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Abstract 

W e  study the use of well-defined building blocks 
fo r  S P M D  programming of machines with distributed 
memory. O u r  general framework i s  based o n  homo- 
morphisms, functions that capture the idea of data- 
parallelism and have a close correspondence with col- 
lective operations of the M P I  standard, e.g., scan and 
reduction. W e  prove two composition rules: under cer- 
tain conditions, a composition of a scan and a reduc- 
tion can be transformed into one reduction, and a com- 
position of two scans into one scan. As  a n  example 
of decomposition, we transform a segmented reduction 
into a composition of partial reduction and all-gather. 
The  performance gain and overhead of the proposed 
composition and decomposition rules are assessed ana- 
lytically for the hypercube and compared with the esti- 
mates fo r  some other parallel models. 

1. Introduction 

This paper presents an approach to parallel pro- 
gramming which is based on a set of relatively well- 
understood primitives for parallelism. The goal is to  
raise the level of abstraction, and to allow the compiler 
(possibly aided by the user) to perform semantically 
sound, performance-guided transformations of a pro- 
gram composed of such primitives. 

The approach has its roots in the world of func- 
tional programming where programming paradigms are 
captured as algorithmic skeletons [4]. An algorith- 
mic skeleton is a higher-order function (a functional 
schema) which takes as parameters so-called customi- 
zing functions needed in a specific application. If the 
parallel nature of the programming paradigm is un- 
derstood well enough, the algorithmic skeleton can be 
associated with a number of architectural skeletons, 
each implementing the paradigm on a specific machine 

model or architecture. 

The strength of the skeleton approach lies in a clear 
division of responsibilities between application pro- 
grammers and implementers in the development of par- 
allel programs: 

The details of parallelism and communication are 
hidden in the architectural skeletons and are in- 
visible to  the application programmer who is only 
supplying the algorithmic skeleton with customiz- 
ing functions. That is, the application program- 
mer need not be concerned ,with the correctness of 
the parallelism in his/her program. 

If one stays within the world of functional pro- 
gramming, skeleton programs can be transformed 
and optimized via equational reasoning. More- 
over, the architectural skel.etons can be derived 
formally from the algorithmic skeleton. That is, 
the implementer has a relia.ble means of assuring 
the correctness of his/her implementation. 

The viability of the approach depends heavily on 
the expressive power of the algorithmic skeletons pro- 
vided to the user - a fact which the skeletons research 
community is addressing increasingly [5]. Moreover, 
the usefulness of the programming with skeletons can 
be improved dramatically if the user is given sound 
and practical design methods, and the compiler is en- 
hanced with implementation and optimization tech- 
niques. The skeletons considered in the literature range 
from very simple functions like mizp and reduce to  quite 
complex patterns of parallelism like general divide-and- 
conquer [9] or more special-purpose skeletons. 

We discuss one particular class of skeletons, called 
homomorphisms [l], which lie in the middle of this 
range. Due to  their simplicity, homomorphism skele- 
tons are well suited for the study of transformations in 
the quest for better performance.. 
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The usefulness of homomorphisms as program buil- 
ding blocks is determined by the following issues: 

0 Expressiveness: How much ground does the class 
of homomorphisms cover? Simple divide-and- 
conquer problems can be expressed directly as ho- 
momorphisms. Much larger is the class of almost- 
homomorphisms, which can be turned into homo- 
morphisms when tupled with auxiliary functions. 
Basically, this increses parallelism at the price of 
extra computations; a method for finding auxiliary 
functions is proposed in [ S ,  SI. More complex prob- 
lems may require a composition or nest of several 
(almost-) homomorphisms. 

e Implementation: How can the homomorphism 
skeleton be implemented efficiently on parallel 
computers? For illustration, we use the architec- 
tural skeleton swap which is, on the one hand, 
formally derivable from a restricted homomorphic 
form, called distributable homomorphism (OH) 
and, on the other hand, directly implementable 
on the hypercube. 

0 Composition: Are certain compositions of stan- 
dard homomorphisms good candidates for new ho- 
momorphism skeletons, and can these be opti- 
mized further? We derive formally two composi- 
tion rules for simple homomorphic skeletons used 
in practice: reduction and scan. How to use the 
rules in prdgram design is demonstrated in [9].  

0 Decomposition: Can a more complex homomor- 
phism be decomposed into simpler homomor- 
phisms, with the result of improved performance? 
We present one such rule for segmented reduction, 
which is available as MPI-Allred in the MPI stan- 
dard [ll]. 

0 Performance: How portable are skeleton imple- 
mentations? Whereas the proposed (de)composi- 
tion rules are implementation-independent , their 
impact on the target performance depends on 
the particular implementation of the skeletons 
and on the parallel machine used. We provide 
parametrized analytical estimates for the proposed 
rules in the hypercube model, and demonstrate 
that the equilibrium of benefits and overhead 
changes for other models (e.g., BSP [14]) and im- 
plementations. 

All these issues are studied within a common trans- 
formational functional framework. We aim at  SPMD 
programs on distributed memory, with collective ope- 
rations of the MPI standard [ll] as our target language. 

2. Homomorphisms and BMF 

The skeletons we consider are expressed in the Bird- 
Meertens formalism (BMF) ,  a notation for functional 
programs [I]. Our functions are defined on non-empty 
lists, with list concatenation -!+ as constructor. We 
restrict ourselves to finite lists, which can be viewed as 
vectors and, ultimately, implemented as arrays. 

Definition 2.1 (Bird [l]) Function h on  lists is  a 
homomorphism iff there exists a binary operator @ 
such that, for  all lists x and y :  

In words: the value of h on a concatenated list can 
be computed by applying the combine operator 0 to 
the values of h on the pieces of the list. Since the 
computations of h x and h y are independent of each 
other, they can be applied in parallel. Note that @ in 
(1) is necessarily associative, because ft is associative. 

The simplest homomorphisms are the basic higher- 
order functions (also called functionals) of BMF: map, 
reduction and scan, which we introduce informally: 

Map applies a unary function f , defined on elements, 
to each element of a list, i.e., 

The computations off on different elements of the 
list can be done independently if enough proces- 
sors are available. 

Reduction combines the elements of a list using a bi- 
nary associative operator @: 

r e d ( @ ) [ x l , x 2 , . . .  , x n ]  = XI x2 @ ... @ xn 

Reduction can be computed on a binary tree in 
logarithmic time. 

Scan (parallel prefix) computes the list of running 
totals with associative operator @: 

The following, arguably, non-obvious definition of scan 
reveals it as a homomorphism: 

s c a n ( @ ) [ a ]  = [a]  
s c a n ( @ )  ( x  -!+ y )  = s c a n ( @ ) x  -ti- (2) 

map ( last  (scan (@) x )  @) (scan (@) y )  
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Here, we have used the notations ( a  (3) b gf a@ b ,  and 

In BMF, programs are constructed of functions by 
means of functional composition 0, defined by the equa- 
tion (f o 9) x = f (9 x). SPMD parallelism is intro- 
duced by functions like m a p ,  red, and scan; sequencing 
is introduced by composition. 

The following properties of homomorphisms are use- 

0 Normal form [l]: Function h is a homomor- 
phism iff it can be factored into the composition: 

last [XI, Q,. . . , xn] = xn. 

ful for program design: 

h = red (@)  o m a p f  (3) 

where f a = h [ a ]  for every element a, and 0 is 
from (1). Each homomorphism is uniquely deter- 
mined by f and @. 

0 Promotion property [l]: This property ex- 
presses the possibility to compute a homomor- 
phism by partitioning data into several pieces: 

h o red(*) = red (@)  o m a p h  (4) 
In words, to compute homomorphism h on the flat- 
tened list is the same as to compute h in each sub- 
list (block) and then combine the results by @. 

0 Transformations: Functional programs consist- 
ing of homomorphisms can be transformed using 
semantics-preserving equational rules; we will see 
examples later on. 

3. Composing Homomorphisms 

Sequential composition provides a point of synchro- 
nization between the individual parallel implementa- 
tions of the composed skeletons. This synchroniza- 
tion may be unnecessary. A parallel implementation 
of the composition may have better performance than 
the combination of the individual parallel implementa- 
tions. To ascertain this, specific combinations can be 
merged through equational transformation and their 
performance assessed. 

We demonstrate that systematic looking for a ho- 
momorphism format of a composition can help to  find 
its new parallel implementation. 

3.1. Scan-Reduce Composition 

We are interested in finding a good parallel imple- 
mentation of a composition of a scan ,with a subsequent 
reduction: 

scanred(@,@) gf r e d ( @ )  0 s c a n ( @ )  ( 5 )  

Following definition (l), we try to express scanred on 
a concatenation of two lists via the value of scanred on 
each of these lists: 

scanred (@, 8)  (x ti- y) 
= { Eq. (5142) 1 

red (e) ( scan(  @)x ft- m a p (  last( s c m (  @)x)@) (scan( 8) y)) 
= 

red($)(scan(@)s) $ red($)( map( ( r ( : d ( @ ) x ) ~ ) ( s c a n ( ~ ) y ) )  

scanred (e, @)x @ red (@) ( m a p (  (red (@)x)@) (scan( 8)  y)) 

{ Def. of red, and las t ( scan(@))  = red(@) } 

= { Eq. ( 5 )  1 

The obtained expression does not yet fit format (l), 
because functions different from manred are applied to  
x and y. We could go on looking for a direct formula- 
tion of scanred as a homomorphism, but instead we use 
the concept of an almost-homomorphism - a function 
which becomes a homomorphism if tupled with one or 
more auxiliary functions. 

We pair up scanred with auxiliary function red: 

scanred' (e, @) x def = (scanred (@, @) 2 ,  red (8) x) 
(6)  

Function scanred' yields a pair, whose first component 
can be extracted by projection TIL:  

scanred (@,@I) = 7r1 o scanred'(@,@) (7) 

Now we aim at a homomorphic format for the aug- 
mented function scanred', abbreviating its components 
with s = scanred (e, @) and r =: red (8): 

scanred' (@, 8) (x ft y ) 
= { Eq. (6) and abbreviations } 

= { Expression for s (x ft- y)., and def. of r } 
(sz @ r e d ( @ ) ( m a p ( r x @ ) ( s c a ~ ( 8 ) y ) ) , r x 8  r y )  

Let us assume for the rest of the paper that 8 dis- 
tributes over @, i.e., a 8 ( b  '3 c )  = ( a  8 b )  @ ( a  @ c ) ,  
or, for an arbitrary number of applications of @: 

(3 (x * Y) 7 7- (x ft Y)) 

Then the first component of the pair can be trans- 
formed: 
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Therefore, scanred’ is a homomorphism whose normal 
form (3) is: scanred’ = red( (@,  8 ) )  o m a p  pair.  where: 

(9) pair a = ( a , a ) ,  

t s 1 , r 1 ) ( ~ , ~ ) ( ~ 2 , 7 - 2 )  gf ( s l @ ( r 1 @ ~ 2 ) , r l @ r 2 )  (10) 

Here, two new denotations have been introduced: the 
name pair for function which creates a pair of an ele- 
ment, and (e, 8)  for the operator on pairs constructed 
from 

The equational transformations we have just pre- 
sented prove that a composition of scan and reduction 
can be transformed into a single reduction, with pairing 
applied beforehand and projection applied afterwards: 

Theorem 1 (Scan-Reduce Composition) For 
arbitrary binary, associative operators @ and @, such 
that @ distributes over @, 

red(@) o scan(@) = n1 o red ((@, @)) o m a p  pair  (11) 

where funct ion pair and operator (e, 8)  are defined by 
(9) and (lo), respectively. 

def 

and @ according to (10). 

There is also a version of Theorem 1 for a dual ver- 
sion of scan, called suffix, which is used in the formal 
derivation and optimization of a parallel implementa- 
tion for the maximum segment sum problem [9]. 

In Subsection 5, we analyse the impact of the scan- 
reduce transformation on performance. 

3.2. Scan-Scan Composition 

In this subsection, we study another important com- 
position, namely of two scans. Let us introduce func- 
tion inits, which yields all initial segments of a list: 

inits [q, Q, . . . , zn] = [ [ X I ] ,  [a, 4,. . . , [XI, ~ 2 , .  . . , xn] 1 
and a few standard BMF transformations [17]: 

m a p ( f  0 9 )  = m a p f  0 m a p g  (12) 
scan(@)  = m a p ( r e d ( @ ) )  o inits (13) 

inits o m a p  f = m a p  ( m a p f )  0 inits (14) 
inits o scan(@) = m a p ( s c a n ( @ ) )  0 inits (15) 

The composition scan(@) o scan(@) is transformed us- 
ing these rules and Theorem 1: 

scan (@) o scan (@) 

m a p  (red (63)) o inits 0 scan (8) 

m a p  (red (@) 0 scan (@)) 0 inits 

= { Eq. (13) 1 

= { Eq. (15),(12) 1 

= { Theorem 1 } 
m a p  ( T I  o red ((@,@)) o m a p  pair )  o inits 

map.rr1 o m a p  (red ((e,@))) o inits o mappa i r  

m a p n 1  o scan((@,@)) o m a p p a i r  

= { Eq. (12),(14) 1 

= { Eq. (13) 1 

Since we make use of Theorem 1, its assumptions about 
the distributivity of the involved operators have to be 
passed on to the new theorem: 

Theorem 2 (Scan-Scan Composition) For asso- 
ciative operators @ and @, where €3 distributes over 
@, 

(16) scan (e) o scan (@) = 
m a p n l  o scan((@,@)) 0 m a p p a i r  

Again, a version for two suffixes can be proved [9]. 

4. Hypercube Implementation 

To apply the composition rules of the previous sec- 
tion and other transformations in the process of paral- 
lelization, one should be able to  estimate their impact 
on the performance of the target program. The homo- 
morphism approach provides a relatively small set of 
standard building blocks such as map,  red, scan, etc. 
Thus, the problem of performance predictability is re- 
duced to  studying the implementation of these stan- 
dard primitives on particular parallel architectures. 

We choose here one particular network topology: 
the hypercube with cut-through routing. As argued 
in [13], for a large class of problems, hypercube algo- 
rithms are asymptotically as fast as the optimal PRAM 
algorithms, and they can be adapted easily to other 
topologies, e.g., meshes and multistage networks. 

4.1. Distributable Homomorphisms (DH) 

A specialized subclass of homomorphisms, the class 
of distributable homomorphisms (OH) [7], is particu- 
larly suited for the hypercube. A generic, architecture- 
independent implementation is derived in [lo]. In this 
section, we first introduce briefly some necessary nota- 
tion and then consider the use of DH in the design of 
parallel programs. DH is defined on powerlists [15] of 
length 2k,  k = 0,1,. . . , with balanced concatenation. 
The definition makes use of function zip, which com- 
bines elements of two lists of equal length with operator 
0: 

ZiP(O)([Xl , . . .  , G J , [ Y l , . . .  ,Yn])  = [ ~ l O Y l , * * *  ,GL@YnI 
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Figure 1. Illustration of function redd-seg for m=4, p=4. 

Definition 4.1 For binary operators @ and 8, the 
concatenating distributable homomorphism (CDH) o n  
powerlists, denoted @$@, is defined as follows: 

(@@I [a1 = [.I (17) 
(@$@I (. $+ Y )  = Zap (e) ( U ,  v) ft zip (8) ( U ,  U>, 

where U = (@$@I) 2 ,  v = ( (328)  y .  

So, CDH is a parametric function with the customizing 
operators @ and 8. The specialization of CDH in com- 
parison to the general homomorphis,m (Definition 2.1) 
is in the format of the combine operator: elementwise 
computations on the halves, followed by concatenation. 

We introduce also a dual version, interleaving D H  
(IDH),  denoted @ fJ @. The definition of IDH is ob- 
tained by exploiting operation w [15:/ on the right-hand 
side of (17) instead of concatenation: 

def 
[ 2 1 , z 2 , . . .  7znI Da [ Y l , Y 2 , . - -  7Ynl  = 

kl, Y17 z2,312 9 * . . 7 G I  7 Ynl 

Thus, there are two versions of DH, concatenating DH 
(CDH) and interleaving DH (IDH), denoted e$@ and 

fJ @, respectively. We simply spe,ak of a DH in the 
case of a CDH or IDH, if there is no ambiguity. 

As a simple example of DH, let us consider the func- 
tion called “distributed reduction”, informally defined 
as redd(@) z = [red(@) z,. . . , red@) $1. It is easy to  
see that redd is a CDH: 

r e d d ( @ )  = 050 (18) 

This function is provided in MPI under the name of 
MPI-Allreduce. 

In [7], a hypercube implementation of DH is devel- 
oped by introducing an architectural skeleton, swap, 
which describes one characteristic behavior of the hy- 
percube: swap d (@, @) consists of pairwise, bidirec- 
tional communication in dimension d ,  followed by an 
application of @ by the processor with the lower rank 
and of @I by the processor with the higher rank. 

We abbreviate multiple compositions of swaps, e.g.,: 

Theorem 3 (DH on a Hypercube [7]) Every D H  
over a list of length n = 2 k  can be computed o n  the 
n-node hypercube by a sequence of swaps, with the di- 
mensions counting from 1 to  k for CDH, and from k 
t o  1 for IDH: 

k 

d=l  
1 

d=k 

@$8 = 0 (swap d (e, 8)) (19) 

@$8 = 0 (swap d (e, 8)) (20) 

Note that the CDH and IDH can be viewed as formal 
descriptions of the classes of so-called ascending and 
descending algorithms [16]. 

4.2. Segmented Reduction and Scan 

Theorem 3 provides a parallel implementation 
schema for all DHs. In a particular case, we just need 
to  customize operators @ and 8; for instance, the hy- 
percube program for the distributed reduction (18) is: 

k 

d=l 
redd (0) = 0 (swap d (@,a)) 

The actual MPI-Allreduce is a bit more general 
than our function redd it works also in the case that 
there is a block (segment) of equal length in each pro- 
cessor. This version is usually called segmented: reduc- 
tion is computed elementwise on all processors. Let us 
introduce the segmented version, redd-seg, which ac- 
cepts a list of sublists (segments) of equal length, say 
m, and applies operation @ elementwise on them. Its 
type is redd-seg(@) : [ [ ( Y ] ~ ] ~  4 [ [ ( Y ] ~ ] ~ ;  see Figure 1. 

Function redd-seg is a DH which works on a list of 
lists, with the customizing operators which are func- 
tions on lists, namely zaps: 

redd-seg(0)  = ( z ip  (@))$(zip (0)) (21) 

A hypercube implementation fo:r redd-seg follows im- 
mediately from Theorem 3: 
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The segmented version of scan, scan-seg, is similar to 
redd-seg. It is available in MPI as MPI-Scan. Interes- 
tingly enough, scan is a homomorphism, but not a DH. 
However, it can be adjusted to an almost-DH, resulting 
in the following hypercube implementation for scan-seg 
[71: 

scan-seg(0) = map’ 7r1 o (23) 
k 

d = l  
0 ( swap d (zip(@), zip(@))) 0 map’ pair 

where map2 f ‘kf map (map f ) ,  function pair is defined 
by (9), and @ and @ are defined as follows: 

(s1, r1) @ ( $ 2 ,  rz) = (s1, 7.1 0 r2) (24)  
(s1, r1) @ (S’, 7-2.) = (r1 0 SZ , r1 0 r2) 

5. Performance of Compositions 

In this subsection, we estimate the performance of 
the hypercube implementations for scan and reduction, 
and then use these estimates to  assess the composition 
rules of the previous section. We have proved the rules 
for the case of one element per processor, but they are 
also true for the segmented versions of both reduction 
and scan: the segments can be viewed as elements. 

We assume a hypercube network with the following 
properties. An elementary operation takes one unit of 
computation time. Communication links are bidirec- 
tional: two neighboring processors can send messages 
of size m to each other simultaneously in time t,+m-t,, 
where t, is the start-up time and t, is the per-word 
transfer time. A processor is allowed to send/receive 
messages on only one of its links at a time. We ignore 
the computation time it takes to split or concatenate 
vectors within a processor. 

5.1. Scan-Scan Performance 

As an example, let us start with estimating the time 
complexity of scan, according to the DH implementa- 
tion (23). We ignore the costs of pairing and projecting, 
since they form just a small additive constant. There 
are logp swaps, with m elements communicated and 
one or two operations performed in each processor ac- 
cording to (24). This yields a time of 

logp . ( t ,  + m .  (tu, + 2 ) )  

The composition of two scans takes time 

2 . l o g p . ( t s + m . ( t , + 2 ) )  

which is the time complexity of the left-hand side of 
composition rule (16). 

The right-hand side of rule (16) performs pairing at 
the beginning and projection at the end, whose time 
we ignore as well. The rest is a usual scan but, this 
time, on a list of pairs, with the base operation defined 
by (10). Thus, the right-hand side of (16) requires a 
time of 

logp . ( t ,  + m . ( 2 .  tu, + 6)) 

Now, it is easy to  calculate when optimization (16) pays 
O f f  

t , + 2 . m . t w  + 6 - m  < 2 . t , + 2 . m . t W + 4 . m  

which simplifies to 

t, > 2 . m  

Thus, in the hypercube model, the optimization 
pays off if the machine has a relatively high start-up 
cost and/or if the length of the blocks held in the pro- 
cessors is comparatively small. This result is in line 
with intuition, since we trade synchronization costs 
(expressed by the start-up) for additional computations 
(which grow with the vector length). For very long 
vectors, the optimization may be impractical anyway 
because of the additional memory consumption. 

5.2. Scan-Reduce Performance 

The time required by the distributed reduction im- 
plemented by program ( 2 2 )  is: 

logp . ( t ,  + m . ( t ,  + 1)) ( 2 5 )  

Together with the time for scan from the previous sub- 
section, this gives us the time for the left-hand side of 
composition rule (11): 

logp . ( 2 .  t, + m . ( 2 .  t, + 3 ) )  

The time for the right-hand side of rule (11) is: 

logp . ( t ,  + m . ( 2 .  t, + 3 ) )  

Therefore, optimization (11) always pays off on a 
hypercube. The speed-up approaches 2 for relatively 
small blocks and high start-up cost. The main overhead 
here is the double memory requirement. 

5.3. Performance in BSP and Other Models 

The estimates presented in the previous subsection 
apply only to the DH-induced hypercube implementa- 
tion based on a logarithmic sequence of swaps along 
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the hypercube dimensions. Other implementations of 
scan and reduction may exemplify completely different 
communication patterns and, thus, must be assessed 
separately. 

Let us assess the scan-scan transformation in the 
BSP model. As shown in [12], the optimal, “transpose 
scan” algorithm has BSP costs: 

2 .  ( m  . g + I )  + m 

where 1 is the cost of the barrier synchronization, and 
g is the single-word delivery cost, both normalized by 
the instruction rate of the processors. The condition 
under which optimization (16) pays off is as follows: 

4. ( m  . g + E )  + 2 .  m > 2 .  ( 2 .  m . g + 1 )  + 3 .  m 

which simplifies to 

2 . 1  > m 

which, interestingly enough, is quite similar to the es- 
timate obtained in Subsection 5.1 for the hypercube 
algorithm. Since the value of 1 for big configurations 
ranges from 500 on a Cray T3D to 3 .  lo5 on a Parsytec 
GCel, rule (16) does improve performance for a broad 
range of segment lengths. 

Yet quite different assessment applies for a mesh- 
connected transputer network. In the MPI implemen- 
tation available to us on this machine (MPICH 1.0), 
scan is implemented by a linear shift across the pro- 
cessors, with buffered send-receive message exchange. 
Obviously, this linear-time implementation is subopti- 
mal and works well only for small processor configura- 
tions. Regarding the composition rules, the shift imple- 
mentation behaves quite differently from the optimal 
(logarithmic-time) implementation. The scan-reduce 
optimization becomes extremely advantageous for large 
configurations, since it simply eliminates the inefficient 
scan (the speed-up rises to  2 on approximately 20 pro- 
cessors, and grows further for larger configurations). In 
contrast, two shift scans can be executed very quickly 
in sequence, due to the pipeline effect. Fusing them 
into one, more complicated shift scan reduces perfor- 
mance: we observe a slow-down of up to  2 on the trans- 
puter network. 

When using the transformation rules for MPI pro- 
grams, one has to take into account whether special 
hardware for performing particular collective MPI op- 
erations, e.g., reduction or scan, is available on the ma- 
chine in question [13]. Thus, transformations must be 
assessed individually for a given implementation of the 
communication primitives on a given machine. 

6. Decomposing Homomorphisms 

In this section, we look more closely at the imple- 
mentation of the segmented reduction, MPI-Allred. In 
the time estimate (25), even if we ignore the commu- 
nication cost by assuming t, = t, = 0,  the required 
time is m . logp, which means that the parallel speed- 
up is not better than p l l o g p  on p processors. Thus, 
as a monolithic homomorphism, reduction has subop- 
timal performance. The reason is easy to see: since the 
same result segments are computed on all processors, 
we perform many redundant computations. 

6.1. Decomposition Rule for Reduction 

In this section, we optimize the segmented reduction 
by decomposing it into two homomorphisms. The idea 
is, first, to  compute different parts of the result in dif- 
ferent processors and, second, to combine them in each 
processor. For simplicity, this version is explained un- 
der the assumption that arguments are of type [[a],],, 
where both m and p are powers of 2, and p 5 m. 

Let us introduce function redd-parts (for reduction- 
in-parts) which does the first part of the job. It has 
type 

redd-PQds (0) : [ [ ~ l m l p  -+ E[aIm/plp 

We illustrate it on a list of two sublists, each with four 
elements, i.e., m = 4, p = 2: 

redd-parts(+) [ [ ~ 1 , ~ 1 , ~ 1 , 2 1 1 j , [ ~ 2 ,  Y ~ , z z , w ] ]  = 
[Is + x2 1 Y1 + Y21 7 [Zl + 22 , ‘111 + U21 I 

This function can be defined as an IDH, if we assume 
that 0 is both associative and commutative: 

Here, functions left and right yield the left and the 
right halves of a list, respectively. Thus, the result is 
always of half the length of the arguments, for example: 

(left  0 zip (+) ) ([XI , YI , ~ 1 ,  4 , [x2 , ~2 , ~ 2 ~ ~ 2 1 )  = 
[Zl + x2 1 Y1 + Y2 1 

[Zl + z 2 ,  U1 + 2121 

(right 0 zip (+)) ([xi, YI , zi , ~ i ]  , [x2, ~2 z2 ~ 2 1 )  = 

After computing redd-parts (0) , each processor 
keeps a different part of the result, and it remains to  
combine those parts in each processor. This can be ac- 
complished in MPI by the primitive MPI-Allgather. 
We model it by function allgather, which accepts a list 
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[U1 [ Z , U ]  - - - -  [Z, U] [X, Y , Z ,  U ]  - - - -  [X, y, z, U1 

[X, Y , Z ,  U ]  - - - -  [X, y, z, U1 

, I I 
I I , t t 

[ZI - 
[XI - [YI [ X , Y ]  - - - -  [X, Y] 

4 4 4 4 

i=l i=l i=l i=l 
Figure 2. Decomposed reduction on a hypercube: X = xi, Y = yi, 2 = z i ,  U = ui. 

of segments and returns the list whose elements are all 
equal to  the concatenation of the segments: 

allgather : [[(.Illp -+ [[41*~l~ 
aEZgather[[xi, x2],[x3,x4]] = [[xi, a, x3, ~ 4 1 ,  [xi, x2, $3, ~ 4 1 1  

Function allgather can be captured in our DH- 
framework as an unsegmented reduction with ft as 
basic operator, i.e., a CDH: 

allgather = (++)$(-ti-) (27) 

Thus, we can use for allgather the generic implementa- 
tion schema (19), where the segment length communi- 
cated between processors doubles a t  each of logp steps, 
from 1 a t  the beginning to  1 . p a t  the end. 

Thereby, we have obtained a decomposition rule 
which splits segmented reduction over a commutative 
operator 0, into a sequence of two DHs: the IDH 
redd-parts followed by the CDH allgather: 

redd-seg (0) = allgather o redd-parts (0) (28) 

Recollecting how a DH can be implemented according 
to  Theorem 3, we obtain the following hypercube pro- 
gram for the result of the decomposition: 

k 
redd-seg(@) = d=l  0 (swap d (+t, +)) o (29) 

1 

d=k 
0 (swap d (left o zip(@), right 0 zip(@))) 

This program consists of two stages, composed sequen- 
tially. Figure 2 illustrates program (29) on the hyper- 
cube of four processors, each of which keeps a segment 
of length 4. Each of the two stages, the first depicted 

on the top, the second on the bottom, consists of two 
swaps, with decreasing and increasing order of the di- 
mensions, respectively. 

Another possible decomposition, which does not re- 
quire the commutativity of @, is to  define redd-parts as 
CDH, which yields an interleaved output, and then to  
use MPI-Allgather with a suitable re-enumeration of 
the processors. 

6.2. Performance of the Decomposition 

Let us analyze the improvement gained by applying 
decomposition rule (28). 

Observe that the length of communicated segments 
first decreases in redd-parts from m/2 to  m/2p in logp 
steps, giving a time of 

log P 

C(ts + m .  (tw + 1)/2a) 
i=l 

After the first stage, each of the p processors keeps a 
segment of length mlp;  these segments are gathered at 
the second stage to the result segment of length m in 
each processor, which requires a time of 

i=l 

The total time complexity is: 

2 .  t, . logp + m . ( 2 .  t, + l ) (p  - l ) / p  

For comparison, the time of the reduction from Sub- 
section 5.2 is: 
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Thus, performance is improved if 

t, . logp < m .  ((t,+l).logp - (2 . tW+l) . (p- l ) /p)  

For a large number of processors, the condition be- 
comes: 

t, < ma tw 

Rough estimates of the communication parameters 
for, say, the hypercubic Intel 860i are t, = lo3 and 
t, = 10. Thus, for a sufficiently large configuration 
of the machine, composition scan-reduce always pays 
off, scan-scan pays off if m < 500, and the reduction 
decomposition pays off if m > 100. 

6.3. Composition and Subsequent Decom- 
posit ion 

Both composition and decomposition can be applied 
together. For example, after applying composition 
scan-reduce, we can decompose the resulting reduction. 
The overall transformation is not a pure composition 
or decomposition anymore; after an additional small 
transformation which promotes 7 ~ 1  through allgather, 
it reads: 

redd-seg (e) o scan-seg (@) = (30) 
allgather o map’ rTT1 o redd-parts ((e, @)) 0 map2 pair 

This rule gets us from the time achieved after applying 
rule (11) in Subsection 5.2: 

logp . (t, + m . ( 2 .  tw + 3)) 

to a new time of 

2 - ts . logp + m . (4 - t ,  + 3) . ( p  - l ) / p  

which is an improvement for large p if 

ts < 2 .  me tw 

Thus, for small vectors and/or high start-up times, rule 
(11) yields better target performance than the more 
complex transformation (30). 

7. Related Work 

The skeleton approach has recently received much 
attention. An overview of some current work can be 
found in [5 ] .  

Transformation work related to ours has been car- 
ried out in BMF: a version of Theorem 1 in the sequen- 
tial setting was proved and used in [2, 181. An analog 

of our operator red ((@, @I)), called recur-reduce, has 
been used to  parallelize linear recurrences [3] and later 
to tabulate parallel implementations of linearly recur- 
sive programs [ 191. Our transformation rule (1 1) differs 
in that it aims directly a t  the scan-reduce composition, 
and is arguably more convenient for use in algorithm 
design and MPI programming in practice. 

To the best of our knowledge, the composition rule 
for two scans in Theorem 2 is new; the target expression 
is similar to recur-prefix [3]. 

8. Conclusions 

(De)composition of skeletons in general and of ho- 
momorphisms in particular can be employed in two 
main areas. 

First, (de)composing transformations can be used 
in the process of program derivation. E.g., for the 
maximum segment sum problem, application of the 
scan-reduce composition rule enables a series of further 
transformations, which eventually leads to an optimal 
parallel algorithm [9]. 

The second area is programming with parallel skele- 
tons. One challenge of the skeleton approach to  parallel 
programming is that compositionality is not straight- 
forward: at least, it cannot be guaranteed that the se- 
quential composition of the best parallel implementa- 
tions of two skeletons yields again optimal parallelism. 
Instead, one must face the possibility that an individual 
implementation effort of composed skeletons is called 
for. Furthermore, this effort may have to be reinvested 
when one moves to  another machine model. 

What consequences does this have for the user of 
the skeletons and the compiler? It would be very 
helpful if the compiler had enough knowledge about 
which compositions can be implemented efficiently on 
which machine models. For instance, MPI imple- 
mentations should not only provide efficient collec- 
tive operations but also try and accomplish optimizing 
(de)compositions for the underlying platforms. This 
requirement actually does not go much farther than, 
say, loop fusion implemented in the modern sequential 
compilers. If portability between machine models is 
not provided by the compiler then the application pro- 
grammer should at  least be aware of the model he/she 
is programming for; switching models may mean repro- 
gramming. 
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