Parallel Processing Letters,
© World Scientific Publishing Company

HDC: A Higher-Order Language for Divide-and-Conquer

CHRISTOPH A. HERRMANN and CHRISTIAN LENGAUER
Fakultat fir Mathematik und Informatik, Universitit Passau
D-94030 Passau, Germany
http://www.fmi.uni-passau.de/cl/

{herrmann, lengauer }@fmi.uni-passau.de

Received (received date)
Revised (revised date)
Communicated by Yves Robert

ABSTRACT

We propose the higher-order functional style for the parallel programming of al-
gorithms. The functional language HDC, a subset of the language Haskell, facilitates
the clean integration of skeletons into a functional program. Skeletons are predefined
programming schemata with an efficient parallel implementation. We report on our com-
piler, which translates HDC programs into C+MPI, especially on the design decisions
we made. T'wo small examples, the n queens problem and Karatsuba’s polynomial mul-
tiplication, are presented to demonstrate the programming comfort and the speedup one
can obtain.

Keywords: divide-and-conquer, functional program, Haskell, parallelization, skeleton

1. Introduction

Several decades after the benefits of structure were discovered for sequential
programming, parallel programming still suffers from the lack of high-level language
support. Currently, the most popular style of parallel programming is with an
imperative language like Fortran or C and a communication library like MPI.

Numerous efforts have been made to raise the level of abstraction in parallel
programming with Fortran or C in order to increase programming comfort, safety
and productivity. MPI offers so-called collective operations, which are more abstract
than the primitives send and receive for point-to-point communication — an example
is a restricted form of reduction — but memory allocation remains the responsibility
of the programmer. The lack of polymorphism makes a general implementation of
powerful forms of reduction and scan [11] difficult in Fortran or C.

Our prime concerns are the structure, generality and portability of parallel pro-
grams. The structure should be imposed by the problem, not by the limitations of
the mainstream technology — be it in software or hardware. One dominant source
of generality is polymorphism: many parallel solutions are independent of the ele-
ment type of the distributed data structure. Portability can only be achieved if the
parallel solution is not geared towards a specific parallel architecture or processor

2 C.A. Herrmann & C. Lengauer

topology.

We believe that the appropriate abstraction mechanism for achieving these goals
is the higher-order functional programming style. Higher-order functions permit
functions as arguments or result. For some higher-order functions, so-called skele-
tons, predefined efficient parallel implementations are supplied.

We have chosen the functional language Haskell [19] as a basis. The source
programs are currently restricted to a subset of Haskell, which we call HDC. The
only intended difference to Haskell is that we must impose eager evaluation —at least
for skeleton applications— in order to adhere to the static execution schema specified
in some skeleton implementations. HDC stands for higher-order divide-and-conquer
and was originally developed for the parallelization of divide-and-conquer (DC)
recursions, but is appropriate for programming with skeletons of any kind. Our
focus here is still the parallelization of DC.

We distinguish between the definition and the implementation of a skeleton. The
definition is purely functional, denoted in Haskell, and does not specify operational
aspects. The implementation is a parametrized function in the target language
(C), contains side-effecting communications (MPI) and memory management, and
is linked together with compiled HDC functions written by the application pro-
grammer. The use of the same language (Haskell) for both the definition and the
application of skeletons distinguishes HDC from coordination languages like SCL
[8] or P3L [3] and gives us a substantial amount of programming comfort. Any user-
defined function can be turned into a skeleton, transparently to the programmer,
by providing a dedicated implementation for it.

Our main goals in designing a compiler for the language HDC have been to
investigate the terrain of paradigms, especially DC, classify it by different skeletons
which span different ranges of parallel implementations, and provide an environment,
for the exploration of different algorithms for parallelization and for prototyping
parallel programs.

The central property of a skeleton we make use of is that it specifies a class
of algorithms with common properties, specified by its body, while allowing for
variation in properties via its arguments which, in a call, are instantiated with
algorithm-specific, customizing functions. Our skeletons for DC are arranged in
a specialization hierarchy, which is described in detail elsewhere [12]. Starting
with a skeleton which defines our notion of general DC (dcA), successive skeletons
are derived by specialization: by restricting the application domain, we enable a
more efficient implementation. We impose the restrictions of fixed recursion depth
(dcB), constant division degree (dcC), multiple block recursion (dcD), elementwise
operations (dcE) and correspondent communication (dcF).

Tab. 1 illustrates that DC has a wide spectrum of applications and can have
various characteristics, which have repercussions for an efficient parallel implemen-
tation. For an input size of n, we list the sequential execution time, the depth of
the recursion, the degree of the problem division (i.e., the number of subproblem
instances generated per problem instance) and the fact whether the determination

HDC: A Higher-Order Language for Divide-and-Conquer 3

Table 1. Some divide-and-conquer problems.

algorithm seq. exec. time rec. depth degree sched. alloc.
mergesort O(n -logn) logsn 2 stat. stat.
2D convex hull (of presorted points) O(n -logn) log, n 2 stat. stat.
/N X /n matrix multiplication O(nt40- logymn 7 stat. stat.
triangular matrix inversion @(nl 40 logy n 2 stat. stat.
2D component labeling e(nt5) logy n 4 stat. stat.
Karatsuba multiplication O(n!-38) logy n 3 stat. stat.
quicksort 0o(n?) <n 2 dyn. dyn.
maximum independent set o(2n) <n 2 dyn. dyn.
tautology check o(2™) <n 2 dyn. dyn.
frequent set o(2") <n 2 dyn. dyn.
n queens O(n!) n <n stat. dyn.

of the schedule (the distribution of the operations across time steps) and the allo-
cation (the distribution of the operations across processors) can be done at compile
time (statically) or must be left to run time (dynamically). We have used the two
examples stated in bold font in experiments which we comment on later.

2. Examples

We present our examples in the language Haskell with a beautified syntax.

2.1. Application of the most general skeleton: the n queens problem

Skeleton dcA (dc0 in [13,14]) specifies our notion of general DC:

dcA € (a—=B)—=(a—=p)—=(a—]a])=(a—=[f]—8)—a—p
dcA istrivial basic divide combine = r
where r x = if istrivial x then basic z
else combine x (map r (divide z))

The skeleton takes the customizing functions istrivial, basic, divide and combine.
A call of dcA with these four arguments returns the recursive function r which is
applied to the input data z. If the problem is trivial (i.e., solvable without dividing
it into subproblems), it is solved by function basic. Otherwise it is divided into a list
of subproblems. map applies r to every subproblem, yielding a list of subproblem
solutions which is used to compute the solution of the problem. We took this
skeleton from [16] and [20].

Note that its definition, based on map, strictly enforces the independence of the
subproblems. Consequently, e.g., the branch-and-bound paradigm does not match
dcA. See the dissertation of the first author [12] for a discussion of this issue.

Let us demonstrate the use of dcA on the n queens problem [1]. We compute all
possible solutions for placing n queens on an nxn board using a decision tree, such
that no two queens are on the same row, the same column or the same diagonal.
There may be sophisticated combinatorial ways of simplifying this problem, but we
use it as a representative for exhaustive search problems. Our only heuristic is to

4 C.A. Herrmann & C. Lengauer

try to recognize conflicts as early as possible. Here is our HDC program, which calls
dcA:

queens € N — [[N]]
queens n = dcA istrivial basic divide combine ([],]0..n—1]) where
istrivial (_, remain) = null remain
basic (placed, -) = [placed]
divide (placed, remain) =
let diagonal_attack i = or [(length placed — j) = abs (i — placed !! j)
| 7-[0. .length placed —1]]
in [(placed++i), filter (#i) remain)
| i<—remain, not (diagonal_attack)]
combine _ = concat

The algorithm starts with an empty board and adds recursively, row by row, a
column position at which a new queen can be placed. The number of subproblems
for a placement already made is determined by the number of possible placements
for the next row.

The input data for dcA is a pair of the list of placements made and the column
positions which have not yet been allocated. The divide function only has to check
for an attack of two queens on the same diagonal, since the rows are distinguished
by the position in the list of placed queens and the columns are distinguished by
the distinct elements in the list of remaining column positions. The number of
subproblems can also be 0 or 1. The combine function collects the placements of
all subproblems.

The performance of program queens, with powers of 2 as the numbers of proces-
sors, is charted in Fig. 1. To investigate the potential for a massive parallelization,
we used a transputer network with 1024 processors, the Parsytec GCel-1024. Since
most work performed for communication is done by the processor itself (marshaling),
we expect that similar speedup results could be achieved with modern machines,
provided that a similarly large number of processors is available.

The parallelization is based on the independence inside the map in dcA, applied
recursively. This is more flexible than our current dedicated dcA implementation
concerning the number of processors used. Applications of map produced by desug-
ared list comprehensions in the divide function were excluded from parallelization
because the incurred overhead is larger than the gain.

Our straightforward implementation of the skeletons map and dcA is to em-
ploy a hierarchical management of the processors. Each skeleton instance carries
information about a subset of the processors which it can use exclusively. This
subset is then divided equally among the subinstances. The control structure is
organized as follows. At the beginning, all processors form a single block. In a
parallel computation, each block assigned to a set of processors —let us call it the
superblock— is divided into a number of subblocks and the master processor of the
superblock sends a task to the masters of the subblocks. When the task a subblock

HDC: A Higher-Order Language for Divide-and-Conquer 5

speedup

0 I I I I I
0 100 200 300 400 500

processors

Fig. 1. Speedup for program queens.

is assigned to is terminating, the subblock’s master sends an according signal to
the master of the superblock. During the time in which each master processes the
problem instance assigned to it, no control message is sent from any processor of
the master’s block across the block’s border. Other messages, e.g., for accesses to
globally distributed data aggregates, are not restricted. We call this the principle
of control-closed blocks, in analogy to the principle of communication-closed layers
[9]. In our current implementation, all input data of a task is passed along with the
signal of task initiation and all output data is passed back with the report on the
task’s completion.

The subproblems of a problem are distributed evenly among the available pro-
cessors, e.g., if 32 processors are assigned to a problem instance that has two sub-
problems, each of the subproblem instances can use 16 processors exclusively. This
can lead to load imbalance if one subproblem can be solved trivially and the other
requires further division. Thus, we have developed a purely iterative, i.e., not re-
cursive, execution schema of dcA, called itA [12], which supports load rebalancing
at every level of the DC call tree. In our example, this would mean that the sub-
problem which requires further division can use 32 processors again. However, since
the MPI implementation of this schema, is complex and still under development, no
experimental results are available yet.

Our aim is to have control over the time and space consumption to make par-
allelization accessible for automatic optimization, similarly to the tradition of loop
parallelization [17]. Note that, although the actual number of processors assigned
to a particular task depends on run-time parameters, the structure of the parallel
execution is determined by the skeletons at compile time. If this is not required,

6 C.A. Herrmann & C. Lengauer

one might consider using an environment with a powerful run-time load-balancing
mechanism, like Glasgow parallel Haskell [21] or Cilk [10].

An alternative treatment of the n queens problem was reported at CPC 2000
by Cohen [6]. His recursive procedure Queens contains a doubly nested loop which
computes imperatively on an array. The static parallelization of Queens requires
an automatic dependence analysis which determines the most recent update of an
array cell. In contrast, our HDC program requires no such dependence analysis.

2.2. Application of our most specific skeleton: the Karatsuba multiplication

The Karatsuba multiplication of polynomials fits into the most specialized skele-
ton in our DC hierarchy, dcF [12] (dcdio in [13,14]). Its call tree is balanced and
it requires elementwise divide and combine operations on subblocks of data. The
definition of dcF is quite involved; we present only the signature:

dcF probdegree indegree outdegree basic divide combine levels xs = ...

The parameters of dcF have the following meaning:

e probdegree € N: the degree of problem division, i.e., the number of subprob-
lems which are generated for each problem not trivially solved; this degree
remains constant in a recursive call of dcF, in contrast to dcA.

o indegree € N: the degree of division of input data; specifies in how many
blocks the input data is to be divided.

o outdegree € N: the degree of composition of output data; specifies of how
many blocks the output data is to be composed.

e basic € (a¢— f): the function to be applied in the trivial case.

o divide € (N—[a]—a): computes any element i of subproblem sp; it takes sp
(0 < sp < probdegree) and a list of length indegree which carries at position b
element 7 of input block b.

e combine € (N—[B]—): computes any element i of output block ob; it takes
ob (0< 0b < outdegree) and a list of length probdegree which carries at position
sp element i of the solution of subproblem sp.

o Jevels € N: the number of recursive levels into which the DC tree unfolds. This
is used instead of the predicate of dcA. In theory, levels reflects the number of
levels upto the trivial cases. In practice, the user can make two other choices:
control granularity of parallelism or solve small problem instances, which are
not the basic case, by an algorithm tailored for small sizes.

e 75 € [a]: the input data; a list to which the division into blocks is applied;
likewise, the output data is of type [3].

HDC: A Higher-Order Language for Divide-and-Conquer 7

dcF works well for vector and matrix algorithms like the fast Fourier transform,
bitonic merge, polynomial multiplication and matrix multiplication. Here, it is
applied to the Karatsuba multiplication of polynomials [2].

We represent each polynomial of size n, say 2?2—01 ¢; X, by the list [cp_1, ..., co]-
Our function karatsuba is restricted to the multiplication of two polynomials of size
n = 2™. If m > 0, the problem is reduced to three multiplications of pairs of
polynomials, each of size 2™~!. Thus, the depth of recursion is m and the number
of basic cases created is 3. This number determines the complexity, which is
0(310g2 n) — 0(“1'58").

If the size of both polynomials is not equal, the multiplication can be partitioned
into blocks. If the size is not a power of 2, the polynomials can be extended with
coefficients carrying the value 0. This causes a small amount of overhead, which is
justified by the gain in complexity compared to the trivial algorithm.

Polynomial multiplication can be extended to the multiplication of large integers,
if X is viewed as the radix of the number system and the coefficients of the result
are normalized to the range from 0 to X —1 by carry propagation.

karatsuba € ([Z]x[Z]) — [Z]
karatsuba (a, b) =
let basic (z,y) = (0, zxy)
divide sp [(zh, yh), (21, yl)] = case sp of
0 — (zh, yh)
1 — (zl,yl)
2 — (zh+al, yh+yl)
combine ob [(hh, hl), (Ih, 1), (mh, ml)] = if 0b=0 then (hh, lh+ml—hl—1l)
else (hl+mh—hh—Ih,Il)
n = ilog2 (length a)
z = dcF 3 2 2 basic divide combine n (zip a b)
in map fst z + map snd z

The experimental results were obtained after manually replacing the standard
pair notation by a new datatype of unboxed pairs and rewriting the pattern match-
ing. The respective program can be found elsewhere [12, App. D.1.3]. We plan to
implement both transformations in the compiler. They achieve a gain in run time by
a factor of about 3, since they reduce the extent of dynamic memory management
substantially.

Function ilog2 computes the value of n, the depth of recursion. Since dcF requires
a single input for recursive division, the arguments a and b are zipped together to a
list of pairs. The output of dcF is the zip of the higher and lower coefficients of the
result which are extracted by map fst and map snd. The product of two polynomials
of size 2™ is of size 2™+,

Since the customizing functions are restricted to elementwise operations on cor-
responding elements of balanced blocks, the user only has to specify the operations
on single elements. Function divide takes two elements (corresponding elements of

8 C.A. Herrmann & C. Lengauer

two blocks) and produces one of three elements (corresponding elements of three
subproblems).

Fig. 2 demonstrates that a satisfactory speedup can be achieved if the operand
size (line label in the figure) increases with the number of processors. We have also
depicted the relative execution times if dcA was used instead of dcF.

Our implementation of dcF was developed in two steps. In the first, we derived
an abstract data-parallel loop program called itF [12] by imposing the same restric-
tions on itA that we imposed on dcA to obtain dcF. This was done by equational
transformations in the language Haskell. In the second, we implemented this data-
parallel program, which is much simpler than itA, in C+MPI, replacing non-local
accesses by communications. The schema of communications is remotely related to
schemata known from butterfly networks. Since our current run-time system does
not yet support skeleton calls with distributed input or output data, the data has
to be scattered at the time of call of dcF and gathered into a single processor at the
time of return.

Due to the structure of the computation, the number of processors should be a
power of 3, like in Fig. 2, to avoid load imbalance. Although additional processors
could be used to parallelize also the customizing functions, this does not pay off
here due to the incurred overhead, as we obtained by more extensive experiments.

400 T T T T T T T

350

speedup

300

250

200

150

100

processors

Fig. 2. Speedup for program karatsuba.

3. Elimination of functional arguments

A major challenge in the compilation of higher-order functions is to organize
the access to the values of the free variables in the functional arguments. For

HDC: A Higher-Order Language for Divide-and-Conquer 9

this purpose, we use an algorithm for transforming a closed, higher-order and well-
typed functional program into an equivalent first-order program [4]. The idea of
the algorithm is to replace each functional argument by an encoding of its closure.
A closure contains a function identifier and the values of the free variables in the
functional argument.

The elimination algorithm proceeds as follows:

e Each variable of a function type changes its type because, after the transfor-
mation, it carries the appropriate encoding.

e Each functional argument at the caller’s side is replaced by an element of
an algebraic data type in which the function identifier is represented by a
constructor. The arguments of the constructor carry the values of the free
variables in the functional argument. These values are taken from the context
of the caller.

e Each application of a variable representing a function is replaced by a call of
an apply function constructed for the respective function type. The first ar-
gument of the apply function is the closure encoding, the following arguments
are the arguments of the encoded function. The apply function extracts the
original function and applies it in an environment which provides the current
values of the free variables in the closure. These values can again contain
closures.

A detailed example of an elimination can be found in the HDC report [15].

4. Integration of skeleton implementations

The HDC compiler offers a special, very flexible mechanism for the integration
of custom-implemented skeletons. For each skeleton, the implementer delivers a
Haskell function which is called by the code generator of the HDC compiler and
which produces the actual instance of the skeleton. In the simplest case, the body
of the implementation function will be just a Haskell string of C target code, but
it can also prescribe decisions based on type and size information provided by the
compiler. E.g.; the implementation of dcF might determine the granularity of par-
allelism, based on the recursion depth parameter and the availability of processors.
Note that the C target code is monomorphic and first-order. This applies also to
the implementation of a skeleton: polymorphic functions must be instantiated for
every unboxed argument type currently used, and higher-order functions must be
represented by an encoding of their closures [15].

5. The HDC compiler

The compiler takes an HDC source program and delivers a target program in
C+MPI, which is linked together with a customized run-time library. The compiler
is written in Haskell. It traverses a number of phases, as follows:

10 C.A. Herrmann & C. Lengauer

e Scanning and parsing. We use the parser generator happy which takes an
annotated grammar in the style of yacc. The semantic actions produce a
syntax tree as an element of an algebraic data type in Haskell.

e Simplification of complicated language constructs like list comprehensions,
exploiting opportunities for parallelization [12,14,15].

e Type checking in the Hindley-Milner system [7], using the Martelli-Montanari
rules for unification [18].

e Elimination of functional arguments (higher-order elimination) according to
Sect. 3.

e Generation of intermediate code. For each function, a directed acyclic graph
(DAG) is generated to exploit common subexpressions [14,15].

e DAG code optimization. Here, inline expansion, rule-based DAG optimiza-
tions and size inference of data structures are applied iteratively [14,15].

e Abstract code generation. This phase analyzes alternation in functions and
introduces conditional and unconditional jumps [15].

e Target code generation.

e Generation of the skeleton implementations in C, according to the types used
in the program. The code for the skeletons contains the calls to the MPI
library.

6. The HDC run-time system

The run-time system deals mainly with memory management and marshaling.
Every processor manages its own local heap. Simple data types have a plain, un-
boxed representation. Lists, tuples and algebraic data types are represented by a
pointer to a data structure which contains a descriptor and a record or array with
the data elements. Each such structure has a reference counter which is incremented
when the data structure is used as part of another structure or a copy of its pointer
is made in the program. It is decremented when a data structure, which used it, is
deleted or at the earliest program point for which the flow analysis reveals that a
copy of its pointer is no longer required. If the counter of the data structure reaches
the value 0, its memory is released. The implementer of a skeleton has to follow
these conventions, e.g., to decrement the reference count after the last use of an
argument of the skeleton.

The run-time system also performs marshaling and unmarshaling of data struc-
tures, because MPI cannot communicate dynamically linked data structures. In
marshaling, such a data structure is encoded as a byte array which can be commu-
nicated to another processor, where it is transformed again into a linked structure.

HDC: A Higher-Order Language for Divide-and-Conquer 11

7. Conclusions

The HDC compiler is still under development. Its purpose is to provide an open
platform for prototyping, program analysis and experimental implementation — not
a production environment of competitive code for any particular purpose.

We have managed to raise the level of abstraction to the purely functional style
of programming, while preserving as much control as required at the implementation
side. This has been achieved by the use of skeletons. The skeleton, as a higher-
order function, fits perfectly in the functional source program. Also, the elimination
of higher-order functions makes it possible to write the skeleton implementations
in an imperative language and thus, to control computations and communications
precisely.

We have noted two main reasons for a loss of performance: (1) load imbalance
and (2) parallelization where the overhead of communication is larger than the
amount of computation time gained. We observed both factors during our experi-
ments. Future research will have to deal with a computer-aided analysis of which
parts should be parallelized.

HDC supports the parallelization of efficient algorithms, e.g., the Karatsuba
polynomial multiplication, in contrast to the naive multiplication which is easy to
parallelize. This is the basis for good absolute results.

Most of the problems we plan to parallelize are strict. Thus, the eager evaluation
we have implemented in contrast to the laziness of Haskell does not lead to a loss
of performance.

Probably the most well known project, which fostered the use of a functional
language for high performance programming, is Sisal [5]. It competed in perfor-
mance directly with Fortran. In order to win, it left functional pearls like polymor-
phism and higher-order functions aside. With HDC, we do not seek the competi-
tion on speedup with current techniques of high-performance programming quite as
strongly. Rather we seek to win on the issues of flexibility and portability. Thus, we
do not make the compromises Sisal made. We are hoping, though, that, by offer-
ing flexibility on the implementation side, HDC will enable programmers to develop
applications with a competitive ratio of execution performance to development cost.

Acknowledgements

This work has been supported by a four-year grant from the DFG under project
name RecuR2. We thank the Paderborn Center for Parallel Computing for access
to the GCel-1024. The anonymous referees deserve sincere thanks for their valuable
comments.

References

[1] B. Abramson and M. Yung. Divide and conquer under global constraints: A solution
to the n-queens problem. J. Parallel and Distributed Computing, 6:649-662, 1989.

12

2]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
18]
[19]

(20]

(21]

C.A. Herrmann & C. Lengauer

AV. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Series in Computer Science and Information Processing. Addison-Wesley,
1974.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti and M. Vanneschi. P3L: A structured
high level programming language and its structured support. Concurrency: Practice
and Ezperience, 7(3):225-255, 1995.

J.M. Bell, F. Bellegarde and J. Hook. Type-driven defunctionalization. SIGPLAN No-
tices, 32(8):25-37, 1997. Proc. ACM SIGPLAN Int. Conf. on Functional Programming
(ICFP’97).

D. Cann. Retire Fortran? A debate rekindled. Comm. ACM, 35(8):81-89, Aug. 1992.
A. Cohen. Program Analysis and Transformation: From the Polytope Model to Formal
Languages. PhD thesis, Laboratoire PRiSM, Université de Versailles, Dec. 1999.

L. Damas and R. Milner. Principal type schemes for functional programs. In Proc.
9th ACM Symp. on Principles of Programming Languages (POPL’82), pages 207-212.
ACM Press, 1982.

J. Darlington, Y. Guo, H'W. To and J. Yang. Parallel skeletons for structured composi-
tion. In Proc. 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’95), pages 19-28. ACM Press, 1995.

T. Elrad and N. Francez. Decomposition of distributed programs into communication-
closed layers. Science of Computer Programming, 2:155-173, 1982.

M. Frigo, C.E. Leiserson and K.H. Randall. The implementation of the Cilk-5 multi-
threaded language. ACM SIGPLAN Notices, 33(5):212-223, May 1998. Proc. ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI’98).
S. Gorlatch, C. Wedler and C. Lengauer. Optimization rules for programming with
collective operations. In Proc. 13th Int. Parallel Processing Symp. € 10th Symp. on
Parallel and Distributed Processing (IPPS/SPDP’99), pages 492-499. IEEE Computer
Society Press, 1999.

C.A. Herrmann. The Skeleton-Based Parallelization of Divide-and-Conquer Recursions.
PhD thesis, Fakultdt fiir Mathematik und Informatik, Universitdt Passau, 2000. In
press.

C.A. Herrmann and C. Lengauer. Parallelization of divide-and-conquer by translation
to nested loops. J. Functional Programming, 9(3):279-310, May 1999.

C.A. Herrmann and C. Lengauer. The HDC compiler project. In A. Darte, G.-A. Silber
and Y. Robert, editors, Proc. Eighth Int. Workshop on Compilers for Parallel Com-
puters (CPC 2000), pages 239-253. LIP, ENS Lyon, 2000.

C.A. Herrmann, C. Lengauer, R. Giinz, J. Laitenberger and C. Schaller. A compiler
for HDC. Technical Report MIP-9907, Fakultat fiir Mathematik und Informatik, Uni-
versitdt Passau, May 1999.

P. Kelly. Functional Programming for Loosely-Coupled Multiprocessors. Pitman, 1989.
C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor, CON-
CUR’93, LNCS 715, pages 398-416. Springer-Verlag, 1993.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans. on
Programming Languages and Systems, 4(2):258-282, Apr. 1982.

S.L. Peyton Jones and J. Hughes, editors. Haskell 98: A non-strict, purely functional
language. Technical report, http://haskell.org, 1999.

F.A. Rabhi. Exploiting parallelism in functional languages: A ”paradigm-oriented”
approach. In J.R. Davy and P. Dew, editors, Abstract Machine Models for Highly
Parallel Computers, pages 118-139. Oxford University Press, 1995.

P.W. Trinder, K. Hammond, H.-W. Loidl and S.L. Peyton Jones. Algorithm + strategy
= parallelism. J. Functional Programming, 8(1):23-60, Jan. 1998.

