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Abstract

We study how severalcollective operationslike broad-
cast, reduction, scan, etc. can be composed efficiently in
complex parallel programs. Our specific contributions are:
(1) a formal framework for reasoning about collective op-
erations; (2) a set of optimization rules which save commu-
nications by fusing several collective operations into one;
(3) performance estimates, which guide the application of
optimization rules depending on the machine characteris-
tics; (4) a simple case study with machine experiments.

1. Introduction

Collective operations – broadcast, reduction, scan, etc. –
describe common patterns of communication and computa-
tion in parallel computing. They have become an essential
part of parallel languages based on various paradigms and
targeting various architectures: conventional SPMD pro-
gramming with run-time libraries like MPI [7] and BSP [8],
environments for clusters of SMPs like SIMPLE [2], array
languages like HPF [11] and ZPL [12], functional languages
like NESL [3], high-level programming environments like
P3L [1], intermediate representations in loop parallelization
[10], and others.

Collective operations offer several advantages over ex-
plicit send-receive statements. First, the use of collective
operations simplifies the program structure, which makes
programming less error-prone. Second, the vendors’ activ-
ity can be focused on an efficient implementation of a re-
stricted set of collective patterns, either in software or in
dedicated hardware. Last but not least, the use of collec-
tive operations simplifies the traditionally hard porting and
performance prediction of parallel programs.

So far, research has concentrated either on expressing
applicationsin terms of collective operations (see, e.g., the
PLAPACK library for linear algebra [14] or algorithms for
computational geometry [4], both based on exclusively col-
lective communications), or on efficientimplementationsof
particular collective operations (see, e.g., [13]).

In this paper, we build on the results on applications
and implementations, and develop a new approach of
performance-directed programming with collective opera-
tions. Our motivation is that a big application may exploit
many collective operations, which should be used and opti-
mized in combination rather than in isolation.

Our specific objective is to develop a set of optimiza-
tion rules which, with the premise of some condition, can
be used to transform a sequence of two or more collective
operations into one collective operation, with the possible
gain of a substantial performance improvement:

coll_op_1; coll_op_2
cond
�! coll_op_3

We aim at rules which aresemantic equalities, i.e., prov-
able in a suitable formalism, and applicable independently
of the particular implementation of collective operations.
For illustration purposes, we use an MPI-like syntax. To
support the design process, we augment the set of rules for
manipulating (combinations of) collective operations with a
mechanism for reliable performance estimates.

The contributions and structure of this paper are as fol-
lows. We present a formal framework for reasoning about
programs with collective operations (Section 2). We de-
velop a set of optimization rules for compositions of the
most popular collective operations: broadcast, reduction
and scan (Section 3). We estimate their impact on the target
performance (Section 4). And we present a case study with
experimental results (Section 5).

2. Programming Model and Formalism

2.1. Example Program and Optimization Sources

We consider SPMD programs which are composed of
two kinds of parallel operations: (1)local operations which
are computations performed by each processor indepen-
dently of other processors, and (2)collective operations
which express interprocessor communication. A collec-
tive operation may be either a pure communication as, e.g.,
broadcast or scatter, or a communication interleaved with
computations like in reduction or scan.
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As an example of a practically used syntax for collec-
tive operations, consider the following SPMD program, ex-
pressed in a slightly simplified MPI notation:

Program Example; /* x: input, v:output */
y = f ( x );
MPI_Scan (y, z, count1, type, op1, comm);
MPI_Reduce (z, u, count2, type, op2, root, comm);
v = g ( u );
MPI_Bcast (v, count3, type, root, comm);

ProgramExample consists of two local stages, ex-
pressed as function calls tof and g, and three collective
stages: scan and reduction (with base operatorsop1 and
op2 , correspondingly), and broadcast.

Figure 1 demonstrates how programExample runs on
some parallel machine. In the local stages, each proces-
sor follows its own control flow, depicted by a downward
double arrow. During collective operations, the control
flows of the processors get intertwined in a “common area”.
Note that local and collective operations may take differ-
ent amounts of time in the processors, and that we do not
require a synchronization between collective operations.
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Figure 1. Run time behavior of programExample , fol-
lowed by programNext_Example . Compositions of col-
lective operations are potential optimization points.

As shown in Figure 1, compositions of collective opera-
tions, which are our main aim, arise in the following cases:

� As part of a program, e.g.,inExample the composi-
tion MPI_Scan ( : : : ); MPI_Reduce ( : : : ) .

� As a result of composing, e.g.,Example with an-
other program,Next_Example , in one application.
If Next_Example starts with collective operation
MPI_Scan ( : : : ) , we get the following composi-
tion: MPI_Bcast ( : : : ); MPI_Scan ( : : : ) .

2.2. Functional Framework

To enable formal reasoning about collective operations,
we use the functional view of programs. For instance, our
programExample takes inputx and produces outputv , by
computing the following values:x ! y ! z ! u! v .

In other words, programExample computes functionex ,
which transforms inputx into outputv :

v = ex x (1)

This function is expressed in our formalism by a functional
program which is a composition of functions corresponding
to the individual statements ofExample :

ex = map f ; scan (
) ; reduce (�) ; map g ; bcast (2)

To keep the notation closer to the imperative style of most
parallel languages, including MPI, functional composition
in program (2) is denoted by a semicolon:

(f ; g) x
def
= g (f x ) (3)

Function application is denoted by juxtaposition, i.e.,f x =
f (x ); it has the highest binding power and associates to the
left. The functions representing program stages work on
lists: elementxi of list x = [x1; x2; : : : ; xn ] denotes the
block of data residing in processori .

In the computation stage ofExample , denoted by func-
tion call f(...) , every processor computes functionf on
its local data, independently of other processors. We model
this in program (2) by the higher-order functionmap, which
applies unary functionf to all elements of a list:

map f [x1; x2; : : : ; xn ]
def
= [ f x1; f x2; : : : ; f xn ] (4)

Here, functionf may be arbitrarily complex and elements
x1; x2; : : : ; xn may be lists (blocks) again.

The collective operations ofExample , expressed there
as MPI functions, are expressed in functional program (2)
by functions which we adorn, for simplicity, with only one
parameter: the base operator. The input and output param-
eters, i.e.,x, y, etc. are omitted in (2) by assuming that
the output of each stage is the input of the next stage. We
omit the size and the type of the data,count and type ,
which are irrelevant for our program transformations; the
size is used in Section 4 for the cost estimates. We assume
that all collective operations in a program take place on the
same group of processors, so that we can omit the name of
the MPI communicator,comm. The root processor,root ,
is assumed to be the first processor in the group.

Let us now consider the meaning of collective operations
in the example program. Reduction combines data resid-
ing on all processors using an associative base operator,�,
which may be either predefined (addition, multiplication,
etc.) or defined by the programmer. We use two versions
of reduction, depending on whether the result is assigned to
the root or to all processors (in MPI, they are denoted by
MPI_Reduce andMPI_Allreduce , respectively):

reduce (�) [x1; x2; : : : ; xn ]
def
= [y ; x2; : : : ; xn ] (5)

allreduce (�) [x1; x2; : : : ; xn ]
def
= [y ; y ; : : : ; y ] (6)

wherey = x1 � x2 � � � � � xn .

2



Another collective operation in Example is
MPI_Scan : on each processor, the result is an accu-
mulation of the data from the processors with smaller rank,
using an associative base operator. This is expressed in (2)
by functionscan with parameter operator
:

scan (
) [x1; x2; : : : ; xn ]
def
=

[x1; x1 
 x2; : : : ; x1 
 x2 
 � � � 
 xn ] (7)

BroadcastMPI_Bcast sends a datum or a block residing
on the first processor to all other processors. The data of the
other processors are not relevant, so we denote them by the
underscore in the definition of functionbcast :

bcast [x1; _; : : : ; _]
def
= [x1; x1; : : : ; x1] (8)

The format of program (2) covers also other styles of pro-
gramming with collective communications, different from
MPI. For example, computations in the symmetric multi-
processor nodes of clusters of SMPs [2] can be expressed
by introducing one more level of parallelism to represent
multithreading:map (map f ) instead ofmap f .

2.3. The Technique of Optimization

Our program transformations are based on introducing
auxiliary variables, which is a ubiquitous technique in par-
allel programming practice for removing data dependences.

We use the following functions for data duplication:

pair a
def
= (a; a) (9)

triple a
def
= (a; a; a) (10)

quadruple a
def
= (a; a; a; a) (11)

Function�1 extracts the first element of an arbitrary tuple:

�1 (a; b) = �1 (a; b; c) = �1 (a; b; c; d)
def
= a (12)

To illustrate the technique of auxiliary variables, con-
sider a simple program term,P1, consisting of just one
global reduction which sums the elements of a list:

P1 = allreduce (+)

and another program term,P2, which consists of three
stages; it creates a list of pairs, computes a reduction on
it and then extracts the first element of each pair:

P2 = map pair ; allreduce (op_new) ; map �1

where the base operator of reduction inP2, op_new , is de-
fined on pairs, in prefix notation:

op_new ((a1; b1); (a2; b2))
def
= (a1 + a2; b1 � b2)

The reduction inP2 computes not only the sum of the
list elements but also their product. However,map �1, exe-
cuted after the reduction, delivers only the sum. Therefore,

P2 always yields the same output asP1, i.e., they are se-
mantically equivalent.

The semantic equalityP1 = P2 is illustrated by the di-
agram in Figure 2, with input list[1; 2; 3; 4]. In this exam-
ple, the cost of program termP2 is obviously higher than
the cost ofP1, due to the extra computation and commu-
nication in the reduction stage. In the next section we will
demonstrate that introducing auxiliary variables can also in-
cur a significant saving of costs.

[10, 10, 10, 10]

allreduce (+)

[1, 2, 3, 4]

[(10,24), (10,24), (10,24), (10,24)]

allreduce (op_new)

[(1,1), (2,2), (3,3), (4,4)]
map pair

map �1

P2P1

Figure 2. Equivalence of programsP1 andP2.

3. Optimization Rules

In this section, we show how particular sequences of col-
lective operations can be replaced by a semantically equiv-
alent single collective operation, or even by local computa-
tions, usually at the price of more complex computations.
In other words, wetrade expensive communications for
comparatively cheap computations. Technically, the extra
computations are expressed by the auxiliary functions in-
troduced in Subsection 2.3. Formal proofs of most rules
can be found in our previous work [6, 15].

3.1. Format of Optimization Rules

We present optimization rules in the following format:

Rule Name

original program term

#{conditions which must be met to use the rule}
optimized program term

locally de�ned functions

We distinguish four classes of rules, named after the kind
of operation which is the result of the optimization: Reduc-
tion, Scan, Comcast (explained further on) and Local. The
names of the rules are constructed from the initials of the
collective operations in the program term being transformed
and the name of the class. If the composed collective op-
erations have different base operations, a 2 appears in the
name of the rule. E.g., if a rule transforms a scan (initial
“S”) with base operation
 and a subsequent reduction (ini-
tial “R”) with a different base operation,�, and the result of
the transformation is one reduction, then the rule is called
SR2-Reduction.
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Bcast

g

Reduce

Scan

f f; pair

Reduce

g; pi_1

Bcast

Collective Operation 4

Collective Operation 2

Collective Operation 3

Collective Operation 1

Collective Operation 3

SR2-Reduction

Time saved

Figure 3. Impact of rule SR2-Reduction on programExample .

3.2. Transformations into Reduction

Class Reduction contains transformations which fuse a
scan and a subsequent reduction into a single reduction,
with some pre- and post-adjustment.

The first two rules refer to the case that the base op-
erations in the scan,
, and in the reduction,�, are dif-
ferent, and
 distributes over�, i.e., a 
 (b � c) =
(a 
 b) � (a 
 c). In the rules,� and
 stand for generic
binary associative operators.

The fusion rules for both versions of reduction,reduce

andallreduce, look similar (see [6] for a proof):

SR2-Reduction

scan (
) ; [all]reduce (�)

#{
 distributes over�}
mappair ; [all]reduce (op_sr2 ) ; map�1

op_sr2 ((s1; r1); (s2; r2)) = (s1�(r1
s2) ; r1
r2)

A possible impact of the SR2-reduction rule is illustrated
in Figure 3: it transforms a scan followed by a reduction,
into one reduction, with a possible time saving. The com-
putations expressed by functionspair and�1 (explained in
Subsection 2.3) is fused in the figure with the corresponding
local stages. The performance estimates for this and other
rules are given in Section 4.

If the distributivity condition in the SR2-Reduction rule
is not met, the fusion of a scan with a reduction is possible
if both have the same base operator which is commutative:

SR-Reduction

scan (�) ; [all]reduce (�)

#{� is commutative}

mappair ; [all]reduce_bal (op_sr) ; map�1

op_sr ((t1 ; u1); (t2; u2)) = (t1 � t2 � u1; uu� uu)
op_sr ((); (t2 ; u2)) = (t2; u2 � u2) uu = u1 � u2

Variableuu is introduced in order to save computations:
we need to perform� only four times, rather than five
times, during the computation ofop_sr .

Unlike the SR2-rule, whose result contains the usual
reduction with an associative base operator, the SR-rule
yields a reduction-like functionreduce_bal, whose opera-
tor, op_sr , may be non-associative. We definereduce_bal
using a virtual binary tree (see Figure 4), whose leaves all

have the same path length to the root, and a right subtree
must be complete if its root has a non-empty left subtree.
The whole tree does not have to be complete: our example
shows six processors, rather than a power of 2:

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Proc. 5

(19; 20)

(2; 2)

(5; 5)

(9; 9)

(1; 1)

(2; 2)

(6; 6)

(9; 14)

(10; 16)

(9; 28)

(49; 72) (86; 200)

(t1; u1)

(t2; u2)

Operationop_sr on nodes:

(ttu; uuuu)

Figure 4. “Balanced reduction” illustrating rule SR-
Reduction with� = + (here ttu = t1 + t2 + u1,
uuuu = uu + uu, uu = u1 + u2).

Horizontal, undirected links express transitions between
steps in one processor, directed links denote communica-
tions. The tree can be extended to a butterfly to compute the
balanced version ofallreduce.

3.3. Transformations into Scan

Rules in this class transform a composition of two scans
into a single scan. For two scans with different base opera-
tors, we require again distributivity:

SS2-Scan

scan (
) ; scan (�)

#{
 distributes over�}
mappair ; scan (op_sr2 ) ; map�1

op_sr2 ((s1; r1); (s2; r2)) = (s1�(r1
s2) ; r1
r2)

For two scans with the same operator, we require com-
mutativity, as well as a specific, balanced scan with a non-
associative operator on the right-hand side:

SS-Scan

scan (�) ; scan (�)

#{� is commutative}

mapquadruple ; scan_bal (op_ss) ; map�1

op_ss ((s1; t1; u1; v1); (s2; t2; u2; v2)) =
((s1; ttu; uuuu; vv) ; (s2 � t1 � v1; ttu; uuuu;uu� vv))

op_ss ((s1; t1; u1; v1); ()) = ((s1; _;_; _); ()) ; vv = v1 � v2

ttu = t1 � t2 � u1 ; uu = u1 � u2 ; uuuu = uu� uu
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Functionscan_bal is implementable using the butterfly
demonstrated by Figure 5. If the number of processors is not
a power of2, some processors do not have communication
partners; they keep their first value during the corresponding
step, the other three values are undefined (denoted by _) and
are not used in the subsequent computations.

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Proc. 5

(9; 19; 20; 10)

(19; 19; 20; 20)

(10; 10; 16; 16)

(2; 10; 16; 8)

(9; 9; 14; 14)

(2; 9; 14; 7) (2; 42; 68; 17)

(9; 42; 68; 34)

(25; 42; 68; 51)

(42; 42; 68; 68)

(86; _; _; _)

(2; _; _; _)

(10; _; _; _)

Operationop_ss on nodes:

(6; 6; 6; 6)

(2; 2; 2; 2)

(1; 1; 1; 1)

(9; 9; 9; 9)

(5; 5; 5; 5)

(2; 2; 2; 2) (2; _; _; _)

(9; _; _; _)

(25; _; _; _)

(42; _; _; _)

(61; _; _; _)

(s1; ttu; uuuu;vv)

(s2 + tv; ttu;uuuu;uuvv)

(s1; t1; u1; v1)

(s2; t2; u2; v2)

Figure 5. “Balanced scan” illustrating rule SS-Scan with
� = +, wheretv = t1 + v1, uuvv = uu + vv .

3.4. Transformations into Comcast

Compositions of a broadcast with one or several scans
produce the following target pattern, with functiong as pa-
rameter. If the root processor holds datumb, then processor
i will receive datumg ib, i.e., functiong appliedi times to
elementb: [b; _; : : : ; _] 7! [b; g b; : : : ; gn�1 b].

We call this patterncomcast (for compute after
broadcast). A naïve computation in the processors would
lead to a linear time complexity:

bcast ; map# (times g); where times g k = gk

Here, functionmap# is amap which allows the argu-
ment function to have the processor number as parameter:

map# f [b0; b1; : : : ; bn�1]
def
=

[ f 0 b0; f 1 b1; : : : ; f (n�1) bn�1 ] (13)

We can improve the computation ofgk in processork to
a logarithmic-time algorithm, using the following schema,
with argument functionse ando:

repeat(e; o) k b = if k = 0 then b else (14)
repeat (e; o) (k div 2)(if (p mod 2 = 0) thene b elseo b)

This schema is used in our first rule of group Comcast,
which fuses a broadcast followed by a scan into a comcast:

BS-Comcast

bcast ; scan (�)

#{}
bcast ; map# op_comp

op_comp k = pair ; repeat (e; o) k ; �1

e (t; u) = (t; u� u); o (t; u) = (t � u; u� u)

Functionrepeat traverses the binary digits of the proces-
sor number,k , from the least significant digit to the most
significant digit: if the digit is0, functione is applied, if the
digit is 1, functiono is applied (see Figure 6). Note the sim-
ilarity of this implementation with the well-known method
of the efficient evaluation of powers.

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Proc. 52

2

2

2

2

2 (2; 16)

(4; 16)

(6; 16)

(8; 16)

(10; 16)

(12; 16)

(6; 8)

(8; 8)

2 (2; 4)

(4; 4)

(2; 8)

(4; 8)

(2; 4)

(4; 4)

(2; 4)

(4; 4)

(2; 8)

(4; 8)(2; 2)

(2; 2)

(2; 2)

(2; 2)

(2; 2)

(2; 2)

12

2

4

6

8

10

bcast pair repeat (e; o) �1

(te ; ue)

(to ; uo)

e

o
(te ; ue + ue)

(to + uo ;uo + uo)

Operations on node:

Figure 6. Rule BS-Comcast with� = +.

The next rule is a corollary of two previous rules, SS2-
Scan and BS-Comcast:

BSS2-Comcast

bcast ; scan (
) ; scan (�)

#{
 distributes over�}
bcast ; map# op_comp

op_comp k = triple ; repeat (e; o) k ; �1

e (s; t; u) = (s; t� (t
 u); u
 u)

o (s; t; u) = (t � (s
 u); t� (t 
 u); u
 u)

It would be tempting to derive a rule BSS-Comcast as
a corollary of SS-Scan and BS-Comcast. Interestingly
enough, this does not work: the binary operation used in
SS-Scan is not associative, so that BS-Comcast cannot be
applied afterwards. Therefore, rule BSS-Comcast has to be
formulated separately:

BSS-Comcast

bcast ; scan (�) ; scan (�)

#{� is commutative}
bcast ; map# op_comp

op_comp k = quadruple ; repeat (e; o) k ; �1

e (s; t; u; v) = (s; t� t� u; uu� uu; v � v) ; uu = u� u

o (s; t; u; v) = (s� t � v; t� t� u; uu� uu; uu� v � v)

Note that the implementation ofcomcast usingrepeat is
not cost-optimal: in the first steps, many processors com-
pute the same values. An alternative implementation is as
follows: instead of broadcasting the input valueb, the first
processor computes functionse and o on the input, then
it sends the result ofo to the second processor; the same

5



is repeated successively with two processors, then four,
etc. However, this cost-optimal version yields a worse time
complexity than the one based onrepeat , because of the
extra communication overhead for auxiliary variables.

3.5. Transformations into Local

Transformations of this class replace some specific com-
positions of collective operations by local computations:

BR-Local

bcast ; red (�)

#{}

iter (op_br)

op_br s = s� s

BR-Alllocal

bcast ; allred (�)

#{}

iter (op_br) ; bcast

op_br s = s� s

Here, functioniter iterates its argument functionk =
log jxs j times on the first element of listxs . The rest is
undetermined, while the length of the result is equal to the
length ofxs :

iter f [x ; _; : : : ; _]
def
= [f log jxsjx ; _; : : : ; _]

If the last subject of the composition isallreduce instead
of reduce, this and the subsequent transformation rules into
Local can also be used: just broadcast the value of the re-
sult. Note that the original term broadcasts the first value
of the input list to all other processors, whereas the local
computation clearly does not do this (as the name “local”
suggests). Thus, if the first value is needed in successive
computations, either rule BS-Local should not be applied,
or the first value should be broadcast additionally (which
can still be an optimization). This observation applies also
to the other rules of this subsection.

The next rule is derived as a corollary of two previous
rules, SR2-Reduction and BR-Local:

BSR2-Local

bcast ; scan (
) ; red (�)

#{
 distributes over�}
mappair ; iter (op_bsr2 ) ; map�1

op_bsr2 (s; t) = (s� (s
 t); t
 t)

Finally, we formulate the rule BSR-Local:

BSR-Local

bcast ; scan (�) ; red (�)

#{� is commutative}
mappair ; iter (op_bsr) ; map�1

op_bsr (t; u) = (t � t� u; uu� uu) uu = u� u

4. Performance Estimates

In this section, we are interested in the conditions under
which the rules presented in the previous section improve
the target performance.

We assume a virtual, fully connected system bidirec-
tional links: two processors can send blocks of sizem to
each other simultaneously in time

Tsend_recv = ts +m � tw

wherets is the start-up time andtw is the per-word transfer
time. The time of one computation operation is assumed as
unit, and bothts andtw are normalized to it.

The influence of optimization rules on performance de-
pends on how the collective operations are implemented.
We assume implementations which are mentioned in the lit-
erature as most widely used and which are available in our
version of MPI. This enables a comparison of our estimates
with experimental results.

All three collective operations involved in our opti-
mization rules – broadcast, reduction and scan – are im-
plementable using a butterfly-like communication pattern
[5, 9]. It proceeds inlog p phases, in which segments of
lengthm are exchanged pairwise between processors. The
only difference is in the computations: there are no compu-
tations in broadcast, reduction performs one base operation
per element, and scan has two base operations:

Tbcast = log p � (ts +m � tw ) (15)

Treduce = log p � (ts +m � (tw + 1)) (16)

Tscan = log p � (ts +m � (tw + 2)) (17)

Let us illustrate our estimation technique on the SS2-
Scan rule. Its left-hand side requires the following time im-
plied by equality (17):2�log p �(ts+m �(tw+2)). The right-
hand side performs pairing at the beginning and projection
at the end, whose time we ignore. The major part is a scan
on a list of pairs, with the base operator defined in the rule
formulation, which requires time:log p �(ts+m �(2�tw+6)).

Therefore, the SS2-Scan optimization pays off iff:

ts > 2 �m

Remind that both sides are normalized w.r.t. the time of
one computation. Thus, for the butterfly implementation of
scan, rule SS2-Scan should be applied if the machine has
a high start-up cost and/or the blocks in the processors are
small. This result is in line with intuition: the rule trades
synchronization costs, expressed by the start-up, for addi-
tional computations which increase with the block size. If
scan is implemented suboptimally on a virtual linear array
with pipelining, then the SS2-rule worsens the performance,
and thus must not be applied [6].
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The performance estimates for our rules are summarized
in Table 1. For each rule, we state the time before and the
time after applying the rule. A factor oflog p appears in all
estimates; we omit it in the table entries. From the times
for the left- and right-hand sides of a rule, we formulate the
condition under which the rule improves the target perfor-
mance. We enter “always” if the rule improves the perfor-
mance independently of the machine parameters:

Rule name (time before)� log p (time after)� log p Improved if

SR2-Reduction 2ts +m(2tw + 3) ts +m(2tw + 3) always

SR-Reduction 2ts +m(2tw + 3) ts +m(2tw + 4) ts > m

SS2-Scan 2ts +m(2tw + 4)) ts +m(2tw + 6) ts > 2m

SS-Scan 2ts +m(2tw + 4) ts +m(3tw + 8) ts > m(tw + 4)

BS-Comcast 2ts +m(2tw + 2) ts +m(tw + 2) always

BSS2-Comcast3ts +m(3tw + 4) ts +m(tw + 5) tw + 1
m
ts >

1
2

BSS-Comcast 3ts +m(3tw + 4) ts +m(tw + 8) tw + 1
m
ts > 2

BR-Local 2ts +m(2tw + 1) m always

BSR2-Local 3ts +m(3tw + 3) 3m always

BSR-Local 3ts +m(3tw + 3) 4m tw + 1
m

� ts �
1
3

Table 1. Performance of optimizations

5. Case Study: Polynomial Evaluation

Let us present a simple case study to demonstrate the
methodical use of our optimization rules. We do not claim
the optimality of the obtained target program.

We consider the problem of evaluating a polynomial,

a1 � x + a2 � x
2 + � � �+ an � x

n

on m points: y1; : : : ; ym . The list of coefficients,as , is
distributed so that processori keeps valueai , and the values
ys = [y1; : : : ; ym ] are stored in the first processor.

We start with the following initial parallel program for
the polynomial evaluation, which consists of four stages:

Ev_in = bcast ; scan (�) ; map2 (�) as ; reduce (+) (18)

Program (18) takesys as input in the first processor and
proceeds, stage-by-stage, as follows:

� bcast broadcastsys to all other processors;

� scan (�) computes resulty i = [y i1; : : : ; y
i
m ] in each

processori , i = 1; : : : ;n;

� map2 is amap defined on two lists of equal size: in
program (18), stagemap2 (�) as computes in each
processor,i , the following list: [ai � y i1; : : : ; ai � y

i
m ];

� finally, reduce (+) sums up the obtained intermediate
lists elementwise over the processors and puts the re-
sult list,

� � Pn

i=1 ai � y
i
1

�
; : : : ;

� Pn

i=1 ai � y
i
m

� �
,

into the first processor.

Program (18) contains three collective operations. The
first two of them can be fused by rule BS-Comcast, for
which Table 1 guarantees the improvement of performance.

The instantiation of rule BS-Comcast in our case is:

bcast ; scan (�) �! bcast ; map# op_poly

where operationop_poly is obtained from generic operator
op_comp in the rule by substituting concrete operator,�:

op_poly k
def
= pair ; repeat (e; o) k ; �1

wheree (t ; u) = (t ; u � u); o (t ; u) = (t � u; u � u)

After applying BS-Comcast to (18), we get the program:

bcast ; map# op_poly ; map2 (�) as ; reduce (+) (19)

In (19), two local stages are executed in sequence:map#
andmap2. By defining a new operationop_new ,

op_new k x y
def
= (op_poly k x ) � y

we can fuse them into one stage in the final program:

Ev_�n = bcast ; map2# (op_new as) ; reduce (+) (20)

wheremap2# is amap# on two lists of equal size.

The experiments with rule BS-Comcast on a Parsytec 64-
node machine with MPICH 1.0 are presented in Figure 7:

0

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60

Time in sec

Number of processors

bcast; scan
comcast

bcast; repeat

0

1

2

3

4

5

6

7

8

9

0 5000 10000 15000 20000 25000 30000 35000

Time in sec

Block size

bcast; scan
comcast

bcast; repeat

Figure 7. Run time improvement due to rule BS-Comcast

The upper plot shows the dependence of run time on the
number of processors, for a fixed block size; the lower plot
shows the dependence on the block size. The experiments
confirm that the rule indeed improves the run time as indi-
cated in Table 1.
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The curves “bcast; scan” in both plots correspond to
the left-hand side of the rule. For the right-hand side,
we compare two possibilities discussed in Subsection 3.4:
curve “comcast” corresponds to the cost-optimal version,
and “bcast; repeat” corresponds to the more time-efficient
version, demonstrated in Figure 6, which we used in all
rules of group Comcast.

6. Discussion and Acknowledgements

Collective operations are a convenient means of specify-
ing parallelism. Our theoretical considerations and experi-
mental results demonstrate that it pays to target their com-
binations for thoughtful and thorough programming. Good
optimization here may pay a lot. We have sketched an op-
timization method, based on a set of transformation rules,
augmented with a cost calculus.

We have chosen the paradigm of functional program-
ming to prove our rules formally, even though the final im-
plementations will most likely be imperative. The advan-
tage of our formal approach is that the rules are indepen-
dent of the way in which the collective operations are im-
plemented on the particular machine. However, we take the
implementation into account when estimating the target ef-
ficiency.

We can distinguish between two groups of rules.Gen-
eral rules refer to the traditional collective operations
known from the literature. This group includes SR2-
Reduction, SS2-Scan and all Local and Comcast rules.
Therefore, these rules can be used directly for optimizing
programs that rely on MPI, PVM, SIMPLE and other par-
allel interfaces.Special rulesrequire new collective opera-
tions likereduce_bal , scan_bal , etc. A rule from this group
can be used only if the corresponding collective operation
is implemented on a particular machine.

One reasonable question to ask is whether the search for
combinations of collective operations is open-ended. We
have attempted to be exhaustive to a point. In previous
work we have identified map, broadcast, reduction and scan,
as basic building blocks for linear recursions on lists [16].
When looking at their input/output behavior, which reveals
that broadcast is a one-to-all, reduction an all-to-one and
scan an all-to-all operation, some combinations can be dis-
missed as not useful. We have not considered transforma-
tion rules for longer than triple combinations. They would
require further algebraic properties of the base operator, ad-
ditionally to associativity and distributivity/commutativity,
which makes them less likely to be widely applicable.

We have presented a very simple case study and only
preliminary experimental results. We have another example
which demonstrates the use of rule SR2-Reduction in the
design of an asymptotically optimal algorithm [6].

We are grateful to Holger Bischof for his help in the

computer experiments, to Peter Sanders for a fruitful dis-
cussion on the comcast pattern, and also to Marco Ald-
inucci, Christoph A. Herrmann and Susanna Pelagatti for
helpful comments on the manuscript. The anonymous ref-
erees were helpful in improving the quality of presentation.

This work was supported by the travel grant from the
German-Italian cooperation programme Vigoni.
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