developers the possibility of using a suitable combination for the con-
sidered simulation. A developer might simply change the used algorithm without modifying
the whole simulation. For each choice, DUNE offers different implementation artifacts.

DUNE makes heavy use of polymorphism and template meta-programming offering the
possibility to specialize classes with template parameters without sacrificing performance
(Bastian et al. 2008a). The arguments passed to a template class can again be artifacts pro-
vided by DUNE. Last, DUNE offers lightweight interfaces to support the use of existing
libraries. For further information about the framework, we refer to Bastian et al. (2008a, b).

2.2 Terminology and Formalization

Artifacts As stated previously, mathematical frameworks provide various artifacts for dif-
ferent mathematical concepts. This includes, for example, different implementations of a
grid, which is used to represent the data of a simulation, or different solver implementations,
which can be used to solve a system of equations. We denote the artifacts that a framework
offers with the set A. Typically, a simulation s ∈ S uses only a subset As ⊂ A of artifacts
provided by the framework. The simulation code is entirely controlled by the framework

4We use version 2.6 of the DUNE framework.
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and has no further configuration options or runtime inputs. While technically artifacts can
include class definitions, struct definitions, structs, enumeration values, etc., in practice (in
DUNE) most are modelled as classes using either static (parametric) or dynamic (subtype)
polymorphism.

Variation Points The artifacts provided by a framework can be used, instantiated, and com-
bined to create a simulation. Typically, a developer is interested in replacing only a subset
of the artifacts (e.g., data structures or algorithms) used in her simulation code, which we
call variation points. A variation point v ∈ V is a triple (id, decl, a0) consisting of (1) an
identifier (id), (2) the declaration used in the variation point (decl), and (3) the original arti-
fact to which the variation point refers (a0 ∈ As). For simplicity, we assume that the set of
artifacts of a simulation s that are variable equalsAs .

For illustration, we show a small excerpt of a simulation written based on DUNE in
Listing 2. The excerpt contains two variation points (Line 4 and Line 7). The first variation
point is

(“Finite element map”, using FEM, Dune ::PDELab ::QkLocalFiniteElementMap) .

For brevity, we write Qk referring to its artifact. The artifact has four template parameters:
<GV, GV::ctype, Real, degree>, which we simplify for further analysis (see Section 3, for
details): <GV, D, R, k>.

Alternatives Determining the alternatives of a given artifact relies on the subtype relation-
ship (<:) between artifacts as defined in the framework. Two artifacts are in subtype relation
if (1) there is a declared subclass relation in the framework, (2) they are identical, or (3)
they are transitively related:

a <: a
a <: a′ a′ <: a′′

a <: a′′
subclass(a, a′)

a <: a′
Based on the subtype relation, function alt determines the set of artifacts that are alterna-

tive to a given artifact. An artifact a is an alternative to another artifact a′ if the two artifacts
have a common superclass or if a provides, at least, all public methods of a′.

alt(a0) =
{

a | ( ∃ as ∈ A. a0 <: as ∧ a <: as )

∨ ( pub(a0) ⊆ pub(a) )

∨ ( ∃ ae ∈ A. a0 ∈ enumval(ae) ∧ a ∈ enumval(ae) )
}

where pub returns a set of all public methods of an artifact and enumval returns the set of
all enum values of an enum (empty set if the given artifact is no enum). Note that the first

Listing 2 Excerpt from a simulation with two variation points
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condition of the set comprehension relies on nominal subtyping as defined by the inheri-
tance hierarchy of the framework. The second condition implements structural subtyping
by matching the public interfaces of two artifacts.

For illustration, consider the results for the two variation points of Listing 2. For the first
variation point, we would obtain:

alt ( Qk<GV, D, R, k> ) = { Qk<GV, D, R, k>, Pk<GV, D, R, k> }
The alternative PkLocalFiniteElementMap (not shown in the code), abbreviated with Pk,

is selected because it provides all public methods of Qk. Pk and Qk do not have a common
superclass, though. In this example, the original artifact as well as its alternative provide a
set of template parameters. The (names of) template parameters of Pk were adjusted such
that they match, which we describe in Section 3.

For the second variation point, we would obtain:

alt ( ISTLBackend SEQ CG ILU0 ) =
{ ISTLBackend SEQ CG ILU0, ISTLBackend SEQ LOOP Jac }

In this example, ISTLBackend SEQ LOOP Jac is selected as alternative for ISTLBack-
end SEQ CG ILU0 because both classes have a common superclass.

Configurations Based on the identified alternatives, our approach generates a set of
configurations for a given simulation, for further analysis. A configuration is a fully func-
tional variant of the original simulation using a unique combination of alternative artifacts
identified by function alt.

To obtain the set of all possible configurations of a simulation s, we compute the cartesian
product over all sets of alternative artifacts:

configs(s) =
{

{a1, . . . , ak} | a1 ∈ alt(a1), . . . , ak ∈ alt(ak) ∧ a1, . . . , ak ∈ As

}

Applying function configs to the example of Listing 2 yields a set of four configurations:

configs(s) = { {Qk<GV, D, R, k>, ISTLBackend SEQ CG ILU0 } ,

{ Qk<GV, D, R, k>, ISTLBackend SEQ LOOP Jac } ,

{ Pk<GV, D, R, k>, ISTLBackend SEQ CG ILU0 } ,

{Pk<GV, D, R, k>, ISTLBackend SEQ LOOP Jac } }

Since both of the variation points, Finite Element Map and ISTLSolverBackend, have two
alternative artifacts each, the cartesian product of these sets of alternatives results in four
configurations.

3 Approach

We present the workflow of VORM in Fig. 2. Overall, VORM consists of three main steps
and optionally a fourth one: (I) extraction and preparation, (II) identification of alterna-
tives and mapping of parameters, (III) selection of alternatives, and (IV) generation of
configurations. Next, we describe these four steps in detail.

In the extraction of the artifacts in Step I, we are interested in the following information:
(I) the methods provided by the artifacts, (II) the inheritance hierarchy among the artifacts,
and (III) template parameters of the artifacts. To derive this information, we include the
classes and the signatures (i.e., return value, name, parameter types) of their public methods
by analyzing the API of the framework (in our case study, we use DOXYGEN for this task;
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Fig. 2 Workflow of VORM. In Step I, all relevant information from the framework is extracted by parsing
its API and the simulation is extended with one variation point for each artifact the developer is interested
in alternatives for. In Step II, the variation points including their original artifacts are extracted from the
simulation and alternative artifacts are identified in the framework. In Step III, the developer of the simulation
can select a subset of the identified alternatives and extend the alternatives with additional information, if
necessary. In Step IV, which is optional, one configuration for each combination of the alternative artifacts is
generated

cf. Section 6). The simulation that uses the framework has to be extended manually by
annotating the one variation points, for which alternatives are desired. The annotations of
variation points are given in the form of comments, as illustrated in Lines 2–3 and 6 of
Listing 2. Overall, we aim at keeping the extraction process as general as possible to be able
to support different frameworks and different programming languages.

In Step II, VORM identifies the set of suitable alternative artifacts for every given original
artifact declared as variation point. To this end, we extract the original artifacts used in the
simulation by matching the variation points, and we use the extracted information to find
suitable alternatives by considering the rules describes in Section 2.2.

In Fig. 3, we zoom into the workflow of Step I and II: VORM receives an XML file with
API information (which can be generated by DOXYGEN or any other API generator, such as
CASTXML) and parses the class hierarchy from the API description. Then, VORM searches
for suitable artifacts in the class hierarchy to identify possible alternatives for existing arti-
facts, as described in Section 2.2. After identifying alternative artifacts, VORM uses the
annotated variation points from the simulation code to identify specific alternatives for the
requested artifacts in the extended class hierarchy.

It might be necessary to incorporate simulation-specific information from the original
artifacts in their alternatives. For example, DUNE makes extensive use of template meta-
programming by offering the user the possibility of parameterizing artifacts (see Line 4 in
Listing 2, where the used artifact, Finite element map, has 4 template parameters). To sup-
port template parameters with VORM, we have to use heuristics to replace the template
parameters of the alternative artifacts with the template parameters of the original artifact.
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Fig. 3 A more detailed overview of Step I and Step II of the workflow. VORM receives an XML file with a
description of DUNE’s API and constructs the corresponding class hierarchy. Therein, VORM searches for
further classes that may be alternatives to each other and extends the class hierarchy accordingly. Finally,
VORM uses information on variability points from the given simulation to find suitable alternatives in the
extended class hierarchy

To this end, VORM establishes a mapping between parameters of the original artifacts and
parameters of the alternative artifacts. Pursuing a lightweight approach, we consider infor-
mation about the labels of the parameters. For example, the labels in the API of DUNE for
the template parameters of Qk are <GV, D, R, k>. For one of the alternative artifacts, Pk,
the labels are the same <GV, D, R, k>. Since the template parameters of these two artifacts
have the same labels, VORM can use parameter values of Qk for Pk. For template parame-
ters that do not have a counterpart in the original artifact (i.e., a template parameter with the
same label), we leave the label untouched.

In Step III, we present a list of all alternative artifacts in a compact and human-readable
representation to the user. This way, developers are able to remove false positives based
on domain knowledge or can replace template parameters of the alternative artifacts with
suitable ones, if necessary. This is necessary when, for example, an alternative artifact has
more template parameters than the original artifact.

Last, in the optional Step IV, one can generate configurations of the simulation code;
each configuration applies a different set of alternative artifacts revised in Step III. That is,
in each configuration, the original artifacts of the variation points have been replaced with
alternative artifacts. Therefore, we consider the list of all alternative artifacts and create all
combinations of artifacts proposed for different variation points (i.e., the Cartesian product
of all alternatives). Then, for each combination, we generate the according source code by
replacing the original artifact used in the variation points of the simulation.

4 Methodology

In this section, we describe our experiment setup and methodology.
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4.1 ResearchMethod

Due to the exploratory nature of our study, we use the case study research method as pro-
posed by Shull et al. (2007), which is an initial investigation on the considered phenomena.
To obtain a realistic picture, we use existing simulations implemented by domain experts
that represent real-world use cases, instead of considering a large number of variation points
without considering their context. Since this is the first application of VORM, we study
two simulation codes in depth to explore the correctness and meaningfulness of the pro-
posed alternative artifacts. That is, we discuss reasons why our approach is not able to
identify some of the artifacts specified by the domain expert and why some artifacts pro-
posed by our approach are not valid although they follow from the inference rules presented
in Section 2.2. This way, we increase internal validity to identify confounding factors that
may influence the results of our approach.

4.2 Measurement

To answer our research questions, we compare for each variation point the set of alternative
artifacts proposed by VORM with the set of alternatives provided by the domain expert.
We treat the artifacts provided by the domain expert as ground truth and, hence, categorize
the artifacts proposed by our approach in: true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

After a discussion with the domain expert, we further categorize the false positives in:
(i) artifacts that are true false positives (TFP) and (ii) artifacts that are generally applicable
alternative artifacts (GAA) of the original artifact but do not work for the specific problem
of the considered simulation without slight modifications. The artifacts of GAA are also
suitable alternative artifacts when considering other simulations.

4.3 Subject Simulations

In our experiments, we consider two simulations implemented on top of DUNE. These
simulations are based on system tests that are included in the modules DUNE-ISTL and
DUNE-PDELAB deployed with DUNE. First, we extend the two simulations with a set of
variation points, where each point specifies one artifact provided by DUNE. We selected
the variation points based on domain knowledge. To obtain a ground truth of alternative
artifacts, a domain expert of DUNE suggests feasible replacements based on his experience.
In Table 1, we show the variation points and the number of alternative artifacts suggested
by the domain expert for the variation points of the two considered simulations. We provide
the source code of the simulations on our supplementary Web site5 along with a Docker
container.6

The first subject simulation, LINEARSOLVER, explores the variability of an iterative lin-
ear solver in DUNE. The DUNE-ISTL module provides a range of different iterative solvers
and preconditioners. The preconditioners improve performance of the solvers by reducing
the condition number of the system. The simulation attempts to solve a simple elliptic finite-
difference matrix using an iterative solver. Since the problem is symmetric, all iterative
solvers can, in principle, be applied, given suitable parameters. Also, most preconditioners

5https://github.com/se-sic/VariabilityExtraction-SupplementaryWebsite
6https://hub.docker.com/r/christiankaltenecker/vorm/

https://github.com/se-sic/VariabilityExtraction-SupplementaryWebsite
https://hub.docker.com/r/christiankaltenecker/vorm/
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Table 1 Subject simulations of our case study including their variation points, the list of proposed alternative
artifacts in DUNE provided by our domain expert

Simulation Variation point Proposed alternatives

LINEARSOLVER

Solver LoopSolver, BiCGSTABSolver,

CGSolver, GeneralizedPCGSolver,

GradientSolver, MINResSolver,

RestartedGMResSolver

Preconditioner SeqJac, SeqGS, SeqILU,

SeqILU0, SeqILUn, SeqSOR,

SeqSSOR

ELLIPTICPROBLEM

Geometry type cube, simplex

Grid YaspGrid, OneDGrid, ALUGrid,

UGGrid

Finite element map QkLocalFiniteElementMap,

PkLocalFiniteElementMap,

QkDGLocalFiniteElementMap,

OPBLocalFiniteElementMap<Qk>,

OPBLocalFiniteElementMap<Pk>

Constraints NoConstraints,

ConformingDirichletConstraints

ISTLSolverBackend SEQ CG ILU0, SEQ SUPERLU,

SEQ LOOP Jac, SEQ CG Jac,

SEQ CG SSOR,

SEQ CG AMG SSOR,

SEQ BCSG Jac, SEQ BCSG SSOR,

SEQ MINRES SSOR

Solver type StationaryLinearProblemSolver,

Newton

Note that the first alternative is always the original artifact

can be applied. It offers also parallel preconditioners, which work in an MPI parallel setup
and require additional information about parallel data decomposition. As the original simu-
lation runs sequentially, we are only interested in sequential solvers and preconditioners and
do not consider parallel preconditioners. There are also a few further special-purpose imple-
mentations, which are not usable without individual configuration, therefore we consider
these implementations as non-suitable.

The second subject simulation, ELLIPTICPROBLEM, is built on DUNE’s module DUNE-
PDELAB. The module offers various functionalities to define different models and assemble
the associated system matrices, given a particular grid implementation and a finite ele-
ment space basis. We consider an elliptic test problem and vary the used discretization
and the solver. A discretization is determined by a particular mesh, given a geometry type
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(e.g., simplex or cube), a grid implementation, and by the finite element space basis, given
as a finite element map. Here, additional constraints on the computational domain can be
specified, if necessary. As the problem is linear, it is possible to employ a linear or a
non-linear solver and a particular iterative linear solver, given as problem solver.

These two subject systems were recommended by the domain expert for illustrating the
capabilities of VORM. They cover typical use cases in the context of numerical solutions
of partial differential equations, and they touch different parts of the DUNE framework
following different paradigms. For example, while, in the first simulation code, solvers
and preconditioners use inheritance, the second makes heavy use of duck typing, so rela-
tions among artifacts are only implicit. Although while using VORM on another framework
would (slightly) increase external validity, we focus on one framework as a case study. This
way, we can have a more in-depth look into each of the variation points and can match the
results of VORM to the expectations of the domain expert. This enables us to assess the
quality of the proposed approach and increase internal validity.

5 Results

Answering RQ1 and RQ2, we show the results of VORM for the two simulations and com-
pare the recommended alternatives with the artifacts proposed by the domain expert in
Table 2. The table shows the number of alternative artifacts proposed by the domain expert
(DE) and the number of artifacts identified in our extraction (Positives), which we divided
in the categories described in Section 4.2.

Table 2 Results of our case study for the two simulations LINEARSOLVER and ELLIPTICPROBLEM when
using the original artifacts as starting points for the alternatives search

Variation Point DE TP FN MA TN FP

TFP GAA

LINEARSOLVER

Solver 7 7 0 0 3 014 2 0

Preconditioner 7 8 0 1 2 994 10 11

ELLIPTICPROBLEM

Geometry type 2 2 0 0 3 016 4 0

Grid 4 4 0 0 3 016 1 1

Finite element map 4 5 0 1 2 992 6 13

Constraints 2 1 1 0 3 021 0 0

ISTLSolverBackend 9 8 1 0 3 003 5 6

Solver type 2 1 1 0 3 021 0 0

Variation Point: name of the variation point; DE: # of alternative artifacts suggested by the domain expert; TP:
# of alternative artifacts suggested by the domain expert that are also proposed by VORM (true positives);
FN: # of alternative artifacts suggested by the expert but not proposed by VORM (false negatives); MA: #
of alternative artifacts suggested by VORM but missed by the expert; TN: # of artifacts provided by the
framework, which are neither proposed by VORM nor suggested by the domain experts as alternatives; FP:
# of artifacts identified as alternatives not provided by the domain expert but proposed by VORM (false
positives); TFP: # of artifacts that are true false positives; GAA: # of artifacts identified as alternatives that
are alternatives for the given artifact but do not work in the considered simulation but possibly in others
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5.1 Subject Simulation: LINEARSOLVER

The LINEARSOLVER simulation has two variation points. For the first variation point, one
can choose different solver implementations. VORM is able to identify all 7 alternatives
proposed by the domain expert (TP). In addition, it identifies two other artifacts that, how-
ever, are not suitable because they represent only interfaces for the definition of iterative
solvers (TFP).

For the second variation point (Preconditioner), VORM identified 8 alternatives that are
applicable in the simulation (TP). 7 out of 8 alternatives are alternatives proposed by the
expert (DE) and 1 additional alternative proposed by VORMwas missed by the expert since
it was recently added (MA). In addition, it proposes 21 further alternatives. A closer look
reveals that 11 of them are, in general valid (GAA), but need more parameters (e.g., AMG) or
would slow down converging to a solution (e.g., Richardson). The remaining 10 alternatives
are not suitable because they are parallel preconditioners (or components), and our main
application considers only sequential execution. For example, class NonoverlappingRichard-
son implements a parallel preconditioner or ILUSubdomainSolver computes updates in a
single subdomain (e.g., on a single MPI rank) inside a parallel overlapping Schwarz precon-
ditioner (TFP). Parallel preconditioners only work with parallel scalar products, which does
not apply to our case. Since the parallel preconditioners fulfill the subtype relation from
Section 2.2, they are falsely identified as proper alternatives by VORM.

5.2 Subject Simulation: ELLIPTICPROBLEM

In the second simulation, we consider six variatixon points. For the first variation point,
Geometry type, VORM is able to identify all 2 alternatives proposed by the domain expert
(TP). In addition, VORM identified 4 alternatives, true false positives (TFP). Having a closer
look, we see that the original artifact is a value of an enumeration, and all proposed alter-
natives are other values of the same enumeration, from which some are valid and others
are not. Differentiating between these two groups of values is not possible without further
domain knowledge.

Second, we are interested in different Grid implementations, for which the domain expert
proposes 4. VORM is able to identify these 4 alternative artifacts (TP) and 2 additional
artifacts (FP). From the 2 false positives one is an abstract class used to define the interface
of grid implementations, whereas the other could be used as an alternative, but does not work
in the considered problem (GAA). This artifact is a meta-grid, which is used to host another
grid, enriching it with further functionality. This is not used in the considered simulation.

For the variation point Finite element map, 4 alternative artifacts were proposed by the
domain expert, all of which have been found by VORM. VORM identifies 20 more artifacts,
from which 13 can be generally used as an alternative for the original artifact, but not in
the specific scenario that we considered (GAA). For example, class RT0Cube2DLocalFEM
provides lowest-order Raviar-Thomas shape functions, which are vector valued, while the
subject simulation is working with a scalar partial differential equation; the same holds for
BDM1Simplex2DLocalFiniteElementMap. Another 6 cases are true false positives (TFP). All
false positives are template specializations of a mix-in class for particular finite element
maps. They cannot be directly instantiated and should be considered as implementation
details. The last alternative (RannacherTurekLocalFiniteElementMap) was missed by the
expert (MA), as it is reportedly a valid but unusual choice.

The fourth variation point, Constraints, requires 2 artifacts to define constraints on the
solution, for example, the type of boundary conditions (DE). For this variation point, VORM
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was not able to identify the alternative artifact proposed by the domain expert. So, we have
1 false negative (FN). The reason is that different methods are called, depending on the
presence of boolean flags. The original artifact defines all of them as empty methods for
documentation purposes, which is also explicitly stated in the documentation of the code.
However, the proposed alternative by the domain expert offers only required methods. In
contrast, the alternative artifact, which has been proposed by the domain expert, offers only
required methods and not the additional set of empty methods, which violates the subtype
relation since the desired artifact has less public methods than the original artifact. Such
cases cannot be detected by an automated approach.

The fifth variation point concerns ISTLSolverBackend. VORM identified 8 out of the 9
alternative artifacts proposed by the domain expert (TP). For the one alternative not found by
VORM, the artifact provides a different return type for a method, which precludes matching
(we refer to this alternative when answering RQ2). VORM identifies 11 more alternatives,
of which 6 are general alternatives but cannot be used in the context of the simulation (GAA)
and 5 are true false positives (TFP). Out of these 5 true false positives, 3 are abstract classes
defining interfaces of specific types of solver backends and 2 shall be used for completely
different parts in a simulation although they provide a matching interface to the original
artifact.

Last, for the sixth variation point (Linear problem solver), we were not able to identify
the alternative proposed by the domain expert (FN). This is because the alternative artifact
focuses on solving linear or non-linear problems, whereas the original artifact focuses on
solving linear problems only. So, both artifacts have different interfaces, which hinders
VORM identifying the proposed alternative.

As illustrated in the variation point Preconditioner in LINEARSOLVER, VORM was able
to identify two artifacts that were missed by the domain expert. One artifact that was missed
is the preconditioner SeqILDL, which was added in a recent version of DUNE and, thus,
was missed by the domain expert. The other missed artifact is the finite element map Ran-
nacherTurekLocalFiniteElementMap, which is a rather unusual choice for a finite element
map. This finite element map is a non-conform approach and works for 2-dimensional
simulations, which is why this approach is used only in few cases.

The process of identifying alternatives is influenced by the presence of bugs and incon-
sistencies in a framework. As explained before, we were not able to identify a certain
alternative artifact in ISTLSolverBackend proposed by the domain expert. This was due to
a previously unknown bug in the interface of the alternative method, which was confirmed
by the domain expert. Due to this bug, the alternative artifacts do not fulfill the subtype rule
in Section 2.2.

Moreover, VORM identified an inconsistency in the template parameters of one artifact
of the framework. There, the assumption was made that the input matrix and the solution
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vector have to be of the same precision and thus have to be from the same type, which is
defined by the template parameter. Even with this assumption, we were able to identify the
alternative artifact, but we were not able to replace all template parameters with appropriate
artifacts.

6 Discussion

In this section, we discuss the lessons learned from applying VORM to the two subject
simulations and put them in context with the limitations of our approach.

6.1 Applicability

To identify alternative artifacts, we use a lightweight approach that only uses information
from the API of the framework. Although, it would be possible to use domain knowledge
to define a set of alternative artifacts for each artifact provided by the framework, gathering
and maintaining these sets of alternatives might become time consuming, especially in the
context of the evolution of the framework. These sets also highly depend on the knowledge
of domain experts and on the use case they are familiar with. However, even without domain
knowledge, VORM was able to identify meaningful sets of alternative artifacts for a large
number of the variation points of the two simulations.

Moreover, we were able to find a bug and an inconsistency while comparing the identi-
fied artifacts with the artifacts proposed by the domain expert. This illustrates the potential
of VORM as a lightweight means to find implementation errors and inconsistencies in
scientific frameworks.

Not to restrict VORM to C++ frameworks, we generate and later parse the API using
DOXYGEN, which supports a large number of programming languages, such as C, C#, Java,
Fortran, or Python.7 In principle, VORM can be applied to frameworks written in program-
ming languages that provide inheritance as well as subtype and parametric polymorphism,
such as C++, C#, or Java. However, for different programming languages, different infer-
ence rules have to be defined, depending on the semantics of the programming language.
If a desired programming language is not supported by DOXYGEN, a different extraction
mechanism has to be defined, which, however, does not hinder the general applicability of
VORM, because VORM uses an internal language-agnostic representation to identify the
artifacts. It is possible to extend VORM with additional frontends to parse APIs of other
representations, such as CASTXML. Furthermore, VORM does not require templates for
finding alternatives. The information provided by templates is used only to further aid the

7http://www.doxygen.nl/

http://www.doxygen.nl/
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user by inserting the right template parameter. The same generality holds for the simulation.
The simulation can be a file written in any programming language so far as the variability
points are provided as depicted in Listing 1.

6.2 Limitations

As VORM is a very lightweight approach, it relies only on the original artifact applied in
the variation points. As a consequence, the original artifact has a strong influence on the
computed set of alternative artifacts. To illustrate this, we show the number of alternative
artifacts proposed by our approach for the artifact Finite element map of ELLIPTICPROB-
LEM in Table 3. When using QK as original artifact, our approach proposes 23 alternative
artifacts, whereas when using Pk as original artifact, our approach finds only 2 alternatives.
The reason is that Pk provides one more method compared to the other artifacts, so VORM
cannot propose the other artifacts to be suitable alternative artifacts. Again, VORM does
not know whether a method of the artifacts is used in the simulation. Such methods could
be identified when considering the call graph of the simulation., but, creating and analyzing
an exact call graph can become very complex and would result in a heavyweight approach.
Besides, function alt, as presented in Section 2.2, is not symmetric because of the subset
relation. This means that an artifact might be an alternative to another artifact but not the
other way around.

Another limitation arises from the mapping process, where we use information on the
template parameters of the original artifact to replace the template parameters of the alter-
native artifacts with suitable labels. Using the heuristics mentioned in Section 3, we are able
to map only parameters that have the same label in the original artifact and the alternative
artifact. Although we are aware that these heuristics make strong assumptions on the nam-
ing of template parameters and that heuristics considering the usage of the parameters are
more accurate, we refrain from using more complex heuristics, because they would make
the whole approach more heavyweight. Both limitations could be addressed with interfaces
in Java or concepts in C++ 20. Similar issues arise in Python2.4, because the programming
language makes extensive use of duck typing.

A further limitation of VORM becomes apparent when an alternative artifact needs more
or different template parameters than the original artifact. For example, the original artifact
of ISTLSolverBackend provides zero template parameters, whereas three identified alterna-
tives offer one template parameter. Despite these limitations, VORMwas able to replace the

Table 3 Alternative artifact identified in our extraction process for different finite element map classes (Dune
version 2.6)

A checkmark ( ) states that the output artifact was identified to be an alternative to the input artifact. A dash

(–)states that the output artifact was not identified to be an alternative to the input artifact
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template parameters for a large portion of the alternatives (for 60 out of the 78 alternatives
that provide template parameters) identified for the two simulations. For the remaining 18
alternatives, VORM was not able to replace, at least, one template parameter and thus the
user has to specify a suitable value for, at least, one template parameter. Here, a more com-
plex heuristic might lead to more accurate results at the cost of increasing complexity and
analysis cost. Furthermore, the set of identified alternative artifacts is not affected by tem-
plate parameters of the original artifact, so identifying alternative artifacts and replacing the
template parameters with suitable values are independent.

In Step IV, the combinatorial explosion of the number of configurations to explore is a
another limitation. This is because we generate one configuration for each combination of
the identified alternative artifacts. As a consequence, the number of configurations grows
with the number of identified alternatives and the number of variation points of the sim-
ulation. To mitigate this limitation, VORM can be applied multiple times on a simulation
for different sets of variation points or by removing proposed alternatives using domain
knowledge.

6.3 Threats to Validity

Internal By construction, we can not make sure that VORM identifies all theoretically valid
alternatives to a artifact that is used in a variation point. This is in line with the observation
that VORM is able to identify alternatives that were not proposed by the domain expert (see
Section 5). However, this is an open problem that can not be solved in general. Clearly,
such a lightweight approach focuses not on completeness, but on practicality. We were able
to show that VORM finds a large portion of alternatives that also have been suggested by
the domain expert. Besides, the statement about whether an artifact can be applied to a
specific scenario also slightly depends on the domain expert and the knowledge about how
the artifacts can be tailored to specific purposes by enriching them with further information.
We mitigated this threat by using suggestions from a developer of the framework, who has
in-depth knowledge about its functions and artifacts. During the implementation of VORM,
we performed several tests using different artifacts provided by Dune as input and compared
the artifacts identified by VORM with our expectations.

External Although we demonstrated that our approach can identify a large number of alter-
native artifacts of DUNE, we cannot state that the approach also proposes meaningful
alternatives on other case studies even if DUNE is used. This can also be seen for the two
variation points Constraints and Solver type, for which VORM was not able to identify the
alternative proposed by the domain expert. As we discussed in Section 5, the alternative
artifacts proposed for the Solver type variation point work for different kinds of problems
(e.g., linear vs. non-linear problems).

To be able to apply VORM also on applications or simulations that are not written in
C++, we refrained from analyzing the source code of the framework but consider the API.
The API provides all user-relevant information about the structure and the public interface of
the classes of the framework. For the extraction and modification of the simulation, we also
refrain from parsing the simulation using a C++ parser but pursue a line-based approach,
which requires us to insert the variation point definition before the use of the original method
(as seen in Lines 2–3 of Listing 2). As a consequence, VORM is not limited to C++, but also
for other frameworks being written in other programming languages, such as Java or C#.
However, when considering framework written in other programming languages, different
inference rules might be necessary for the identification process of alternative artifacts.
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7 RelatedWork

In this work, we focus on extracting the variability in a framework by considering the
API of the framework. Thus, work on extracting variability and work that performs API
recommendations is related.

Variability Extraction To extract the hidden variability in software systems, there are
different approaches considering different information sources.

Extracting the variability of an application or system is done using different information
sources. For example, Zhang and Becker (2012) extract a variability model from the source
code of an application by considering relations among preprocessor directives; Dietrich
et al. (2012) extract the variability of the Linux system by considering the build system
of Linux. There are approaches that extract variability information from natural language
documents such as functional requirements, see for example, Mefteh et al. (2016) or Li et al.
(2020). For a representative overview of approaches using natural language techniques, we
refer to Li et al. (2017).

API Recommendation Prior research that analyzes the API of a library to improve the code
of an application is done at different levels of granularity.

At the most coarse-grained level, there are approaches that recommend using a library
instead of another library offering similar functionality. For example, Thung et al. (2013)
use association rule mining on a training set that contains information of the usage of third-
party libraries to recommend libraries that are already used in software systems together
with other libraries.

At a more fine-grained level that considers the methods provided by an API, Nguyen
et al. (2016) developed a tool that recommends methods of an API to developers based
on a statistical learning approach. For this purpose, they consider a large corpus of fine-
grained code changes. Overall, their approach relies on the regularity and repetitiveness of
code changes during software evolution, and thus also consider the context of the changes
to propose methods to a developer that are already used in a similar context (Negara et al.
2014). For our use case, however, DUNE does not provide a large corpus of regular and
repetitive code changes of applications.

Kawrykow and Robillard (2009) aim at identifying patterns in an application where an
API is not used efficiently to replace code with API calls offering the same functionality.
They focus on parts of the code of an application where the API is used to mimic the
functionality of other methods provided by the same API. To this end, they first create an
abstraction of the code of the library and consider the byte code of the application (they
focus on Java application in their work). Then, the application code is compared against the
library to identify patterns where the code of an API method is imitated without calling the
method from the API.

To recommend method parameters for API method calls, Zhang et al. (2012) analyze
parameter usage and their context in a code base. This is done by generating API method
parameter candidates using type information of the method parameters and a corpus of
API calls. Although this is similar to our template parameter replacement heuristic, their
approach is not applicable to our setting due to incomplete type information in DUNE
artifact template parameters.

Code Generation Other approaches focus on domain-specific code generation and opti-
mization based on an abstract definition of the problem at hand.
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For example, Püschel et al. (2004) developed SPIRAL to generate highly performant
signal-processing algorithms, such as fast Fourier transformations, based on an abstract
domain-specific specification. Using this specification as starting point, they apply a set of
rewriting rules considering domain-specific knowledge about the considered problem. Dif-
ferent sequences and alternatives of rewriting rules may be used leading to different imple-
mentations for the same problem. Since some transformations produce more performant
code than others, they rely on a feedback-loop mechanism to generate high-performance
code.

Another example of domain-specific code generation is developed in the EXASTENCILS

project (Lengauer et al. 2020). ExaStencils focuses on generating multigrid solvers to effi-
ciently solve partial differential equations. It comprises four domain-specific languages, at
different levels of abstraction (from mathematical equations to hardware-specific details),
which can be used as a starting point for code generation. Based on the specification of a
problem, the EXASTENCILS generator transforms the provided domain-specific code into
high performant C++ code.

In general, code-generation approaches usually focus on one specific domain and exploit
domain knowledge during code generation. Although these approaches demonstrate the
benefits of generating high performant code without requiring deeper knowledge on the
required implementation (which needs to be built into the code generator, though), they are
applicable only for specific domains. VORM is domain independent and does not rely on
domain-specific information. Instead, it uses only information provided by the API of the
considered framework.

8 Conclusion

To support application engineers in the development of scientific simulation code, there are
several frameworks available that provide reusable implementational artifacts. When using a
given framework, the most suitable set of artifacts provided by the framework has to be iden-
tified for a given simulation, which is a non-trivial task, because global knowledge about
all existing artifacts provided by the framework is required. To support developers in this
task, we present and validate the usability of VORM, a lightweight, semi-automatic API-
based approach to identify artifacts that can be used instead of an already applied artifact in
a simulation.

To demonstrate the usefulness of VORM and to validate whether its recommendations
are accurate, we compared the artifacts proposed by VORM with artifacts recommended by
a domain expert of the framework for two subject simulations written using the scientific
framework DUNE.

Our results show that VORM is able to identify 34 out of the 37 alternative artifacts
proposed by a domain expert. VORMwas even able to identify two artifacts that were appli-
cable but missed by the domain expert. Additionally, VORM proposes 31 further artifacts
that can also be used as alternative artifacts to the used artifacts but not in the considered
simulation scenario. Notably, when comparing the results of VORM with domain knowl-
edge provided by a developer of DUNE, we were able to identify a bug and an inconsistency
in DUNE that were unknown beforehand. Based on these results, we conclude that VORM’s
lightweight, semi-automatic approach can be used to identify suitable alternatives to given
artifacts.
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There are some open issues that we leave to further research. Applying VORM to multi-
ple different frameworks is one topic for future research to assess the general applicability
of a lightweight approach. Another avenue of further work is to analyze inaccuracies pre-
sented in RQ1. It is unclear whether the inaccuracies are mainly due to an undisciplined use
of interfaces or a lack of expressiveness.

For future work, we see two further steps to assess the applicability and usefulness of
VORM. First, VORM shall be evaluated using a larger set of applications on top of DUNE.
Second, the approach of VORM shall be applied to other frameworks, possibly written
in different programming languages. Additionally, different API documentations, such as
CLDOC8 should be considered in the evaluation. However, for each considered framework,
at least one domain expert of the respective framework is required for evaluation, which is
well outside the scope of this study.
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