
Code Generation in the Polytope Model

Martin Griebl, Christian Lengauer, Sabine Wetzel
Fakultät für Mathematik und Informatik, Universit¨at Passau

D-94030 Passau, Germany
fgriebl,lengauer,wetzelg@fmi.uni-passau.de

Abstract

Automatic parallelization of nested loops, based on a
mathematical model, thepolytope model, has been im-
proved significantly over the last decade: state-of-the-
art methods allow flexible distributions of computations in
space and time, which lead to high-quality parallelism.
However, these methods have not found their way into prac-
tical parallelizing compilers due to the lack of code gener-
ation schemes which are able to deal with the new-found
flexibility. To close this gap is the purpose of this paper.

1. Introduction

In recent years, methods for automatic parallelization of
nested loops based on a mathematical model, thepolytope
model[9, 12], have been improved significantly. The focus
has been on identifying good schedules, i.e., distributions
of computations in time, e.g., [6, 8], and allocations, i.e.,
distributions of computations in space, e.g., [5, 14]. Thus,
the space-time mapping, i.e., the combination of schedule
and allocation, derived by state-of-the-art techniques often
describes a very efficient parallel execution of the source
loop nest.

In contrast, code generation has been neglected and has
fallen behind in flexibility compared to modern schedulers
and allocators. Therefore, many space-time mapped source
loop nests cannot be expressed as a target loop nest with
standard code generation techniques [1, 3, 11]. The goal of
this paper is to present a code generation scheme which fills
this gap between space-time mappings and code generation.

The most important recent extensions to the polytope
model which code generation algorithm must catch up with
are:

� the piecewise affinityof functions such as schedules
and allocations,

� imperfectly nestedloops, i.e., loop nests in which not
all statements belong to the innermost loop and,

� the space-time mapping ofindividual statementsas op-
posed to the whole loop body.

In addition, schedule and allocation are usually computed
independently. Therefore, thespace-time matrix, which is
composed of the rows for the schedule and the allocation,
does not satisfy constraints such as unimodularity (deter-
minant of�1), or even invertibility. Thus, code generation
must be able to deal with non-unimodularand even with sin-
gular matrices. We are not aware of the existence of such a
generally applicable method.

[11] can deal with statementwise, even non-unimodular
transformations, but they must be non-singular; our meth-
ods, to be presented here, could be easily integrated as a
preprocessing phase into the code generation algorithm of
[11]. The method of [4] can deal with by-statement map-
pings but none of the other extensions.

Our paper summarizes the main results of the diploma
thesis by Sabine Wetzel [17]. For more examples and a
more technical description we refer to her thesis. The paper
is organized as follows. Section 2 introduces some impor-
tant definitions and describes the notion of aprogram part,
which is the basis of our code generation scheme. Section 3
presents the code generation for separate program parts,
thereby solving the problems incurred by the possibly in-
complete rank of the space-time matrix. Section 4 proposes
two different ways of merging the separate program parts: a
run-time solution (which causes a lot of control overhead at
run time) and a compile-time solution. Section 5 concludes
the paper with a comparison of the two presented merge al-
gorithms.

2. Definitions and Notation

Our mathematical notation follows Dijkstra [7]. Quan-
tification over a dummy variablex is written(Qx : R:x :
P:x). Q is the quantifier,R is a predicate inx representing
the range, andP is a term that depends onx.

LetS be a statement, possibly in the body of a loop nest.
If S is surrounded by loops, then multiple instances of the

single statementS are executed. We call these instancesop-
erationsand denote them withhS; ii, wherei is the index
vector. We denote the set of all operations with
. The de-
pendences between different operations are given by a de-
pendence graph(
; E). The set of all index vectors for
statementS is called theindex spaceand denoted byIS .

Definition 2.1 (Schedule, allocation, space-time matrix)
Let
 be a set of operations,(
; E) their dependence graph,
andr; r0 integer values.

� Functiont :
 ! Z
r is called ascheduleif it preserves

the data dependences:

(8 x; x0 : x; x02
 ^ (x; x0)2E : t(x)<lex t(x
0))

� Any functiona :
 ! Z
r0

can be interpreted as an
allocation.

We require the additional restriction that schedule and
allocation are piecewise affine functions for every statement
S in its index spaceIS . Therefore, for every subdomain
SS � IS , we define:

(9 �S ; �S : �S 2Z
r�d ^ �S2Z

r : (8 i : i2SS :
t(hS; ii) = �S i+ �S))

(9 �S ; �S : �S 2Z
r0
�d ^ �S 2Z

r0

: (8 i : i2SS :
a(hS; ii) = �S i+ �S))

The matrixTS formed by�S and�S is called aspace-
time matrix:

TS =

�
�S
�S

�

For every statementS and everyone of its subdomains
SS , the setTS SS is called atarget polytope; we call the
corresponding loop nest which enumerates this target poly-
tope atarget program part.

With these definitions, we can now explain how to derive
target program parts for target polytopes.

3. Generating Target Program Parts

We proceed in two steps. Section 3.1 presents briefly
the basic idea and the state of the art of code generation
methods. Section 3.2 presents our new extension which can
deal with arbitrary space-time matrices.

3.1. State of the art

Seminal work on target loop generation considered only
unimodular transformation matrices [1]. The basic idea is

for i := 0 to n
for j := 0 to i�1

L : l[i; j] = f(l[i; j�1])
endfor
for k := 0 to i�1

U : u[i; k] = g(u[i�1; k]; l[i; k])
endfor

endfor

Figure 1. A source program leading to a sin-
gular space-time mapping

to substitute the source loop indices in the description of the
index set by the transformed target indices. Technically, this
is achange of basis[1]. More formally, if the source index
space w.r.t. to source loop indicesx is given by the source
polytopeAx � b, then the target polytope w.r.t. target in-
dicesy = T x is given by(A T �1) y � b [12].

After this change of basis, Fourier-Motzkin elimination
[2, 16] can be used to generate the loop bounds; this tech-
nique eliminates variables from a system of inequalities,
which is necessary since the bounds of outer loops must
not depend on the indices of inner loops.

So far, this method has been extended to deal with non-
unimodular invertible matrices [13, 19]. In this case, the
inequality system(A T �1) y � b enumerates the convex
hull, i.e., a proper superset of the images of the source index
space underT . It is possible to pick the correct index points
by using non-unit strides for the target loops. A more de-
tailed technical description of the method, including further
extensions—e.g., how to deal with non-integer coefficients
in the schedule—can be found in Wetzel’s thesis [17].

On the other hand, the topic of relaxing the invertibil-
ity requirement has not been addressed so far, probably be-
cause it is indispensable for deriving the source indices from
the target indices in the loop bodies as well as for comput-
ing the (convex hull of the) target polytope. However, this
case appears in practice, due to the unrelated computation
of schedule and allocation.

Example 3.1
Consider the source program in Figure 1.

StatementL has uniform dependences along dimension
j, whereas the dependences of statementU are uniform
along dimensioni; furthermore, there is a dependence from
hL; (i; j)i to hU; (i; k)i, for j = k. The optimal schedules
aret(hL; (i; j)i) = j andt(hU; (i; k)i) = i. Any non-trivial
allocation (i.e., using more than one processor) can elimi-
nate at most two of the three dependences; the least num-
ber of remaining communications is achieved by the allo-
cationa(hL; (i; j)i) = j anda(hU; (i; k)i) = k. The re-

sulting space-time matrices areT L =

�
0 1
0 1

�
andT U =�

1 0
0 1

�
. Because of the singularity (more precisely: the

non-injectivity) of T L, some processors will have to per-
form several operations at the same time step.

The next section explains how to deal with this situation.

3.2. Arbitrary space-time matrices

Our solution consists of the following steps:

1. Eliminate linearly dependent rows in the matrix (Sec-
tion 3.2.1).

2. Extend the matrix to a square invertible matrix, i.e., to
a basis (Section 3.2.2).

3. Generate code w.r.t. the resulting modified matrix
(Sections 3.2.2 and 3.1).

4. Insert code for the rows eliminated in step 1 (Sec-
tion 3.2.3).

For simplicity, we assume that the rows of the space-
time matrix are ordered from top to bottom according to the
desired outside-in order of the target loops. (Note that this
is just a convention, not a restriction.)

3.2.1 Eliminating linearly dependent rows

In a first step, we eliminate, iteratively from top to bot-
tom, all linearly dependent rows and store them together
with their row number for further processing later on (Sec-
tion 3.2.3). Technically, we use Echelon reduction [2] to
determine whether row� is linearly dependent on rows
1; � � � ; �� 1. The result of this elimination process is a
matrix T 0 which has full row rank but is not necessarily
square: the number of rows is less or equal to the number
of columns.

3.2.2 Extending to a square matrix with full rank

Matrix T 0 can have fewer rows, i.e., target dimensions, than
there are columns, i.e., source dimensions. To obtain an
invertible square matrix, we extendT 0 to a basis by sim-
ply adding linearly independent unit vectors at the bottom
of T 0, each of which spawns one missing dimension. The
result is an invertible square matrixeT . This matrix can
be used to derive the target program parts from the target
polytopes by standard methods (including the extensions
for non-unimodular transformations), as described in Sec-
tion 3.1.

Interpretation Before continuing with our description of
the code generation method, let us briefly reflect on the
changes fromT ’ to eT . How can we interpret the artificial
rows which we have added and which correspond to target
dimensions but are given neither by the schedule nor by the
allocation?

Since these dimensions are not laid out in time, they ob-
viously will not carry a dependence (otherwise, the sched-
ule would be incorrect). Therefore, we could lay them out
in space.

On the other hand, the allocator did not distribute iter-
ations along these dimensions. Therefore, in order to pre-
serve the effect of the allocation, we decide to lay these ar-
tificial dimensions out in time and put the respective loops
inside the loops enumerating the schedule. I.e., we re-
fine the time given by the scheduler with additional dimen-
sions. This changes neither the global schedule (which is
respected by the outermost, i.e., dominant loops on time),
nor the allocation (since it is not modified).

The remaining question is: what happens with the rows
which have been eliminated? The next subsection will rec-
tify the fact that we have ignored those dimensions.

3.2.3 Reinserting eliminated dimensions

First, note that a target dimension given by row�, which is
linearly dependent on rows1; � � � ; ��1 of T , collapses to
a singleton, the valuer� of which can be computed from
the coordinatesr1; � � � ; r��1 in dimensions1; � � � ; �� 1.
This leads directly to our solution: we computer� from
r1; � � � ; r��1 and insert a loop enumerating only the sin-
gletonr�. The nesting level at which this loop is inserted
is given by the previously stored number of the eliminated
row (Section 3.2.1). The type of the loop is sequential if the
eliminated row was produced by the scheduler, and parallel
if it is a part of the allocation.

This way, the outermost target loops enumerate precisely
all coordinates according to the given space-time mapping,
i.e., the loop nest implementsT correctly, whereas the in-
nermost, artificially added target loops spawn the missing
dimensions, which is, in general, necessary to be able to
enumerate all transformed source index coordinates.

In Example 3.1,T 0

L = (0 1) and eT L =

�
0 1
1 0

�
.

Intuitively, time has been refined to enable an allotment of
only one computation per processor and time step.

4. Merging Target Program Parts

At this point, we have several target polytopes
P1; : : : ; Pk, one per statement and per subdomain (in the
case of piecewise affine schedules or allocations), and their

according target program parts w.r.t. invertible space-time
matrices.

The complete target program must enumerate the union
of these polytopes: thequasi-convex polytopeP = P1 [
: : : [Pk [20]. The goal of this section is to derive this tar-
get programP 0. We present two different methods to this
effect:
� The most general possibility is the run-time solution

described in Section 4.1.
� A less costly possibility (at a first sight!) is the

compile-time solution described in Section 4.2.

Since there is no loop which enumerates both space and
time, we can only merge loops of the same type (sequential
or parallel). This restriction is necessary for the run-time
solution as well as for the compile-time solution. However,
for two polytopes to be merged, the sequence of types of
loops for one polytope is allowed to be a prefix of the se-
quence of types of loops for the other polytope. Note that
the type of loops does not influence the merge technique.

4.1. Run-time solution

The run-time solution can briefly be described as fol-
lows: we construct the convex hull or any convex super-
set of the quasi-convex polytopeP and decide at run time
whether a point of the set is member of the polytope or not.

For simplicity, our implementation [10] does not even
compute the convex hull ofP but its rectangular hull. In
this simple situation, the lower (upper) bound of a loop at
level r in P 0 is given by the minimum (maximum) of all
lower (upper) bounds of the loops at levelr of all program
parts enumeratingP1; : : : ; Pk.

Future experiments will have to reveal whether the con-
vex hull pays off compared to the less precise rectangular
hull, since the price of scanning fewer points at run time is
an increase in complexity for the computations in the loop
bounds.

The body of the loop nest consists of oneif clause per
target polytopePk0 (1�k0�k) which guards the execution
of the statement associated withPk0 .

Remark Note that we place theif clause for a target poly-
topePk0 into the outermost target loop ofP 0 for which all
dimensions ofPk0 are enumerated (see Figure 2).1

Extension to non-unit strides If at least one program part
has a non-unit stride, we compute the gcd of the strides of
all program parts in every dimension, to get the stride for
the target loop in this dimension. In compensation, we must
augment the guard preceding the loop body. For more de-
tails see [17].

1In special cases, e.g., in Figure 2, this could still be improved by hoist-
ing the guard out of a loop with standard code motion techniques.

P 0

1
: for i := 1 tom

S1
end for

P 0

2
: for i := 2 to 5

for j := i to i+3
S2

endfor
endfor

!

P 0: for i := 1 to max(m; 5)
if (1� i�m) then
S1

endif
for j := i to i+3

if (2� i�5) then
S2

endif
endfor

endfor

Figure 2. Merging two target program parts
with the run-time solution

Summary The run-time solution is generally applicable,
but the generated conditionals cause run-time overhead.
They are necessary to check, for every iteration, in which
target polytope it is contained and, thus, which statements
must be executed. Due to the construction of the hull (re-
gardless of whether it is convex or rectangular), it is even
possible that no statement is executed. The next subsection
describes an alternative to avoid this overhead.

4.2. Compile-time solution

To avoid the control overhead of the run-time solution,
we divide the quasi-convex target polytopeP into several
proper polytopes at compile time, which can be transformed
directly into loop nests.

More technically, the compile-time solution generates a
sequenceof loops for the first (outermost) dimension and,
within every generated loop, proceeds recursively with the
next dimension. Let us first give an intuitive description of
our algorithm. In order to generate the sequence of loops
for dimensionr, the algorithm scans dimensionr with a
hyperplaneHr(x) orthogonal tor and with coordinatex
in dimensionr, and reports every coordinate at which a
target polytopePk0 starts or ends. The starting point (end
point) means of the scan is the first (last) point at which the
intersection ofHr(x) andPk0 is not empty. More formally,
Pk0 starts or ends atx iff

(8x0 : x0<x : Hr(x
0) \ Pk0 = ; ^Hr(x) \ Pk0 6= ;) or

(8x0 : x0>x : Hr(x
0) \ Pk0 = ; ^Hr(x) \ Pk0 6= ;)

respectively.

Note that, in the presence of structure parameters, the
start and end coordinates are not known at compile time.

Example 4.1
Consider the target program parts in Figure 3. (Of course,
S1 andS2 may also contain further loops.) The merged tar-
get program for the case30�m� 50 is given on the right.

P 0

1
: for i := 10 tom

S1
endfor

P 0

2
: for i := 30 to 50

S2
endfor

!

P 0: for i := 10 to 29
S1

endfor
for i := 30 tom
S1
S2

endfor
for i := m+1 to 50
S2

endfor

Figure 3. Merging two program parts with the
compile-time solution (for 30�m�50)

The value ofm determines whether the target polytopes do
overlap and, if so, how far.

The only solution we see is to create target loops for ev-
ery possible permutation of the parameters and, thus, for
every possible permutation of the start and end points.

More precisely, for every dimensiond, we compute dif-
ferent sequences of loops, each of which enumerates dimen-
siond according to different permutations of the structure
parameters. All these possible sequences of loops for di-
mensiond are then combined as branches of a conditional
whose guards test for the permutations of the structure pa-
rameters. At run time, we check which permutation of the
parameters is actually given and, thus, which branch of the
target program must be executed.

Technically, the scan of a dimension is realized by just
taking all lower and upper bounds of the loops to be merged,
and trying to sort them, which again leads to the difficulties
with the unknown values of the parameters at compile time.

Complexity ForN parameters in the source loop nest, we
haveN !, i.e., exponentially many permutations! The situ-
ation becomes even worse if we have maximum and min-
imum expressions in the loop bounds: in this case, we do
not know at compile time which of the arguments will con-
tribute to the maximum at a given index vector and, thus,
we consider every argument of a maximum or minimum
expression as a new structure parameter. Since this case
occurs quite frequently in practice, the increase in the num-
ber of possible permutations is enormous. Note that this
negative result is valid for any scheme which tries to avoid
control overhead, e.g., [11].

Example 4.2
If we modify Example 4.1 such that all four loop bounds
are parameters, we have 24 possible permutations (for the
outermost loop), i.e., branches in the target program.

for i := 1 to n
A[i] := f(i);
B[i] := g(A[i]; B[i�1]);

endfor

!

forall i := 1 to n
A[i] := f(i);

endforall
for i := 1 to n
B[i] := g(A[i]; B[i�1]);

endfor

Figure 4. Loop distribution as a result of
compile-time solution

Extension to non-unit strides Since there is no way of
merging different strides into a single loop without using
conditionals, the solution for a non-unit stride is inevitably
the same as in the run-time solution, thus causing condition-
als even in the compile-time solution.

Generation of easily readable and efficient code It has
been shown that many individual techniques for automatic
parallelization, e.g., loop distribution, loop peeling, etc. can
be expressed as a space-time mapping [15, 18]. However,
the reverse problem has not been addressed so far: to check
whether a given space-time mapping corresponds to loop
distribution, loop peeling, etc. This knowledge would lead
us directly to efficient target code. E.g., in our examples,
the compile-time solution leads automatically to the desired
target programs.

Example 4.3
Consider the source loop nest in Figure 4, left, and the
schedulet(hS1; (i)i) = 0 andt(hS2; (i)i) = i. This space-
time mapping can be interpreted as a (very simple) case
of loop distribution and, indeed, the compile-time solution
generates the same code as loop distribution for this case
(Figure 4, right).

Similarly, our compile-time version automatically leads
to loop peeling, if appropriate. E.g., for two one-
dimensional program partsP1 andP2, which enumerate
iterations0; � � � ; n�1 and1; � � � ; n, respectively, we ob-
tain a target program with three parts: first, instance0 of
the body ofP1, then a loop from1 to n�1 containing both
body statements, and finally instancen of the body ofP2.

5. Conclusions

We have seen in Section 3 that we can extend code gener-
ation easily to singular transformation matrices. Therefore,
the proposed code generation scheme can deal with any ar-
bitrary affine schedule and allocation. This is a significant
improvement over former code generation algorithms, espe-
cially since, in practice, some dimensions of schedule and
allocation are quite often linearly dependent.

There is need for future work. In the extension of the
basis of the transformation matrix (Section 3.2.2), we insert
a unit vector for every missing row. It should be examined
whether an insertion of a non-unit vector is better and, if so,
which one is the best.

Section 4 proposes solutions for dealing with piecewise
affine schedules or allocations for individual statements.
The main challenge is to merge the individual target pro-
gram parts. We have proposed two solutions.

The run-time solution (Section 4.1) creates a loop nest
which, in general, enumerates a superset of the target in-
dex points to be executed; evaluating conditional expres-
sions at run time guarantees the correctness of the target
program. This method is generally applicable but causes
run-time overhead.

The compile-time solution (Section 4.2) avoids this over-
head as far as possible by dividing the index space of the
quasi-convex target polytope into several parts. However,
due to parameters in the input program and due to minimum
or maximum expressions in the target program parts, the
number of possible target programs grows exponentially.
Even for very simple programs the results are frightening:
for a source program of a few lines with three nested loops,
we obtain8 expressions for the loop bounds of the outer-
most dimension, which cause40320 permutations, i.e., anif
cascade with40320 branches. We cancelled the code gener-
ation after20 minutes, when the target program had grown
to approximately130 MB of disk space.

In addition, for non-unimodular transformations, even
the compile-time solution leads to guards at run time, be-
cause we must select the proper stride.

All in all, the compile-time version looks more promis-
ing at first sight but, in practice, the run-time solution will
probably be preferred, except for the simple situation in
which there is no parameter in the bounds of the source
loops.

Acknowledgements

This work has been funded by the German Research
Foundation (DFG) under project RecuR and by the German
Academic Exchange Service (DAAD) under its PROCOPE
programme. We are grateful to Jean-Franc¸ois Collard to nu-
merous discussions on code generation.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO
loops. InProc. 3rd ACM SIGPLAN Symp. on Principles &
Practice of Parallel Programming (PPoPP), pages 39–50.
ACM Press, 1991.

[2] U. Banerjee.Loop Transformations for Restructuring Com-
pilers: The Foundations. Series on Loop Transformations
for Restructuring Compilers. Kluwer, 1993.

[3] Z. Chamski. Scanning polyhedra with DO loop sequences.
In B. C. Sendov and I. Dimov, editors,Proc. Workshop on
Parallel Architectures (WPA’92). Elsevier (North-Holland),
1992.

[4] J.-F. Collard. Code generation in automatic parallelizers.
In C. Girault, editor,Proc. Int. Conf. on Applications in
Parallel and Distributed Computing, IFIP W.G. 10.3, pages
185–194. North-Holland, Apr. 1994.

[5] A. Darte and Y. Robert. Mapping uniform loop nests
onto distributed memory architectures.Parallel Computing,
20(5):679–710, May 1994.

[6] A. Darte and F. Vivien. Optimal fine and medium grain par-
allelism detection in polyhedral reduced dependence graphs.
Int. J. Parallel Programming, 25(6):447–496, Dec. 1997.

[7] E. W. Dijkstra and C. S. Scholten.Predicate Calculus and
Program Semantics. Texts and Monographs in Computer
Science. Springer-Verlag, 1990.

[8] P. Feautrier. Some efficient solutions to the affine schedul-
ing problem. Part II. Multidimensional time.Int. J. Parallel
Programming, 21(6):389–420, Oct. 1992.

[9] P. Feautrier. Automatic parallelization in the polytope
model. In G.-R. Perrin and A. Darte, editors,The Data
Parallel Programming Model, Lecture Notes in Computer
Science 1132, pages 79–103. Springer-Verlag, 1996.

[10] M. Griebl and C. Lengauer. The loop parallelizer LooPo—
Announcement. In D. Sehr, U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors,Languages and Com-
pilers for Parallel Computing (LCPC’96), Lecture Notes in
Computer Science 1239, pages 603–604. Springer-Verlag,
1997.

[11] W. Kelly, W. Pugh, and E. Rosser. Code generation for
multiple mappings. Technical Report CS-TR-3317, Dept.
of Computer Science, Univ. of Maryland, 1994.

[12] C. Lengauer. Loop parallelization in the polytope model.
In E. Best, editor,CONCUR’93, Lecture Notes in Computer
Science 715, pages 398–416. Springer-Verlag, 1993.

[13] W. Li and K. Pingali. A singular loop transformation frame-
work based on non-singular matrices.Int. J. Parallel Pro-
gramming, 22(2):183–205, Apr. 1994.

[14] A. W. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine partitions.Parallel
Computing, 24(3–4):445–475, May 1998.

[15] W. Pugh. Uniform techniques for loop optimization. In
Proc. Int. Conf. on Supercomputing (ICS’91), pages 341–
352, 1991. ACM SIGARCH, ACM Press.

[16] A. Schrijver. Theory of Linear and Integer Programming.
Series in Discrete Mathematics. John Wiley & Sons, 1986.

[17] S. Wetzel. Automatic code generation in the polyhedron
model. Master’s thesis, Fakult¨at für Mathematik und In-
formatik, Universität Passau, Nov. 1995.http://www.fmi.uni-
passau.de/loopo/doc/wetzel-d.ps.gz.

[18] M. Wolf and M. Lam. A loop transformation theory and an
algorithm to maximize parallelism.IEEE Trans. on Parallel
and Distributed Systems, 2(4):452–471, Oct. 1991.

[19] J. Xue. Automating non-unimodular transformations of loop
nests.Parallel Computing, 20(5):711–728, May 1994.

[20] J. Xue. Transformations of nested loops with non-convex
iteration spaces.Parallel Computing, 22(3):339–368, Mar.
1996.

