
Domain-specific and Resource-aware Computing

Domänenspezifisches und ressourcengewahres Rechnen

Der Technischen Fakultät der
Friedrich-Alexander-Universität Erlangen-Nürnberg

als

Habilitationsschrift

vorgelegt von

Dr.-Ing. Frank Hannig

Erlangen — 2017

Tag der Einreichung: 15. Dezember 2017

Fachmentorat: Professor Dr.-Ing. Jürgen Teich,
Friedrich-Alexander-Universität Erlangen-Nürnberg

Professor Dr.-Ing. habil. Wolfgang Schröder-Preikschat,
Friedrich-Alexander-Universität Erlangen-Nürnberg

Professor Dr.-Ing. Dr.-Ing. habil. Robert Weigel,
Friedrich-Alexander-Universität Erlangen-Nürnberg

Gutachter: Professor Paul H. J. Kelly,
Imperial College London

Professor Dr. rer. nat. Theo Ungerer,
Universität Augsburg

Abstract

This cumulative habilitation treatise summarizes the research I have conducted with my
group Architecture and Compiler Design (ACD) at the Chair of Hardware/Software Co-
Design, focusing on selected results published within the last four years. My research can
be divided mainly into two categories: Resource-aware computing and domain-specific
computing. Both computing paradigms try to tackle the very complex programming and
design challenge of parallel heterogeneous computer architectures, having different—to
some extent common—goals in mind, e.g., performance, resource utilization, energy
efficiency, predictability of even multiple execution qualities, or programming effort.

While resource-aware computing provides a full control loop from hardware status
information to the program level and back, domain-specific computing drastically
separates the concerns of algorithm development and target architecture implementation
(including parallelization and low-level implementation details).

In the context of resource-aware computing, my research can be further subdivided
into (1) modeling and system simulation and (2) architecture/compiler co-design of invasive
tightly coupled processor arrays (TCPAs). In the area of domain-specific computing,
three approaches are presented: (3) domain-specific high-level synthesis (HLS), (4) the
heterogeneous image processing acceleration framework HIPAcc, and (5) the ExaStencils:
Advanced stencil-code engineering approach.

iii

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Papers of this Habilitation Treatise . 5
1.3 Structure of this Habilitation Treatise 8

2 Resource-aware Computing 9
2.1 Invasive Computing . 10
2.2 Modeling and System Simulation . 11

2.2.1 Goals . 11
2.2.2 Approach . 11
2.2.3 Results . 13
2.2.4 Key Papers . 13

2.3 Architecture/Compiler Co-Design of Invasive TCPAs 15
2.3.1 Challenges . 15
2.3.2 Approach . 15
2.3.3 Results . 17
2.3.4 Key Papers . 18

3 Domain-specific Computing 23
3.1 Domain-specific Languages . 24

3.1.1 Definition . 26
3.1.2 Classification of DSLs . 27

3.2 Domain-specific High-level Synthesis 29
3.2.1 Goals for Domain-specific HLS 30
3.2.2 Approach . 31
3.2.3 Results . 32
3.2.4 Domain-specific HLS Key Papers 33

3.3 HIPAcc: The Heterogeneous Image Processing Acceleration Framework 34
3.3.1 HIPAcc Goals . 35
3.3.2 HIPAcc Approach . 35
3.3.3 HIPAcc Results . 37
3.3.4 HIPAcc Key Papers . 38

3.4 ExaStencils: Advanced Stencil-Code Engineering 41
3.4.1 ExaStencils Goals . 42
3.4.2 ExaStencils Approach . 42

v

Contents

3.4.3 ExaStencils Results . 44
3.4.4 ExaStencils Key Papers . 44

4 Conclusions 47

A Bibliography 49
A.1 General Bibliography . 49
A.2 Personal Bibliography . 60

B Image Credits 81

C Paper Reprints 83
C.1 Resource-aware Computing . 87

C.1.1 Modeling and System Simulation Papers 87
DAC ’15: Execution-driven Parallel Simulation of PGAS Appli-

cations on Heterogeneous Tiled Architectures 87
X10 ’16: ActorX10: An Actor Library for X10 93
ESTIMedia ’17: High Performance Network-on-Chip Simulation

by Interval-based Timing Predictions 99
C.1.2 Papers on Architecture/Compiler Co-Design of Invasive TCPAs 109

ACM TECS ’14: Invasive Tightly-Coupled Processor Arrays: A
Domain-Specific Architecture/Compiler Co-Design
Approach . 109

RSP ’17: Constructing Fast and Cycle-Accurate Simulators for
Configurable Accelerators Using C++ Templates . . . 139

Springer JSPS ’14: Symbolic Mapping of Loop Programs onto
Processor Arrays . 147

MEMOCODE ’14: Symbolic Inner Loop Parallelisation for Mas-
sively Parallel Processor Arrays 177

ACM TECS ’17: Symbolic Multi-Level Loop Mapping of Loop
Programs for Massively Parallel Processor Arrays . . 187

ASAP ’16: Modulo Scheduling of Symbolically Tiled Loops for
Tightly Coupled Processor Arrays 215

Springer JSPS ’14: Compact CodeGeneration for Tightly-Coupled
Processor Arrays . 225

C.2 Domain-specific Computing . 251
C.2.1 Domain-specific HLS Papers . 251

ASAP ’14: Domain-Specific Augmentations for High-Level Syn-
thesis . 251

FPL ’14: An Image Processing Library for C-based High-Level
Synthesis . 257

vi

Contents

Springer JSPS ’17: A Novel Image Impulse Noise Removal Algo-
rithm Optimized for Hardware Accelerators 261

ASAP ’17: Hardware Design and Analysis of Efficient Loop
Coarsening and Border Handling for Image Processing 279

C.2.2 HIPAcc Papers . 289
IEEE TPDS ’16: HIPAcc: A Domain-Specific Language and Com-

piler for Image Processing 289
DATE ’14: Code Generation for Embedded Heterogeneous Ar-

chitectures on Android 305
CODES+ISSS ’14: Code Generation from a Domain-specific Lan-

guage for C-based HLS of Hardware Accelerators . . 311
Elsevier JPDC ’14: Towards a Performance-portable Description

of Geometric Multigrid Algorithms using a Domain-
specific Language . 321

FPL ’16: FPGA-basedAccelerator Design from aDomain-Specific
Language . 333

Springer JSPS ’17: Loop Parallelization Techniques for FPGA
Accelerator Synthesis 343

LCTES ’17: Auto-vectorization for Image Processing DSLs . . . 369
C.2.3 ExaStencils Papers . 379

ICCSA ’14: An Evaluation of Domain-Specific Language Tech-
nologies for Code Generation 379

Euro-Par ’14: ExaStencils: Advanced Stencil-Code Engineering 389
WOLFHPC ’14: ExaSlang: A Domain-Specific Language for

Highly Scalable Multigrid Solvers 401
Springer LNCSE ’16: Systems of Partial Differential Equations

in ExaSlang . 411

vii

List of Abbreviations

ACD Architecture and Compiler Design

ADAS Advanced Driver Assistance System

ALU Arithmetic Logic Unit

APGAS Asynchronously Partitioned Global Address Space

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction set Processor

AST Abstract Syntax Tree

AVX Advanced Vector Extensions

BRAM Block Random Access Memory

CGRA Coarse-Grained Reconfigurable Architecture

CMOS Complementary Metal Oxide Semiconductor

CNC Computer Numerical Control

CPU Central Processing Unit

DAG Directed Acyclic Graph

DLP Data-Level Parallelism

DoP Degree of Parallelism

DSL Domain-Specific programming Language

DSP Digital Signal Processor

FLOPS FLoating-point Operations Per Second

FPGA Field Programmable Gate Array

FU Functional Unit

GPU Graphics Processing Unit

ix

List of Abbreviations

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High-Performance Computing

HSA Heterogeneous System Architecture

IC Integrated Circuit

ILP Instruction-Level Parallelism

IR Intermediate Representation

LoC Lines of Code

LPGS Locally Parallel, Globally Sequential

LSGP Locally Sequential, Globally Parallel

LUT Look-Up Table

MIPS Million Instructions Per Second

MPI Message Passing Interface

MPSoC Multi-Processor System-on-Chip

NoC Network-on-Chip

NPP Nvidia Performance Primitives

OpenCL Open Computing Language

OpenCV Open Source Computer Vision

PC Personal Computer

PDE Partial Differential Equation

PE Processing Element

QoR Quality of Results

RISC Reduced Instruction Set Computer

SDK Software Development Kit

SIMD Single Instruction, Multiple Data

x

SNR Signal-to-Noise Ratio

SoC System-on-Chip

SQL Structured Query Language

SSE Streaming SIMD Extensions

TCPA Tightly Coupled Processor Array

TI Texas Instruments

TPDL Target Platform Description Language

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHLL Very High-Level programming Language

VHSIC Very High Speed IC

VLIW Very Long Instruction Word

xi

1 Introduction

Diversity accompanies electronics ab initio. First electronic devices were assembled
from discrete components to fulfill a particular purpose, i.e., they were designed and
implemented in an application-specific way. Quickly, more and more transistors, the
basis for all logic gates and registers, could be crammed onto integrated circuits and
offered an almost unlimited plethora of possibilities for digital circuits. Thanks to the
steady advances in Complementary Metal Oxide Semiconductor (CMOS) technology,
the number of transistors on the same chip footprint has grown exponentially within
the last half-century. This observation/projection is widely known as Moore’s law [107]
and goes along with Dennard scaling [32], which roughly says that the power density
remains constant as transistors are getting smaller, i.e., performance per watt is also
growing exponentially. In the context of microprocessors, Central Processing Unit (CPU)
designers harnessed this growth 30 years long by turning it into performance gains.
First, because not only more transistors but also faster transistors have been built, and
thus even CPUs could run increasingly at higher clock rates. Second, ever more complex
CPUs could be designed that can do more work per clock cycle. That is, more powerful
instructions and larger data types, deeper processor pipelines, sophisticated branch
prediction, multiple parallel instructions, or instruction reordering in the case of out-of-
order execution. A third performance boost has been accomplished thanks to larger and
hierarchically organized caches. However, the seemingly never-ending performance
boost of single-core processors was disrupted around 2005. Herb Sutter described this
turning point in microprocessor history in his highly cited article “A Fundamental Turn
Toward Concurrency in Software” [134] and the 2009 updated version “The Free Lunch
is Over” [135], respectively. Herein, Sutter states that there is almost no progress in
achieving higher clock frequencies. Although single transistors and small Integrated
Circuits (ICs) have been experimentally proven to run at frequencies in the two-digit
to three-digit gigahertz (GHz) range, processor clock rates have nearly saturated due
to several physical effects. (a) Shrinking features sizes came along with severe current
leakage1 issues, (b) the power consumption is limited, and the two items as mentioned
above lead to (c) profound heat problems, in other words, heat is hard to dissipate.
Collectively, these issues are referred to as the power wall. In addition, support for
instruction level parallelism cannot be arbitrarily scaled within a processor core because
increasing the number of functional units gets quickly exceedingly complex for both
superscalar and Very Long Instruction Word (VLIW) processors [30]. All these threats

1Leakage in semiconductor devices denotes the effect of capacity-connected components, such as
transistors or diodes, to draw a small amount of current even though they are switched off.

1

1. Introduction

Transistors
(thousands)

Single-thread
performance
(SpecINT)

Frequency
(MHz)

Typical power
(watts)

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

1E+7

1E+6

1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

1E-1

Number of
cores

Figure 1.1: Evolution of microprocessors with respect to (i) number of transistors per
chip, (ii) benchmarked performance, (iii) clock rate, (iv) typical power consumption, and
(v) number of processor cores. Figure reprinted from [23, p. 46]. © 2015 by IEEE.

induced the end of Dennard scaling in 2005 and turned processor architectures into
multicore designs henceforward (see Figure 1.1).

While the speed of Moore’s projection has slightly slowed down, the steady minia-
turization of feature sizes and the associated exponential growth of processor designs is
still ongoing. However, as mentioned above, technology shrinking also continuously
leads to higher energy densities, and thus the situation has become even more severe
concerning power consumption because chips can handle only a limited power budget.
As a consequence, the potentially available chip area might not be entirely utilized or
at least not simultaneously. This phenomenon is also known as utilization wall [45]
and accordingly as dark silicon [35], which denotes chip areas that must remain inac-
tive most of the time. As a conclusion: Future systems will only scale if their energy
efficiency will considerably improve—this reasoning holds for both embedded and
portable devices, such as smartphones and tablets as well as large-scale systems used for
High-Performance Computing (HPC). Customization and heterogeneity, e.g., in the form
of custom-tailored memory hierarchies, sophisticated interconnection networks, and
application-specific compute components, such as accelerators, are the key to success
for future performance gains [127, 91].

2

1.1. Contributions

Additionally, each CMOS process shrink is progressively ridden with imperfections
(i.e., variability [14, 6]) and unreliability of the devices. These technological hurdles
combined with the sheer complexity of heterogeneous Multi-Processor System-on-
Chip (MPSoC) architectures raise numerous questions on how to design, test, and
program such systems while having multiple—possibly contrary—goals in mind. It is
very challenging to find solutions satisfying different objectives, such as performance,
resource utilization, energy efficiency, resiliency [69], predictability of even multiple
execution qualities [140], effective exploitation of concurrency, or programming effort.
Thus, novel designmethodologies and computing paradigms are required to fuel research
and scientific discoveries with undiminished pace.

1.1 Contributions

In recent years, my research mission has been to master the design and programming
complexity of parallel systems as well as their rising heterogeneity. The considered systems
span a wide range, from architectures targeted for embedded applications to clusters
for HPC. A particular focus is on accelerators (e.g., processor arrays, Graphics Pro-
cessing Units (GPUs), or dedicated hardware implemented in Field Programmable Gate
Arrays (FPGAs)) or their combination as part of a heterogeneous system (e.g., compute
nodes equipped with accelerator technology, MPSoCs, or NoC-based tiled heteroge-
neous architectures). Investigated are programming languages, methods and techniques
for compilation and application mapping, as well as the synthesis and simulation of
parallel processor architectures. Here, two strategic approaches are researched—which
may appear utterly different at first. The one is resource-aware computing, and the other
is domain-specific computing. While the former makes numerous static architecture
properties as well as runtime status information explicitly visible (e.g., at the program
level as in the case of resource-aware programming [139, 142, P69]), the latter tries
to wholly separate application development from an underlying architecture (i.e., a
programmer is shielded from low-level implementation, mapping and parallelization de-
tails). Concerning these two computing paradigms, my principal research contributions
can be very briefly summarized as follows:

Resource-aware Computing

(1) Modeling and System Simulation. Invasive computing [139, 142] is resource-
aware computing at its best. To study resource-aware programming [139, P69]
and invasive resource management strategies [68], means for application modeling
and to mimic the execution behavior on not yet existing manycore architectures
are required. The modeling of invasive applications includes programming ex-
tensions for resource-aware programming [P69] as well as concurrent models
of computation, such as actor models [P42, P16]. Timed functional simulation

3

1. Introduction

techniques [P65, P24] are used to assess execution qualities and to explore
variants [P62] of tiled heterogeneous manycore architectures. Measures for fast
full system simulation (parallel simulation [P24] and Network-on-Chip (NoC)
simulation [P47, P4]) have been investigated and evaluated for streaming-based
multimedia applications [P16] as well as X10 benchmarks [P24, P4].

(2) Architecture/Compiler Co-Design of Invasive TCPAs. Invasive Tightly Cou-
pled Processor Arrays (TCPAs) [J18] combine architectural research in the field
of parallel on-chip accelerators with the paradigm of invasive computing. The
concepts to dynamically invade processors and to retreat from them are directly
integrated into an invasive TCPA at the hardware level [P71, P67, J18]. This
opens opportunities for ultrafast resource reservation and adaptivity (e.g., power
management [J19, J18] or fault tolerance [P23, P21, 84]). These techniques have
been mainly evaluated using cycle-accurate simulation [P101, J18, P5].

Regarding compilation for TCPAs, (a) efficient, yet compact code generation [P46,
J17] as well as (b) symbolic tiling and symbolic scheduling [P48, J15, P32, P19,
P15, J1] as program transformations for the symbolic parallelization of nested
loop programs with uniform data dependences have been investigated.

Domain-specific Computing

(3) Domain-specific High-level Synthesis. Domain-specific High-Level Synthesis
(HLS) provides programming abstractions to ease the problem specification and
thus productivity. In the case of this habilitation treatise, the domain is image
processing. The considered techniques are based on template metaprogramming
and generative programming. The proposed domain-specific concepts have been
investigated employing external Domain-Specific programming Language (DSL)
constructs followed by code transformations in the case of the PARO HLS re-
search tool [P37, J2] and the form of a template library in the case of C-based
commercial tools, such as Xilinx Vivado HLS [P33, P9].

(4) The Heterogeneous Image Processing Acceleration Framework. HIPAcc is a
DSL embedded in C++ and a compiler framework for the domain of image pro-
cessing. It captures domain knowledge in a compact and intuitive language and
employs source-to-source translation combined with various optimizations to
achieve an excellent productivity paired with performance portability. TheHIPAcc
approach has been applied and evaluated for a broad variety of parallel accelerator
architectures, including manycore processors [J9, J12], such as Nvidia and
AMD GPUs and Intel Xeon Phi, embedded GPUs [P41], Xilinx and Intel/Altera
FPGAs [P31, P13, J5], and vector units [P11].

4

1.2. Papers of this Habilitation Treatise

(5) The ExaStencils Approach. To reduce the foreseen performance/productivity gap
of upcoming exascale platforms, a unique, tool-assisted co-design approach spe-
cific for the domain of multigrid methods based on stencil computations is devel-
oped within ExaStencils [P35, P38]. The fundamental concept of ExaStencils
is a multi-layered external DSL in combination with a modular transformation
and optimization framework [P29]. The approach has been evaluated concern-
ing productivity and scalability, among other things, for a generated geometric
multigrid solver on the JUQUEEN supercomputer [C1].

I have conducted the in this habilitation treatise cumulated research jointly together
with nine doctoral researchers as well as bachelor and master students from my research
group Architecture and Compiler Design (ACD).2 I have been the principal investigator
for (1), (4), and (5) within the DFG Transregional Collaborative Research Centre 89
“Invasive Computing,” the DFG Research Training Group 1773 “Heterogeneous Image
Systems,” and the DFG Priority Programme 1648 “Software for Exascale Computing,”
respectively. In the case of (2), I have been a conceptual contributor, and in the case of
(3), I have been the scientific leader and conceptual contributor.

1.2 Papers of this Habilitation Treatise

This document is a cumulative habilitation treatise. From my 165 peer-reviewed pub-
lications listed in Appendix A.2 (page 60ff.), I have opted for the following 25 key
contributions of my research. These form the chief part of my cumulative habilitation
treatise. The full texts (i.e., reprints) of these publications are provided on page 83ff. in
Appendix C.

Resource-aware Computing

Modeling and System Simulation Papers

DAC ’15

page 87ff.

Roloff, Schafhauser, Hannig, and Teich. “Execution-driven parallel simulation

of PGAS applications on heterogeneous tiled architectures”

[P24]

X10 ’16

page 93ff.

Roloff, Pöppl, Schwarzer, Wildermann, Bader, Glaß, Hannig, and Teich. “Ac-

torX10: An actor library for X10”

[P16]

ESTIMedia ’17

page 99ff.

Roloff, Hannig, and Teich. “High performance network-on-chip simulation by

interval-based timing predictions”

[P4]

2In November 2017, my team, the ACD group, consists of eleven doctoral researchers and one
post-doctoral researcher.

5

1. Introduction

Papers on Architecture/Compiler Co-Design of Invasive TCPAs

ACMTECS ’14

page 109ff.

Hannig, Lari, Boppu, Tanase, and Reiche. “Invasive tightly-coupled processor

arrays: A domain-specific architecture/compiler co-design approach”

[J18]

RSP ’17

page 139ff.

Witterauf,Hannig, andTeich. “Constructing fast andcycle-accurate simulators

for configurable accelerators using C++ templates”

[P5]

Springer JSPS ’14

page 147ff.

Teich, Tanase, andHannig. “Symbolicmappingof loopprogramsontoprocessor

arrays”

[J15]

MEMOCODE ’14

page 177ff.

Tanase, Witterauf, Teich, and Hannig. “Symbolic inner loop parallelisation for

massively parallel processor arrays”

[P32]

ACMTECS ’17

page 187ff.

Tanase, Witterauf, Teich, and Hannig. “Symbolic multi-level loop mapping of

loop programs for massively parallel processor arrays”

[J1]

ASAP ’16

page 215ff.

Witterauf, Tanase, Hannig, and Teich. “Modulo scheduling of symbolically tiled

loops for tightly coupled processor arrays”

[P15]

Springer JSPS ’14

page 225ff.

Boppu, Hannig, and Teich. “Compact code generation for tightly-coupled pro-

cessor arrays”

[J17]

Domain-specific Computing

Domain-specific HLS Papers

ASAP ’14

page 251ff.

Schmid, Tanase, Hannig, Teich, Bhadouria, and Ghoshal. “Domain-specific aug-

mentations for high-level synthesis”

[P37]

FPL ’14

page 257ff.

Schmid, Apelt, Hannig, and Teich. “An image processing library for C-based

high-level synthesis”

[P33]

Springer JSPS ’17

page 261ff.

Bhadouria, Tanase, Schmid, Hannig, Teich, and Ghoshal. “A novel image im-

pulse noise removal algorithm optimized for hardware accelerators”

[J2]

ASAP ’17

page 279ff.

Özkan, Reiche, Hannig, and Teich. “Hardware design and analysis of efficient

loop coarsening and border handling for image processing”

[P9]

6

1.2. Papers of this Habilitation Treatise

HIPAcc Papers

IEEE TPDS ’16

page 289ff.

Membarth, Reiche, Hannig, Teich, Körner, and Eckert. “HIPAcc: A domain-

specific language and compiler for image processing”

[J9]

DATE ’14

page 305ff.

Membarth, Reiche,Hannig, andTeich. “Code generation for embeddedhetero-

geneous architectures on Android”

[P41]

CODES+ISSS ’14

page 311ff.

Reiche, Schmid, Hannig, Membarth, and Teich. “Code generation from a

domain-specific language for C-based HLS of hardware accelerators”

[P31]

Elsevier JPDC ’14

page 321ff.

Membarth, Reiche, Schmitt, Hannig, Teich, Stürmer, and Köstler. “Towards a

performance-portable description of geometric multigrid algorithms using a

domain-specific language”

[J12]

FPL ’16

page 333ff.

Özkan, Reiche, Hannig, and Teich. “FPGA-based accelerator design from a

domain-specific language”

[P13]

Springer JSPS ’17

page 343ff.

Reiche,Özkan, Hannig, Teich, and Schmid. “Loop parallelization techniques for

FPGA accelerator synthesis”

[J5]

LCTES ’17

page 369ff.

Reiche, Kobylko, Hannig, and Teich. “Auto-vectorization for image processing

DSLs”

[P11]

ExaStencils Papers

ICCSA ’14

page 379ff.

Schmitt, Kuckuk, Köstler, Hannig, and Teich. “An evaluation of domain-specific

language technologies for code generation”

[P38]

Euro-Par ’14

page 389ff.

Lengauer, Apel, Bolten, Größlinger, Hannig, Köstler, Rüde, Teich, Grebhahn,

Kronawitter, Kuckuk, Rittich, and Schmitt. “ExaStencils: Advanced stencil-

code engineering”

[P35]

WOLFHPC ’14

page 401ff.

Schmitt, Kuckuk, Hannig, Köstler, and Teich. “ExaSlang: A domain-specific lan-

guage for highly scalable multigrid solvers”

[P29]

Springer LNCSE ’16

page 411ff.

Schmitt, Kuckuk, Hannig, Teich, Köstler, Rüde, and Lengauer. “Systems of par-

tial differential equations in ExaSlang”

[C1]

7

1. Introduction

1.3 Structure of this Habilitation Treatise

The rest of my habilitation treatise is organized as follows: In the next

Chapter 2 “Resource-aware Computing,” (pages 9 to 21)

I briefly introduce resource-aware computing and provide a short overview of the Trans-
regional Collaborative Research Centre 89 “Invasive Computing”. Subsequently, I sum-
marize my research results that emerged from the Collaborative Research Centre in the
areas of modeling and system simulation (Section 2.2) and architecture/compiler co-design
of invasive tightly coupled processor arrays (Section 2.3) as well as the corresponding
publications; their reprints can be found in Appendix C in order not to impair reading
fluency and to ease partial printing.

Chapter 3 “Domain-specific Computing” (pages 23 to 46)

introduces the key concepts of domain-specific computing and fundamentals of domain-
specific programming languages briefly. Afterward, I provide an overview of the respec-
tive projects (domain-specific HLS in Section 3.2, HIPAcc in Section 3.3, and ExaStencils
in Section 3.4) as well as their basis forming design and implementation techniques,
followed by the corresponding research results. Reprints of the related publications can
also be found in Appendix C in order not to impair reading fluency and to ease partial
printing.

Chapter 4 “Conclusions” (pages 47 to 48)

summarizes and concludes my cumulative habilitation treatise. Herein, I identify com-
monalities of my two main research branches and provide ideas for future research
directions.

Appendix A “Bibliography,” (pages 49 to 79)

Appendix B “Image Credits,” and (page 81)

Appendix C “Paper Reprints” (page 83ff.)

provide both general and personal bibliographies (including a complete list of my own
publications), image credits, and reprints of the papers I opted for my cumulative
habilitation treatise, respectively.

8

2 Resource-aware Computing

Since the term resource-aware computing as a whole is not very widespread, let us
decompose it into its parts according to the Oxford English Dictionary3:

“resource” noun; “A stock or supply of money, materials, staff, and other assets that
can be drawn on by a person or organization in order to function effectively.”

“aware” adjective; “[with adverb or in combination] Concerned and well informed about
a particular situation or development.”

“computing” noun; “The use or operation of computers.”

Resources in the sense of a computing system can be physical components, such as
processing units (e.g., arithmetic units or processor cores), memory and input/output
devices, or virtual components, e.g., files, network connections, and memory areas.
Obviously, the resources of a computer are limited, thus, some means to manage them
are required (allocation and releasing of resources, dealing with contention, etc.). Re-
source management necessitates some awareness about the static architecture properties
(amount and type of resources) as well as about the status of resources at runtime (i.e.,
dynamically changing qualities, such as availability, utilization, reliability, or temper-
ature). Static properties are sometimes considered during the design of a program or
at compile time, e.g., that an application is parallelized for a certain number of com-
pute resources. But often, an underlying architecture is completely abstracted away
by chopping the workload into smaller portions that are handled by a runtime system,
which takes care of assignment and scheduling. Similarly, if the workload is not known
at compile time (e.g., unknown problem size or the computational effort depends on the
composition of input data) or barely predictable combinations of (parallel) applications
have to be executed, resource management, workload distribution, and scheduling
typically happen in a runtime system. However, such an implicit resource management
by the runtime system—in combination with programs written in high-level languages—
thieves the control of basic resources from the programmer and thus might only lead to
a suboptimal program execution.

The challenge of resource-aware program execution becomes even more intricate when
having the computer architecture trends in mind (see Chapter 1). Consequently, many
research questions arise: How to manage and program heterogeneous architectures with
thousands of cores? How to deal with heat dissipation and power consumption? How

3https://en.oxforddictionaries.com

9

https://en.oxforddictionaries.com

2. Resource-aware Computing

to optimize yield by coping with the increasing variability in semiconductor fabrication?
How to treat faults and aging processes over the lifetime of a chip? How to provide
predictability—not only regarding timing but also other non-functional qualities of
parallel program execution, such as power and reliability?

One fundamental principle of parallel computing that examines above raised ques-
tions is invasive computing.

2.1 Invasive Computing

In [139], Jürgen Teich coined the terms invasive algorithms and invasive architectures.
The associated novel concepts have been generalized and subsumed shortly afterward
under invasive computing and by the DFG-funded Transregional Collaborative Research
Centre 89 of the same name4 [142].

Resource awareness has top priority in invasive computing by introducing it at the
level of application programming. Here, resource-aware programming facilitates a given
program to explore and dynamically distribute its computations to (neighbor) processors.
Then, to execute portions of code that have a high Degree of Parallelism (DoP) in parallel
based on the available region on a given multi-processor architecture. Afterward, once
the program terminates or if the DoP should be lower again, the program should
deallocate resources and resume execution again, e.g., sequentially on a single processor.
In the nomenclature [139, 142, P69] of invasive computing these different phases of
operation are called invade, infect, and retreat, denoting (i) resource exploration and
claiming, (ii) code and data distribution as well as parallel program execution, and (iii)
release of resources, respectively. By means of invasion, an application will thus be able
to spread its computations for parallel execution based on the availability and the actual
state of the underlying resources, such as utilization, load, or temperature. Transitions
from one phase (i.e., invade, infect, and retreat) to another one not necessarily have to
follow always a straight order. As illustrated by the back edges of the state chart depicted
in Figure 2.1, there can be also situations where a claimed set of resources should be
extended (reinvasion) or partially freed (partial retreat), or used for execution again
(reinfect). The introduced programming constructs for resource-aware programming
are embedded into the parallel programming language X10 [28] as developed by IBM
using a library-based approach [P69].

While the Transregional Collaborative Research Centre 89 looks at invasive comput-
ing in its entirety (four project areas covering (A) fundamentals, language, and algorithm
research, (B) architectural research, (C) compiler, simulation, and run-time support, (D)
applications), my research contributions are in the areas of modeling and simulation of

4The CRC/Transregio 89 “Invasive Computing” was established by the German Research Foundation
(DFG) in July 2010 and is currently in its second funding phase until end of June 2018.

10

2.2. Modeling and System Simulation

start invade infect retreat exit

Figure 2.1: State chart of an invasive program. Figure reprinted from [P69, p. 49].

invasive applications and invasive architectures as well as compilation and architecture
research for tightly coupled processor arrays.

2.2 Modeling and System Simulation

2.2.1 Goals

Invasive computing is a hotbed for a novel parallel computing paradigm with multifar-
ious research directions, including theory, programming languages, and applications
as well as architectural design. In order to explore and optimize different invasive
architectures, invasion strategies, and invasive programming approaches, simulation
techniques that cover all theses aspects are indispensable. Without the need to have
full hardware or software implementations available, the goals are primarily (a) model-
ing and behavioral simulation of invasive applications and (b) simulation of invasive
architectures.

2.2.2 Approach

In order to fulfill the goals mentioned above, the simulation platform InvadeSIM [P65,
P62, P24] has been developed that provides a fast simulation approach for hundreds
of competing applications on large heterogeneous architectures, allows the modeling of
customized heterogeneous invasive multi-tile architectures, and supports the simula-
tion of the complete set of X10 programming language constructs as well as all novel
invasive programming constructs, such as invade, infect, and retreat. An overview of
the developed timed functional simulation platform InvadeSIM is shown in Figure 2.2.
The simulator allows to quickly customize an invasive multi-tile architecture to be
evaluated by changing a number of parameters, including topology network parameters,
or number of tiles and processor types in each tile—denoted as architecture model in the
figure. Application modeling in InvadeSIM is carried out in X10 [28] and may use the
InvadeX10 language extensions [P69, P55] for exploiting the invasive command set [142,
P69], an actor-based programming model [P42, P16], or combinations of both. An
actor model [1, 58] exposes asynchronous buffered communication paths and decouples
these from the control flow of the concurrently executed application parts. Our actor
model is called ActorX10 [P16] and is implemented on top of the Asynchronously
Partitioned Global Address Space (APGAS) principles of X10.

11

2. Resource-aware Computing

InvadeSIM

Architecture ModelApplication Model
(InvadeX10 / ActorX10)

val c = new AND();
c.add(new TypeConstraint(PEType.RISC));
c.add(new PEQuantity(2));
val claim = homeClaim + Claim.invade(c);
val ilet = (id:IncarnationID) => {
Console.OUT.println("Hello, World!");

};
claim.infect(ilet);
claim.retreat();

Time interval ∆t on the host processor

wall clock time

Time interval ∆t on the target processor

simulated time

Performance Counters

Time Warping

Number of executed instructions I

Processor Simulation

Target
Processor

Host
Processor

Start Processor
Simulation

Simulation

Stop Processor
Simulation

Time Warping

Event Generation

synchronization point

Barrier

Advance
Global Time

Barrier

Check
Global Time

global time ==
local time

global time <
local time

Synchronization
Thread

Simulation
Thread

Synchronization

Simulation Results

CPU

CPU CPU

TCPA

CPU

CPU

CPU

Memory

Memory

CPU i-Core

CPU

CPU

i-Core

CPU

MemoryI/O

TCPA

CPU CPU

CPU

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NA NA Memory NA

NA Memory
NA

NA MemoryNA Memory

NA

NA

CPU

CPU

i-Core

i-Core

i-Core

Figure 2.2: Overview of the resource-aware timed functional system simulation platform
InvadeSIM. For more details on the synchronization and time warping concepts, we
refer to [P65, P62].

The core components to simulate parallel applications on a modeled heterogeneous
multi-tile MPSoC architecture are sketched in the middle of Figure 2.2. These compo-
nents contain a novel concept of approximately timed simulation and a discrete event
synchronization mechanism for the simulation of multiple processors. Many existing
simulation frameworks for heterogeneous MPSoCs are based either on cycle-accurate
or trace-based approaches and are typically much too slow. Instead, our processor
simulation approach is a hybrid method based on performance counters and analytic

12

2.2. Modeling and System Simulation

models, which we call time warping [P65]. A synchronization mechanism preserves
the causality of simulation events in case of multiple processor simulations. The dis-
crete event simulation approach combines the functional execution of an application
(consisting of so-called i-lets in the notion of invasive computing [P69, 142]) with the
timing simulation according to the computational properties of the target processor
architecture on which it was mapped at runtime. Eventually, the simulation results may
be analyzed or visualized (e.g., by a graphical user interface or trace viewer), or the
timing values serve as quality number for the evaluation of application mappings [P18,
140, 130] or architecture exploration [P62]. Since the latter two tasks are very complex
regarding computing time, it is of utmost importance to have an ultrafast yet highly
timing-accurate system simulator. Here, novel parallel simulation [P24] and hybrid
network-on-chip simulation [P4] techniques have been developed, implemented, and
evaluated.

2.2.3 Results

To evaluate the scalability and performance of our parallelized version of the InvadeSIM
system simulator, we have modeled multi-tile processor architectures up to 64 cores
(Reduced Instruction Set Computer (RISC) or Application-Specific Instruction set Pro-
cessor (ASIP)) and run the simulator on a host machine with twelve cores [P24]. We
could demonstrate a linear speedup in simulation time of the parallel simulation (run-
ning on the host with up to twelve cores) with respect to a sequential simulation—
while the absolute simulation performance is in a five-figure Million Instructions Per
Second (MIPS) range.

The developed hybrid NoC simulation technique [P4] achieves speedups of one
to three orders of magnitude compared with cycle-accurate NoC simulation, while
depending inversely related on the NoC size ranging from 4 × 4 to 16 × 16 tiles, and
preserving a timing accuracy of above 95%. The NoC simulation has been integrated into
InvadeSIM, to evaluate howmuch the full system simulation can benefit. Wherewe could
showcase decent speedups for complex streaming-based multimedia applications [P16,
P4] written in ActorX10 [P16] and X10 applications from the IMSuite [48] benchmark.

2.2.4 Key Papers

DAC ’15

page 87ff.

Roloff, Schafhauser, Hannig, and Teich. “Execution-driven parallel simulation

of PGAS applications on heterogeneous tiled architectures”

[P24]

The DAC ’15 paper presents the parallel execution-driven simulator
for the efficient simulation of heterogeneous tile-based multicore ar-
chitectures. Four novel parallel discrete-event simulation techniques
were proposed, which map thread-level parallelism within the appli-

13

2. Resource-aware Computing

cations to core-level parallelism on the simulated target architecture
and back to thread-level parallelism on the simulation host machine.
In all these approaches, the correct synchronization and activation of
the host threads are essential. Experiments with parallel real-world
applications are used to compare the different techniques against each
other and demonstrate that, on average, 8.2 times faster simulations
than a sequential simulation can be achieved on a 12-core Intel Xeon
processor while reaching a simulation speed of up to 86,000 MIPS.

X10 ’16

page 93ff.

Roloff, Pöppl, Schwarzer, Wildermann, Bader, Glaß, Hannig, and Teich. “Ac-

torX10: An actor library for X10”

[P16]

Based on the foundation “Towards Actor-oriented Programming on
PGAS-based Multicore Architectures” by Sascha Roloff et al. in [P42],
the X10 ’16 paper consequently formalizes the actor model on the basis
of the APGAS programming model as used in X10. The implementation,
named ActorX10, seamlessly integrates into X10 in the form of a class
library. It eases parallel program development by making the communi-
cation between different parts of the program explicit and by separating
the control flow aspects from the computational aspects. This kind of
abstraction is very versatile as we demonstrate for applications from
the embedded system (object detection streaming pipeline) and HPC
domain (proxy application for tsunami simulation).

ESTIMedia ’17

page 99ff.

Roloff, Hannig, and Teich. “High performance network-on-chip simulation by

interval-based timing predictions”

[P4]

The ESTIMedia ’17 paper focuses on NoC simulation and presents a
hybrid approach, where the timing of packet delays in a NoC is modeled
accurately, yet, for scalability reasons, predictable and contiguous com-
munications are detected. These are exploited to forward the simulation
time appropriately instead of simulating flit-by-flit.a We evaluated our
hybrid simulation technique for pure NoC simulation as well as full
system simulation. In both cases decent speedups were achieved.

aFlit is an acronym for flow control digit and denotes the smaller units of a
subdivided network packet.

The work above was conducted with doctoral researcher Sascha Roloff. He significantly
contributed to the research on the simulation of invasive computing systems, assisted
by David Schafhauser with his bachelor’s thesis on parallel simulation techniques. The
conceptual design of ActorX10 was carried out jointly with partners from the CRC/Trans-
regio 89, while Sascha Roloff additionally performed the X10 library implementation.

14

2.3. Architecture/Compiler Co-Design of Invasive TCPAs

2.3 Architecture/Compiler Co-Design of Invasive

Tightly Coupled Processor Arrays

Looking at programmable accelerators in its entirety has a long tradition in my research
group Architecture and Compiler Design (ACD). The co-design aspect of processor archi-
tecture design (incl. means for simulation and prototyping) and compiler research (e.g.,
mapping, scheduling, and code generation) has always been an overarching objective—
ACD’s motto is to build both compiler-friendly architectures as well as architecture-
friendly / retargetable design tools and compilers. In the course of research, we developed
a highly parametrizable class of parallel on-chip processor arrays, which consists of
lightweight and weakly programmable VLIW Processing Elements (PEs) that are tightly
interconnected over a reconfigurable network [P108, P104, P103], as well as the corre-
sponding tool flow [P99, C9, J24]. These Tightly Coupled Processor Arrays (TCPAs) are
particularly suitable for the acceleration of nested affine loop programs [33], and have
been proven for high-throughput processing [T1, C8] while being low power [P90, J23,
J21] at the same time, i.e., such architectures are highly energy-efficient [J22, J18, J4].

2.3.1 Challenges

Many research questions emerged from invasive computing in the context of processor
arrays: How can the principles of resource-aware programming be supported in hard-
ware, i.e., ultrafast within a few clock cycles? Can invasive computing be an enabler
for optimizing execution qualities, such as energy efficiency, and non-functional re-
quirements, such as fault tolerance? Previous research on mapping loop programs onto
processor arrays or Coarse-Grained Reconfigurable Architectures (CGRAs) considered
both fixed problem sizes and a static number of PEs preferentially—but, how to proceed
if the number of available resources (PEs) is only known at runtime? How can costly
compilation at runtime or storing of all possible mappings be circumvented?

2.3.2 Approach

As mentioned before, TCPAs are primarily used as accelerators, reflected by dedicated
TCPA tiles as part of an invasive heterogeneous tiled architecture (see Figure 2.3). To
adopt the principles of invasive computing at hardware level, each PE of a TCPA is
equipped with an invasion controller (or short iCtrl in Figure 2.3), giving it the capability
to acquire, reserve, and then release the PEs in its neighborhood in a fast cycle-based
manner [P71, P67, J18]. This decentralized approach ensures scalable and reliable
resource management in future manycore architectures with hundreds to thousands
of PEs, where centralized approaches do not scale anymore because of latency and
fault-tolerance reasons.

15

2. Resource-aware Computing

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU iCore

iCore CPU

CPU iCore

iCore CPU

MemoryI/O

TCPA

CPU CPU

CPU CPU

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NA NA Memory NA

NA Memory
NA

NA MemoryNA Memory

NA

NA

Advanced High-performance Bus (AHB)

Conf. & Com.
Processor
(LEON3)

IRQ Ctrl.

IM GC

AG

IM

GC

AG

IMGC

AG

IM

GC

AG

C
o

n
fi

gu
ra

ti
o

n
 M

an
ag

er

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

I/
O

 B
u
ffe

rs

I/
O

 B
u
ffe

rs
I/O Buffers

I/O Buffers

Figure 2.3: On the right, a schematic representation of an invasive heterogeneous tiled
architecture is shown. An abstract architectural view of a TCPA tile is shown on the left.
The abbreviations AG, GC, IM, and NA stand for address generator, global controller,
invasion manager, and network adapter. Figure adapted from [J18, 133:5].

The invasion controllers enable also hierarchical power management in TCPAs
by dynamically turning regions of PEs on and off, depending on invade and retreat
phases [P57, J19]. Most of the investigations on hardware-based management of TCPA
resources [P71, P67, J18], power management [P57, J19, J18], and fault tolerance [P23,
P21, 84] were assessed using cycle-accurate simulation [P101, J18, P5]. Since simula-
tion is essential, our most recent approach [P5] profoundly exploits C++ templates,
which allow for highly configurable architectures using parameters at synthesis time.

Regarding compilation techniques, the main idea is to provide (a) symbolic trans-
formations for loop tiling, i.e., to use parametrized tile sizes to represent a (statically)
unknown number of PEs, as well as (b) the determination of corresponding symbolic
latency-optimal schedules. The approach can be summarized as follows [J15]: First,
the iteration space of a nested loop program is tiled symbolically into parametric ortho-
topes.5 Next, the resulting tiled program is also scheduled symbolically, resulting in a
set of latency-optimal parametrized schedule candidates. Finally, at runtime, once the
allocated PE region (size) becomes known, simple comparisons of latency-determining
expressions finally steer which of these schedules will be selected and the corresponding
program configuration executed on the corresponding processor array.

5An orthotope is a parallelotope whose edges are all mutually orthogonal to each other. The orthotope
is a generalization of the rectangle and rectangular parallelepiped.

16

2.3. Architecture/Compiler Co-Design of Invasive TCPAs

After partitioning and modulo scheduling [T1], instruction and register binding
are performed before code is generated. Our code generation approach [P46, J17]
starts with subdividing the set of PEs of a TCPA into so-called processor classes, such
that all processors that belong to the same class obtain the same program but may differ
only by a delayed start of execution. For each processor class a corresponding program
block control flow graph is traversed to emit the final assembly code. Unique to our
approach is that local control is represented by the code generated for each processor
class, whereas global control is implemented by a global controller [J18, J17], which
produces global control signals that trigger the program executions and branching.
As a result of this, the entire static control flow (i.e., zero-overhead loops and static
branching) can be hidden.

2.3.3 Results

In [J18], we could demonstrate a greatly superior energy efficiency of TCPAs in
comparison with an embedded GPU (ARM Mali-T604), mainly due to a much better
resource utilization, data locality, and less expensive functional units (integer arithmetic).
However, we envision TCPAs complementary to GPUs in an MPSoC since TCPAs are
limited to integer arithmetic so far. Whereas, GPUs are high-performance devices,
which are well suited for 3D imaging when floating-point calculations are needed.

Our highly configurable and flexible simulation approach based on C++ templates is
about five times faster when simulating a VLIW PE of a TCPA compared to implemen-
tations not using templates.

We could push the research on loop parallelization by providing symbolic paral-
lelization techniques according to the above outlined multi-step approach. Previous
works [121, 54, 55, 9, 122] partition only the iteration space symbolically but not the data
dependences of loop-body statements and also only consider either merely sequential
or atomic execution of the tiles.6 In contrast, our approach allows for communicating
results as soon as they are computed, which is especially beneficial for streaming ar-
chitectures, such as TCPAs. We applied our novel formalism to schedule and assign
atomic iterations 7 to processors symbolically for a given loop nest with uniform data
dependences to the most common loop partitioning techniques: (1) outer loop paral-
lelization [P48, J15] (a.k.a. clustering, blocking [156], or Locally Sequential, Globally
Parallel (LSGP) [60]), (2) inner loop parallelization [P32] (a.k.a. tiling or Locally Parallel,
Globally Sequential (LPGS) [60, 104]), and (3) hierarchical loop parallelization [P19,

6Atomic execution of a tile denotes that all iterations belonging to that tile are computed first before
other tiles depending on these computations might be executed.—This may lead to cyclic dependences
between adjacent tiles, and thus unschedulability, Whereas, a finer-grained execution and communication
of results per iteration might be schedulable.

7Atomic iteration denotes that a single iteration of a given loop nest is executed in one unit of time
(e.g., clock cycle).

17

2. Resource-aware Computing

J1]. Moreover, we generalized our symbolic approach to modulo scheduling [P15],
including multi-cycle instructions under resource constraints (i.e., a limited number of
Functional Units (FUs)). Here, we formally and experimentally show that if the number
of processor elements to map onto is known at compile time, the resulting schedules are
latency optimal. Otherwise, they are negligibly suboptimal. Summing-up, symbolic loop
parallelization techniques complement resource-ware computing on TCPAs perfectly.

Our TCPA code generator produces highly competitive code [J17]. Compared with
the Trimaran compiler infrastructure [27, 144], the generated codes of our approach
achieve 56–88% higher throughputs. The code generator even more drastically outper-
forms the VEX compiler framework [38, 59]. Here, the generated code runs 4–12 times
faster, although the code size is 2–4 times smaller.

2.3.4 Key Papers

In the following, I briefly classify the role of the key papers related to resource-aware
computing, which are part of this cumulative habilitation treatise. Reprints of these
papers are available in Appendix C.

ACMTECS ’14

page 109ff.

Hannig, Lari, Boppu, Tanase, and Reiche. “Invasive tightly-coupled processor

arrays: A domain-specific architecture/compiler co-design approach”

[J18]

The ACM TECS article summarizes our research on invasive TCPAs,
a class of programmable accelerators with built-in hardware for very
fast resource management. The article covers the entire technology
stack, i.e., architectural design, programming, compilation, and simula-
tion. By considering the design as a whole—that is, both architecture
and compiler design—we could demonstrate a substantial performance
and gains in energy efficiency in comparison with a state-of-the-art
embedded GPU. Preserving application knowledge and combining it
with architectural support, such as zero-overhead looping enabled us
to generate code that is as fast as fully unrolled (across all loop levels)
code, while the code size is kept minimal.

RSP ’17

page 139ff.

Witterauf,Hannig, andTeich. “Constructing fast andcycle-accurate simulators

for configurable accelerators using C++ templates”

[P5]

The RSP ’17 paper deals with constructing fast and cycle-accurate sim-
ulators for processors and processor arrays, such as TCPAs. The entire
architecture model is specified using C++ templates. All parameters
of a hardware component are considered as C++ type and construct
a class templated on this type. Eventually, the simulator is built as a
hierarchical composition of the component classes. The proposed ap-

18

2.3. Architecture/Compiler Co-Design of Invasive TCPAs

proach is evaluated by modeling and simulating a VLIW PE of a TCPA,
and comparing it against a non-templated simulator.

Springer JSPS ’14

page 147ff.

Teich, Tanase, andHannig. “Symbolicmappingof loopprogramsontoprocessor

arrays”

[J15]

This JSPS ’14 article is a rigorous extension of our award-winning pa-
per [P48] “Symbolic Parallelization of Loop Programs for Massively Par-
allel Processor Arrays” presented at ASAP ’13. It presents a method for
the symbolic parallelization of nested loop programs with uniform data
dependences using LSGP partitioning. Parametrized linear functions
are used for assigning and scheduling iterations of such loop programs
on processor arrays of unknown size. Latency-optimal schedules may
be derived statically using two program transformations: First, the
iteration space is partitioned symbolically using parametrized tile sizes.
From this symbolically tiled code, latency-optimal symbolic schedules
are determined. Further, an upper bound for the number of different
optimal schedules as well as a pruning algorithm to reduce the search
space efficiently is presented.

MEMOCODE ’14

page 177ff.

Tanase, Witterauf, Teich, and Hannig. “Symbolic inner loop parallelisation for

massively parallel processor arrays”

[P32]

The MEMOCODE ’14 paper presents a first solution to the unsolved
problem of symbolically scheduling a given symbolically tiled loop
nest according to the LPGS partitioning method. A mixed compile-
/runtime approach is proposed. First, a unique intra-tile schedule is
determined, which is responsible for scheduling the iteration points
within one tile. Subsequently, all feasible inter-tile schedule candidates
are determined based on sequential scanning orders given by stride
matrices. The result is a parametrized latency formula that is used in
a compiler-generated prolog to select the latency-minimal schedule
candidate at runtime, once the size of the available processor array
becomes known. The prolog also ensures feasibility of the schedules by
evaluating simple guard expressions and repairing the schedule vector
candidates accordingly.

ACMTECS ’17

page 187ff.

Tanase, Witterauf, Teich, and Hannig. “Symbolic multi-level loop mapping of

loop programs for massively parallel processor arrays”

[J1]

LSGP partitioning is well-suited for tuning the I/O demand of a tile to
the given bandwidth. However, this concept cannot be used to obtain
a mapping independent of the iteration space size of the algorithm.

19

2. Resource-aware Computing

Whereas, LPGS partitioning may handle constant as well as minimal
local memory requirements on an unknown number of processors at
compile time. But, the required I/O bandwidth is more significant than
in the case of LSGP and might exceed the existent I/O capacities. To
remedy this dichotomy, the ACMTECS article combines the best of both
worlds by proposing a symbolic multi-level tiling/scheduling approach
that balances the I/O bandwidth and local memory requirements.

ASAP ’16

page 215ff.

Witterauf, Tanase, Hannig, and Teich. “Modulo scheduling of symbolically tiled

loops for tightly coupled processor arrays”

[P15]

The ASAP ’16 paper combines symbolic tiling techniques with resource-
constrained modulo scheduling [119, 118, 146, T1] to parallelize nested
loop programs not only at loop level but also at instruction level (i.e., In-
struction-Level Parallelism (ILP)). For this, the dependence constraints
are partitioned into a parametric and non-parametric subset. A solu-
tion to the modulo scheduling problem can be found using only the
non-parametric constraints. To still satisfy the parametric dependence
constraints, a minimum tile size is determined from the found solution.
If the minimum tile size is not satisfied at runtime, a fallback schedule
is selected alternately.

Springer JSPS ’14

page 225ff.

Boppu, Hannig, and Teich. “Compact code generation for tightly-coupled pro-

cessor arrays”

[J17]

This JSPS ’14 article is a thoroughgoing extended version of theASAP ’13
paper [P46]. It presents a designmethodology for the mapping of nested
loop programs onto TCPAs with an emphasis on code compaction
and code generation. TCPAs and the corresponding code generator
support zero-overhead looping not only for innermost loops but also
for arbitrarily nested loops, i.e., the generated code is as fast as the
equivalent entirely unrolled (across all loop levels) code while having
a minimal code size. For selected benchmarks, our code generator
is assessed and compared to the well-known Trimaran [27, 144] and
VEX [38, 59] compiler frameworks.

The research on invasive TCPA architectures was mainly conducted with Vahid Lari
during his Ph.D. [82, 83], helped by Jürgen Teich. Already, in my Ph.D. [T1], I in-
vestigated the problem of resource-constrained loop program scheduling for TCPAs.
Consequently, this formed the basis for the research and development on TCPA code
generation that was conducted with Srinivas Boppu during his Ph.D. [19]. Similarly,
fundamentals such as the theoretic number of possible schedule candidates as well as

20

2.3. Architecture/Compiler Co-Design of Invasive TCPAs

the concept of path strides arose out of my Ph.D. [T1] and were used as fundamentals
in the research on symbolic parallelization of nested loop programs that was carried
out together with Alexandru Tanase, Jürgen Teich, and Michael Witterauf. During his
Ph.D. [137], Alexandru Tanase contributed principally to the symbolic LSGP, LPGS, and
hierarchical partitioning methods, as well as symbolic scheduling techniques. The work
on symbolic modulo scheduling and TCPA simulation was undertaken with doctoral
researcher Michael Witterauf.

21

3 Domain-specific Computing

As introduced and motivated in Chapter 1, processor systems not only contain more and
more cores but also specialized cores of different types due to performance and energy
efficiency reasons. However, programming such parallel, heterogeneous systems is not
an easy task since there exist too many different programming models and accordingly
languages [95, 96]. Most of them require in-depth knowledge of both the application and
target architecture, which is commonly referred to as the programmability gap. Naturally,
the question arises how this gap can be closed and whether there is a one-fits-all solution,
sort of a Jack or Jill of all trades of parallel programming languages?

On closer examination, programming languages might be rated with respect to three
properties: (1) performance, (2) generality, and (3) productivity. At this point, we do not
quantify these properties but rather rate them according to their general perception as
follows:

Performance denotes the run time of a program executed on a certain architecture.
That is, which performance can be achieved using a certain programming language
and how it is processed, i.e., whether it is compiled or interpreted? A compiler
analyses an entire program and typically generates machine code that is directly
executable by a processor, whereas an interpreter takes only a single instruction
as input at a time and execute that instruction. An approach based on compilation
is thus typically faster than one based on interpretation.

Generality, sometimes also denoted as expressiveness, denotes how rich the vocabulary
and how powerful the syntax of a language is with respect to its versatility. Put
differently, is it a general-purpose programming language applicable for a broad
range of applications or is the language specialized for a certain application
area? Even very specialized and restricted programming languages might be
Turing complete8—however, it is questionable if it makes sense to spend great
programming effort in order to describe an application of a different domain, and
it goes along with the next property (productivity).

Productivity denotes the required programming effort to obtain a functionally correct,
executable implementation. It corresponds to the variety of available high-level
language constructs and programming abstractions. That is, productivity does not
only include the development time or number of Lines of Code (LoC) but also the

8Turing completeness or computational universality denotes in the context of a programming language
that the language can be used to simulate any single-taped Turing machine.

23

3. Domain-specific Computing

Performance

Generality

Productivity

C /C++

Ruby

Matlab

Domain-specific Languages

Figure 3.1: Triangle of the programming language landscape—a compromise between
performance, generality, and productivity. A few popular programming languages are
classified exemplarily.

time spent for finding errors in a program. Obviously, the probability for errors,
and thus the debugging effort, might increase with the length of a program.

The three aforementioned properties span a triangle of the programming language
landscape. It is visualized in Figure 3.1 and a few well-known programming languages
are classified.

Next, I give a brief introduction to domain-specific languages, followed by three
domain-specific approaches that I have investigated in the context of this habilitation
treatise.

3.1 Domain-specific Languages

Already in the 1960s, researchers, such as Mark I. Halpern [50], James Martin [93], and
Jean E. Sammet [126], discussed the desire for machine independence—in the context
of writing computer programs in machine or assembly languages accompanied by
portability issues (e.g., number formats and precision, integration of storage and I/O
devices)—as well as problem orientation of programming languages.

24

3.1. Domain-specific Languages

In 1967, James Martin wrote in his textbook Design of Real-Time Computer Systems
in the context of man-machine interfaces about the future of programming languages:

“We must develop languages that the scientist, the architect, the teacher,
and the layman can use without being computer experts. The language for
each user must be as natural as possible to him. The statistician must talk
to his terminal in the language of statistics. The civil engineer must use the
language of civil engineering. When a man learns his profession he must
learn the problem-oriented languages to go with that profession.

If we give teachers throughout the world the right computer language for
them, they will build libraries of teaching programs. If we give circuit
designers the right language for them, they will make computers design
circuits. If we give the medical profession the right language, they will give
a doctor far more information at his fingertips than one individual could
ever have today.” ([93, pp. 89f.])

Shortly afterward, Jean E. Sammet wrote in her textbook Programming Languages:
History and Fundamentals:

“The term problem-oriented … any language which is easier for writing
solutions to a particular problem … .” ([126, p. 21])

From these postulations, the idea follows to take advantage of the knowledge being
inherent in a particular problem area or field of application, i.e., a certain domain, in
a well-directed manner and thus, to master the complexity of the before-mentioned
heterogeneous systems. Such domain knowledge can be captured by reasonable ab-
stractions, augmentations, and notations, e.g., libraries, Domain-Specific programming
Languages (DSLs), or combinations of both (e.g., embedded DSLs implemented via tem-
plate metaprogramming [131, 148]). On this basis, patterns can be utilized to transform
and optimize the input description in a goal-oriented way during compilation, and,
finally, to generate code for a specific target architecture. Thus, DSLs have a high
productivity plus typically also a high performance (see Figure 3.1).

While more useful than ever before, DSLs are not new in the programming language
landscape—and probably already came across any of us. Widely-used examples include
query languages for accessing and manipulating relational databases (e.g., Structured
Query Language (SQL) [31]), application programming interfaces for drawing 2D and
3D graphics like OpenGL [132], languages such as MATLAB [105, 53] for doing math,9
hardware description languages like VHDL [7], or languages for the preparation of
text documents, such as LATEX [81] with which this treatise was typeset. But also away

9The association of MATLAB with a math language seems naive. More precisely, it started as an
array programming language in the late 1970s and evolved since then to a multi-paradigm language
(incorporating concepts of array, functional, imperative, procedural, and object-oriented programming).

25

3. Domain-specific Computing

from engineering and computer sciences, there have been applications in other areas,
e.g., pig farming [99], finances [114, 40], or landscape ecology [42]. In addition to
the mentioned increased program development productivity, one can infer another
valuable DSLs property from the above languages, namely to ease the communication
with domain experts because a well-designed DSL offers the context and thus serves as
communication platform between the domain expert (i.e., user) and the programmer
(i.e., technology expert) [94, 39].

3.1.1 Definition

In literature, several definitions have been proposed for the term DSL. For example,
Arie van Deursen et al. propose the following definition:

“A domain-specific language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and ab-
stractions, expressive power focused on, and usually restricted to, a partic-
ular problem domain.” ([149, p. 1])

Marjan Mernik et al. write in their survey:

“Domain-specific languages (DSLs) are languages tailored to a specific
application domain. They offer substantial gains in expressiveness and ease
of use compared with general-purpose programming languages in their
domain of application.” ([100, p. 1])

Martin Fowler proposes in his textbook Domain-Specific Languages the following defini-
tion:

“Domain‐specific language (noun): a computer programming language of
limited expressiveness focused on particular domain.” ([39, p. 27])

All three definitions above have in common that they refer to programming languages
tailored to a certain problem domain, and are of limited/restricted expressiveness. Typi-
cally, DSLs adhere to the following properties.

• A programming language for a particular field of application or domain,

• Offers appropriate abstractions and notations,

• Typically, small (i.e., restricted in number of notations and abstractions), does not
necessarily have to be Turing complete,

• Limited expressiveness, i.e., less expressive than a general-purpose programming
language,

26

3.1. Domain-specific Languages

• Rather declarative than imperative,

• Nature of a programming language, i.e., expressiveness should not be limited by
the number of individual expressions but rather by how these expressions can be
combined logically.

There are many synonyms for the term DSLs in the literature, they have also been called:
Specification languages [29] in the context of application generators, little languages [12],
micro-languages, minilanguages in the Unix world [120, pp. 183ff.], task-specific program-
ming languages [109, p. 27, 75, 72], Very High-Level programming Languages (VHLLs)
that were used often for rapid software prototyping and scripting10 [24, 154], special
purpose languages [153, p. xix], or languages for specialized application areas [153, p. xix,
13, p. 17], for instance in the context of the APT programming language [123] for
programming CNC (Computer Numerical Control) machines.

3.1.2 Classification of DSLs

One distinctive feature of a DSL is whether it is textual or graphical. A textual DSL
contains typical constructs of textual programming languages (expressions, operators,
etc.), while geometric forms (such as lines, arrows, and shapes) are used in a graphical
DSL in order to express intent. Examples of graphical DSLs [47, C2] include the Unified
Modeling Language (UML) [97, 18], LabVIEW [3], MATLAB Simulink [16], as well
as visual programming languages, such as Scratch [90] or Google’s Blockly [41] for
educational purposes of pupils.

In the following, I focus on textual DSLs even though the next attribute is also
applicable to graphical DSLs. According to this property, DSLs can be mainly grouped
into two categories, namely internal and external ones.

An external DSL denotes a programming language defined entirely new. That is, its
syntax11 and semantics12 can be freely defined—however, often it is inspired by existing
programming languages. The effort for designing an external DSL is relatively high but
there exist tools that aid the development process (e.g., parser generators [86, 61, 101,
2, 112], metaprogramming [65, 67, 57, 117] and transformation frameworks [64, 36]).
Well-known examples of external DSLs are SQL [31], awk, and regular expressions.

An internal DSL uses in some manner a general-purpose programming language,
referred to as host language. The DSL utilizes the same syntax as its host language, i.e.,
it inherits the generic language elements of the host language (conditionals, functions,
loops, etc.). Thus, the existing compiler and interpreter of the host language can be

10Nowadays, scripting languages, such as Perl, Python, and Ruby, are simply denoted as high-level
programming languages.

11Syntax denotes the structure/grammar of a programming language.
12The semantics of a programming language is about the meaning, i.e., there could be syntactically

well formed programs but that are not semantically defined (e.g., using uninitialized variables).

27

3. Domain-specific Computing

Domain-specific

Language

Domain-specific

Extensions

Host Language

Domain-specific

Language

Domain-specific

Extensions

Host Language

Figure 3.2: Common forms of internal DSLs. Extension (on the left side of the figure):
The entire set of language features of a host language can be utilized and is augmented
by domain-specific extensions. Reduction (shown on the right side): Here, also the host
language is extended by domain-specific language constructs. However, only a certain
subset of the host language’s elements can be used, i.e., the it is restricted.

employed for transforming and executing a DSL program, respectively. That is, the DSL
is embedded into another language, therefore, the terms internal DSL and embedded DSL
are interchangeable. An internal DSL may solely provide extensions to the employed
host language, i.e., the entire host language with all its features is made available to the
user. While such an extension is compelling (see Figure 3.2 left)—an acquired general-
purpose language can be entirely used—it carries the inherent danger of expressing
too many program parts by constructs that might be difficult to analyze by a compiler,
or the generated target code might be inefficient. Internal DSLs, therefore, often hide
constructs of the host language that are not relevant to the domain or difficult to analyze
by a compiler. For instance, if C is considered as host language, often an embedded
DSL forbids constructs such as pointers or recursions. This technique is called reduction
and is illustrated in Figure 3.2 on the right. Finally, the DSL ends up being a restricted
host language blended with new domain-specific augmentations. Common extension
techniques to express domain knowledge in an internal DSL are libraries (data types,
methods), annotations, or macros.

In comparison, external DSLs are typically more flexible and expressive than internal
DSLs, however, at higher implementation cost. The richer expressiveness of external
DSLs is not only reflected at the language level but also offers opportunities for domain-
specific Intermediate Representations (IRs)—far beyond Abstract Syntax Trees (ASTs) as
commonly used in compilers for general-purpose languages. Thus, powerful semantic
models can be designed, e.g., a hierarchy of objects in the case of a principally declarative
DSL, or finite state machines in the case of a DSL for automation technology.

28

3.2. Domain-specific High-level Synthesis

3.2 Domain-specific High-level Synthesis

Research in the areas of loop parallelization (see also Section 2.3) and synthesis of
nested loop programs to dedicated hardware accelerators is deeply rooted at the Chair
of Hardware/Software Co-Design and also in my scientific career. In this course of
research, we have developed PARO [P96], which is a High-Level Synthesis (HLS) tool
for a particular class of loop algorithms, based on the mathematical foundation of the
polyhedron model [37]. The development of PARO started13 during my Ph.D. thesis [T1].
The considered loop programs belong basically to the class of affine loop nests [33], i.e.,
(1) all loop bounds and iteration-dependent control conditions must be expressible as
an affine expression in the containing loop iteration variables, constants, or parameters
(that is, fixed latest at loop entry), and (2) all array references (respective memory
accesses) can be represented as affine functions in the loop iteration variables and fixed
parameters. Furthermore, our considered algorithm class, the class of so-called dynamic
piecewise linear/regular algorithms (DPLA/DPRA) [P118, T1], can also account for a
specific type of dynamic data dependences. DPLAs can be seen as a descendant of the
notion of recurrence equations introduced by RichardM. Karp et al. in the form of a system
of uniform recurrence equations (SURE) [62] and a multitude of extensions thereof [116,
145, 158, 147, 143, 124, 34, 133], respectively. The class of DPLAs is implemented by the
PAULA language [P97, T1] that serves as input to the PARO HLS tool [P96]. An abstract
view of PARO’s design flow is shown in Figure 3.3. Based on a given algorithm in PAULA
notation, various source-to-source compiler transformations [108, 2] and optimizations
can be applied using the design tool. Amongst others, these include constant and
variable propagation, common subexpression elimination, loop perfectization [157], dead
code elimination, strength reduction of operators, (partial) unrolling of loops and reductions,
affine transformations [156] and loop partitioning based on the polyhedron model [37].
The heart of PARO is built on allocation and scheduling methods using mixed integer
linear programming, as described in [T1]. Here, latency optimal schedules under
resource constraints are derived before ultimately a dedicated hardware accelerator is
synthesized.

PAULA [P97, T1] is not a DSL but a functional programming language, which is
well suited for modeling iterative, multi-dimensional, data-flow dominated algorithms.
In this sense, it is suitable for many application areas that can be expressed by systems
of recurrence equations (linear algebra, digital signal processing, image processing,

13It should be mentioned that the terms PARO as a design system and PARO methodology are used
considerably longer. A distinction from this older works follows: Marcus Bednara and Jürgen Teich [11,
10] present a design system, which is based on the CASPAR design system [138]. Around this system, a
number of loosely-coupled tools for the parallelization of C code [15], scheduling and exploration [T2,
P127], and hardware synthesis [10] were build. Scheduling is restricted to projection as global allocation.
Also, the hardware generation is restricted to projection along a vector in the first direction (that means,
the first iteration variable denotes the time axis).

29

3. Domain-specific Computing

Code for Controller

Code Generation

VLIW Code for each PE
Configuration of Interconnect

TCPA Configuration

TCPA

Architecture
 Model

High-Level Transformations

Localization Output

Normal Form

Partitioning

Affine Transformations

Loop Perfectization

Loop Unrolling

Expression Splitting ...

Space-Time Mapping

Allocation Scheduling Resource Binding

Hardware Synthesis

ControllerProcessor Element

Processor Array I/O Interface

HDL Generation

Simulation

Test Bench
Generation

Simulation

Algorithm (PAULA)

Hardware Description (VHDL)

FPGA

Front End

Back End

Simulation

Figure 3.3: PARO design flow. Figure adapted from [T1, p. 151]. For more details on
PARO, see [P96, T1]. Noteworthy, PARO’s front end also forms the basis for TCPA
code generation [J18, J17] (back end on the lower left in the figure) as described in
Section 2.3.

combinatorial problems, neural networks, etc.). Image processing was always a strong
use case for PARO [T1, P74, P43]. Multi-dimensional reductions, such as summations,
which are also handywhenmodeling two-dimensional convolutions in image processing,
are one rationale for this. However, there were neither specific transformations in
PARO nor language constructs in PAULA available for the domain of image processing.
Similarly, albeit commercial HLS tools [C2] became recently very popular and versatile
for FPGAs, they still require in-depth hardware design knowledge to obtain efficient
implementations, and there exist hardly any domain-specific extensions. Exceptions
are Xilinx Vivado HLS and the Intel/Altera FPGA SDK for Open Computing Language
(OpenCL). The first offers a partial implementation of the Open Source Computer
Vision (OpenCV) library for image processing and computer vision. The latter is per
se—thanks to its OpenCL nature—suited for modeling image processing applications.

3.2.1 Goals for Domain-specific HLS

In the context of domain-specific HLS, the primary goal is to analyze and provide
programming abstractions to ease the specification of image processing applications.

30

3.2. Domain-specific High-level Synthesis

Consequently, readability, error-proneness, and thus productivity can be improved
significantly. The concepts should apply to both commercial tools, such as Xilinx
Vivado HLS [C5], and academic frameworks, such as PARO [P96].

3.2.2 Approach

Other than image processing implementations in software following the control-driven
von Neumann execution model [43], hardware designs have to be developed very differ-
ently to be efficient. Hardware designs should follow the dataflow-driven computing
paradigm, where the entire ILP is explicitly represented, e.g., as a dataflow graph14 [92,
102, 141]. Custom tailored hardware accelerators implemented as dataflow architec-
ture [5, 113] can maximally benefit (within a space budget) from the width and height of
a layered15 data flow graph. Then, the width of a layer denotes the maximum number
of operations that can be executed in parallel, i.e., the ILP. The height of the graph
corresponds to the depth of a streaming pipeline of operations. In addition, the concept
of streaming can be considered at the higher abstraction level of communicating tasks,
represented again by a DAG, where nodes correspond to sub-algorithms (a.k.a. tasks,
compute kernels), and edges denote data dependences (i.e., communication of data typi-
cally—but not necessarily—at higher granularity, e.g., entire frames in the case of image
processing). GPU computing follows a buffer-wise execution concept [P31], where
one compute kernel after the other is executed, and buffers serve as synchronization
points (so-called host barriers) by reading from and writing to them sequentially. To
achieve highly efficient FPGA implementations, the art here is to transform the buffer-
wise execution model into a structural description suitable for streamed pipelining
and to exploit the distributed on-chip storage capabilities (e.g., Block Random Access
Memories (BRAMs), flip-flops) for data reuse in later iterations. In FPGAs, a widely
used approach is line buffering [88, 87, P107], which is particularly beneficial for local
operators in image processing, as each pixel is accessed more than once.

In PARO, thanks to the available loop transformations and parallelization techniques
(e.g., partitioning) based on the polyhedron model as well as data flow analysis and
modulo instruction scheduling [T1], the lifetime of input variables and corresponding
line buffers are determined and generated automatically, respectively. In our previous
work when using PARO in the image processing domain, a notable fraction of PAULA
code was dedicated to image border treatment. For instance, in [P74], a 5-layered
multiresolution filter for denoising X-ray images was designed. Here, in each filter

14A dataflow graph is a Directed Acyclic Graph (DAG). That is, in the context of data flow analysis,
such as used in compiler design [108], only flow dependences exist. The nodes and edges of the DAG
represent transformational actors (e.g., operations) and data dependences (i.e., the flow of data from one
node to another one), respectively.

15A DAG is layered if its vertices can be arranged in horizontal rows, so-called layers, with the edges
generally directed downwards [56].

31

3. Domain-specific Computing

kernel, about 300 lines of PAULA code, which correspond to half of the entire kernel
code, were required to specify conditions at the image borders to realize mirroring [P74,
P37] of pixels in the case of out-of-bound accesses.

As one contribution of [P37], we have introduced a new high-level transformation
to facilitate border handling in high-level synthesis for FPGAs easily. Instead of writing
dozens of code lines manually—which is potentially error-prone—just a single line
specifying the input variable and type of border treatment can be used to produce the
corresponding PAULA code automatically. Multi-dimensional reductions for median
computations and sorting in general are another contribution. Both types of reductions
are realized by generating throughput-optimized and highly parallel systolic arrays [79,
136].

In the case of Vivado HLS, a template-based approach is employed to specify memory
components, such as line buffers and memory windows in dependence on the image
width and size of local image operators [P33]. Moreover, architecture templates for
loop coarsening and border handling are provided [P9].

3.2.3 Results

In the case of PARO, we compared the required lines of PAULA code with the LoC of a
functional equivalent implementation for C-based HLS. Here, we could demonstrate
that the proposed domain-specific augmentations can increase productivity by one
to two orders of magnitude [P37]. Furthermore, the generated implementations are
in an equal range for Quality of Results (QoR) (i.e., FPGA resource utilization and
clock frequency). The high productivity of our proposed domain-specific HLS approach
was proven by utilizing it for the design of a novel algorithm for image impulse noise
removal, which has a superior image quality compared to other state-of-the-art denoising
methods [J2].

In the context of commercial C-based HLS, we designed a library to support the
productive development of hardware accelerators for stream-based image processing
applications and have shown that these accelerators can achieve a higher QoR at an
equal coding effort than Xilinx OpenCV implementations [P33]. For the architecture
templates (for loop coarsening in combination with border handling), which we also
designed for Xilinx Vivado HLS, we could demonstrate an excellent scalability while
I/O bandwidth and FPGA resources are available [P9]. Also, the synthesis results
show that the proposed coarsening architecture uses 32% fewer registers for a 5-by-5
convolution with a coarsening factor of 64 compared to previous works, whereas the
proposed border handling architectures facilitate a decrease in the Look-Up Table (LUT)
usage by 36%.

32

3.2. Domain-specific High-level Synthesis

3.2.4 Domain-specific HLS Key Papers

In the following, I briefly classify the role of the key papers related to domain-specific
HLS, which are part of this cumulative habilitation treatise. Reprints of these papers
are available in Appendix C.

ASAP ’14

page 251ff.

Schmid, Tanase, Hannig, Teich, Bhadouria, and Ghoshal. “Domain-specific aug-

mentations for high-level synthesis”

[P37]

The paper introduces domain-specific augmentations to our PARO HLS
tool [P96]. For the image processing domain, both a new high-level
transformation to perform several types of border treatment (e.g., con-
stant, clamp, mirror, mirror 101) is provided and domain-specific lan-
guage extensions for sorting and median computations over polyhedral
iteration domains are introduced to the PAULA language [P97]. The
proposed approach is evaluated for several image processing algorithms
and compared against C-based commercial HLS tool.

FPL ’14

page 257ff.

Schmid, Apelt, Hannig, and Teich. “An image processing library for C-based

high-level synthesis”

[P33]

This paper presents a systematic approach for designing image pro-
cessing accelerators in FPGA technology. For the domain of image
processing filters, we developed concepts for (a) memory hierarchy, (b)
causality and border handling, as well as (c) filter assembly (e.g., image
pyramids). These concepts were implemented as a lightweight library
to support productive design of FPGA accelerators for stream-based
image processing using C-based HLS (e.g., Vivado HLS framework [C5]
from Xilinx) and compared against state-of-the-art implementations in
OpenCV [111] with respect to area cost, performance, and development
effort (productivity).

Springer JSPS ’17

page 261ff.

Bhadouria, Tanase, Schmid, Hannig, Teich, and Ghoshal. “A novel image im-

pulse noise removal algorithm optimized for hardware accelerators”

[J2]

The article in Springer’s Journal of Signal Processing Systems under-
lines the powerfulness and productivity of the augmentations specific
for image processing as introduced in our ASAP ’14 paper [P37].
Here, we apply our approach to design a novel image impulse noise
removal algorithm and synthesizing different FPGA implementations.
The proposed noise removal algorithm relies on iteratively reducing

33

3. Domain-specific Computing

the detection criteria, which refers to classifying a pixel as noisy pixel
or noise-free pixel.

ASAP ’17

page 279ff.

Özkan, Reiche, Hannig, and Teich. “Hardware design and analysis of efficient

loop coarsening and border handling for image processing”

[P9]

The ASAP ’17 paper presents two novel architectures for loop coars-
ening that use significantly less registers than previous work. Also,
for the first time, we extended the problem of image border handling
to loop coarsening. Depending on the input parameters (e.g., size of
local operator, coarsening factor, border handling mode), we conducted
a systematic analysis of latency and hardware costs. Based on these
models, we provided an algorithm that selects the best coarsening and
border handling architecture for the given parameters of a local op-
erator. Finally, the paper is rounded off with implementation results
obtained by Vivado HLS.

The work on domain-specific HLS was conducted with Moritz Schmid during his
Ph.D. [128], helped by doctoral researcher Alexandru Tanase in the case of PARO
and PAULA. This research was additionally spurred and complemented by Vivek Singh
Bhadouria who contributed image processing knowledge during his four-month stay as
visiting researcher in my group. Nicolas Apelt developed the library for stream-based
image processing on top of Xilinx Vivado HLS during his master’s thesis. The analysis
and design of efficient loop coarsening and border handling architectures for the domain
of image processing was mainly carried out together with doctoral researcher Akif
Özkan, assisted by doctoral researcher Oliver Reiche.

3.3 HIPAcc: The Heterogeneous Image Processing Acceleration

Framework

Modernmedical image processing has come a longway since the first hazy “Röntgen-ray”
radiograms as produced in 1895, yet X-rays are still one of the most important imaging
techniques for a broad variety of applications. One exacting scenario is interventional
angiography, which visualizes the inside of blood vessels (arteries, veins, etc.) and heart
chambers by injecting a contrast agent and taking X-ray images. During an intervention,
motion images in real time are required to guide catheters and minimal-invasive vessel
treatments (stenosis, embolization, aneurysm,16 etc.) interactively. The major problem
still facing medical images is the poor Signal-to-Noise Ratio (SNR) due to limited dosage

16Stenosis denotes an abnormal narrowing of a blood vessel. An aneurysm is a balloon-like swelling
of a vessel wall filled with blood. Embolization is a passage where a free mass travels through the
bloodstream and may block a vessel ultimately.

34

3.3. HIPAcc: The Heterogeneous Image Processing Acceleration Framework

and exposure for health reasons [80]. Therefore, the use of digital image processing
algorithms to reduce the present noise along with preservation of visual structures is
an essential field of research and just about to inhale the performance of available high-
end systems. To meet the high arithmetic effort in combination with strict real-time
requirements of such applications, sophisticated parallel implementations on multi-
Digital Signal Processor (DSP) or FPGA systems have been used. The inhibition threshold
to port an application to an entirely new class of target architectures, such as GPUs, is
correspondingly high—and when is the appropriate time to make such a fundamental
change of course? This tricky situation creates the desire to design algorithms only once
in a domain-specific abstract way and to have compilers and generators that produce
efficiently executable code for a broad variety of parallel architectures. And, in the case
of new processors, only another compiler back end has to be added while the entire
code base can remain untouched.

3.3.1 HIPAcc Goals

Themajor goals of HIPAcc are to provide a DSL for image processing and a corresponding
compiler framework for parallel processor architectures, including accelerators, such as
GPUs and FPGAs. The DSL should offer means to specify image processing applications
in an intuitive, expressive, and very compact manner to increase productivity (i.e.,
to reduce both development and debugging time). The DSL should not only be for
the medical domain but also suitable for image processing and computer vision tasks,
such as used in robotics or Advanced Driver Assistance Systems (ADASs). Further, the
language should abstract completely from parallelization, low-level, and target-specific
implementation details, hereby, algorithm development and implementation can be
completely decoupled and existing DSL programs can be easily re-targeted to new
processor architectures by just developing an appropriate compiler back end. Domain
knowledge captured in the DSL as well as hardware knowledge of a target processor
architecture should be utilized in the best possible way to generate highly efficient
implementations.

3.3.2 HIPAcc Approach

The design of HIPAcc’s DSL started with a domain analysis, which includes a careful
examination of the required algorithmic type of operations and operators as well as
building blocks characteristic to the domain of digital image processing. A vast body
of work for image processing algorithms and classifications exists in literature, e.g.,
[66, 20, 8, 125] to name only a few. John C. Russ et al. [125] classify image processing
algorithms based on their different purposes, such as image acquisition, image correction,
image enhancement, or measuring and filtering images in the frequency domain. Other
authors [66, 20, 8] group image processing methods based on which input data (one

35

3. Domain-specific Computing

or multiple pixels,17 the entire image or even multiple images) are used to produce an
output (image). HIPAcc adopts the notion of Reinhard Klette et al. [66] to classify image
processing in the spatial domain into point operators that compute one output pixel
based on one input pixel (e.g., color-to-grayscale conversion, contrast enhancement),
local operators that process also neighboring pixels to compute one output pixel (e.g.,
Gaussian blur for smoothing, Sobel filter for edge detection, median filter for noise
removal, etc.), and global operators that consider the entire input (e.g., global reductions
such determination of the minimum or maximum image intensity, image histogram
calculation as representation of the tonal distribution). HIPAcc’s languages components
were built upon this foundation and include objects for storing digital images and
accessing them (by so-called accessors) or to operate on image pyramids (i.e., different
resolutions of an image), declarative language constructs for boundary treatment (i.e.,
different modes for handling out-of-bounds accesses in the case of local operators), as
well as interpolation modes in the case the computed and contributing images are of
different size. Further, language elements, such as masks and convolutions, are offered
to define point and local operators independent of the iteration space (i.e., size of an
output image) as well as global reduction operators.

HIPAcc’s DSL is embedded into C++ and its components are implemented in form
of C++ classes. Computations on images are as well encapsulated in C++ classes, which
inherit from base classes provided by the framework. The decision for a C++-embedded
DSL is twofold: (a) programs can be compiled with any C++ compiler, this allows to mix
DSL programs with arbitrary C/C++ code as well as to port applications incrementally,
and (b) no new compiler front end (parser, AST, etc.) has to be developed—HIPAcc
utilizes Clang,18 a C-based language family front end for the LLVM compiler [85].

Instead of directly generating machine code for each different target processor
architecture, HIPAcc translates the DSL source program into parallel and optimized
source code written again in a C-like (e.g., CUDA,19 OpenCL, or OpenMP parallel C++,
vector intrinsics) or other high-level programming language. This source-to-source
translation is implemented within Clang, an overview of the HIPAcc framework is
depicted in Figure 3.4. All analyses, optimizations, and target code generation are based
on Clang’s IR [2, 108], the AST. The domain knowledge is captured in the nodes of the
AST and further operations are triggered depending on their type, which correspond
to (a) declarations and definitions of HIPAcc DSL classes, (b) statements that define
objects in the DSL, and (c) expressions involving DSL objects [J9]. In addition to the
domain knowledge, hardware knowledge of the target architectures is available, and
thus, platform-specific optimization strategies can be applied. For instance, in the case of
a certain GPU, a tailor-made adaptation of the generated code to the memory hierarchy.

17Pixel, a neologism for picture element.
18https://clang.llvm.org
19Initially, CUDA was an acronym for Compute Unified Device Architecture, however, later Nvidia

dropped its usage.

36

https://clang.llvm.org

3.3. HIPAcc: The Heterogeneous Image Processing Acceleration Framework

DSL embedded

into C++

Source-to-Source

Compiler

Clang/LLVM

Domain

Knowledge

Architecture

Knowledge

CUDA

(GPU)

OpenCL

(x86/GPU)

OpenCL20

(TI DSP)

C/C++

(x86)

Renderscript

(x86/ARM/GPU)

OpenCL

(Intel/Altera FPGA)

Vivado C++

(Xilinx FPGA)

CUDA/OpenCL/Renderscript Runtime Library AOCL VivadoHLS

Figure 3.4: Overview of the HIPAcc framework and its target architectures.

Or, in the case of FPGAs as target architecture, the IR is transformed into a streaming
pipeline (see Section 3.2.2) before HLS code (C++ tailored for Xilinx Vivado HLS or
OpenCL for Intel/Altera FPGAs) is emitted.

3.3.3 HIPAcc Results

We have applied domain-specific computing techniques to the area of image processing.
The proposed techniques lead to significant advantages with respect to productivity,
portability, and performance.

Productivity: HIPAcc’s DSL and source-to-source compilation framework can signif-
icantly increase productivity by one to two orders of magnitude [P61, P41, J12, J9]
(e.g., quantified by LoC or other well-known software metrics [44, 51] when comparing
DSL code with generated high-level code for a target architecture).

Portability: HIPAcc offers a wide range of code generators for different target ar-
chitectures (see Figure 3.4), including manycore architectures, such as GPUs or Intel’s
Xeon Phi [P61, P60, P56, J12, J9], Intel vector/SIMD instruction sets (up to SSE4.2
and AVX2) [P11], embedded GPUs, such as used in smartphones and tablet comput-
ers [P41, J9], and FPGAs [P31, P34, P26, P13, J5, P3]. Generating code for such
a broad spectrum of architectures, starting from one and the same DSL program, is un-
rivaled. In addition, both the DSL and the source-to-source compiler are open-source,21
and thus can be adapted by other researchers.

20HIPAcc’s OpenCL back end for DSPs from Texas Instruments (TI) was developed for an industrial
cooperation partner to evaluate TI’s multicore DSP+ARM KeyStone II System-on-Chip (SoC) and the
corresponding OpenCL compiler. This back end is not publicly available.

21http://hipacc-lang.org

37

http://hipacc-lang.org

3. Domain-specific Computing

Performance: HIPAcc’s source-to-source compiler generates highly efficient parallel
implementations. In the case of manycore architectures (i.e., high-end GPUs), we could
demonstrate to beat hand-written low-level implementations (e.g., CUDA codes in the
OpenCV library and in the Nvidia Performance Primitives (NPP) library22) [J12, J9].
In the case of embedded GPUs, we demonstrated also that HIPAcc performs better
than corresponding pre-implemented and hand-tuned versions [P41]. In the case of
HIPAcc’s vectorization back end, we are on a par with other state-of-the-art compilers
or even better for many benchmark algorithms [P11]. Regarding HIPAcc’s FPGA back
ends, we could outperform Xilinx Vivado HLS OpenCV implementations [P31], and
are close to those of hand-optimized Altera OpenCL examples [P13]. Beside pure
performance numbers, we could also ascertain an excellent energy efficiency when
comparing FPGA implementations against other parallel target architectures [J5].

3.3.4 HIPAcc Key Papers

In the following, I briefly classify the role of the key papers related to HIPAcc, which are
part of this habilitation treatise. Reprints of these papers are available in Appendix C.

IEEE TPDS ’16

page 289ff.

Membarth, Reiche, Hannig, Teich, Körner, and Eckert. “HIPAcc: A domain-

specific language and compiler for image processing”

[J9]

This article can be considered as the HIPAcc reference paper. It sum-
marizes and unifies the core research results by providing a thorough
description of HIPAcc’s language design and components, as well as of
the compiler framework with an emphasis on kernel code generation
and optimization for GPUs. Productivity gains are quantified using
Halstead’s complexity measures [44, 51]. A variety of image process-
ing applications is implemented in HIPAcc and for several manycore
architectures, ranging from embedded to high-end GPUs from different
vendors as well as Intel’s Xeon Phi, highly efficient code is generated.
Finally, HIPAcc’s excellent performance results are underscored by com-
paring it against other state-of-the-art approaches (e.g., Halide [115],
OpenCV [111]).

DATE ’14

page 305ff.

Membarth, Reiche,Hannig, andTeich. “Code generation for embeddedhetero-

geneous architectures on Android”

[P41]

The DATE ’14 paper deals with code generation for embedded Hetero-
geneous System Architecture (HSA) platforms, such as MPSoCs as used
in smartphones and tablet Personal Computers (PCs). Starting from
an abstract high-level representation in HIPAcc, a code generator for

22https://developer.nvidia.com/npp

38

3.3. HIPAcc: The Heterogeneous Image Processing Acceleration Framework

both Renderscript and Filterscript on Android platforms is presented
for the first time. With HSA, CPU and GPU share the same physical
memory. This allows to avoid extensive memory transfers and enables
the employment of heterogeneous resources where the same data has
to be accessed frequently from different compute resources.

CODES+ISSS ’14

page 311ff.

Reiche, Schmid, Hannig, Membarth, and Teich. “Code generation from a

domain-specific language for C-based HLS of hardware accelerators”

[P31]

In the CODES+ISSS ’14 paper, FPGAs are introduced as target to HIPAcc.
To achieve this objective, we proposed a model transformation from the
buffer-wise execution model as typically used in GPUs into a structural
description in form of a streaming pipeline tailored for FPGAs. In addi-
tion, several FPGA-specific optimizations (e.g., conversion of floating
to fixed point for mask coefficients, optimization of loop counter vari-
ables, mapping of vector data types) are proposed. Eventually, source
code suited for C-based HLS is emitted instead of directly generating a
structural description in a Hardware Description Language (HDL), The
proposed approach is evaluated by assessing performance and power
requirements of the generated FPGA designs in contrast to (embedded)
GPUs.

Elsevier JPDC ’14

page 321ff.

Membarth, Reiche, Schmitt, Hannig, Teich, Stürmer, and Köstler. “Towards a

performance-portable description of geometric multigrid algorithms using a

domain-specific language”

[J12]

This article extends HIPAcc’s language range by facilitating multiscale
modeling, i.e., image pyramids [25] and multiresolution approaches [80,
P74] as used in image processing, but also known as two-dimensional
geometric multigrid methods based on stencil computations [22, 49]
in the domain of numerical analysis. Only image data for the finest
pyramid level has to be provided, all other levels are managed automat-
ically by the HIPAcc framework while the programmer can still specify
how the pyramid is traversed and which operations are performed
at different levels. That means, rather than just offering template ob-
jects, the nature of a programming language is preserved, and typical
traversals for construction of pyramids in image processing as well
as the V-cycle and W-cycle for multigrid stencil computations can be
specified. Our proposed approach provides portability across different
architectures and allows to achieve competitive performance compared
to Halide [115] as well as hand-tuned implementations.

39

3. Domain-specific Computing

FPL ’16

page 333ff.

Özkan, Reiche, Hannig, and Teich. “FPGA-based accelerator design from a

domain-specific language”

[P13]

Focus of the FPL ’16 paper is Altera’s Software Development Kit (SDK)
for OpenCL in the context of image processing. First, it is shown
that best programming practices and the data-parallel programming
paradigm as used for GPUs are not well suited, and thus immense
code modifications have to be applied in order to obtain efficient FPGA
implementations. This findings are employed in the second major
contribution of the paper, namely a HIPAcc back end for generating
optimized OpenCL code specific to the peculiarities of Altera FPGAs.
Implementation results for several image filters as well as a comparison
of Altera’s hand-optimized example designs with those generated by
HIPAcc DSL programs of the same algorithms are provided and demon-
strate that HIPAcc’s generic approach can lead to results close to those
of Altera. Furthermore, it is shown that server-grade GPUs can be
outperformed in terms of throughput for a wide variety of image filter
algorithms.

Springer JSPS ’17

page 343ff.

Reiche,Özkan, Hannig, Teich, and Schmid. “Loop parallelization techniques for

FPGA accelerator synthesis”

[J5]

This article summarizes, unifies, and extends FPGA-specific paralleliza-
tion and optimization techniques as well as code generation for both
Xilinx and Altera FPGAs. A generic method for loop tiling and loop
coarsening [P20] as well as concrete back ends for generating C++ and
OpenCL code are presented, which can be further synthesized with
Xilinx Vivado HLS and Altera’s SDK for OpenCL, respectively. A com-
parison of loop tiling and coarsening, in terms of hardware utilization
and achieved throughput, for both HLS tools with varying paralleliza-
tion factors is presented. Further, an evaluation of the throughput of
HIPAcc-generated accelerators for Vivado HLS and Altera’s SDK for
OpenCL over an extensive application set is presented and compared
against implementation results of embedded and discrete high-end
GPUs.

LCTES ’17

page 369ff.

Reiche, Kobylko, Hannig, and Teich. “Auto-vectorization for image processing

DSLs”

[P11]

Based on the concept of whole-function vectorization [63], the LCTES ’17
paper proposes auto-vectorization techniques for image processing
DSLs, for the first time, in the context of source-to-source compilation.
Thanks to the regular memory access patterns (i.e., relative indexing) of

40

3.4. ExaStencils: Advanced Stencil-Code Engineering

the considered domain, the vectorization analysis can be significantly
simplified. Another contribution is the handling of mixed bit-width
data types. Here, an analysis that automatically selects the optimal
Single Instruction, Multiple Data (SIMD) width for the specified target
instruction set in order to pack native vectors into virtual vectors and
to apply on-demand type promotion is proposed. Finally, the proposed
techniques are implemented and integrated into HIPAcc, evaluated for
several pre- and post-processing image filters, and compared against
other state-of-the-art (semi-)automatically vectorizing compilers.

The work on the HIPAcc core framework, DSL definition, and code generation for (em-
bedded) GPUs was carried out with Richard Membarth during his Ph.D. [98]. Doctoral
researcher Oliver Reiche developed the Android integration, the model transformation
and optimizations for efficient FPGA designs, while the work on HIPAcc’s OpenCL back
end for Intel/Altera FPGAs was conducted with doctoral researcher Akif Özkan. The
research on domain-specific auto-vectorization was performed as well with Oliver Re-
iche, complemented by contributions from Christof Kobylko during his master’s thesis.
The research on image pyramids was a joined work that synergistically combines our
findings on the automated solving of Partial Differential Equations (PDEs) as considered
in project ExaStencils (together with doctoral researcher Christian Schmitt and project
partner Harald Köstler) with HIPAcc’s development efforts.

3.4 ExaStencils: Advanced Stencil-Code Engineering

Coming exascale computing23 will require a close co-design of application, algorithm,
and target-architecture-specific program development to unleash the tremendous per-
formance of such supercomputers. However, before-mentioned HPC systems will only
scale if the energy efficiency will considerably improve [69, 127]. One remedy for
keeping up scalability are hardware components such as accelerators (e.g., GPUs, Intel
Xeon Phi). Almost every fifth supercomputer in the TOP50024 is already (as at June
2017) equipped with accelerator/co-possessor technology. This trend will go on [69,
70, J3], and consequently, the node structure inside an exascale computer will become
more heterogeneous, and thus challenging concerning programmability. Therefore,
new software techniques and tools supporting both algorithm and architecture-aware
program development will become vital, not only to ease application and program
development, but also for performance analysis and tuning, to ensure short turn-around
times, and for reasons of portability.

23Exascale computing refers to supercomputers that can carry out at least one exaFLOPS, i.e., 1018
FLoating-point Operations Per Second (FLOPS).

24https://www.top500.org/

41

https://www.top500.org/

3. Domain-specific Computing

Project “ExaStencils: Advanced Stencil-Code Engineering25” [R2, P35] tackles the
challenges mentioned above for the important class of stencil computations, which are
at the heart of many high-performance simulation applications in scientific computing.
Examples are simulations in astrophysics [21], geophysics [4], oceanography [71],
quantum chemistry [74], or the simulation of viscoplastic materials [78], i.e., suspensions
of particles or macromolecules (e.g., foams, gels, pastes, bio-organic fluids such as blood,
and food products such as fruit juices), as well as particle simulation in general [17].
Stencils are used to solve large systems of linear equations that may stem from the
discretization of PDEs. They are regular computations on—usually multidimensional—
structured or block-structured data grids, also known as multigrid methods [49], which
involve a hierarchy of very fine to successively coarser grids.

3.4.1 ExaStencils Goals

ExaStencils’ mission is to research and provide a unique, tool-assisted, co-design ap-
proach specific for the domain of multigrid methods based on stencil computations to
reduce the foreseen performance/productivity gap of future exascale platforms. The
project has three central objectives: (1) a substantial gain in productivity, (2) a high flex-
ibility in the choices of the stencil algorithm and target platform, and (3) the provision
and proof of scalability to reach exascale performance.

3.4.2 ExaStencils Approach

Solving above-mentioned scientific problems requires the expertise of different special-
ists, including domain experts (i.e., natural scientists), mathematicians, software as well
as hardware engineers. To best match the distinct interests and technical terminologies
of these different groups, ExaStencils’ approach [P35] captures domain knowledge for
each of these groups individually in the form of a hierarchy of tailor-made DSLs and
corresponding compiler technology following the concept of stepwise refinement [155].
Themulti-layered DSL is depicted in Figure 3.5, it is named ExaSlang [P29] and consists
of four layers. Layer 1 is the most abstract layer, targeting natural scientists and engi-
neers that have little or no experience in programming but want to define continuous
mathematical problems in the form of an energy functional to be minimized or a partial
differential equation to be solved, with a corresponding computational domain and
boundary definitions. The second layer is slightly less abstract and allows to specify
the problem in a discretized form. It is suitable for natural scientists and engineers
with the appropriate knowledge as well as mathematicians. Based on the discretized

25Project ExaStencils is funded by the German Research Foundation (DFG) as part of the Priority
Programme 1648 “Software for Exascale Computing”. The first funding period from January 2013 to
December 2015 has been completed. The project is in its second funding period from January 2016 to
December 2018.

42

3.4. ExaStencils: Advanced Stencil-Code Engineering

abstract
problem

formulation

concrete
solver

implementation

Layer 1:
Continuous Domain & Continuous Model

Layer 2:
Discrete Domain & Discrete Model

Layer 3:
Algorithmic Components & Parameters

Layer 4:
Complete Program Specification

TargetP
latform

D
escription

Natural
scientists

Mathe-
maticians

Computer
scientists

Figure 3.5: Multi-layered DSL approach of ExaSlang. Figure reprinted from [P29, p. 3].

problem of Layer 2, the third layer adds modeling of algorithmic components, settings,
and parameter values. At this layer, the multigrid method becomes visible for the first
time. Here, it is possible to define smoothers and to modify the multigrid cycle (e.g.,
different types of V-cycles or W-cycles [C1]). Computations are specified for the entire
computational domain. Since this is already a very advanced layer regarding algorithm
and discretization details, it targets mainly mathematicians and computer scientists.
The fourth layer (ExaSlang 4) is most concrete, where user-relevant parts of the par-
allelization become accessible, data structures can be adapted for data exchange, and
communication patterns can be specified. This layer can be considered as semi-explicitly
parallel and is mainly intended for computer scientists.

While ExaSlang 4’s syntax is partly inspired by the programming language Scala [110,
P29], it and all other layers are external DSLs to offer highest expressiveness. Scala
in turn is used as framework for DSL entry, transformation, optimization, and code
generation. As a modern object-functional programming language [110], it offers
powerful concepts, such as parser combinators and pattern matching. While the former
allows the use of context-sensitive grammars, and thus, ease the specification of external
DSLs, the latter offers possibilities to specify transformations shortly and expressively.
The Target Platform Description Language (TPDL) is orthogonally available across all
layers of the functional program description (i.e., ExaSlang 1 to ExaSlang 4). It specifies
both hardware components of the target platform (e.g., CPUs, memory hierarchies,
accelerators, cluster topology) and available software (e.g., compilers or Message Passing
Interface (MPI) implementations).

On ExaSlang 4’s IR, most of the compiler transformations are performed, i.e., par-
allelization efforts, such as domain partitioning, as well as high-level and low-level
optimizations [J14], such as polyhedral optimizations [37, 76] and vectorization [77].

43

3. Domain-specific Computing

Since the order and parametrization of optimizations and compiler transformations
are not always straightforward, modularity is paramount in the compiler framework to
enable traceability and variant generation. Modularity and flexibility are realized by
organizing transformations in strategies and transactions, and keeping track of the IR’s
state in a StateManger [P29], which allows to partly revert transformations in order to
avoid re-generation and thus to speed up variant generation and exploration [J14, 46].
Afterward, the optimized IR is transformed to target source code, e.g., in C++. Finally,
this generated code is transfered to the designated hardware platform to be compiled
and executed.

3.4.3 ExaStencils Results

As an essential result of having studied different modern frameworks and DSL technolo-
gies [P38], we decided to bank ExaStencils on the programming language Scala [110].
Right after, we quickly implemented a very limited prototype to turn ExaStencils’ vision
as a first proof-of-concept into reality [J16, P35, J6]. Another milestone of ExaStencils
is the DSL design, especially the details on ExaSlang 4, presented in [P29]. Moreover,
also in [P29], we presented our DSL-based optimization and transformation frame-
work for generating code variants. Finally, we could prove a high productivity and
scalability of our approach in [P29, C1]. Regarding productivity, we compared the
LoC of ExaSlang 4 DSL code with the generated C++ code and obtained gains between
a factor of 30 to 165. Concerning scalability, we could showcase in [P29] that our
generated code scales up to the complete JUQUEEN cluster,26 consisting of 28,672 nodes
that correspond to a total of 458,752 cores.

3.4.4 ExaStencils Key Papers

In the following, I briefly classify the role of the key papers related to ExaStencils, which
are part of this cumulative habilitation treatise. Reprints of these papers are available in
Appendix C.

ICCSA ’14

page 379ff.

Schmitt, Kuckuk, Köstler, Hannig, and Teich. “An evaluation of domain-specific

language technologies for code generation”

[P38]

The ICCSA ’14 paper conducts a thorough evaluation of DSL technolo-
gies for code generation. It proposes several criteria for the assessment
of frameworks for the design and compilation of textual DSLs. Four
technologies are considered in the evaluation, namely the language
workbench Spoofax/IMP [64], the metaprogramming language Rascal

26http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/
Configuration/Configuration_node.html

44

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/Configuration_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/Configuration_node.html

3.4. ExaStencils: Advanced Stencil-Code Engineering

MPL [67], as well as two custom design approaches, one using C++
and the other Scala [110] as host programming language. This paper
provides the rationale for selecting Scala as host language and technol-
ogy for designing ExaStencils’ multi-layered DSL and transformation
framework, respectively.

Euro-Par ’14

page 389ff.

Lengauer, Apel, Bolten, Größlinger, Hannig, Köstler, Rüde, Teich, Grebhahn,

Kronawitter, Kuckuk, Rittich, and Schmitt. “ExaStencils: Advanced stencil-

code engineering”

[P35]

The Euro-Par ’14 presents thorough overview of project ExaStencils
and can be considered as general reference. It introduces the consid-
ered application domain of stencil codes along with having a multi-
layered domain-specific programming language and the corresponding
concept of stepwise refinement [155] and model-driven software engi-
neering [129]. In the ExaStencils workflow, at every refinement step,
dedicated and highly automated optimizations are applied, which ex-
ploit the domain-specific knowledge available at this step. Since this
paper summarizes the ideas at an early project stage, code generation
is considered only as proof of concept with a preliminary prototypical
implementation [J16, J6] in Scala [110].

WOLFHPC ’14

page 401ff.

Schmitt, Kuckuk, Hannig, Köstler, and Teich. “ExaSlang: A domain-specific lan-

guage for highly scalable multigrid solvers”

[P29]

The WOLFHPC ’14 contribution is the key paper for ExaStencils multi-
layered DSL technology. It summarizes the purpose of the four sorts of
language layers (called ExaSlang 1 to ExaSlang 4), which are tailored
for different target audiences, i.e., engineers and natural scientists,
mathematicians, and computer scientists. The most concrete layer
ExaSlang 4 follows the paradigm of procedural programming and is
described in detail by presenting its language elements, such as simple
(e.g., real, integer), aggregate (e.g., complex numbers, vectors) and
algorithmic (e.g., fields, stencils) data types, level specifications to ease
multigrid programming, control flow (e.g., if-statements and loops),
functions, as well as communication. Furthermore, the structure and
mechanisms of the transformation framework (compiler) that refine
user input from one DSL layer to another, and finally emits C++ code, is
presented. To enable both traceability and variant generation, modular
concepts, such as transformations, strategies, and transactions, are
introduced.

45

3. Domain-specific Computing

Springer LNCSE ’16

page 411ff.

Schmitt, Kuckuk, Hannig, Teich, Köstler, Rüde, and Lengauer. “Systems of par-

tial differential equations in ExaSlang”

[C1]

The LNCSE ’16 book chapter introduces additional data types such as
vectors and matrices to ExaSlang 4, which further ease the descrip-
tion of solvers for systems of PDEs. Beside these new extensions at
language level, the corresponding required modifications during the
code generation are described. Finally, the paper is rounded off by an
optical flow detection case study based on the multigrid approach [73].
Here, it is shown that the novel data types can reduce again ExaSlang 4
program sizes up to 28%. The productivity gains are up to a factor of 30
when the LoC of the generated C++ programs are set in proportion to
LoC of ExaSlang 4 programs.

The work on ExaStencils was conducted with doctoral researcher Christian Schmitt.
He significantly contributed to the evaluation of DSL technologies, the definition of
ExaSlang, and to the transformation framework, helped by Sebastian Kuckuk, Harald
Köstler, and Christian Lengauer.

46

4 Conclusions

This cumulative habilitation treatise compiles my research activities on how to tackle the
design and programming complexity challenge of heterogeneous parallel systems. The
presented design, simulation, parallelization, and compilation techniques pursue two
strategies, namely resource-aware computing and domain-specific computing, which
seem to be fundamentally different at first sight. Resource-aware computing provides
a full control loop from hardware status information to the program level and back,
whereas domain-specific computing drastically separates the concerns of algorithm
development from parallelization and low-level implementation details. However, the
two approaches have also commonalities: Both approaches scale very well for het-
erogeneous manycore systems and achieve high performance; in the case of invasive
computing, through the implementation of program variants and symbolic mappings
that can adapt to a certain number of resources at runtime. This adaptability gives
programs the possibility to react flexibly to changes in the execution environment,
such as the number of available resources, failures, power, or temperature. In the
case of domain-specific computing, both domain knowledge and hardware knowledge
are exploited to generate highly optimized implementations. In addition, an excellent
productivity can be achieved thanks to highly abstract and predominantly declarative
program specifications in the form of domain-specific augmentations (e.g., libraries or
DSLs). But also in invasive computing, there has always been the motto: “As concrete as
necessary, as abstract as possible.” That is, on the one hand, invasive computing provides
instruments, such as resource-aware programming, that allow controlling a system in a
very fine manner. On the other hand, once resource-aware programming and resource
management strategies are adequately researched (e.g., by dint of system simulation),
they can be moved progressively into compilation and runtime management, and that
is exactly what happened in the second funding phase of invasive computing. Now,
instead of specifying how many resources of which type should be claimed, the user can
specify what should be achieved. For this purpose, she or he can specify requirements,
e.g., in the case of image/video processing that the throughput should be at least 25
frames per second. But how to achieve this throughput requirement is completely up to
the compiler and runtime system. For this purpose, design-time analysis/exploration
of application mappings is combined with run-time management [151, 152]. By this
transition from an imperative to a declarative programming concept, resource-aware
computing approaches domain-specific computing. A second point of contact is the
increasing investigation and determined exploitation of parallel patterns within invasive
computing.

47

4. Conclusions

Highly parallel accelerators in combination with domain-specific languages are
more relevant than ever. For instance, Google’s Pixel 2 smartphone has besides its
high-end Qualcomm Snapdragon 835 MPSoC,27 a domain-specific co-processor, the
Pixel Visual Core that consists of 4096 tiny ALUs and will be programmable using
the domain-specific library TensorFlow Lite28 for machine intelligence (i.e., machine
learning and deep neural networks) and the DSL Halide [115] for image processing
applications. On the other extreme of computing, in data centers, accelerators are also
increasingly investigated. Examples include interconnected FPGAs as computational
accelerators in Microsoft’s Project Catapult29 [26], ASIC clouds [89], or even offered as
commercial cloud services, e.g., Amazon EC2 Elastic GPUs30 or Amazon EC2 F1 (FPGA)
Instances.31 Here, DSLs are appealing, especially, for non-hardware specialists [B3, C5]
to unleash the full processing power of such accelerator-based large-scale systems.

What’s next after Moore’s law ends? Research in computing will not stop. Quite the
opposite, new technologies and computational approaches, such as approximate com-
puting [52, 103], neuromorphic computing [106], reversible and quantum computing32

[150] will drive exciting scientific adventures and will foster research of corresponding
computing paradigms, programming languages, and compilation techniques.

27The Snapdragon 835 has eight CPU cores, a GPU with 256 ALUs, several DSPs and other dedicated
components.

28https://www.tensorflow.org/mobile/tflite/
29https://www.microsoft.com/en-us/research/academic-program/project-catapult-

academic-program/
30https://aws.amazon.com/ec2/elastic-gpus/
31https://aws.amazon.com/ec2/instance-types/f1/
32LIQUi|> http://www.microsoft.com/en-us/research/publication/liqui-a-software-

design-architecture-and-domain-specific-language-for-quantum-computing/

48

https://www.tensorflow.org/mobile/tflite/
https://www.microsoft.com/en-us/research/academic-program/project-catapult-academic-program/
https://www.microsoft.com/en-us/research/academic-program/project-catapult-academic-program/
https://aws.amazon.com/ec2/elastic-gpus/
https://aws.amazon.com/ec2/instance-types/f1/
http://www.microsoft.com/en-us/research/publication/liqui-a-software-design-architecture-and-domain-specific-language-for-quantum-computing/
http://www.microsoft.com/en-us/research/publication/liqui-a-software-design-architecture-and-domain-specific-language-for-quantum-computing/

A Bibliography

A.1 General Bibliography

[1] Gul Abdulnabi Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
Tech. rep. AITR-844. MIT Artificial Intelligence Laboratory, June 1, 1985. HDL: 1721.1/6952.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. 2nd. Addison-Wesley, 2007. ISBN: 978-0-321-48681-3.

[3] Hugo A. Andrade, Stephan Ahrends, and Simon Hogg. “Making FPGAs accessible with Lab-
VIEW”. In: FPGAs for Software Programmers. Ed. by Dirk Koch, Frank Hannig, and Daniel
Ziener. Springer, June 2016. Chap. 4, pp. 63–79. ISBN: 978-3-319-26406-6. DOI: 10.1007/978-
3-319-26408-0_4.

[4] Mauricio Araya-Polo, Félix Rubio, Raúl de la Cruz, Mauricio Hanzich, José María Cela, and
Daniele Paolo Scarpazza. “3D seismic imaging through reverse-timemigration on homogeneous
and heterogeneous multi-core processors”. In: Scientific Programming 17.1–2 (Jan. 2009),
pp. 185–198. ISSN: 1058-9244. DOI: 10.1155/2009/382638.

[5] Arvind and Stephen Brobst. “The evolution of dataflow architectures: From static dataflow to
P-RISC”. In: International Journal of High Speed Computing 5.2 (June 1993), pp. 125–153. ISSN:
0129-0533. DOI: 10.1142/S0129053393000074.

[6] Asen Asenov, Binjie Cheng, Xingsheng Wang, Andrew Robert Brown, Campbell Millar, Craig
Alexander, Salvatore Maria Amoroso, Jente B. Kuang, and Sani R. Nassif. “Variability aware
simulation based design-technology cooptimization (DTCO) flow in 14 nm FinFET/SRAM
cooptimization”. In: IEEE Transactions on Electron Devices 62.6 (June 2015), pp. 1682–1690.
ISSN: 0018-9383. DOI: 10.1109/TED.2014.2363117.

[7] Peter J. Ashenden. The Designer’s Guide to VHDL. 3rd ed. Morgan Kaufmann, 2008. ISBN:
978-0-12-088785-9.

[8] Isaac N. Bankman. Handbook of Medical Image Processing and Analysis. 2nd. Elsevier, 2009.
ISBN: 978-0-12-373904-9. DOI: 10.1016/B978-0-12-373904-9.X0001-4.

[9] Muthu Manikandan Baskaran, Albert Hartono, Sanket Tavarageri, Thomas Henretty, Jagan-
nathan Ramanujam, and Ponnuswamy Sadayappan. “Parameterized tiling revisited”. In: Proceed-
ings of the 8th Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). (Toronto, Ontario, Canada). Apr. 24–28, 2010, pp. 200–209. ISBN: 978-1-60558-635-9.
DOI: 10.1145/1772954.1772983.

[10] Marcus Bednara. “Design Automation for Massively Parallel Processor Arrays: Transform-
ing Regular Algorithms to Reconfigurable Hardware”. Verlag Dr. Köster, Berlin, Germany.
Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2004.

[11] Marcus Bednara and Jürgen Teich. “Automatic synthesis of FPGA processor arrays from loop
algorithms”. In: The Journal of Supercomputing 26.2 (2003), pp. 149–165. ISSN: 0920-8542. DOI:
10.1023/A:1024447517501.

49

http://hdl.handle.net/1721.1/6952
https://doi.org/10.1007/978-3-319-26408-0_4
https://doi.org/10.1007/978-3-319-26408-0_4
https://doi.org/10.1155/2009/382638
https://doi.org/10.1142/S0129053393000074
https://doi.org/10.1109/TED.2014.2363117
https://doi.org/10.1016/B978-0-12-373904-9.X0001-4
https://doi.org/10.1145/1772954.1772983
https://doi.org/10.1023/A:1024447517501

A. Bibliography

[12] Jon Bentley. “Programming pearls: Little languages”. In: Communications of the ACM 29.8 (Aug.
1986), pp. 711–721. ISSN: 0001-0782. DOI: 10.1145/6424.315691.

[13] Thomas J. Bergin Jr. and Richard G. Gibson Jr., eds. History of Programming Languages II. ACM
Press, 1996. ISBN: 978-0-201-89502-5.

[14] Kerry Bernstein, David J. Frank, Anne E. Gattiker, Wilfried Haensch, Brian L. Ji, Sani R. Nassif,
Edward J. Nowak, Dale J. Pearson, and Norman J. Rohrer. “High-performance CMOS variability
in the 65-nm regime and beyond”. In: IBM Journal of Research and Development 50.4–5 (2006),
pp. 433–450. DOI: 10.1147/rd.504.0433.

[15] Oliver Beyer. “Implementierung eines Verfahrens zur Parallelisierung geschachtelter C-Schlei-
fenprogramme”. Diploma Thesis. University of Paderborn, Department of Electrical Engineer-
ing and Information Technology, Computer Engineering Laboratory, Mar. 2002.

[16] Robert H. Bishop. Modern Control Systems Analysis and Design Using MATLAB and SIMULINK.
1st. Boston, MA, USA: Addison-Wesley, 1996. ISBN: 0-201-49846-4.

[17] Matthias Bolten. “Multigrid methods for long-range interactions”. In: Fast Methods for Long-
Range Interactions in Complex Systems. Ed. by Godehard Sutmann, Paul Gibbon, and Thomas
Lippert. Vol. 6. Schriften des Forschungszentrums Jülich: IAS Series. Forschungszentrum,
Zentralbibliothek, 2011. ISBN: 978-3-89336-714-6.

[18] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language User Guide.
2nd. Addison-Wesley, 2005. ISBN: 978-0-321-26797-9.

[19] Srinivas Boppu. “CodeGeneration for Tightly Coupled Processor Arrays”. Dissertation. Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, Dec. 18, 2015. URN: urn:nbn:de:bvb:
29-opus4-68678.

[20] Alan C. Bovik, ed. Handbook of Image and Video Processing (Communications, Networking and
Multimedia). 2nd. Orlando, FL, USA: Academic Press, 2005. ISBN: 978-0-12-119792-6.

[21] Axel Brandenburg. “Computational aspects of astrophysical MHD and turbulence”. In:The Fluid
Mechanics of Astrophysics and Geophysics. Vol. 9. Advances in Nonlinear Dynamos. CRC Press,
2003. Chap. 9, pp. 269–344. ISBN: 978-0-415-28788-3. DOI: 10.1201/9780203493137.ch9.

[22] Achi Brandt. “Multi-level adaptive solutions to boundary-value problems”. In: Mathematics of
Computation 31.138 (Apr. 1977), pp. 333–390. ISSN: 0025-5718. DOI: 10.1090/S0025-5718-
1977-0431719-X.

[23] Kirk M. Bresniker, Sharad Singhal, and R. Stanley Williams. “Adapting to thrive in a new
economy ofmemory abundance”. In:Computer 48.12 (Dec. 29, 2015), pp. 44–53. ISSN: 0018-9162.
DOI: 10.1109/MC.2015.368.

[24] Reinhard Budde, Karlheinz Kautz, Karin Kuhlenkamp, and Heinz Züllighoven. “Very high level
languages”. In: Prototyping: An Approach to Evolutionary System Development. Springer, 1992,
pp. 131–143. ISBN: 978-3-642-76820-0. DOI: 10.1007/978-3-642-76820-0_11.

[25] Peter J. Burt and Edward H. Adelson. “The Laplacian pyramid as a compact image code”. In:
IEEE Transactions on Communications 31.4 (Apr. 1983), pp. 532–540. ISSN: 0090-6778. DOI:
10.1109/TCOM.1983.1095851.

[26] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Daniel Firestone, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel
Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. “Configurable clouds”. In: IEEE Micro 37.3 (2017), pp. 52–61. DOI:
10.1109/MM.2017.51.

50

https://doi.org/10.1145/6424.315691
https://doi.org/10.1147/rd.504.0433
http://www.nbn-resolving.org/urn:nbn:de:bvb:29-opus4-68678
http://www.nbn-resolving.org/urn:nbn:de:bvb:29-opus4-68678
https://doi.org/10.1201/9780203493137.ch9
https://doi.org/10.1090/S0025-5718-1977-0431719-X
https://doi.org/10.1090/S0025-5718-1977-0431719-X
https://doi.org/10.1109/MC.2015.368
https://doi.org/10.1007/978-3-642-76820-0_11
https://doi.org/10.1109/TCOM.1983.1095851
https://doi.org/10.1109/MM.2017.51

A.1. General Bibliography

[27] Lakshmi N. Chakrapani, John Gyllenhaal, Wen-mei W. Hwu, Scott A. Mahlke, Krishna V.
Palem, and Rodric M. Rabbah. “Trimaran: An infrastructure for research in instruction-level
parallelism”. In: Languages and Compilers for High Performance Computing: 17th International
Workshop, LCPC 2004, West Lafayette, IN, USA, September 22-24, 2004, Revised Selected Papers.
Ed. by Rudolf Eigenmann, Zhiyuan Li, and Samuel P. Midkiff. Vol. 3602. Lecture Notes in
Computer Science (LNCS). Springer, 2005, pp. 32–41. ISBN: 978-3-540-31813-2. DOI: 10.1007/
11532378_4.

[28] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. “X10: An object-oriented approach to
non-uniform cluster computing”. In: Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). (San Diego,
CA, USA). ACM, Oct. 16–20, 2005, pp. 519–538. ISBN: 1-59593-031-0. DOI: 10.1145/1094811.
1094852.

[29] J. Craig Cleaveland. “Building application generators”. In: IEEE Software 5.4 (July 1988), pp. 25–
33. ISSN: 0740-7459. DOI: 10.1109/52.17799.

[30] Henk Corporaal. “TTAs: Missing the ILP complexity wall”. In: Journal of Systems Architecture
45.12–13 (June 1999), pp. 949–973. ISSN: 1383-7621. DOI: 10.1016/S1383-7621(98)00046-
0.

[31] C. J. Date and Hugh Darwen. A Guide to the SQL Standard. 4th. Addison-Wesley, 1997. ISBN:
0-201-96426-0.

[32] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous, and
Andre R. LeBlanc. “Design of ion-implanted MOSFET’s with very small physical dimensions”.
In: IEEE Journal of Solid-State Circuits 9.5 (Oct. 1974), pp. 256–268. ISSN: 0018-9200. DOI:
10.1109/JSSC.1974.1050511.

[33] Michèle Dion and Yves Robert. “Mapping affine loop nests”. In: Parallel Computing 22.10 (Dec.
1996), pp. 1373–1397. ISSN: 0167-8191. DOI: 10.1016/S0167-8191(96)00049-X.

[34] Uwe Eckhardt. “Algorithmus-Architektur-Codesign für den Entwurf digitaler Systeme mit
eingebettetem Prozessorarray und Speicherhierarchie”. Dissertation. Technische Universität
Dresden, Germany, June 2001.

[35] Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. “Dark silicon and the end of multicore scaling”. In: IEEE Micro 32.3 (2012), pp. 122–134.
DOI: 10.1109/MM.2012.17.

[36] Moritz Eysholdt and Heiko Behrens. “Xtext: Implement your language faster than the quick and
dirty way”. In: Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion (OOPSLA). (Reno/Tahoe, NV,
USA). ACM, Oct. 17–21, 2010, pp. 307–309. ISBN: 978-1-4503-0240-1. DOI: 10.1145/1869542.
1869625.

[37] Paul Feautrier and Christian Lengauer. “Polyhedron model”. In: Encyclopedia of Parallel Com-
puting. Ed. by David Padua. Springer, 2011, pp. 1581–1592. ISBN: 978-0-387-09766-4. DOI:
10.1007/978-0-387-09766-4_502.

[38] Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded Computing – A VLIW approach
to architecture, compilers, and tools. Morgan Kaufmann, 2005. ISBN: 978-1-55860-766-8.

[39] Martin Fowler. Domain-Specific Languages. 1st. Addison-Wesley Professional, 2010. ISBN:
978-0-321-71294-3.

51

https://doi.org/10.1007/11532378_4
https://doi.org/10.1007/11532378_4
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1109/52.17799
https://doi.org/10.1016/S1383-7621(98)00046-0
https://doi.org/10.1016/S1383-7621(98)00046-0
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1016/S0167-8191(96)00049-X
https://doi.org/10.1109/MM.2012.17
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1007/978-0-387-09766-4_502

A. Bibliography

[40] Simon Frankau, Diomidis Spinellis, Nick Nassuphis, and Christoph Burgard. “Commercial
uses: Going functional on exotic trades”. In: Journal of Functional Programming 19.1 (Jan. 2009),
pp. 27–45. ISSN: 0956-7968. DOI: 10.1017/S0956796808007016.

[41] Neil Fraser. Google Blockly – A library for building visual programming editors. https://
developers.google.com/blockly/. 2017.

[42] Cédric Gaucherel, Nathalie Giboire, Valérie Viaud, Thomas Houet, Jacques Baudry, and
Françoise Burel. “A domain-specific language for patchy landscape modelling: The Brittany
agricultural mosaic as a case study”. In: Ecological Modelling 194.1–3 (2006), pp. 233–243. ISSN:
0304-3800. DOI: 10.1016/j.ecolmodel.2005.10.026.

[43] Michael D. Godfrey and David F. Hendry. “The computer as von Neumann planned it”. In:
IEEE Annals of the History of Computing 15.1 (Jan. 1993), pp. 11–21. ISSN: 1058-6180. DOI:
10.1109/85.194088.

[44] Ronald David Gordon and Maurice H. Howard Halstead. “An experiment comparing Fortran
programming times with the software physics hypothesis”. In: Proceedings of the National
Computer Conference and Exposition (AFIPS). (New York, NY, USA). ACM. June 7–10, 1976,
pp. 935–937. DOI: 10.1145/1499799.1499927.

[45] Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Po-
Chao Huang, Manish Arora, Siddhartha Nath, Vikram Bhatt, Jonathan Babb, Steven Swanson,
and Michael Bedford Taylor. “The GreenDroid mobile application processor: An architecture
for silicon’s dark future”. In: IEEE Micro 31.2 (Mar.–Apr. 2011), pp. 86–95. ISSN: 0272-1732.
DOI: 10.1109/MM.2011.18.

[46] Alexander Grebhahn, Norbert Siegmund, Harald Köstler, and Sven Apel. “Performance pre-
diction of multigrid-solver configurations”. In: Software for Exascale Computing – SPPEXA
2013–2015. Ed. by Hans-Joachim Bungartz, Philipp Neumann, and Wolfgang E. Nagel. Vol. 113.
Lecture Notes in Computational Science and Engineering (LNCSE). Springer, Aug. 2016, pp. 69–
88. ISBN: 978-3-319-40526-1. DOI: 10.1007/978-3-319-40528-5_4.

[47] John Grundy, John Hosking, Nianping Zhu, and Na Liu. “Generating domain-specific visual
language editors from high-level tool specifications”. In: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE). (Tokyo, Japan). Sept. 18–22,
2006, pp. 25–36. DOI: 10.1109/ASE.2006.39.

[48] Suyash Gupta and V. Krishna Nandivada. “IMSuite: A benchmark suite for simulating dis-
tributed algorithms”. In: The Computing Research Repository (CoRR) (2013). arXiv: 1310.2814
[cs.DC].

[49] Wolfgang Hackbusch. Multi-Grid Methods and Applications. Vol. 4. Series in Computational
Mathematics. Springer, 1985. ISBN: 978-3-540-12761-1. DOI: 10.1007/978-3-662-02427-0.

[50] Mark I. Halpern. “Machine independence: Its technology and economics”. In: Communications
of the ACM 8.12 (Dec. 1965), pp. 782–785. ISSN: 0001-0782. DOI: 10.1145/365691.365943.

[51] Maurice H. Howard Halstead. Elements of Software Science. Operating and Programming
Systems. Elsevier, May 1977. ISBN: 978-0-444-00205-1.

[52] Jie Han and Michael Orshansky. “Approximate computing: An emerging paradigm for energy-
efficient design”. In: Proceedings of the 8th IEEE European Test Symposium (ETS). (Avignon,
France). IEEE Computer Society, May 27–30, 2013, pp. 1–6. DOI: 10 . 1109 / ETS . 2013 .
6569370.

52

https://doi.org/10.1017/S0956796808007016
https://developers.google.com/blockly/
https://developers.google.com/blockly/
https://doi.org/10.1016/j.ecolmodel.2005.10.026
https://doi.org/10.1109/85.194088
https://doi.org/10.1145/1499799.1499927
https://doi.org/10.1109/MM.2011.18
https://doi.org/10.1007/978-3-319-40528-5_4
https://doi.org/10.1109/ASE.2006.39
http://arxiv.org/abs/1310.2814
http://arxiv.org/abs/1310.2814
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1145/365691.365943
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1109/ETS.2013.6569370

A.1. General Bibliography

[53] Duane C. Hanselman and Bruce L. Littlefield. Mastering MATLAB. 1st. Prentice Hall, 2011.
ISBN: 978-0-13-601330-3.

[54] Albert Hartono, Muthu Manikandan Baskaran, Cédric Bastoul, Albert Cohen, Sriram Krish-
namoorthy, Boyana Norris, Jagannathan Ramanujam, and Ponnuswamy Sadayappan. “Para-
metric multi-level tiling of imperfectly nested loops”. In: Proceedings of the 23rd International
Conference on Supercomputing (ICS). (Yorktown Heights, NY, USA). ACM, June 8–12, 2009,
pp. 147–157. ISBN: 978-1-60558-498-0. DOI: 10.1145/1542275.1542301.

[55] Albert Hartono, Muthu Manikandan Baskaran, Jagannathan Ramanujam, and Ponnuswamy
Sadayappan. “DynTile: Parametric tiled loop generation for parallel execution on multicore
processors”. In: Proceedings of the IEEE International Symposium on Parallel Distributed Pro-
cessing (IPDPS). (Atlanta, GA, USA). Apr. 19–23, 2010, 12 pp. ISBN: 978-1-4244-6442-5. DOI:
10.1109/IPDPS.2010.5470459.

[56] Patrick Healy and Nikola S. Nikolov. “How to layer a directed acyclic graph”. In:Graph Drawing:
9th International Symposium, GD 2001, Vienna, Austria, September 23–26, 2001, Revised Papers. Ed.
by Petra Mutzel, Michael Jünger, and Sebastian Leipert. Vol. 2265. Lecture Notes in Computer
Science (LNCS). Springer, 2002, pp. 16–30. ISBN: 978-3-540-45848-7. DOI: 10.1007/3-540-
45848-4_2.

[57] FlorianHeidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and ChristianWende. “Deriva-
tion and refinement of textual syntax for models”. In: Proceedings of 5th European Conference on
Model Driven Architecture – Foundations and Applications (ECMDA-FA). (Enschede, The Nether-
lands). Ed. by Richard F. Paige, Alan Hartman, and Arend Rensink. Vol. 5562. Lecture Notes in
Computer Science (LNCS). Springer, June 23–26, 2009, pp. 114–129. ISBN: 978-3-642-02674-4.
DOI: 10.1007/978-3-642-02674-4_9.

[58] Carl Hewitt, Peter Bishop, and Richard Steiger. “A universal modular ACTOR formalism for
artificial intelligence”. In: Proceedings of the 3rd International Joint Conference on Artificial
Intelligence (IJCAI). (Stanford, CA, USA). Morgan Kaufmann Publishers Inc., Aug. 20–23, 1973,
pp. 235–245.

[59] Hewlett-Packard Laboratories. VEX toolchain. http://www.hpl.hp.com/downloads/vex.
2009.

[60] Kishan Jainandunsing. “Optimal partitioning scheme for wavefront/systolic array processors”.
In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). (San Jose,
CA, USA). May 5–7, 1986, pp. 940–943.

[61] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. Computing Science Tech. rep. No.
32. Bell Laboratories, Murray Hill, NJ 07974, 1975.

[62] Richard M. Karp, Raymond E. Miller, and ShmuelWinograd. “The organization of computations
for uniform recurrence equations”. In: Journal of the Association for Computing Machinery 14.3
(July 1967), pp. 563–590. ISSN: 0004-5411. DOI: 10.1145/321406.321418.

[63] Ralf Karrenberg and Sebastian Hack. “Whole-function vectorization”. In: Proceedings of the
9th Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
(Chamonix, France). IEEE Computer Society, Apr. 2–6, 2011, pp. 141–150. ISBN: 978-1-61284-
356-8. DOI: 10.1109/CGO.2011.5764682.

[64] Lennart C. L. Kats and Eelco Visser. “The Spoofax language workbench: Rules for declarative
specification of languages and IDEs”. In: ACM SIGPLAN Notices 45.10 (Oct. 2010), pp. 444–463.
ISSN: 0362-1340. DOI: 10.1145/1932682.1869497.

53

https://doi.org/10.1145/1542275.1542301
https://doi.org/10.1109/IPDPS.2010.5470459
https://doi.org/10.1007/3-540-45848-4_2
https://doi.org/10.1007/3-540-45848-4_2
https://doi.org/10.1007/978-3-642-02674-4_9
http://www.hpl.hp.com/downloads/vex
https://doi.org/10.1145/321406.321418
https://doi.org/10.1109/CGO.2011.5764682
https://doi.org/10.1145/1932682.1869497

A. Bibliography

[65] Steven Kelly, Kalle Lyytinen, and Matti Rossi. “MetaEdit+: A fully configurable multi-user and
multi-tool CASE and CAME environment”. In: Proceedings of the 8th International Conference
on Advances Information System Engineering (CAiSE). (Heraklion, Crete, Greece). Vol. 1080.
Lecture Notes in Computer Science (LNCS). Springer, May 20–24, 1996, pp. 1–21. ISBN: 978-3-
540-68451-0. DOI: 10.1007/3-540-61292-0_1.

[66] Reinhard Klette and Piero Zamperoni. Handbook of Image Processing Operators. John Wiley &
Sons, 1996. ISBN: 0-471-95642-2.

[67] Paul Klint, Tijs van der Storm, and Jurgen Vinju. “RASCAL: A domain specific language
for source code analysis and manipulation”. In: Proceedings of the Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM). (Edmonton, Alberta,
Canada). IEEE Computer Society, Sept. 20–21, 2009, pp. 168–177. ISBN: 978-0-7695-3793-1.
DOI: 10.1109/SCAM.2009.28.

[68] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-Preikschat, and Jörg Henkel.
“DistRM: Distributed resource management for on-chip many-core systems”. In: Proceedings
of the Seventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS). (Taipei, Taiwan). ACM, Oct. 9–14, 2011, pp. 119–128. ISBN:
978-1-4503-0715-4. DOI: 10.1145/2039370.2039392.

[69] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman Karp,
Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan
Snavely, Thomas Sterling, R. Stanley Williams, and Katherine Yelick. ExaScale computing study:
Technology challenges in achieving exascale systems. Sept. 2008. URL: http://www.cse.nd.
edu/Reports/2008/TR-2008-13.pdf.

[70] Peter Kogge and John Shalf. “Exascale computing trends: Adjusting to the “new normal” for
computer architecture”. In: Computing in Science Engineering 15.6 (Nov. 2013), pp. 16–26. ISSN:
1521-9615. DOI: 10.1109/MCSE.2013.95.

[71] Jean Kormann, Pedro Cobo, and Andrés Prieto. “Perfectly matched layers for modelling seismic
oceanography experiments”. In: Journal of Sound and Vibration 317.1 (2008), pp. 354–365. ISSN:
0022-460X. DOI: 10.1016/j.jsv.2008.03.024.

[72] Tomaz Kosar, Sudev Bohra, and Marjan Mernik. “Domain-specific languages: A systematic
mapping study”. In: Information & Software Technology 71 (2016), pp. 77–91. ISSN: 0950-5849.
DOI: 10.1016/j.infsof.2015.11.001.

[73] Harald Köstler. “A Multigrid Framework for Variational Approaches in Medical Image Pro-
cessing and Computer Vision”. Verlag Dr. Hut, Munich, Germany. Dissertation. Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, 2008, 285 pp. ISBN: 978-3-89963-761-8.

[74] Harald Köstler, Rochus Schmid, Ulrich Rüde, and Ch. Scheit. “A parallel multigrid accelerated
poisson solver for ab initio molecular dynamics applications”. In: Computing and Visualization
in Science 11.2 (Mar. 2008), pp. 115–122. ISSN: 1433-0369. DOI: 10.1007/s00791-007-0062-
0.

[75] Filip Křikava, Philippe Collet, and Robert B. France. “Manipulating models using internal
domain-specific languages”. In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing (SAC). (Gyeongju, Republic of Korea). Mar. 24–28, 2014, pp. 1612–1614. ISBN:
978-1-4503-2469-4. DOI: 10.1145/2554850.2555127.

54

https://doi.org/10.1007/3-540-61292-0_1
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1145/2039370.2039392
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
https://doi.org/10.1109/MCSE.2013.95
https://doi.org/10.1016/j.jsv.2008.03.024
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1007/s00791-007-0062-0
https://doi.org/10.1007/s00791-007-0062-0
https://doi.org/10.1145/2554850.2555127

A.1. General Bibliography

[76] Stefan Kronawitter and Christian Lengauer. Optimizations Applied by the ExaStencils Code
Generator. Tech. rep. MIP-1502. Faculty of Computer Science and Mathematics, University of
Passau, Jan. 2015.

[77] Stefan Kronawitter, Holger Stengel, Georg Hager, and Christian Lengauer. “Domain-specific
optimization of two Jacobi smoother kernels and their evaluation in the ECM performance
model”. In: Parallel Processing Letters 24.3 (Sept. 30, 2014), 18 pp. ISSN: 0129-6264. DOI: 10.
1142/S0129626414410047.

[78] Sebastian Kuckuk, Gundolf Haase, Diego A. Vasco, and Harald Köstler. “Towards generating
efficient flow solvers with the ExaStencils approach”. In: Concurrency and Computation: Practice
and Experience 29.17 (2017), e4062–n/a. ISSN: 1532-0634. DOI: 10.1002/cpe.4062.

[79] H. T. Kung and Charles E. Leiserson. “Systolic arrays (for VLSI)”. In: SIAM Sparse Matrix
Proceedings. (Philadelphia, PA, USA). Ed. by Iain S. Duff and G. W. Stewart. SIAM. 1978,
pp. 245–282.

[80] Dietmar Kunz, Kai Eck, Holger Fillbrandt, and Til Aach. “Nonlinear multiresolution gradient
adaptive filter for medical images”. In: Proceedings SPIE 5032, Medical Imaging 2003: Image
Processing. May 16, 2003, pp. 732–742. DOI: 10.1117/12.481323.

[81] Leslie Lamport. LaTeX – A Document Preparation System: User’s Guide and Reference Manual.
2nd. Addison-Wesley, 1994. ISBN: 978-0-201-52983-8.

[82] Vahid Lari. “Invasive Tightly Coupled Processor Arrays”. Dissertation. Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, Nov. 18, 2015.

[83] Vahid Lari. Invasive Tightly Coupled Processor Arrays. Springer, 2016. ISBN: 978-981-10-1058-3.
DOI: 10.1007/978-981-10-1058-3.

[84] Vahid Lari, Andreas Weichslgartner, Alex Tanase, Michael Witterauf, Faramarz Khosravi,
Jürgen Teich, Jürgen Becker, Jan Heißwolf, and Stephanie Friederich. “Providing fault tolerance
through invasive computing”. In: it – Information Technology 58.6 (Oct. 19, 2016), pp. 309–328.
ISSN: 1611-2776. DOI: 10.1515/itit-2016-0022.

[85] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation”. In: Proceedings of the International Symposium on Code Generation
and Optimization (CGO). (Palo Alto, CA, USA). IEEE Computer Society, Mar. 20–24, 2004,
pp. 75–88. ISBN: 0-7695-2102-9. DOI: 10.1109/CGO.2004.1281665.

[86] Michael E. Lesk and Eric Schmidt. Lex – A Lexical Analyzer Generator. Computing Science
Tech. rep. No. 39. Bell Laboratories, Murray Hill, NJ 07974, 1975.

[87] Xuejun Liang and Jack Shiann-Ning Jean. “Mapping of generalized template matching onto
reconfigurable computers”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
11.3 (June 2003), pp. 485–498. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2003.812306.

[88] Xuejun Liang, Jack Jean, and Karen Tomko. “Data buffering and allocation in mapping gener-
alized template matching on reconfigurable systems”. In: The Journal of Supercomputing 19.1
(May 2001), pp. 77–91. ISSN: 1573-0484. DOI: 10.1023/A:1011196613858.

[89] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor. “ASIC clouds:
Specializing the datacenter”. In: ACM SIGARCH Computer Architecture News 44.3 (June 2016),
pp. 178–190. ISSN: 0163-5964. DOI: 10.1145/3007787.3001156.

[90] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The
scratch programming language and environment”. In: ACM Transactions on Computing Educa-
tion (TOCE) 10.4 (Nov. 2010), 16:1–16:15. ISSN: 1946-6226. DOI: 10.1145/1868358.1868363.

55

https://doi.org/10.1142/S0129626414410047
https://doi.org/10.1142/S0129626414410047
https://doi.org/10.1002/cpe.4062
https://doi.org/10.1117/12.481323
https://doi.org/10.1007/978-981-10-1058-3
https://doi.org/10.1515/itit-2016-0022
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/TVLSI.2003.812306
https://doi.org/10.1023/A:1011196613858
https://doi.org/10.1145/3007787.3001156
https://doi.org/10.1145/1868358.1868363

A. Bibliography

[91] Andrea Marongiu, Alessandro Capotondi, Giuseppe Tagliavini, and Luca Benini. “Simplifying
many-core-based heterogeneous SoC programming with offload directives”. In: IEEE Transac-
tions Industrial Informatics 11.4 (2015), pp. 957–967. DOI: 10.1109/TII.2015.2449994.

[92] David Martin and Gerald Estrin. “Models of computations and systems—Evaluation of vertex
probabilities in graph models of computations”. In: Journal of the Association for Computing
Machinery 14.2 (Apr. 1967), pp. 281–299. ISSN: 0004-5411. DOI: 10.1145/321386.321391.

[93] James Martin. Design of Real-Time Computer Systems. Prentice Hall, 1967. ISBN: 0-13-201400-9.

[94] Robert C. Martin. Clean Code – A Handbook of Agile Software Craftsmanship. Prentice Hall,
2009. ISBN: 978-0-13-235088-4.

[95] Paul E. McKenney, Maged M. Michael, Manish Gupta, Phil Howard, Joshua Triplett, and
Jonathan Walpole. Is Parallel Programming Hard, And If So, Why? Tech. rep. TR-09-02. Portland
State University, Computer Science Department, Feb. 2009.

[96] Paul E. McKenney, Maged M. Michael, Manish Gupta, Phil Howard, Joshua Triplett, and
Jonathan Walpole. Is Parallel Programming Hard, And If So, Why? Tech. rep. TR-09-02. Portland
State University, Computer Science Department, Feb. 2009.

[97] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins. “Modeling
software architectures in the unified modeling language”. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 11.1 (Jan. 2002), pp. 2–57. ISSN: 1049-331X. DOI: 10.
1145/504087.504088.

[98] Richard Membarth. “Code Generation for GPU Accelerators from a Domain-Specific Language
for Medical Imaging”. Verlag Dr. Hut, Munich, Germany. Dissertation. Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, 2013, 215 pp. ISBN: 978-3-8439-1074-3.

[99] Tim Menzies, John Black, Joel Fleming, and Murray Dean. “An expert system for raising pigs”.
In: Proceedings of the First International Conference on Practical Applications of Prolog. (London,
UK). Apr. 1992.

[100] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and how to develop domain-
specific languages”. In: ACM Computing Surveys 37.4 (Dec. 2005), pp. 316–344. ISSN: 0360-0300.
DOI: 10.1145/1118890.1118892.

[101] Marjan Mernik, Mitja Lenic, Enis Avdicausevic, and Viljem Zumer. “Compiler/interpreter
generator system LISA”. In: Proceedings of the 33rd Annual Hawaii International Conference
on System Sciences (HICSS). (Maui, HI, USA). Jan. 4–7, 2000, 10 pp. ISBN: 0-7695-0493-0. DOI:
10.1109/HICSS.2000.927021.

[102] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. 1st. McGraw-Hill Higher
Education, 1994. ISBN: 0-07-016333-2.

[103] Sparsh Mittal. “A survey of techniques for approximate computing”. In: ACM Computing
Surveys (CSUR) 48.4 (Mar. 2016), 62:1–62:33. ISSN: 0360-0300. DOI: 10.1145/2893356.

[104] Dan I. Moldovan and Jose A. B. Fortes. “Partitioning and mapping algorithms into fixed
size systolic arrays”. In: IEEE Transactions on Computers C-35.1 (Jan. 1986), pp. 1–12. ISSN:
0018-9340. DOI: 10.1109/TC.1986.1676652.

[105] Cleve B. Moler. Numerical Computing with MATLAB. SIAM, 2004. ISBN: 978-0-89871-660-3.
DOI: 10.1137/1.9780898717952.

[106] Don Monroe. “Neuromorphic computing gets ready for the (really) big time”. In: Communica-
tions of the ACM 57.6 (June 2014), pp. 13–15. ISSN: 0001-0782. DOI: 10.1145/2601069.

56

https://doi.org/10.1109/TII.2015.2449994
https://doi.org/10.1145/321386.321391
https://doi.org/10.1145/504087.504088
https://doi.org/10.1145/504087.504088
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/HICSS.2000.927021
https://doi.org/10.1145/2893356
https://doi.org/10.1109/TC.1986.1676652
https://doi.org/10.1137/1.9780898717952
https://doi.org/10.1145/2601069

A.1. General Bibliography

[107] Gordon E. Moore. “Cramming more components onto integrated circuits”. In: Electronics 38.8
(Apr. 19, 1965), pp. 114–117. ISSN: 0013-5070.

[108] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers Inc., 1997. ISBN: 1-55860-320-4.

[109] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User Computing. MIT
Press, July 1993. ISBN: 978-0-262-14053-9.

[110] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A comprehensive step-by-
step guide. 3rd. Artima Inc., 2016, 888 pp. ISBN: 978-0-9815316-8-7.

[111] OpenCV User Site. Open source computer vision library (OpenCV). http://www.opencv.org/.
June 2017.

[112] Terence Parr. The Definitive ANTLR 4 Reference. 2nd. Pragmatic Bookshelf, 2013. ISBN: 978-1-
934356-99-9.

[113] Oliver Pell, Oskar Mencer, Kuen Hung Tsoi, and Wayne Luk. “Maximum performance com-
puting with dataflow engines”. In: High-Performance Computing Using FPGAs. Ed. by Wim
Vanderbauwhede and Khaled Benkrid. Springer, 2013, pp. 747–774. ISBN: 978-1-4614-1791-0.
DOI: 10.1007/978-1-4614-1791-0_25.

[114] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. “Composing contracts: An adventure
in financial engineering (Functional Pearl)”. In:ACM SIGPLANNotices 35.9 (Sept. 2000), pp. 280–
292. ISSN: 0362-1340. DOI: 10.1145/357766.351267.

[115] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe,
and Frédo Durand. “Decoupling algorithms from schedules for easy optimization of image
processing pipelines”. In: ACM Transactions on Graphics (TOG) 31.4 (July 2012), 32:1–32:12.
ISSN: 0730-0301. DOI: 10.1145/2185520.2185528.

[116] Sailesh K. Rao. “Regular Iterative Algorithms and their Implementations on Processor Arrays”.
PhD Thesis. Stanford University, CA, USA, 1985.

[117] Daniel Ratiu, Markus Voelter, Zaur Molotnikov, and Bernhard Schaetz. “Implementing modular
domain specific languages and analyses”. In: Proceedings of the Workshop on Model-Driven
Engineering, Verification and Validation (MoDeVVa). (Innsbruck, Austria). Sept. 30, 2012, pp. 35–
40. ISBN: 978-1-4503-1801-3. DOI: 10.1145/2427376.2427383.

[118] B. Ramakrishna Rau. “Iterative modulo scheduling: An algorithm for software pipelining loops”.
In: Proceedings of the 27th Annual International Symposium on Microarchitecture (MICRO). (San
Jose, CA, USA). ACM, Nov. 30–Dec. 2, 1994, pp. 63–74. ISBN: 0-89791-707-3. DOI: 10.1145/
192724.192731.

[119] B. Ramakrishna Rau, Michael S. Schlansker, and Partha P. Tirumalai. Code Generation Schema
for Modulo Scheduled DO-Loops and WHILE-Loops. Tech. rep. HPL-92-47. Palo Alto, CA, USA:
Hewlett-Packard Laboratories, Apr. 1992.

[120] Eric Steven Raymond. The Art of UNIX Programming. Pearson Education, 2003. ISBN: 0-13-
142901-9.

[121] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and Michelle Mills
Strout. “Parameterized tiled loops for free”. In: ACM SIGPLAN Notices 42.6 (June 2007), pp. 405–
414. ISSN: 0362-1340. DOI: 10.1145/1273442.1250780.

[122] Lakshminarayanan Renganarayanan, DaeGon Kim, Michelle Mills Strout, and Sanjay Rajopad-
hye. “Parameterized loop tiling”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 34.1 (May 2012), 3:1–3:41. ISSN: 0164-0925. DOI: 10.1145/2160910.2160912.

57

http://www.opencv.org/
https://doi.org/10.1007/978-1-4614-1791-0_25
https://doi.org/10.1145/357766.351267
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2427376.2427383
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/1273442.1250780
https://doi.org/10.1145/2160910.2160912

A. Bibliography

[123] Douglas T. Ross. “Origins of the APT language for automatically programmed tools”. In:
SIGPLAN Notices 13.8 (Aug. 1978), pp. 61–99. ISSN: 0362-1340. DOI: 10 . 1145 / 960118 .
808374.

[124] Vwani Prasad Roychowdhury, Lothar Thiele, Sailesh K. Rao, and Thomas Kailath. “On the
localization of algorithms of VLSI processor arrays”. In: Proceedings of the Workshop on VLSI
Signal Processing III. Nov. 1988, pp. 459–470. ISBN: 978-0-87942-248-6.

[125] John C. Russ and F. Brent Neal. The Image Processing Handbook. 7th. Boca Raton, FL, USA: CRC
Press, 2015. ISBN: 978-1-4987-4026-5.

[126] Jean E. Sammet. Programming Languages: History and Fundamentals. Prentice-Hall, Inc., 1969.
ISBN: 0-13-729988-5.

[127] Vinay Saripalli, Guangyu Sun, Asit K. Mishra, Yuan Xie, Suman Datta, and Vijaykrishnan
Narayanan. “Exploiting heterogeneity for energy efficiency in chip multiprocessors”. In: IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 1.2 (June 2011), pp. 109–119.
ISSN: 2156-3357. DOI: 10.1109/JETCAS.2011.2158343.

[128] Moritz Schmid. “Rapid Prototyping for Hardware Accelerators in theMedical Imaging Domain”.
Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, 2015. URN: urn:
nbn:de:bvb:29-opus4-65733.

[129] Douglas C. Schmidt. “Guest editor’s introduction: model-driven engineering”. In: Computer
39.2 (Feb. 2006), pp. 25–31. ISSN: 0018-9162. DOI: 10.1109/MC.2006.58.

[130] Tobias Schwarzer, Andreas Weichslgartner, Michael Glaß, Stefan Wildermann, Peter Brand,
and Jürgen Teich. “Symmetry-eliminating design space exploration for hybrid application
mapping on many-core architectures”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems PP.99 (2017), 14 pp. ISSN: 0278-0070. DOI: 10.1109/TCAD.
2017.2695894.

[131] Tim Sheard. “Accomplishments and research challenges in meta-programming”. In: Proceedings
of the Second International Workshop Semantics, Applications, and Implementation of Program
Generation (SAIG). (Florence, Italy). Ed. by Walid Taha. Springer, Sept. 6, 2001, pp. 2–44. ISBN:
978-3-540-44806-8. DOI: 10.1007/3-540-44806-3_2.

[132] Dave Shreiner, Graham Sellers, John M. Kessenich, and Bill M. Licea-Kane. OpenGL Pro-
gramming Guide: The Official Guide to Learning OpenGL, Version 4.3. 8th. Addison-Wesley
Professional, 2013. ISBN: 978-0-321-77303-6.

[133] Todor Stefanov and Ed F. Deprettere. “Deriving process networks from weakly dynamic
applications in system-level design”. In: Proceedings of the 1st IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign & System synthesis (CODES+ISSS). (Newport Beach,
CA, USA). ACM Press, 2003, pp. 90–96. ISBN: 1-58113-742-7. DOI: 10.1145/944645.944673.

[134] Herb Sutter. “A fundamental turn toward concurrency in software”. In: Dr. Dobb’s Journal 30.3
(Mar. 1, 2005). http://www.drdobbs.com/web-development/a-fundamental-turn-
toward-concurrency-in/184405990.

[135] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software. http:
//www.gotw.ca/publications/concurrency-ddj.htm. 2009.

[136] Earl E. Swartzlander. Systolic Signal Processing Systems. Marcel Dekker, 1987. ISBN: 0-8247-
7717-4.

[137] Alexandru Tanase. “Symbolic Parallelization of Nested Loop Programs”. Dissertation. Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany, Sept. 19, 2017.

58

https://doi.org/10.1145/960118.808374
https://doi.org/10.1145/960118.808374
https://doi.org/10.1109/JETCAS.2011.2158343
http://www.nbn-resolving.org/urn:nbn:de:bvb:29-opus4-65733
http://www.nbn-resolving.org/urn:nbn:de:bvb:29-opus4-65733
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/TCAD.2017.2695894
https://doi.org/10.1109/TCAD.2017.2695894
https://doi.org/10.1007/3-540-44806-3_2
https://doi.org/10.1145/944645.944673
http://www.drdobbs.com/web-development/a-fundamental-turn-toward-concurrency-in/184405990
http://www.drdobbs.com/web-development/a-fundamental-turn-toward-concurrency-in/184405990
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

A.1. General Bibliography

[138] Jürgen Teich. “A Compiler for Application-Specific Processor Arrays”. Shaker Verlag, Aachen,
Germany. Dissertation. Universität des Saarlandes, 1993. ISBN: 3-86111-701-0.

[139] Jürgen Teich. “Invasive algorithms and architectures”. In: it – Information Technology 50.5
(Sept. 2008), pp. 300–310. ISSN: 1611-2776. DOI: 10.1524/itit.2008.0499.

[140] Jürgen Teich, Michael Glaß, Sascha Roloff, Wolfgang Schröder-Preikschat, Gregor Snelting,
Andreas Weichslgartner, and Stefan Wildermann. “Language and compilation of parallel
programs for *-predictable MPSoC execution using invasive computing”. In: Proceedings of
the 10th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC). Lyon, France, Sept. 21–23, 2016, pp. 313–320. ISBN: 978-1-5090-3531-1. DOI: 10.
1109/MCSoC.2016.30.

[141] Jürgen Teich and Christian Haubelt. Digitale Hardware/Software-Systeme: Synthese und Opti-
mierung. 2nd ed. Springer, 2007. ISBN: 978-3-540-46822-6. DOI: 10.1007/978-3-540-46824-
0.

[142] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang Schröder-
Preikschat, and Gregor Snelting. “Invasive computing: An overview”. In: Multiprocessor System-
on-Chip – Hardware Design and Tool Integration. Ed. by Michael Hübner and Jürgen Becker.
Springer, 2011, pp. 241–268. ISBN: 978-1-4419-6459-5. DOI: 10.1007/978-1-4419-6460-
1_11.

[143] Jürgen Teich and Lothar Thiele. “Control generation in the design of processor arrays”. In:
Journal of VLSI Signal Processing Systems 3.1-2 (1991), pp. 77–92. ISSN: 0922-5773. DOI: 10.
1007/BF00927836.

[144] The Trimaran Consortium.An infrastructure for research in backend compilation and architecture
exploration. http://www.trimaran.org. 2010.

[145] Lothar Thiele. “On the hierarchical design of VLSI processor arrays”. In: Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS). Vol. 3. June 1988, pp. 2517–2520.
DOI: 10.1109/ISCAS.1988.15454.

[146] Lothar Thiele. “Resource Constrained Scheduling of Uniform Algorithms”. In: Journal of VLSI
Signal Processing 10 (1995), pp. 295–310.

[147] Lothar Thiele and Vwani Prasad Roychowdhury. “Systematic design of local processor arrays
for numerical algorithms”. In: Proceedings of the International Workshop on Algorithms and
Parallel VLSI Architectures. (Amsterdam,The Netherlands). Ed. by Ed F. Deprettere and A. J. van
der Veen. Vol. A: Tutorials. Elsevier, 1991, pp. 329–339.

[148] Laurence Tratt. “Domain specific language implementation via compile-timemeta-programming”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 30.6 (Oct. 2008), 31:1–
31:40. ISSN: 0164-0925. DOI: 10.1145/1391956.1391958.

[149] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-specific languages: An annotated
bibliography”. In: ACM SIGPLAN Notices 35.6 (June 2000), pp. 26–36. ISSN: 0362-1340. DOI:
10.1145/352029.352035.

[150] Dave Wecker and Krysta M. Svore. “LIQUi|>: A software design architecture and domain-
specific language for quantum computing”. In: The Computing Research Repository (CoRR)
(Feb. 18, 2014), 14 pp. arXiv: 1402.4467 [quant-ph].

59

https://doi.org/10.1524/itit.2008.0499
https://doi.org/10.1109/MCSoC.2016.30
https://doi.org/10.1109/MCSoC.2016.30
https://doi.org/10.1007/978-3-540-46824-0
https://doi.org/10.1007/978-3-540-46824-0
https://doi.org/10.1007/978-1-4419-6460-1_11
https://doi.org/10.1007/978-1-4419-6460-1_11
https://doi.org/10.1007/BF00927836
https://doi.org/10.1007/BF00927836
http://www.trimaran.org
https://doi.org/10.1109/ISCAS.1988.15454
https://doi.org/10.1145/1391956.1391958
https://doi.org/10.1145/352029.352035
http://arxiv.org/abs/1402.4467

A. Bibliography

[151] Andreas Weichslgartner, Deepak Gangadharan, Stefan Wildermann, Michael Glaß, and Jür-
gen Teich. “DAARM: Design-time application analysis and run-time mapping for predictable
execution in many-core systems”. In: Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS). (New Dehli, India). ACM, Oct. 12–
17, 2014, 34:1–34:10. ISBN: 978-1-4503-3051-0. DOI: 10.1145/2656075.2656083.

[152] Andreas Weichslgartner, Stefan Wildermann, Deepak Gangadharan, Michael Glaß, and Jürgen
Teich. “A design-time/run-time application mapping methodology for predictable execution
time in MPSoCs”. In: The Computing Research Repository (CoRR) (Nov. 16, 2017), 30 pp. arXiv:
1711.05932 [cs.DC].

[153] Richard L. Wexelblat, ed. History of Programming Languages. Academic Press, 1981. ISBN:
0-12-745040-8.

[154] Greg Wilson. Are VHLLs really high-level? http://www.oreilly.com/news/vhll_1299.
html. Dec. 1999.

[155] Niklaus Wirth. “Program development by stepwise refinement”. In: Communications of the
ACM 14.4 (Apr. 1971), pp. 221–227. ISSN: 0001-0782. DOI: 10.1145/362575.362577.

[156] Michael JosephWolfe.High performance compilers for parallel computing. Ed. by Carter Shanklin
and Leda Ortega. Addison-Wesley, 1995. ISBN: 0-8053-2730-4.

[157] Jingling Xue. “Unimodular transformations of non-perfectly nested loops”. In: Parallel Comput-
ing 22.12 (1997), pp. 1621–1645. ISSN: 0167-8191. DOI: 10.1016/S0167-8191(96)00063-4.

[158] Yoav Yaacoby and Peter R. Cappello. “Scheduling a system of affine recurrence equations onto
a systolic array”. In: Proceedings of the International Conference on Systolic Arrays. (San Diego,
CA, USA). May 25–27, 1988, pp. 373–382. DOI: 10.1109/ARRAYS.1988.18077.

A.2 Personal Bibliography (186)

All journal, conference, and workshop papers listed in the following were selected for
publication by peers or international program committees in a formal review process.
They have been published in printed journals, proceedings, or widely recognized online
archives (ACM Digital Library, IEEE Xplore, SpringerLink, etc.). Different publication
categories are denoted by capital prefixes, e.g., “B” for books, “C” for chapters in books,
“J” for journal articles, “P” for papers in proceedings, and so on. References to key papers
of this habilitation treatise are additionally marked by a book symbol, such as [J9].

Books and Proceedings (10)

[B1] Alexandru Tanase, Frank Hannig, and Jürgen Teich. Symbolic Parallelization of Nested Loop
Programs. Springer, Feb. 2018. ISBN: 978-3-319-73908-3. In press.

[B2] Frank Hannig, João M. P. Cardoso, Thilo Pionteck, Dietmar Fey, Wolfgang Schröder-Preikschat,
and Jürgen Teich, eds. Proceedings of the 29th International Conference on Architecture of
Computing Systems (ARCS). Vol. 9637. Lecture Notes in Computer Science (LNCS). Springer,
2016, 402 pp. ISBN: 978-3-319-30694-0. DOI: 10.1007/978-3-319-30695-7.

[B3] Dirk Koch, Frank Hannig, and Daniel Ziener, eds. FPGAs for Software Programmers. Springer,
June 2016, 327 pp. ISBN: 978-3-319-26406-6. DOI: 10.1007/978-3-319-26408-0.

60

https://doi.org/10.1145/2656075.2656083
http://arxiv.org/abs/1711.05932
http://www.oreilly.com/news/vhll_1299.html
http://www.oreilly.com/news/vhll_1299.html
https://doi.org/10.1145/362575.362577
https://doi.org/10.1016/S0167-8191(96)00063-4
https://doi.org/10.1109/ARRAYS.1988.18077
https://doi.org/10.1007/978-3-319-30695-7
https://doi.org/10.1007/978-3-319-26408-0

A.2. Personal Bibliography

[B4] Frank Hannig, Dirk Koch, and Daniel Ziener, eds. Proceedings of the Second International
Workshop on FPGAs for Software Programmers (FSP 2015). (London, United Kingdom). Sept. 1,
2015, 104 pp. arXiv: 1508.06320 [cs.AR].

[B5] Frank Hannig, Dietmar Fey, and Anton Lokhmotov, eds. Proceedings of the DATE Friday
Workshop on Heterogeneous Architectures and Design Methods for Embedded Image Systems (HIS
2015). (Grenoble, France). Mar. 13, 2015, 35 pp. arXiv: 1502.07241 [cs.AR].

[B6] Frank Hannig, Dirk Koch, and Daniel Ziener, eds. Proceedings of the First International Workshop
on FPGAs for Software Programmers (FSP 2014). (Munich, Germany). Sept. 1, 2014, 82 pp. arXiv:
1408.4423 [cs.AR].

[B7] Frank Hannig and Jürgen Teich, eds. Proceedings of the First Workshop on Resource Awareness
and Adaptivity in Multi-Core Computing (Racing 2014). (Paderborn, Germany). May 29–30,
2014, 62 pp. arXiv: 1405.2281 [cs.DC].

[B8] Joseph R. Cavallaro, Milos D. Ercegovac, Frank Hannig, Paolo Ienne, Earl E. Swartzlander,
Jr., and Alexandre F. Tenca, eds. Proceedings of the 22nd IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP). IEEE Computer Society, 2011.
ISBN: 978-1-4577-1292-0. DOI: 10.1109/ASAP.2011.6043219.

[B9] François Charot, Frank Hannig, Jürgen Teich, and Christophe Wolinski, eds. Proceedings of the
21st IEEE International Conference on Application-specific Systems, Architectures and Processors
(ASAP). IEEE Computer Society, 2010. ISBN: 978-1-4244-6967-3. DOI: 10.1109/ASAP.2010.
5540766.

[B10] Frank Hannig. “Scheduling Techniques for High-Throughput Loop Accelerators”. Verlag Dr.
Hut, Munich, Germany. Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany, Aug. 11, 2009, 307 pp. ISBN: 978-3-86853-220-3.

Book Chapters (11)

[C1] Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Jürgen Teich, Harald Köstler, Ulrich
Rüde, and Christian Lengauer. “Systems of partial differential equations in ExaSlang”. In:
Software for Exascale Computing – SPPEXA 2013–2015. Ed. by Hans-Joachim Bungartz, Philipp
Neumann, and Wolfgang E. Nagel. Vol. 113. Lecture Notes in Computational Science and
Engineering (LNCSE). Springer, Aug. 2016, pp. 47–67. ISBN: 978-3-319-40526-1. DOI: 10.
1007/978-3-319-40528-5_3.

[C2] Frank Hannig. “A quick tour of high-level synthesis solutions for FPGAs”. In: FPGAs for
Software Programmers. Ed. by Dirk Koch, Frank Hannig, and Daniel Ziener. Springer, June
2016. Chap. 3, pp. 49–59. ISBN: 978-3-319-26406-6. DOI: 10.1007/978-3-319-26408-0_3.

[C3] Dirk Koch, Daniel Ziener, and Frank Hannig. “FPGA versus software programming: why,
when, and how?” In: FPGAs for Software Programmers. Ed. by Dirk Koch, Frank Hannig,
and Daniel Ziener. Springer, June 2016. Chap. 1, pp. 1–21. ISBN: 978-3-319-26406-6. DOI:
10.1007/978-3-319-26408-0_1.

[C4] Moritz Schmid, Oliver Reiche, Frank Hannig, and Jürgen Teich. “HIPAcc”. In: FPGAs for Software
Programmers. Ed. by Dirk Koch, Frank Hannig, and Daniel Ziener. Springer, June 2016. Chap. 12,
pp. 205–223. ISBN: 978-3-319-26406-6. DOI: 10.1007/978-3-319-26408-0_12.

61

http://arxiv.org/abs/1508.06320
http://arxiv.org/abs/1502.07241
http://arxiv.org/abs/1408.4423
http://arxiv.org/abs/1405.2281
https://doi.org/10.1109/ASAP.2011.6043219
https://doi.org/10.1109/ASAP.2010.5540766
https://doi.org/10.1109/ASAP.2010.5540766
https://doi.org/10.1007/978-3-319-40528-5_3
https://doi.org/10.1007/978-3-319-40528-5_3
https://doi.org/10.1007/978-3-319-26408-0_3
https://doi.org/10.1007/978-3-319-26408-0_1
https://doi.org/10.1007/978-3-319-26408-0_12

A. Bibliography

[C5] Moritz Schmid, Christian Schmitt, Frank Hannig, Gorker Alp Malazgirt, Nehir Sönmez, Arda
Yurdakul, and Adrián Cristal. “Big data and HPC acceleration with Vivado HLS”. In: FPGAs for
Software Programmers. Ed. by Dirk Koch, Frank Hannig, and Daniel Ziener. Springer, June 2016.
Chap. 7, pp. 115–136. ISBN: 978-3-319-26406-6. DOI: 10.1007/978-3-319-26408-0_7.

[C6] Jürgen Teich, Srinivas Boppu, Frank Hannig, and Vahid Lari. “Compact code generation
and throughput optimization for coarse-grained reconfigurable arrays”. In: Transforming
Reconfigurable Systems: A Festschrift Celebrating the 60th Birthday of Professor Peter Cheung.
Ed. by Wayne Luk and George A. Constantinides. London, UK: Imperial College Press, Apr.
2015. Chap. 10, pp. 167–206. ISBN: 978-1-78326-696-8. DOI: 10.1142/9781783266975_0010.

[C7] Moritz Schmid, Frank Hannig, Alexandru Tanase, and Jürgen Teich. “High-level synthesis
revised – Generation of FPGA accelerators from a domain-specific language using the poly-
hedron model”. In: Parallel Computing: Accelerating Computational Science and Engineering
(CSE). Ed. by Michael Bader, Arndt Bode, Hans-Joachim Bungartz, Michael Gerndt, Gerhard
R. Joubert, and Frans J. Peters. Vol. 25. Advances in Parallel Computing. Amsterdam, The
Netherlands: IOS Press, Apr. 2014, pp. 497–506. ISBN: 978-1-61499-380-3. DOI: 10.3233/978-
1-61499-381-0-497.

[C8] Alexandru Tanase, Vahid Lari, Frank Hannig, and Jürgen Teich. “Exploitation of quality/-
throughput tradeoffs in image processing through invasive computing”. In: Parallel Computing:
Accelerating Computational Science and Engineering (CSE). Ed. by Michael Bader, Arndt Bode,
Hans-Joachim Bungartz, Michael Gerndt, Gerhard R. Joubert, and Frans J. Peters. Vol. 25.
Advances in Parallel Computing. Amsterdam, The Netherlands: IOS Press, Apr. 2014, pp. 53–62.
ISBN: 978-1-61499-380-3. DOI: 10.3233/978-1-61499-381-0-53.

[C9] Alexey Kupriyanov, Frank Hannig, Dmitrij Kissler, and Jürgen Teich. “MAML: An ADL for
designing single and multiprocessor architectures”. In: Processor Description Languages. Ed. by
Prabhat Mishra and Nikil Dutt. Systems on Silicon. Morgan Kaufmann, June 2008. Chap. 12,
pp. 295–327. ISBN: 978-0-12-374287-2.

[C10] Frank Hannig and Jürgen Teich. “Energy estimation and optimization for piecewise regular
processor arrays”. In: Domain-Specific Processors: Systems, Architectures, Modeling, and Simula-
tion. Ed. by Shuvra S. Bhattacharyya et al. Signal Processing and Communications 20. New
York, USA: Marcel Dekker, Jan. 2004. Chap. 6, pp. 107–126. ISBN: 0-8247-4711-9.

[C11] Marcus Bednara, Frank Hannig, and Jürgen Teich. “Generation of distributed loop control”.
In: Embedded Processor Design Challenges: Systems, Architectures, Modeling, and Simulation
– SAMOS. Ed. by Ed F. Deprettere, Jürgen Teich, and Stamatis Vassiliadis. Vol. 2268. Lecture
Notes in Computer Science (LNCS). Springer, Mar. 2002, pp. 154–170. ISBN: 3-540-43322-8.
DOI: 10.1007/3-540-45874-3_9.

Editorials (2)

[E1] Frank Hannig, João M. P. Cardoso, and Dietmar Fey. “Introduction to the special issue on
architecture of computing systems”. In: Journal of Systems Architecture 77 (June 1, 2017),
pp. 1–2. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.2017.04.003.

[E2] Frank Hannig and Andreas Herkersdorf. “Introduction to the special issue on testing, proto-
typing, and debugging of multi-core architectures”. In: Journal of Systems Architecture 61.10
(Nov. 7, 2015), p. 600. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.2015.11.003.

62

https://doi.org/10.1007/978-3-319-26408-0_7
https://doi.org/10.1142/9781783266975_0010
https://doi.org/10.3233/978-1-61499-381-0-497
https://doi.org/10.3233/978-1-61499-381-0-497
https://doi.org/10.3233/978-1-61499-381-0-53
https://doi.org/10.1007/3-540-45874-3_9
https://doi.org/10.1016/j.sysarc.2017.04.003
https://doi.org/10.1016/j.sysarc.2015.11.003

A.2. Personal Bibliography

Journal Articles (27)

[J1] Alexandru Tanase, Michael Witterauf, Jürgen Teich, and Frank Hannig. “Symbolic multi-
level loop mapping of loop programs for massively parallel processor arrays”. In: ACM Trans-
actions on Embedded Computing Systems (TECS) 17.2 (Dec. 2017), 31:1–31:27. ISSN: 1539-9087.
DOI: 10.1145/3092952.

[J2] Vivek Singh Bhadouria, Alexandru Tanase, Moritz Schmid, Frank Hannig, Jürgen Teich, and
Dibyendu Ghoshal. “A novel image impulse noise removal algorithm optimized for hardware
accelerators”. In: Journal of Signal Processing Systems 89.2 (Nov. 1, 2017), pp. 225–242. ISSN:
1939-8018. DOI: 10.1007/s11265-016-1187-5.

[J3] Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro Bianco, Brad-
ford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel, Karl Fürlinger, Frank
Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul H. J. Kelly, Vitus J. Leung, Hatem
Ltaief, Naoya Maruyama, Chris J. Newburn, and Miquel Pericàs. “Trends in data locality
abstractions for HPC systems”. In: IEEE Transactions on Parallel and Distributed Systems 28.10
(Oct. 2017), pp. 3007–3020. ISSN: 1045-9219. DOI: 10.1109/TPDS.2017.2703149.

[J4] Heba Khdr, Santiago Pagani, Éricles R. Sousa, Vahid Lari, Anuj Pathania, Frank Hannig, Muham-
mad Shafique, Jürgen Teich, and Jörg Henkel. “Power density-aware resource management for
heterogeneous tiled multicores”. In: IEEE Transactions on Computers (TC) 66.3 (Mar. 1, 2017),
pp. 488–501. ISSN: 0018-9340. DOI: 10.1109/TC.2016.2595560.

[J5] Oliver Reiche, M. Akif Özkan, Frank Hannig, Jürgen Teich, and Moritz Schmid. “Loop
parallelization techniques for FPGA accelerator synthesis”. In: Journal of Signal Processing
Systems (Feb. 2017), 25 pp. ISSN: 1939-8018. DOI: 10.1007/s11265-017-1229-7. In press.

[J6] Harald Köstler, Christian Schmitt, Sebastian Kuckuk, Stefan Kronawitter, Frank Hannig, Jürgen
Teich, Ulrich Rüde, and Christian Lengauer. “A Scala prototype to generate multigrid solver
implementations for different problems and target multi-core platforms”. In: International
Journal of Computational Science and Engineering 14.2 (Jan. 2017), pp. 150–163. ISSN: 1742-7185.
DOI: 10.1504/IJCSE.2017.082879.

[J7] Santiago Pagani, Lars Bauer, Qingqing Chen, Elisabeth Glocker, Frank Hannig, Andreas
Herkersdorf, Heba Khdr, Anuj Pathania, Ulf Schlichtmann, Doris Schmitt-Landsiedel, Mark
Sagi, Éricles R. Sousa, Philipp Wagner, Volker Wenzel, Thomas Wild, and Jörg Henkel. “Dark
silicon management: An integrated and coordinated cross-layer approach”. In: it – Information
Technology (2016). ISSN: 1611-2776. DOI: 10.1515/itit-2016-0028.

[J8] Christian Schmitt, Moritz Schmid, Sebastian Kuckuk, Harald Köstler, Jürgen Teich, and Frank
Hannig. “Reconfigurable hardware generation of multigrid solvers with conjugate gradient
coarse-grid solution”. In: Parallel Processing Letters (2016). ISSN: 0129-6264. In press.

[J9] Richard Membarth, Oliver Reiche, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland
Eckert. “HIPAcc: A domain-specific language and compiler for image processing”. In: IEEE
Transactions on Parallel and Distributed Systems 27.1 (Jan. 1, 2016), pp. 210–224. ISSN: 1045-9219.
DOI: 10.1109/TPDS.2015.2394802.

[J10] Johny Paul, Walter Stechele, Benjamin Oechslein, Christoph Erhardt, Jens Schedel, Daniel
Lohmann, Wolfgang Schröder-Preikschat, Manfred Kröhnert, Tamim Asfour, Éricles R. Sousa,
Vahid Lari, Frank Hannig, Jürgen Teich, Artjom Grudnitsky, Lars Bauer, and Jörg Henkel.
“Resource awareness on heterogeneous mpsocs for image processing”. In: Journal of Systems
Architecture 61.10 (Nov. 6, 2015), pp. 668–680. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.
2015.09.002.

63

https://doi.org/10.1145/3092952
https://doi.org/10.1007/s11265-016-1187-5
https://doi.org/10.1109/TPDS.2017.2703149
https://doi.org/10.1109/TC.2016.2595560
https://doi.org/10.1007/s11265-017-1229-7
https://doi.org/10.1504/IJCSE.2017.082879
https://doi.org/10.1515/itit-2016-0028
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1016/j.sysarc.2015.09.002
https://doi.org/10.1016/j.sysarc.2015.09.002

A. Bibliography

[J11] Oliver Reiche, Konrad Häublein, Marc Reichenbach, Moritz Schmid, Frank Hannig, Jürgen
Teich, and Dietmar Fey. “Synthesis and optimization of image processing accelerators using
domain knowledge”. In: Journal of Systems Architecture 61.10 (Oct. 9, 2015), pp. 646–658. ISSN:
1383-7621. DOI: 10.1016/j.sysarc.2015.09.004.

[J12] Richard Membarth, Oliver Reiche, Christian Schmitt, Frank Hannig, Jürgen Teich, Markus
Stürmer, and Harald Köstler. “Towards a performance-portable description of geometric multi-
grid algorithms using a domain-specific language”. In: Journal of Parallel and Distributed
Computing 74.12 (Dec. 2014), pp. 3191–3201. ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2014.
08.008.

[J13] Sven Apel, Matthias Bolten, Armin Größlinger, Frank Hannig, Harald Köstler, Christian
Lengauer, Ulrich Rüde, and Jürgen Teich. “ExaStencils: Advanced stencil-code engineering”.
In: inSiDE 12.2 (Nov. 2014), pp. 60–63.

[J14] Alexander Grebhahn, Sebastian Kuckuk, Christian Schmitt, Harald Köstler, Norbert Siegmund,
Sven Apel, Frank Hannig, and Jürgen Teich. “Experiments on optimizing the performance of
stencil codes with SPL Conqueror”. In: Parallel Processing Letters 24.3 (Sept. 30, 2014), 19 pp.
ISSN: 0129-6264. DOI: 10.1142/S0129626414410011.

[J15] Jürgen Teich, Alexandru Tanase, and Frank Hannig. “Symbolic mapping of loop programs
onto processor arrays”. In: Journal of Signal Processing Systems 77.1–2 (July 11, 2014), pp. 31–59.
ISSN: 1939-8018. DOI: 10.1007/s11265-014-0905-0.

[J16] Harald Köstler, Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Jürgen Teich, and Ulrich
Rüde. “A Scala prototype to generate multigrid solver implementations for different problems
and target multi-core platforms”. In: The Computing Research Repository (CoRR) (June 20, 2014),
18 pp. arXiv: 1406.5369 [cs.MS].

[J17] Srinivas Boppu, Frank Hannig, and Jürgen Teich. “Compact code generation for tightly-
coupled processor arrays”. In: Journal of Signal Processing Systems 77.1–2 (May 31, 2014),
pp. 5–29. ISSN: 1939-8018. DOI: 10.1007/s11265-014-0891-2.

[J18] Frank Hannig, Vahid Lari, Srinivas Boppu, Alexandru Tanase, and Oliver Reiche. “Invasive
tightly-coupled processor arrays: A domain-specific architecture/compiler co-design approach”.
In: ACM Transactions on Embedded Computing Systems (TECS) 13.4s (Mar. 2014), 133:1–133:29.
ISSN: 1539-9087. DOI: 10.1145/2584660.

[J19] Vahid Lari, Shravan Muddasani, Srinivas Boppu, Frank Hannig, Moritz Schmid, and Jürgen
Teich. “Hierarchical power management for adaptive tightly-coupled processor arrays”. In:
ACM Transactions on Design Automation of Electronic Systems (TODAES) 18.1 (Jan. 2013), 2:1–
2:25. ISSN: 1084-4309. DOI: 10.1145/2390191.2390193.

[J20] Richard Membarth, Hritam Dutta, Frank Hannig, and Jürgen Teich. “Efficient mapping of
streaming applications for image processing on graphics cards”. In: Transactions on High-
Performance Embedded Architectures and Compilers (Transactions on HiPEAC) 5.3 (2011).

[J21] Dmitrij Kissler, Daniel Gran, Zoran A. Salcic, Frank Hannig, and Jürgen Teich. “Scalable many-
domain power gating in coarse-grained reconfigurable processor arrays”. In: IEEE Embedded
Systems Letters 3.2 (June 2011), pp. 58–61. ISSN: 1943-0663. DOI: 10 . 1109 / LES . 2011 .
2124438.

[J22] Dmitrij Kissler, Frank Hannig, and Jürgen Teich. “Efficient evaluation of power/area/latency
design trade-offs for coarse-grained reconfigurable processor arrays”. In: Journal of Low Power
Electronics 7.1 (Feb. 2011), pp. 29–40. ISSN: 1546-1998. DOI: 10.1166/jolpe.2011.1114.

64

https://doi.org/10.1016/j.sysarc.2015.09.004
https://doi.org/10.1016/j.jpdc.2014.08.008
https://doi.org/10.1016/j.jpdc.2014.08.008
https://doi.org/10.1142/S0129626414410011
https://doi.org/10.1007/s11265-014-0905-0
http://arxiv.org/abs/1406.5369
https://doi.org/10.1007/s11265-014-0891-2
https://doi.org/10.1145/2584660
https://doi.org/10.1145/2390191.2390193
https://doi.org/10.1109/LES.2011.2124438
https://doi.org/10.1109/LES.2011.2124438
https://doi.org/10.1166/jolpe.2011.1114

A.2. Personal Bibliography

[J23] Dmitrij Kissler, Andreas Strawetz, Frank Hannig, and Jürgen Teich. “Power-efficient reconfigu-
ration control in coarse-grained dynamically reconfigurable architectures”. In: Journal of Low
Power Electronics 5.1 (Apr. 2009), pp. 96–105. ISSN: 1546-1998. DOI: 10.1166/jolpe.2009.
1008.

[J24] Hritam Dutta, Dmitrij Kissler, Frank Hannig, Alexey Kupriyanov, Jürgen Teich, and Bernard
Pottier. “A holistic approach for tightly coupled reconfigurable parallel processors”. In: Mi-
croprocessors and Microsystems 33.1 (Feb. 2009), pp. 53–62. ISSN: 0141-9331. DOI: 10.1016/j.
micpro.2008.08.007.

[J25] Dmitrij Kissler, Frank Hannig, and Jürgen Teich. “Schwach programmiert macht stark – Massiv
parallele Prozessorfelder”. In: Design & Elektronik 4 (2007), pp. 34–39.

[J26] Hritam Dutta, Frank Hannig, Holger Ruckdeschel, and Jürgen Teich. “Efficient control gen-
eration for mapping nested loop programs onto processor arrays”. In: Journal of Systems
Architecture 53.5–6 (May–June 2007), pp. 300–309. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.
2006.10.009.

[J27] Frank Hannig, Hritam Dutta, and Jürgen Teich. “Mapping a class of dependence algorithms
to coarse-grained reconfigurable arrays: architectural parameters and methodology”. In: In-
ternational Journal of Embedded Systems 2.1/2 (2006), pp. 114–127. ISSN: 1741-1068. DOI:
10.1504/IJES.2006.010170.

Papers in Conference, Symposia, andWorkshop Proceedings (127)

[P1] Jörg Fickenscher, Jens Schlumberger, Frank Hannig, Mohamed Essayed Bouzouraa, and Jürgen
Teich. “Cell-based update algorithm for occupancy grid maps and hybrid map for ADAS on
embedded GPUs”. In: Proceedings of the Conference on Design, Automation and Test in Europe
(DATE). (Dresden, Germany). Mar. 19–23, 2018. Forthcoming.

[P2] Éricles R. Sousa, Alexandru Tanase, Frank Hannig, and Jürgen Teich. “A reconfigurable memory
architecture for system integration of coarse-grained reconfigurable arrays”. In: Proceedings
of the International Conference on Reconfigurable Computing and FPGAs (ReConFig). (Cancun,
Mexico). IEEE, Dec. 4–6, 2017.

[P3] Oliver Reiche, M. Akif Özkan, RichardMembarth, Jürgen Teich, and Frank Hannig. “Generating
FPGA-based image processing accelerators with Hipacc”. In: Proceedings of the International
Conference On Computer Aided Design (ICCAD). (Irvine, CA, USA). IEEE, Nov. 13–16, 2017,
pp. 1012–1019. ISBN: 978-1-5386-3093-8.

[P4] Sascha Roloff, Frank Hannig, and Jürgen Teich. “High performance network-on-chip simu-
lation by interval-based timing predictions”. In: Proceedings of the 15th IEEE/ACM Symposium
on Embedded Systems for Real-time Multimedia (ESTIMedia). (Seoul, Republic of Korea). ACM,
Oct. 15–20, 2017, pp. 2–11. ISBN: 978-1-4503-5117-1. DOI: 10.1145/3139315.3139320.

[P5] Michael Witterauf, Frank Hannig, and Jürgen Teich. “Constructing fast and cycle-accurate
simulators for configurable accelerators using C++ templates”. In: Proceedings of the 28th
International Symposium on Rapid System Prototyping (RSP). (Seoul, Republic of Korea). ACM,
Oct. 19–20, 2017, pp. 9–15. ISBN: 978-1-4503-5418-9. DOI: 10.1145/3130265.3130324.

[P6] Marcel Brand, Frank Hannig, Alexandru Tanase, and Jürgen Teich. “Orthogonal instruction
processing: An alternative to lightweight VLIW processors”. In: Proceedings of the IEEE 11th
International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). (Seoul,
Republic of Korea). IEEE Computer Society, Sept. 18–20, 2017, pp. 5–12. ISBN: 978-1-5386-
3441-7. DOI: 10.1109/MCSoC.2017.17.

65

https://doi.org/10.1166/jolpe.2009.1008
https://doi.org/10.1166/jolpe.2009.1008
https://doi.org/10.1016/j.micpro.2008.08.007
https://doi.org/10.1016/j.micpro.2008.08.007
https://doi.org/10.1016/j.sysarc.2006.10.009
https://doi.org/10.1016/j.sysarc.2006.10.009
https://doi.org/10.1504/IJES.2006.010170
https://doi.org/10.1145/3139315.3139320
https://doi.org/10.1145/3130265.3130324
https://doi.org/10.1109/MCSoC.2017.17

A. Bibliography

[P7] M. Akif Özkan, Oliver Reiche, Frank Hannig, and Jürgen Teich. “A highly efficient and com-
prehensive image processing library for C++-based high-level synthesis”. In: Proceedings of
the Fourth International Workshop on FPGAs for Software Programmers (FSP). (Ghent, Belgium).
VDE, Sept. 7, 2017, pp. 23–32. ISBN: 978-3-8007-4443-5.

[P8] Marcel Brand, Frank Hannig, Alexandru Tanase, and Jürgen Teich. “Efficiency in ILP processing
by using orthogonality”. In: Proceedings of the 28th Annual IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP). (Seattle, WA, USA). IEEE,
July 10–12, 2017, p. 207. ISBN: 978-1-5090-4825-0. DOI: 10.1109/ASAP.2017.7995282.

[P9] M. Akif Özkan, Oliver Reiche, Frank Hannig, and Jürgen Teich. “Hardware design and
analysis of efficient loop coarsening and border handling for image processing”. In: Proceedings
of the 28th Annual IEEE International Conference on Application-specific Systems, Architectures
and Processors (ASAP). (Seattle, WA, USA). IEEE, July 10–12, 2017, pp. 155–163. ISBN: 978-1-
5090-4825-0. DOI: 10.1109/ASAP.2017.7995273.

[P10] Jörg Fickenscher, Sebastian Reinhart, Mohamed Essayed Bouzouraa, Frank Hannig, and Jürgen
Teich. “Convoy tracking for ADAS on embedded GPUs”. In: Proceedings of the IEEE Intelligent
Vehicles Symposium (IV). (Redondo Beach, CA, USA). IEEE, June 11–14, 2017, pp. 959–965.
ISBN: 978-1-5090-4804-5. DOI: 10.1109/IVS.2017.7995839.

[P11] Oliver Reiche, Christof Kobylko, Frank Hannig, and Jürgen Teich. “Auto-vectorization
for image processing DSLs”. In: Proceedings of the 18th ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded systems (LCTES). (Barcelona, Spain). ACM,
June 21–22, 2017, pp. 21–30. ISBN: 978-1-4503-5030-3. DOI: 10.1145/3078633.3081039.

[P12] Jörg Fickenscher, Oliver Reiche, Jens Schlumberger, FrankHannig, and Jürgen Teich. “Modeling,
programming and performance analysis of automotive environment map representations on
embedded GPUs”. In: Proceedings of the 18th IEEE International High-Level Design Validation
and Test Workshop (HLDVT). (Santa Cruz, CA, USA). IEEE, Oct. 7–8, 2016, pp. 70–77. ISBN:
978-1-5090-4270-8. DOI: 10.1109/HLDVT.2016.7748257.

[P13] M. Akif Özkan, Oliver Reiche, Frank Hannig, and Jürgen Teich. “FPGA-based accelerator
design from a domain-specific language”. In: Proceedings of the 26th International Conference
on Field-Programmable Logic and Applications (FPL). (Lausanne, Switzerland). IEEE, Aug. 29–
Sept. 2, 2016, 9 pp. ISBN: 978-2-8399-1844-2. DOI: 10.1109/FPL.2016.7577357.

[P14] Konrad Häublein, Marc Reichenbach, Oliver Reiche, M. Akif Özkan, Dietmar Fey, Frank Hannig,
and Jürgen Teich. “Hybrid code description for developing fast and resource efficient image
processing architectures”. In: Proceedings of the 16th International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS). (Island of Samos, Greece).
July 18–21, 2016.

[P15] Michael Witterauf, Alexandru Tanase, Frank Hannig, and Jürgen Teich. “Modulo scheduling
of symbolically tiled loops for tightly coupled processor arrays”. In: Proceedings of the 27th IEEE
International Conference on Application-specific Systems, Architectures and Processors (ASAP).
(London, United Kingdom). IEEE, July 6–8, 2016.

[P16] Sascha Roloff, Alexander Pöppl, Tobias Schwarzer, Stefan Wildermann, Michael Bader,
Michael Glaß, Frank Hannig, and Jürgen Teich. “ActorX10: An actor library for X10”. In:
Proceedings of the Sixth ACM SIGPLAN X10 Workshop (X10). (Santa Barbara, CA, USA). ACM,
June 14, 2016, pp. 24–29. ISBN: 978-1-4503-4386-2. DOI: 10.1145/2931028.2931033.

66

https://doi.org/10.1109/ASAP.2017.7995282
https://doi.org/10.1109/ASAP.2017.7995273
https://doi.org/10.1109/IVS.2017.7995839
https://doi.org/10.1145/3078633.3081039
https://doi.org/10.1109/HLDVT.2016.7748257
https://doi.org/10.1109/FPL.2016.7577357
https://doi.org/10.1145/2931028.2931033

A.2. Personal Bibliography

[P17] Éricles R. Sousa, Frank Hannig, and Jürgen Teich. “Reconfigurable buffer structures for coarse-
grained reconfigurable arrays”. In: Proceedings of the 5th IFIP International Embedded Systems
Symposium (IESS). (Foz do Iguaçu, Brazil). Lecture Notes in Computer Science (LNCS). Springer,
Nov. 3–6, 2015, 10 pp.

[P18] Sascha Roloff, Stefan Wildermann, Frank Hannig, and Jürgen Teich. “Invasive computing for
predictable stream processing: A simulation-based case study”. In: Proceedings of the 13th IEEE
Symposium on Embedded Systems for Real-time Multimedia (ESTIMedia). (Amsterdam, The
Netherlands). IEEE, Oct. 8–9, 2015, 2 pp. ISBN: 978-1-4673-8164-2. DOI: 10.1109/ESTIMedia.
2015.7351761.

[P19] Alexandru Tanase, Michael Witterauf, Jürgen Teich, and Frank Hannig. “Symbolic loop paral-
lelization for balancing I/O and memory accesses on processor arrays”. In: Proceedings of the
13th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEM-
OCODE). (Austin, TX, USA). IEEE, Sept. 21–23, 2015, pp. 188–197. ISBN: 978-1-5090-0237-5.
DOI: 10.1109/MEMCOD.2015.7340486.

[P20] Moritz Schmid, Oliver Reiche, Frank Hannig, and Jürgen Teich. “Loop coarsening in C-based
high-level synthesis”. In: Proceedings of the 26th IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP). (Toronto, Canada). IEEE, July 27–29, 2015,
pp. 166–173. ISBN: 978-1-4799-1925-3. DOI: 10.1109/ASAP.2015.7245730.

[P21] Alexandru Tanase,MichaelWitterauf, Jürgen Teich, FrankHannig, and Vahid Lari. “On-demand
fault-tolerant loop processing on massively parallel processor arrays”. In: Proceedings of the
26th IEEE International Conference on Application-specific Systems, Architectures and Processors
(ASAP). (Toronto, Canada). IEEE, July 27–29, 2015, pp. 194–201. ISBN: 978-1-4799-1925-3. DOI:
10.1109/ASAP.2015.7245734.

[P22] Michael Witterauf, Alexandru Tanase, Frank Hannig, and Jürgen Teich. “Adaptive fault toler-
ance in tightly coupled processor arrays with invasive computing”. In: Proceedings of ACACES
2015 Poster Abstracts: Advanced Computer Architecture and Compilation for Embedded Systems.
(Fiuggi, Italy). HiPEAC, July 12–18, 2015, pp. 205–208. ISBN: 978-88-905806-3-5.

[P23] Vahid Lari, Alexandru Tanase, Jürgen Teich, Michael Witterauf, Faramarz Khosravi, Frank
Hannig, and Brett H. Meyer. “A co-design approach for fault-tolerant loop execution on
coarse-grained reconfigurable arrays”. In: Proceedings of the NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). (Montréal, Quebec, Canada). IEEE, June 15–18, 2015.

[P24] Sascha Roloff, David Schafhauser, Frank Hannig, and Jürgen Teich. “Execution-driven
parallel simulation of PGAS applications on heterogeneous tiled architectures”. In: Proceedings
of the 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). (San Francisco, CA, USA).
HiPEAC Paper Award. ACM, June 7–11, 2015, 44:1–44:6. ISBN: 978-1-4503-3520-1. DOI:
10.1145/2744769.2744840.

[P25] Éricles R. Sousa, Frank Hannig, Jürgen Teich, Qingqing Chen, and Ulf Schlichtmann. “Runtime
adaptation of application execution under thermal and power constraints in massively parallel
processor arrays”. In: Proceedings of the 18th International Workshop on Software and Compilers
for Embedded Systems (SCOPES). (St. Goar, Germany). ACM, June 1–3, 2015, pp. 121–124. ISBN:
978-1-4503-3593-5. DOI: 10.1145/2764967.2771933.

[P26] Oliver Reiche, Konrad Häublein, Marc Reichenbach, Frank Hannig, Jürgen Teich, and Dietmar
Fey. “Automatic optimization of hardware accelerators for image processing”. In: Proceedings
of the DATE Friday Workshop on Heterogeneous Architectures and Design Methods for Embedded
Image Systems (HIS). (Grenoble, France). Mar. 13, 2015, pp. 10–15. arXiv: 1502.07448 [cs.PL].

67

https://doi.org/10.1109/ESTIMedia.2015.7351761
https://doi.org/10.1109/ESTIMedia.2015.7351761
https://doi.org/10.1109/MEMCOD.2015.7340486
https://doi.org/10.1109/ASAP.2015.7245730
https://doi.org/10.1109/ASAP.2015.7245734
https://doi.org/10.1145/2744769.2744840
https://doi.org/10.1145/2764967.2771933
http://arxiv.org/abs/1502.07448

A. Bibliography

[P27] Christian Schmitt, Moritz Schmid, Frank Hannig, Jürgen Teich, Sebastian Kuckuk, and Harald
Köstler. “Generation of multigrid-based numerical solvers for FPGA accelerators”. In: Proceed-
ings of the 2nd International Workshop on High-Performance Stencil Computations (HiStencils).
(Amsterdam, The Netherlands). Ed. by Armin Größlinger and Harald Köstler. Jan. 20, 2015,
pp. 9–15.

[P28] DeepakGangadharan, Éricles R. Sousa, Vahid Lari, FrankHannig, and Jürgen Teich. “Application-
driven reconfiguration of shared resources for timing predictability of MPSoC platforms”. In:
Proceedings of Asilomar Conference on Signals, Systems, and Computers (ACSSC). (Pacific Grove,
CA, USA). IEEE, Nov. 2–5, 2014, pp. 398–403. ISBN: 978-1-4799-8297-4. DOI: 10.1109/ACSSC.
2014.7094471.

[P29] Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Harald Köstler, and Jürgen Teich.
“ExaSlang: A domain-specific language for highly scalable multigrid solvers”. In: Proceedings of
the 4th International Workshop on Domain-Specific Languages and High-Level Frameworks for
High Performance Computing (WOLFHPC). (New Orleans, LA, USA). IEEE Computer Society,
Nov. 17, 2014, pp. 42–51. ISBN: 978-1-4799-7020-9. DOI: 10.1109/WOLFHPC.2014.11.

[P30] Johny Paul, Walter Stechele, Éricles R. Sousa, Vahid Lari, Frank Hannig, Jürgen Teich, Manfred
Kröhnert, and Tamim Asfour. “Self adaptive harris corner detection on heterogeneous many-
core processor”. In: Proceedings of the Conference on Design and Architectures for Signal and
Image Processing (DASIP). (Madrid, Spain). IEEE, Oct. 8–10, 2014, 8 pp. ISBN: 979-1-09-227905-4.
DOI: 10.1109/DASIP.2014.7115616.

[P31] Oliver Reiche, Moritz Schmid, Frank Hannig, Richard Membarth, and Jürgen Teich. “Code
generation from a domain-specific language for C-based HLS of hardware accelerators”. In:
Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). (New Dehli, India). ACM, Oct. 12–17, 2014, 17:1–17:10. ISBN: 978-1-4503-3051-0.
DOI: 10.1145/2656075.2656081.

[P32] Alexandru Tanase, MichaelWitterauf, Jürgen Teich, and Frank Hannig. “Symbolic inner loop
parallelisation for massively parallel processor arrays”. In: Proceedings of the 12th ACM/IEEE
International Conference on Formal Methods and Models for System Design (MEMOCODE).
(Lausanne, Switzerland). IEEE, Oct. 19–21, 2014, pp. 219–228. ISBN: 978-1-4799-5338-7. DOI:
10.1109/MEMCOD.2014.6961865.

[P33] Moritz Schmid, Nicolas Apelt, Frank Hannig, and Jürgen Teich. “An image processing
library for C-based high-level synthesis”. In: Proceedings of the 24th International Conference
on Field Programmable Logic and Applications (FPL). (Munich, Germany). IEEE, Sept. 2–4, 2014,
4 pp. DOI: 10.1109/FPL.2014.6927424.

[P34] Moritz Schmid, Oliver Reiche, Christian Schmitt, Frank Hannig, and Jürgen Teich. “Code
generation for high-level synthesis of multiresolution applications on FPGAs”. In: Proceedings of
the First International Workshop on FPGAs for Software Programmers (FSP). (Munich, Germany).
Sept. 1, 2014, pp. 21–26. arXiv: 1408.4721 [cs.CV].

[P35] Christian Lengauer, Sven Apel, Matthias Bolten, Armin Größlinger, Frank Hannig, Harald
Köstler, Ulrich Rüde, Jürgen Teich, Alexander Grebhahn, Stefan Kronawitter, Sebastian Kuckuk,
Hannah Rittich, and Christian Schmitt. “ExaStencils: Advanced stencil-code engineering”. In:
Proceedings of Euro-Par 2014: Parallel Processing Workshops. (Porto, Portugal). Vol. 8806. Lecture
Notes in Computer Science (LNCS). Springer, Aug. 25–29, 2014, pp. 553–564. ISBN: 978-3-319-
14312-5. DOI: 10.1007/978-3-319-14313-2_47.

68

https://doi.org/10.1109/ACSSC.2014.7094471
https://doi.org/10.1109/ACSSC.2014.7094471
https://doi.org/10.1109/WOLFHPC.2014.11
https://doi.org/10.1109/DASIP.2014.7115616
https://doi.org/10.1145/2656075.2656081
https://doi.org/10.1109/MEMCOD.2014.6961865
https://doi.org/10.1109/FPL.2014.6927424
http://arxiv.org/abs/1408.4721
https://doi.org/10.1007/978-3-319-14313-2_47

A.2. Personal Bibliography

[P36] Éricles R. Sousa, Deepak Gangadharan, Frank Hannig, and Jürgen Teich. “Runtime reconfig-
urable bus arbitration for concurrent applications on heterogeneous MPSoC architectures”. In:
Proceedings of the 17th Euromicro Conference on Digital Systems Design (DSD). (Verona, Italy).
IEEE, Aug. 27–29, 2014, pp. 74–81. ISBN: 978-1-4799-5793-4. DOI: 10.1109/DSD.2014.105.

[P37] Moritz Schmid, Alexandru Tanase, Frank Hannig, Jürgen Teich, Vivek Singh Bhadouria, and
Dibyendu Ghoshal. “Domain-specific augmentations for high-level synthesis”. In: Proceedings
of the 25th IEEE International Conference on Application-specific Systems, Architectures and
Processors (ASAP). (Zurich, Switzerland). IEEE, June 18–20, 2014, pp. 173–177. ISBN: 978-1-
4799-3609-0. DOI: 10.1109/ASAP.2014.6868653.

[P38] Christian Schmitt, Sebastian Kuckuk, Harald Köstler, Frank Hannig, and Jürgen Teich. “An
evaluation of domain-specific language technologies for code generation”. In: Proceedings of the
14th International Conference on Computational Science and its Applications (ICCSA). (Guimaraes,
Portugal). IEEE Computer Society, June 30–July 3, 2014, pp. 18–26. ISBN: 978-1-4799-4264-0.
DOI: 10.1109/ICCSA.2014.16.

[P39] Vahid Lari, Alexandru Tanase, Frank Hannig, and Jürgen Teich. “Massively parallel processor
architectures for resource-aware computing”. In: Proceedings of the First Workshop on Resource
Awareness and Adaptivity in Multi-Core Computing (Racing 2014). (Paderborn, Germany).
May 29–30, 2014, pp. 1–7. arXiv: 1405.2907 [cs.AR].

[P40] Deepak Gangadharan, Alexandru Tanase, Frank Hannig, and Jürgen Teich. “Timing analysis
of a heterogeneous architecture with massively parallel processor arrays”. In: Proceedings of
the DATE Friday Workshop on Performance, Power and Predictability of Many-Core Embedded
Systems (3PMCES). (Dresden, Germany). ECSI, Mar. 28, 2014.

[P41] Richard Membarth, Oliver Reiche, Frank Hannig, and Jürgen Teich. “Code generation for
embedded heterogeneous architectures on Android”. In: Proceedings of the Conference on Design,
Automation and Test in Europe (DATE). (Dresden, Germany). European Design and Automation
Association (EDAA), Mar. 24–28, 2014, 86:1–86:6. DOI: 10.7873/DATE.2014.099.

[P42] Sascha Roloff, Frank Hannig, and Jürgen Teich. “Towards actor-oriented programming on
PGAS-based multicore architectures”. In: Workshop Proceedings of the 27th International Confer-
ence on Architecture of Computing Systems (ARCS). (Lübeck, Germany). VDE Verlag, Feb. 25–28,
2014. ISBN: 978-3-8007-3579-2.

[P43] Moritz Schmid, Markus Blocherer, Frank Hannig, and Jürgen Teich. “Real-time range image
preprocessing on FPGAs”. In: Proceedings of the International Conference on Reconfigurable
Computing and FPGAs (ReConFig). (Cancun, Mexico). Dec. 9–11, 2013. ISBN: 978-1-4799-2078-5.
DOI: 10.1109/ReConFig.2013.6732325.

[P44] Éricles R. Sousa, Alexandru Tanase, Frank Hannig, and Jürgen Teich. “A prototype of an adap-
tive computer vision algorithm on an MPSoC architecture”. In: Proceedings of the Conference
on Design and Architectures for Signal and Image Processing (DASIP). (Cagliari, Italy). IEEE,
Oct. 8–10, 2013, pp. 353–354. ISBN: 979-1-09-227901-6.

[P45] Éricles R. Sousa, Alexandru Tanase, Frank Hannig, and Jürgen Teich. “Accuracy and per-
formance analysis of harris corner computation on tightly-coupled processor arrays”. In:
Proceedings of the Conference on Design and Architectures for Signal and Image Processing
(DASIP). (Cagliari, Italy). IEEE, Oct. 8–10, 2013, pp. 88–95. ISBN: 979-1-09-227901-6.

69

https://doi.org/10.1109/DSD.2014.105
https://doi.org/10.1109/ASAP.2014.6868653
https://doi.org/10.1109/ICCSA.2014.16
http://arxiv.org/abs/1405.2907
https://doi.org/10.7873/DATE.2014.099
https://doi.org/10.1109/ReConFig.2013.6732325

A. Bibliography

[P46] Srinivas Boppu, Frank Hannig, and Jürgen Teich. “Loop program mapping and compact
code generation for programmable hardware accelerators”. In: Proceedings of the 24th IEEE
International Conference on Application-specific Systems, Architectures and Processors (ASAP).
(Washington, DC, USA). IEEE, June 5–7, 2013, pp. 10–17. ISBN: 978-1-4799-0493-8. DOI: 10.
1109/ASAP.2013.6567544.

[P47] Sascha Roloff, Andreas Weichslgartner, Jan Heißwolf, Frank Hannig, and Jürgen Teich. “NoC
simulation in heterogeneous architectures for PGAS programming model”. In: Proceedings of
the 16th International Workshop on Software and Compilers for Embedded Systems (M-SCOPES).
(St. Goar, Germany). ACM, June 19–21, 2013, pp. 77–85. ISBN: 978-1-4503-2142-6. DOI: 10.
1145/2463596.2463606.

[P48] Jürgen Teich, Alexandru Tanase, and Frank Hannig. “Symbolic parallelization of loop programs
for massively parallel processor arrays”. In: Proceedings of the 24th IEEE International Conference
on Application-specific Systems, Architectures and Processors (ASAP). (Washington, DC, USA).
Best Paper Award. IEEE, June 5–7, 2013, pp. 1–9. ISBN: 978-1-4799-0493-8. DOI: 10.1109/
ASAP.2013.6567543.

[P49] Srinivas Boppu, Vahid Lari, Frank Hannig, and Jürgen Teich. “Transactor-based prototyping of
heterogeneous multiprocessor system-on-chip architectures”. In: Proceedings of the Synopsys
Users Group Conference (SNUG). (Munich, Germany). May 14, 2013.

[P50] Frank Hannig, Moritz Schmid, Vahid Lari, Srinivas Boppu, and Jürgen Teich. “System integra-
tion of tightly-coupled processor arrays using reconfigurable buffer structures”. In: Proceedings
of the ACM International Conference on Computing Frontiers (CF). (Ischia, Italy). ACM, May 14–
16, 2013, 2:1–2:4. ISBN: 978-1-4503-2053-5. DOI: 10.1145/2482767.2482770.

[P51] Éricles R. Sousa, Alexandru Tanase, Vahid Lari, Frank Hannig, Jürgen Teich, Johny Paul, Walter
Stechele, Manfred Kröhnert, and Tamim Asfour. “Acceleration of optical flow computations on
tightly-coupled processor arrays”. In: Proceedings of the 25th Workshop on Parallel Systems and
Algorithms (PARS). (Erlangen, Germany). Vol. 30. Mitteilungen – Gesellschaft für Informatik e.
V., Parallel-Algorithmen und Rechnerstrukturen. Gesellschaft für Informatik e. V., Apr. 11–12,
2013, pp. 80–89.

[P52] Frank Hannig. “Resource-aware computing on domain-specific accelerators”. In: Proceedings
of the 10st Workshop on Optimizations for DSP and Embedded Systems (ODES). (Shenzhen,
China). Keynote Speech. ACM, Feb. 24, 2013, p. 35. ISBN: 978-1-4503-1905-8. DOI: 10.1145/
2443608.2443616.

[P53] Richard Membarth, Frank Hannig, Jürgen Teich, and Harald Köstler. “Towards domain-specific
computing for stencil codes in HPC”. In: Proceedings of the 2nd International Workshop on
Domain-Specific Languages and High-Level Frameworks for High Performance Computing
(WOLFHPC). (Salt Lake City, UT, USA). Nov. 16, 2012, pp. 1133–1138. ISBN: 978-1-4673-6218-4.
DOI: 10.1109/SC.Companion.2012.136.

[P54] Shravan Muddasani, Srinivas Boppu, Frank Hannig, Boris Kuzmin, Vahid Lari, and Jürgen
Teich. “A prototype of an invasive tightly-coupled processor array”. In: Proceedings of the
Conference on Design and Architectures for Signal and Image Processing (DASIP). (Karlsruhe,
Germany). IEEE, Oct. 23–25, 2012, pp. 393–394. ISBN: 978-1-4673-2089-4.

[P55] Michael Gerndt, Frank Hannig, Andreas Herkersdorf, Andreas Hollmann, Marcel Meyer,
Sascha Roloff, Josef Weidendorfer, Thomas Wild, and Aurang Zaib. “An integrated simulation
framework for invasive computing”. In: Proceedings of the Forum on Specification and Design
Languages (FDL). (Vienna, Austria). IEEE, Sept. 18–20, 2012, pp. 209–216. ISBN: 978-1-4673-
1240-0.

70

https://doi.org/10.1109/ASAP.2013.6567544
https://doi.org/10.1109/ASAP.2013.6567544
https://doi.org/10.1145/2463596.2463606
https://doi.org/10.1145/2463596.2463606
https://doi.org/10.1109/ASAP.2013.6567543
https://doi.org/10.1109/ASAP.2013.6567543
https://doi.org/10.1145/2482767.2482770
https://doi.org/10.1145/2443608.2443616
https://doi.org/10.1145/2443608.2443616
https://doi.org/10.1109/SC.Companion.2012.136

A.2. Personal Bibliography

[P56] Richard Membarth, Frank Hannig, Jürgen Teich, Mario Körner, andWieland Eckert. “Mastering
software variant explosion for gpu accelerators”. In: Proceedings of the International Workshop
on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar)
in Euro-Par 2012: Parallel Processing Workshops. (Rhodes Island, Greece). Ed. by Ioannis Cara-
giannis, Michael Alexander, Rosa Maria Badia, Mario Cannataro, Alexandru Costan, Marco
Danelutto, Frédéric Desprez, Bettina Krammer, Julio Sahuquillo, Stephen L. Scott, and Josef
Weidendorfer. Vol. 7640. Lecture Notes in Computer Science (LNCS). Springer, Aug. 27–27,
2012, pp. 123–132. ISBN: 978-3-642-36948-3. DOI: 10.1007/978-3-642-36949-0_15.

[P57] Vahid Lari, Shravan Muddasani, Srinivas Boppu, Frank Hannig, and Jürgen Teich. “Design of
low power on-chip processor arrays”. In: Proceedings of the 23rd IEEE International Conference
on Application-specific Systems, Architectures and Processors (ASAP). (Delft, The Netherlands).
IEEE Computer Society, July 9–11, 2012, pp. 165–168. ISBN: 978-0-7695-4768-8. DOI: 10.1109/
ASAP.2012.10.

[P58] Sascha Roloff, Frank Hannig, and Jürgen Teich. “Simulation of resource-aware applications
on heterogeneous architectures”. In: Proceedings of ACACES 2012 Poster Abstracts: Advanced
Computer Architecture and Compilation for Embedded Systems. (Fiuggi, Italy). Academia Press,
Ghent, July 8–14, 2012, pp. 127–130. ISBN: 978-90-382-1987-5.

[P59] Alexandru Tanase, Frank Hannig, and Jürgen Teich. “Symbolic loop parallelization of static
control programs”. In: Proceedings of ACACES 2012 Poster Abstracts: Advanced Computer Archi-
tecture and Compilation for Embedded Systems. (Fiuggi, Italy). Academia Press, Ghent, July 8–14,
2012, pp. 33–36. ISBN: 978-90-382-1987-5.

[P60] RichardMembarth, Frank Hannig, Jürgen Teich, Mario Körner, andWieland Eckert. “Automatic
optimization of in-flight memory transactions for GPU accelerators based on a domain-specific
language for medical imaging”. In: Proceedings of the 11th International Symposium on Parallel
and Distributed Computing (ISPDC). (Munich, Germany). IEEE, June 25–29, 2012, pp. 211–218.
DOI: 10.1109/ISPDC.2012.36.

[P61] Richard Membarth, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland Eckert. “Gen-
erating device-specific GPU code for local operators in medical imaging”. In: Proceedings of
the 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS). (Shanghai,
China). IEEE, May 21–25, 2012, pp. 569–581. ISBN: 978-0-7695-4675-9. DOI: 10.1109/IPDPS.
2012.59.

[P62] Sascha Roloff, Frank Hannig, and Jürgen Teich. “Fast architecture evaluation of heterogeneous
MPSoCs by host-compiled simulation”. In: Proceedings of the 15th International Workshop on
Software and Compilers for Embedded Systems (SCOPES). (St. Goar, Germany). ACM Press,
May 15–16, 2012, pp. 52–61. ISBN: 978-1-4503-1336-0. DOI: 10.1145/2236576.2236582.

[P63] Moritz Schmid, Frank Hannig, and Jürgen Teich. “Power management strategies for serial
RapidIO endpoints in FPGAs”. In: Proceedings of the 20th Annual IEEE International Symposium
on Field-Programmable Custom Computing Machines (FCCM). (Toronto, Canada). HiPEAC
Paper Award. IEEE, Apr. 29–May 1, 2012, pp. 101–108. ISBN: 978-0-7695-4699-5. DOI: 10.
1109/FCCM.2012.26.

[P64] Richard Membarth, Jan-Hugo Lupp, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland
Eckert. “Dynamic task-scheduling and resource management for GPU accelerators in medical
imaging”. In: Proceedings of the 25th International Conference on Architecture of Computing
Systems (ARCS). (Munich, Germany). Ed. by Andreas Herkersdorf, Kay Römer, and Uwe
Brinkschulte. Vol. 7179. Lecture Notes in Computer Science (LNCS). Springer, Feb. 28–Mar. 2,
2012, pp. 147–159. ISBN: 978-3-642-28292-8. DOI: 10.1007/978-3-642-28293-5_13.

71

https://doi.org/10.1007/978-3-642-36949-0_15
https://doi.org/10.1109/ASAP.2012.10
https://doi.org/10.1109/ASAP.2012.10
https://doi.org/10.1109/ISPDC.2012.36
https://doi.org/10.1109/IPDPS.2012.59
https://doi.org/10.1109/IPDPS.2012.59
https://doi.org/10.1145/2236576.2236582
https://doi.org/10.1109/FCCM.2012.26
https://doi.org/10.1109/FCCM.2012.26
https://doi.org/10.1007/978-3-642-28293-5_13

A. Bibliography

[P65] Sascha Roloff, Frank Hannig, and Jürgen Teich. “Approximate time functional simulation of
resource-aware programming concepts for heterogeneous MPSoCs”. In: Proceedings of the 17th
Asia and South Pacific Design Automation Conference (ASP-DAC). (Sydney, Australia). Jan. 30–
Feb. 2, 2012, pp. 187–192. ISBN: 978-1-4673-0770-3. DOI: 10.1109/ASPDAC.2012.6164943.

[P66] Srinivas Boppu, Frank Hannig, Jürgen Teich, and Roberto Perez-Andrade. “Towards symbolic
run-time reconfiguration in tightly-coupled processor arrays”. In: Proceedings of the Inter-
national Conference on Reconfigurable Computing and FPGAs (ReConFig). (Cancun, Mexico).
IEEE Computer Society, Nov. 30–Dec. 2, 2011, pp. 392–397. ISBN: 978-1-4577-1734-5. DOI:
10.1109/ReConFig.2011.91.

[P67] Vahid Lari, Andriy Narovlyanskyy, Frank Hannig, and Jürgen Teich. “Decentralized dynamic
resource management support for massively parallel processor arrays”. In: Proceedings of the
22nd IEEE International Conference on Application-specific Systems, Architectures and Processors
(ASAP). (Santa Monica, CA, USA). IEEE Computer Society, Sept. 11–14, 2011, pp. 87–94. ISBN:
978-1-4577-1291-3. DOI: 10.1109/ASAP.2011.6043240.

[P68] Georgia Kouveli, Frank Hannig, Jan-Hugo Lupp, and Jürgen Teich. “Towards resource-aware
programming on Intel’s single-chip cloud computer processor”. In: 3rd Many-core Applications
Research Community (MARC) Symposium. (Ettlingen, Germany). Vol. 7598. KIT Scientific
Reports. KIT Scientific Publishing, July 5–6, 2011, pp. 111–114. ISBN: 978-3-86644-717-2.

[P69] Frank Hannig, Sascha Roloff, Gregor Snelting, Jürgen Teich, and Andreas Zwinkau. “Resource-
aware programming and simulation of MPSoC architectures through extension of X10”. In:
Proceedings of the 14th International Workshop on Software and Compilers for Embedded Systems
(SCOPES). (St. Goar, Germany). ACM Press, June 27–28, 2011, pp. 48–55. ISBN: 978-1-4503-
0763-5. DOI: 10.1145/1988932.1988941.

[P70] Richard Membarth, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland Eckert. “Frame-
works for GPU accelerators: A comprehensive evaluation using 2d/3d image registration”. In:
Proceedings of the 9th IEEE Symposium on Application Specific Processors (SASP). (San Diego,
CA, USA). June 5–6, 2011, pp. 78–81. ISBN: 978-1-4577-1211-1. DOI: 10.1109/SASP.2011.
5941083.

[P71] Vahid Lari, Frank Hannig, and Jürgen Teich. “Distributed resource reservation in massively
parallel processor arrays”. In: Proceedings of the International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). (Anchorage, AK, USA). IEEE Computer Society, May 16–17,
2011, pp. 318–321. ISBN: 978-0-7695-4385-7. DOI: 10.1109/IPDPS.2011.157.

[P72] Richard Membarth, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland Eckert. “Frame-
works for multi-core architectures: A comprehensive evaluation using 2d/3d image registra-
tion”. In: Proceedings of the 24th International Conference on Architecture of Computing Systems
(ARCS). (Lake Como, Italy). Vol. 6566. Lecture Notes in Computer Science (LNCS). Springer,
Feb. 22–25, 2011, pp. 62–73. ISBN: 978-3-642-19136-7. DOI: 10.1007/978-3-642-19137-4_6.

[P73] Richard Membarth, Frank Hannig, Jürgen Teich, Gerhard Litz, and Heinz Hornegger. “Detector
defect correction of medical images on graphics processors”. In: Proceedings of SPIE Medical
Imaging. (Lake Buena Vista, FL, USA). Vol. 7962. Feb. 12–17, 2011, pp. 79624M 1–12. DOI:
10.1117/12.877656.

[P74] Frank Hannig, Moritz Schmid, Jürgen Teich, and Heinz Hornegger. “A deeply pipelined and
parallel architecture for denoising medical images”. In: Proceedings of the IEEE International
Conference on Field Programmable Technology (FPT). (Beijing, China). IEEE, Dec. 8–10, 2010,
pp. 485–490. ISBN: 978-1-4244-8982-4. DOI: 10.1109/FPT.2010.5681464.

72

https://doi.org/10.1109/ASPDAC.2012.6164943
https://doi.org/10.1109/ReConFig.2011.91
https://doi.org/10.1109/ASAP.2011.6043240
https://doi.org/10.1145/1988932.1988941
https://doi.org/10.1109/SASP.2011.5941083
https://doi.org/10.1109/SASP.2011.5941083
https://doi.org/10.1109/IPDPS.2011.157
https://doi.org/10.1007/978-3-642-19137-4_6
https://doi.org/10.1117/12.877656
https://doi.org/10.1109/FPT.2010.5681464

A.2. Personal Bibliography

[P75] Tom Vander Aa, Praveen Raghavan, Scott Mahlke, Bjorn De Sutter, Aviral Shrivastava, and
Frank Hannig. “Compilation techniques for CGRAs: exploring all parallelization approaches”.
In: Proceedings of the International Conference on Hardware-Software Codesign and System
Synthesis (CODES+ISSS). (Scottsdale, AZ, USA). ACM, Oct. 24–29, 2010, pp. 185–186. ISBN:
978-1-60558-905-3. DOI: 10.1145/1878961.1878995.

[P76] Hritam Dutta, Frank Hannig, Moritz Schmid, and Joachim Keinert. “Modeling and synthesis
of communication subsystems for loop accelerator pipelines”. In: Proceedings of the 21st IEEE
International Conference on Application-specific Systems, Architectures and Processors (ASAP).
(Rennes, France). IEEE Computer Society, July 7–9, 2010, pp. 125–132. ISBN: 978-1-4244-6967-3.
DOI: 10.1109/ASAP.2010.5540760.

[P77] Richard Membarth, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland Eckert. “Compari-
son of parallelization frameworks for shared memory multi-core architectures”. In: Proceedings
of the Embedded World Conference. (Nuremberg, Germany). Mar. 3–5, 2010.

[P78] Moritz Schmid, Frank Hannig, Jürgen Teich, Ralf Diefenbach, Hartmut Pettendorf, and Heinz
Hornegger. “Discourse on extending embedded medical image processing systems using the
high speed serial RapidIO interconnect”. In: Proceedings of the Embedded World Conference.
(Nuremberg, Germany). Mar. 3–5, 2010.

[P79] Amouri Abdulazim, Farhadur Arifin, Frank Hannig, and Jürgen Teich. “FPGA implementation
of an invasive computing architecture”. In: Proceedings of the IEEE International Conference on
Field Programmable Technology (FPT). (Sydney, Australia). IEEE, Dec. 9–11, 2009, pp. 135–142.
ISBN: 978-1-4244-4376-5. DOI: 10.1109/FPT.2009.5377633.

[P80] Farhadur Arifin, RichardMembarth, Amouri Abdulazim, FrankHannig, and Jürgen Teich. “FSM-
controlled architectures for linear invasion”. In: Proceedings of the 17th IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC). (Florianópolis, Brazil). IEEE, Oct. 12–14,
2009, pp. 59–64. ISBN: 978-1-4577-0237-2. DOI: 10.1109/VLSISOC.2009.6041331.

[P81] Vahid Lari, Frank Hannig, and Jürgen Teich. “System integration of tightly-coupled reconfig-
urable processor arrays and evaluation of buffer size effects on their performance”. In: Pro-
ceedings of the 4th International Symposium on Embedded Multicore Systems-on-Chip (MCSoC).
(Vienna, Austria). IEEE Computer Society, Sept. 22–25, 2009, pp. 528–534. ISBN: 978-1-4244-
4923-1. DOI: 10.1109/ICPPW.2009.72.

[P82] Hritam Dutta, Jiali Zhai, Frank Hannig, and Jürgen Teich. “Impact of loop tiling on the
controller logic of hardware acceleration engines”. In: Proceedings of the 20th IEEE International
Conference on Application-specific Systems, Architectures and Processors (ASAP). (Boston, MA,
USA). IEEE Computer Society, July 7–9, 2009, pp. 161–168. ISBN: 978-0-7695-3732-0. DOI:
10.1109/ASAP.2009.21.

[P83] Richard Membarth, Frank Hannig, Hritam Dutta, and Jürgen Teich. “Efficient mapping of
multiresolution image filtering algorithms on graphics processors”. In: Proceedings of the 9th
International Workshop on Systems, Architectures, Modeling, and Simulation (SAMOS). (Island of
Samos, Greece). Ed. by Koen Bertels, Nikitas Dimopoulos, Christina Silvano, and StephanWong.
Vol. 5657. Lecture Notes in Computer Science (LNCS). Springer, July 20–23, 2009, pp. 277–288.
ISBN: 978-3-642-03137-3. DOI: 10.1007/978-3-642-03138-0_31.

[P84] Richard Membarth, Frank Hannig, Hritam Dutta, and Jürgen Teich. “Optimization flow for algo-
rithm mapping on graphics cards”. In: Proceedings of ACACES 2009 Poster Abstracts: Advanced
Computer Architecture and Compilation for Embedded Systems. (Terrassa, Spain). Academia
Press, Ghent, July 12–18, 2009, pp. 229–232. ISBN: 978-90-382-1467-2.

73

https://doi.org/10.1145/1878961.1878995
https://doi.org/10.1109/ASAP.2010.5540760
https://doi.org/10.1109/FPT.2009.5377633
https://doi.org/10.1109/VLSISOC.2009.6041331
https://doi.org/10.1109/ICPPW.2009.72
https://doi.org/10.1109/ASAP.2009.21
https://doi.org/10.1007/978-3-642-03138-0_31

A. Bibliography

[P85] Richard Membarth, Philipp Kutzer, Hritam Dutta, Frank Hannig, and Jürgen Teich. “Accel-
eration of multiresolution imaging algorithms: A comparative study”. In: Proceedings of the
20th IEEE International Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP). (Boston, MA, USA). IEEE Computer Society, July 7–9, 2009, pp. 211–214. ISBN:
978-0-7695-3732-0. DOI: 10.1109/ASAP.2009.8.

[P86] Joachim Keinert, Hritam Dutta, Frank Hannig, Christian Haubelt, and Jürgen Teich. “Model-
based synthesis and optimization of static multi-rate image processing algorithms”. In: Pro-
ceedings of the Conference on Design, Automation and Test in Europe (DATE). (Nice, France).
IEEE Computer Society, Apr. 20–24, 2009, pp. 135–140. ISBN: 978-1-4244-3781-8.

[P87] Hritam Dutta, Frank Hannig, and Jürgen Teich. “Performance matching of hardware accelera-
tion engines for heterogeneous MPSoC using modular performance analysis”. In: Proceedings
of the 22nd International Conference on Architecture of Computing Systems (ARCS). (Delft, The
Netherlands). Vol. 5455. Lecture Notes in Computer Science (LNCS). Springer, Mar. 10–13,
2009, pp. 233–245. ISBN: 978-3-642-00453-7. DOI: 10.1007/978-3-642-00454-4_23.

[P88] Frank Hannig, Hritam Dutta, and Jürgen Teich. “Parallelization approaches for hardware
accelerators – loop unrolling versus loop partitioning”. In: Proceedings of the 22nd International
Conference on Architecture of Computing Systems (ARCS). (Delft, The Netherlands). Vol. 5455.
Lecture Notes in Computer Science (LNCS). Springer, Mar. 10–13, 2009, pp. 16–27. ISBN:
978-3-642-00453-7. DOI: 10.1007/978-3-642-00454-4_5.

[P89] Sven Eisenhardt, Thomas Schweizer, Julio A. de Oliveira Filho, Tobias Oppold, Wolfgang
Rosenstiel, Alexander Thomas, Jürgen Becker, Frank Hannig, Dmitrij Kissler, Hritam Dutta,
Jürgen Teich, Heiko Hinkelmann, Peter Zipf, and Manfred Glesner. “SPP1148 booth: coarse-
grained reconfiguration”. In: Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL). (Heidelberg, Germany). Sept. 8–10, 2008, p. 349. ISBN: 978-1-4244-
1961-6. DOI: 10.1109/FPL.2008.4629957.

[P90] Dmitrij Kissler, Andreas Strawetz, Frank Hannig, and Jürgen Teich. “Power-efficient reconfig-
uration control in coarse-grained dynamically reconfigurable architectures”. In: Proceedings of
the 18th International Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS). (Lisbon, Portugal). Vol. 5349. Lecture Notes in Computer Science (LNCS). Springer,
Sept. 10–12, 2008, pp. 307–317. ISBN: 978-3-540-95947-2. DOI: 10.1007/978-3-540-95948-
9_31.

[P91] Rainer Schaffer, Renate Merker, Frank Hannig, and Jürgen Teich. “Utilization of all levels of
parallelism in a processor array with subword parallelism”. In: Proceedings of the 11th Euromicro
Conference on Digital System Design (DSD). (Parma, Italy). IEEE, Sept. 3–5, 2008, pp. 391–398.
ISBN: 978-0-7695-3277-6. DOI: 10.1109/DSD.2008.24.

[P92] Christophe Wolinski, Krzysztof Kuchcinski, Jürgen Teich, and Frank Hannig. “Area and re-
configuration time minimization of the communication network in regular 2d reconfigurable
architectures”. In: Proceedings of the International Conference on Field Programmable Logic
and Applications (FPL). (Heidelberg, Germany). IEEE, Sept. 8–10, 2008, pp. 391–396. ISBN:
978-1-4244-1961-6. DOI: 10.1109/FPL.2008.4629969.

[P93] Christophe Wolinski, Krzysztof Kuchcinski, Jürgen Teich, and Frank Hannig. “Communication
network reconfiguration overhead optimization in programmable processor array architec-
tures”. In: Proceedings of the 11th Euromicro Conference on Digital System Design (DSD). (Parma,
Italy). IEEE, Sept. 3–5, 2008, pp. 345–352. ISBN: 978-0-7695-3277-6. DOI: 10.1109/DSD.2008.
1.

74

https://doi.org/10.1109/ASAP.2009.8
https://doi.org/10.1007/978-3-642-00454-4_23
https://doi.org/10.1007/978-3-642-00454-4_5
https://doi.org/10.1109/FPL.2008.4629957
https://doi.org/10.1007/978-3-540-95948-9_31
https://doi.org/10.1007/978-3-540-95948-9_31
https://doi.org/10.1109/DSD.2008.24
https://doi.org/10.1109/FPL.2008.4629969
https://doi.org/10.1109/DSD.2008.1
https://doi.org/10.1109/DSD.2008.1

A.2. Personal Bibliography

[P94] Hritam Dutta, Frank Hannig, and Jürgen Teich. “PARO: A design tool for automatic generation
of hardware accelerators”. In: Proceedings of ACACES 2008 Poster Abstracts: Advanced Computer
Architecture and Compilation for Embedded Systems. (L’Aquila, Italy). Academia Press, Ghent,
July 13–19, 2008, pp. 317–320. ISBN: 978-90-382-1288-3.

[P95] Christophe Wolinski, Krzysztof Kuchcinski, Jürgen Teich, and Frank Hannig. “Optimization
of routing and reconfiguration overhead in programmable processor array architectures”. In:
Proceedings of the 16th IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM). (Palo Alto, CA, USA). IEEE Computer Society, Apr. 14–15, 2008, pp. 306–309. ISBN:
978-0-7695-3307-0. DOI: 10.1109/FCCM.2008.16.

[P96] Frank Hannig, Holger Ruckdeschel, Hritam Dutta, and Jürgen Teich. “PARO: synthesis of
hardware accelerators for multi-dimensional dataflow-intensive applications”. In: Proceedings
of the Fourth International Workshop on Applied Reconfigurable Computing (ARC). (London,
United Kingdom). Vol. 4943. Lecture Notes in Computer Science (LNCS). Springer, Mar. 26–28,
2008, pp. 287–293. ISBN: 978-3-540-78609-2. DOI: 10.1007/978-3-540-78610-8_30.

[P97] Frank Hannig, Holger Ruckdeschel, and Jürgen Teich. “The PAULA language for design-
ing multi-dimensional dataflow-intensive applications”. In: Proceedings of the GI/ITG/GMM-
Workshop – Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schal-
tungen und Systemen. (Freiburg, Germany). Shaker, Mar. 3–5, 2008, pp. 129–138. ISBN: 978-3-
8322-6962-3.

[P98] Frank Hannig, Hritam Dutta, Holger Ruckdeschel, and Jürgen Teich. “Quantitative evaluation
of behavioral synthesis approaches for reconfigurable devices”. In: Proceedings of the 2nd
HiPEAC Workshop on Reconfigurable Computing (WRC). (Gothenburg, Sweden). Jan. 27, 2008,
pp. 73–82.

[P99] Hritam Dutta, Frank Hannig, Alexey Kupriyanov, Dmitrij Kissler, Jürgen Teich, Rainer Schaffer,
Sebastian Siegel, Renate Merker, and Bernard Pottier. “Massively parallel processor architec-
tures: A co-design approach”. In: Proceedings of the 3rd InternationalWorkshop on Reconfigurable
Communication Centric System-on-Chips (ReCoSoC). (Montpellier, France). Univ. Montpellier II,
June 18–20, 2007, pp. 61–68. ISBN: 2-9517461-3-X.

[P100] Jürgen Teich, Frank Hannig, Holger Ruckdeschel, Hritam Dutta, Dmitrij Kissler, and Andrej
Stravet. “A unified retargetable design methodology for dedicated and re-programmable mul-
tiprocessor arrays: case study and quantitative evaluation”. In: Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA), Invited paper. (Las
Vegas, NV, USA). CSREA Press, June 25–28, 2007, pp. 14–24. ISBN: 1-60132-026-4.

[P101] Alexey Kupriyanov, Dmitrij Kissler, Frank Hannig, and Jürgen Teich. “Efficient event-driven
simulation of parallel processor architectures”. In: Proceedings of the 10th InternationalWorkshop
on Software and Compilers for Embedded Systems (SCOPES). (Nice, France). ACM Press, Apr. 20,
2007, pp. 71–80. DOI: 10.1145/1269843.1269854.

[P102] Alexey Kupriyanov, Frank Hannig, Dmitrij Kissler, Jürgen Teich, Julien Lallet, Olivier Sentieys,
and Sébastien Pillement. “Modeling of interconnection networks inmassively parallel processor
architectures”. In: Proceedings of the 20th International Conference on Architecture of Computing
Systems (ARCS). (Zurich, Switzerland). Ed. by Paul Lukowicz, Lothar Thiele, and Gerhard
Tröster. Vol. 4415. Lecture Notes in Computer Science (LNCS). Springer, Mar. 12–15, 2007,
pp. 268–282. ISBN: 978-3-540-71267-1. DOI: 10.1007/978-3-540-71270-1_20.

75

https://doi.org/10.1109/FCCM.2008.16
https://doi.org/10.1007/978-3-540-78610-8_30
https://doi.org/10.1145/1269843.1269854
https://doi.org/10.1007/978-3-540-71270-1_20

A. Bibliography

[P103] Dmitrij Kissler, Frank Hannig, Alexey Kupriyanov, and Jürgen Teich. “A highly parameterizable
parallel processor array architecture”. In: Proceedings of the IEEE International Conference on
Field Programmable Technology (FPT). (Bangkok, Thailand). IEEE, Dec. 13–15, 2006, pp. 105–112.
ISBN: 0-7803-9728-2. DOI: 10.1109/FPT.2006.270293.

[P104] Dmitrij Kissler, Frank Hannig, Alexey Kupriyanov, and Jürgen Teich. “Hardware cost analysis
for weakly programmable processor arrays”. In: Proceedings of the International Symposium
on System-on-Chip (SoC). (Tampere, Finland). IEEE, Nov. 14–16, 2006, pp. 179–182. ISBN:
1-4244-0621-8. DOI: 10.1109/ISSOC.2006.321996.

[P105] Sebastian Siegel, Renate Merker, Frank Hannig, and Jürgen Teich. “Communication-conscious
mapping of regular nested loop programs onto massively parallel processor arrays”. In: Pro-
ceedings of the 18th International Conference on Parallel and Distributed Computing and Systems
(PDCS). (Dallas, TX, USA). ACTA Press, Nov. 13–15, 2006, pp. 71–76. ISBN: 0-88986-638-4.

[P106] Hritam Dutta, Frank Hannig, and Jürgen Teich. “Hierarchical partitioning for piecewise linear
algorithms”. In: Proceedings of the 5th International Conference on Parallel Computing in Electrical
Engineering (PARELEC). (Bialystok, Poland). IEEE Computer Society, Sept. 13–17, 2006, pp. 153–
160. ISBN: 978-0-7695-2554-9. DOI: 10.1109/PARELEC.2006.43.

[P107] Hritam Dutta, Frank Hannig, Jürgen Teich, Benno Heigl, and Heinz Hornegger. “A design
methodology for hardware acceleration of adaptive filter algorithms in image processing”. In:
Proceedings of the 17th IEEE International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP). (Steamboat Springs, CO, USA). IEEE, Sept. 11–13, 2006, pp. 331–337.
ISBN: 978-0-7695-2682-9. DOI: 10.1109/ASAP.2006.4.

[P108] Dmitrij Kissler, Frank Hannig, Alexey Kupriyanov, and Jürgen Teich. “A dynamically reconfig-
urable weakly programmable processor array architecture template”. In: Proceedings of the 2nd
International Workshop on Reconfigurable Communication Centric System-on-Chips (ReCoSoC).
(Montpellier, France). July 3–5, 2006, pp. 31–37. ISBN: 2-9517461-2-1.

[P109] Dmitrij Kissler, Alexey Kupriyanov, Frank Hannig, Dirk Koch, and Jürgen Teich. “A generic
framework for rapid prototyping of system-on-chip designs”. In: Proceedings of International
Conference on Computer Design (CDES). (Las Vegas, NV, USA). June 26–29, 2006, pp. 189–195.
ISBN: 1-60132-009-4.

[P110] Hritam Dutta, Frank Hannig, and Jürgen Teich. “Controller synthesis for mapping partitioned
programs on array architectures”. In: Proceedings of the 19th International Conference on
Architecture of Computing Systems (ARCS). (Frankfurt amMain, Germany). Ed. byWerner Grass,
Bernhard Sick, and Klaus Waldschmidt. Vol. 3894. Lecture Notes in Computer Science (LNCS).
Springer, Mar. 13–16, 2006, pp. 176–191. ISBN: 3-540-32765-7. DOI: 10.1007/11682127_13.

[P111] Alexey Kupriyanov, Frank Hannig, Dmitrij Kissler, Jürgen Teich, Rainer Schaffer, and Renate
Merker. “An architecture description language for massively parallel processor architectures”.
In: Proceedings of the GI/ITG/GMM-Workshop – Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen. (Dresden, Germany). Shaker,
Feb. 20–22, 2006, pp. 11–20.

[P112] Hritam Dutta, Frank Hannig, and Jürgen Teich. “Mapping of nested loop programs onto
massively parallel processor arrays with memory and I/O constraints”. In: Proceedings of the
6th International Heinz Nixdorf Symposium, New Trends in Parallel & Distributed Computing.
(Paderborn, Germany). Ed. by Friedhelm Meyer auf der Heide and Burkhard Monien. Vol. 181.
HNI-Verlagsschriftenreihe. Heinz Nixdorf Institut, Universität Paderborn, Jan. 17–18, 2006,
pp. 97–119. ISBN: 3-939350-00-1.

76

https://doi.org/10.1109/FPT.2006.270293
https://doi.org/10.1109/ISSOC.2006.321996
https://doi.org/10.1109/PARELEC.2006.43
https://doi.org/10.1109/ASAP.2006.4
https://doi.org/10.1007/11682127_13

A.2. Personal Bibliography

[P113] Holger Ruckdeschel, Hritam Dutta, Frank Hannig, and Jürgen Teich. “Automatic FIR filter
generation for FPGAs”. In: Embedded Computer Systems: Architectures, Modeling, and Simulation,
5th International Workshop, SAMOS, Proceedings. (Island of Samos, Greece). Ed. by Timo D.
Hämäläinen, Andy D. Pimentel, Jarmo Takala, and Stamatis Vassiliadis. Vol. 3553. Lecture
Notes in Computer Science (LNCS). Springer, July 18–20, 2005, pp. 51–61. ISBN: 3-540-26969-X.
DOI: 10.1007/11512622_7.

[P114] Thomas Schlichter, Christian Haubelt, Frank Hannig, and Jürgen Teich. “Using symbolic feasi-
bility tests during design space exploration of heterogeneous multi-processor systems”. In:
Proceedings of the 16th IEEE International Conference on Application-specific Systems, Architec-
tures, and Processors (ASAP). (Island of Samos, Greece). IEEE Computer Society, July 23–25,
2005, pp. 9–14. ISBN: 0-7695-2407-9. DOI: 10.1109/ASAP.2005.64.

[P115] Frank Hannig, Hritam Dutta, Alexey Kupriyanov, Jürgen Teich, Rainer Schaffer, Sebastian
Siegel, Renate Merker, Ronan Keryell, Bernard Pottier, Daniel Chillet, Daniel Ménard, and
Olivier Sentieys. “Co-design of massively parallel embedded processor architectures”. In:
Proceedings of the first International Workshop on Reconfigurable Communication Centric System-
on-Chips (ReCoSoC). (Montpellier, France). Univ. Montpellier II, June 27–29, 2005, pp. 27–34.
ISBN: 2-9517461-1-3.

[P116] Frank Hannig and Jürgen Teich. “Output serialization for FPGA-based and coarse-grained
processor arrays”. In: Proceedings of the International Conference on Engineering of Reconfig-
urable Systems and Algorithms (ERSA). (Las Vegas, NV, USA). CSREA Press, June 27–30, 2005,
pp. 78–84. ISBN: 1-932415-74-2.

[P117] Jan van der Veen, Sándor Fekete, Mateusz Majer, Ali Ahmadinia, Christophe Bobda, Frank
Hannig, and Jürgen Teich. “Defragmenting the module layout of a partially reconfigurable
device”. In: Proceedings of the International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA). (Las Vegas, NV, USA). Distinguished Paper. CSREA Press, June 27–
30, 2005, pp. 92–101. ISBN: 1-932415-74-2.

[P118] Frank Hannig and Jürgen Teich. “Dynamic piecewise linear/regular algorithms”. In: Proceedings
of the Fourth International Conference on Parallel Computing in Electrical Engineering (PARELEC).
(Dresden, Germany). IEEE Computer Society, Sept. 7–10, 2004, pp. 79–84. ISBN: 0-7695-2080-4.
DOI: 10.1109/PCEE.2004.28.

[P119] Frank Hannig and Jürgen Teich. “Resource constrained and speculative scheduling of an algo-
rithm class with run-time dependent conditionals”. In: Proceedings of the 15th IEEE International
Conference on Application-specific Systems, Architectures, and Processors (ASAP). (Galveston,
TX, USA). IEEE Computer Society, Sept. 27–29, 2004, pp. 17–27. ISBN: 0-7695-2226-2. DOI:
10.1109/ASAP.2004.1342455.

[P120] Alexey Kupriyanov, Frank Hannig, and Jürgen Teich. “Automatic and optimized generation of
compiled high-speed RTL simulators”. In: Proceedings of Workshop on Compilers and Tools for
Constrained Embedded Systems (CTCES). (Washington, DC, USA). Sept. 22, 2004.

[P121] Alexey Kupriyanov, Frank Hannig, and Jürgen Teich. “High-speed event-driven RTL compiled
simulation”. In: Computer Systems: Architectures, Modeling, and Simulation, 4th International
Samos Workshop (SAMOS), Proceedings. (Island of Samos, Greece). Ed. by Andy D. Pimentel and
Stamatis Vassiliadis. Vol. 3133. Lecture Notes in Computer Science (LNCS). Springer, July 19–21,
2004, pp. 519–529. ISBN: 3-540-22377-0. DOI: 10.1007/b98714.

77

https://doi.org/10.1007/11512622_7
https://doi.org/10.1109/ASAP.2005.64
https://doi.org/10.1109/PCEE.2004.28
https://doi.org/10.1109/ASAP.2004.1342455
https://doi.org/10.1007/b98714

A. Bibliography

[P122] Frank Hannig, Hritam Dutta, and Jürgen Teich. “Regular mapping for coarse-grained reconfig-
urable architectures”. In: Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP). (Montréal,Quebec, Canada). Vol. V. IEEE Signal Processing Soci-
ety, May 17–21, 2004, pp. 57–60. ISBN: 0-7803-8484-9.DOI: 10.1109/ICASSP.2004.1327046.

[P123] Frank Hannig, Hritam Dutta, and Jürgen Teich. “Mapping of regular nested loop programs to
coarse-grained reconfigurable arrays – constraints and methodology”. In: Proceedings of the
18th International Parallel and Distributed Processing Symposium (IPDPS). (Santa Fe, NM, USA).
IEEE Computer Society, Apr. 26–30, 2004. ISBN: 0-7695-2132-0. DOI: 10.1109/IPDPS.2004.
1303132.

[P124] Frank Hannig and Jürgen Teich. “Energy estimation of nested loop programs”. In: Proceedings
14th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA). (Winnipeg,
Manitoba, Canada). ACM Press, Aug. 10–13, 2002, pp. 149–150. ISBN: 1-58113-529-7. DOI:
10.1145/564870.564895.

[P125] Frank Hannig and Jürgen Teich. “Energy estimation for piecewise regular processor arrays”.
In: Proceedings of the Second International Samos Workshop on Systems, Architectures, Modeling,
and Simulation (SAMOS). (Island of Samos, Greece). July 22–25, 2002.

[P126] Marcus Bednara, FrankHannig, and Jürgen Teich. “Boundary control: A new distributed control
architecture for space-time transformed (VLSI) processor arrays”. In: Proceedings of the 35th
IEEE Asilomar Conference on Signals, Systems, and Computers. (Pacific Grove, CA, USA). Vol. 2.
IEEE Computer Society, Nov. 4–7, 2001, pp. 468–474. DOI: 10.1109/ACSSC.2001.986970.

[P127] Frank Hannig and Jürgen Teich. “Design space exploration for massively parallel processor
arrays”. In: Proceedings of the 6th International Conference on Parallel Computing Technologies
(PaCT). (Novosibirsk, Russia). Ed. by Victor Malyshkin. Vol. 2127. Lecture Notes in Computer
Science (LNCS). Springer, Sept. 3–7, 2001, pp. 51–65. ISBN: 3-540-42522-5. DOI: 10.1007/3-
540-44743-1_5.

Theses (3)

[T1] Frank Hannig. “Scheduling Techniques for High-Throughput Loop Accelerators”. Verlag Dr.
Hut, Munich, Germany. Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany, Aug. 11, 2009, 307 pp. ISBN: 978-3-86853-220-3.

[T2] Frank Hannig. “Exploration von Raum- und Zeittransformationen für Algorithmen mit unifor-
men Datenabhängigkeiten”. Diplomarbeit. Universität Paderborn, Fachbereich Elektrotechnik
und Informationstechnik, Fachgebiet Datentechnik, Oct. 31, 2000.

[T3] Frank Hannig. “Eine Softwareumgebung für neuronale Assoziativspeicher”. Studienarbeit.
Universität Paderborn, Fachbereich Elektrotechnik und Informationstechnik, Fachgebiet Schal-
tungstechnik, Apr. 6, 1999.

Technical Reports andWhite Papers (7)

[R1] Adrian Tate, Amir Kamil, Anshu Dubey, Armin Größlinger, Brad Chamberlain, Brice Goglin,
H. Carter Edwards, Chris J. Newburn, David Padua, Didem Unat, Emmanuel Jeannot, Frank
Hannig, Tobias Gysi, Hatem Ltaief, James Sexton, Jesus Labarta, John Shalf, Karl Fürlinger,
Kathryn O’Brien, Leonidas Linardakis, Maciej Besta, Marie-Christine Sawley, Mark Abraham,
Mauro Bianco, Miquel Pericàs, Naoya Maruyama, Paul H. J. Kelly, Peter Messmer, Robert
B. Ross, Romain Cledat, Satoshi Matsuoka, Thomas Schulthess, Torsten Hoefler, and Vitus

78

https://doi.org/10.1109/ICASSP.2004.1327046
https://doi.org/10.1109/IPDPS.2004.1303132
https://doi.org/10.1109/IPDPS.2004.1303132
https://doi.org/10.1145/564870.564895
https://doi.org/10.1109/ACSSC.2001.986970
https://doi.org/10.1007/3-540-44743-1_5
https://doi.org/10.1007/3-540-44743-1_5

A.2. Personal Bibliography

J. Leung. Programming Abstractions for Data Locality. White Paper. PADAL Workshop 2014,
April 28–29, Swiss National Supercomputing Center (CSCS), Lugano, Switzerland, Nov. 10,
2014, 54 pp.

[R2] Christian Lengauer, Sven Apel, Matthias Bolten, Armin Größlinger, Frank Hannig, Harald
Köstler, Ulrich Rüde, Jürgen Teich, Alexander Grebhahn, Stefan Kronawitter, Sebastian Kuckuk,
Hannah Rittich, and Christian Schmitt. ExaStencils: Advanced Stencil-Code Engineering – First
Project Report. Tech. rep. MIP-1401. Department of Computer Science and Mathematics, Uni-
versity of Passau, June 2014, 12 pp.

[R3] Alexey Kupriyanov, Frank Hannig, Dmitrij Kissler, Jürgen Teich, Julien Lallet, Olivier Sentieys,
and Sébastien Pillement. Modeling of Interconnection Networks in Massively Parallel Processor
Architectures. Tech. rep. 05–2006. Am Weichselgarten 3, 91058 Erlangen, Germany: University
of Erlangen-Nuremberg, Department of CS 12, Hardware-Software-Co-Design, Aug. 15, 2006.

[R4] Hritam Dutta, Frank Hannig, and Jürgen Teich. A Formal Methodology for Hierarchical Partition-
ing of Piecewise Linear Algorithms. Tech. rep. 04–2006. Am Weichselgarten 3, 91058 Erlangen,
Germany: University of Erlangen-Nuremberg, Department of CS 12, Hardware-Software-Co-
Design, Apr. 3, 2006.

[R5] Alexey Kupriyanov, Frank Hannig, Dmitrij Kissler, Rainer Schaffer, and Jürgen Teich. MAML –
An Architecture Description Language for Modeling and Simulation of Processor Array Architec-
tures, Part I. Tech. rep. 03–2006. Am Weichselgarten 3, 91058 Erlangen, Germany: University
of Erlangen-Nuremberg, Department of CS 12, Hardware-Software-Co-Design, Mar. 23, 2006.

[R6] Hritam Dutta, Frank Hannig, and Jürgen Teich. Controller Synthesis for Mapping Partitioned
Programs on Array Architectures. Tech. rep. 03–2005. Am Weichselgarten 3, 91058 Erlangen,
Germany: University of Erlangen-Nuremberg, Department of CS 12, Hardware-Software-Co-
Design, Nov. 1, 2005.

[R7] Frank Hannig and Jürgen Teich. Resource Constrained and Speculative Scheduling of Dynamic
Piecewise Regular Algorithms. Tech. rep. 01–2004. Am Weichselgarten 3, 91058 Erlangen,
Germany: University of Erlangen-Nuremberg, Department of CS 12, Hardware-Software-Co-
Design, June 8, 2004.

79

B Image Credits

Advanced Micro Devices Inc.,
http://www.amd.com/PublishingImages/photography/product/360px/AMD-
FirePro-W9000-360W.png

AMI GmbH,
http://www.ami-gmbh.com/ami/img/Xilinx_Kintex_7_325T.jpg

Afrank99 (Wikipedia),
https://de.wikipedia.org/w/index.php?curid=2095155

Digi-Key Electronics,
https://media.digikey.com/Photos/Texas%20Instr%20Photos/MFG_EVMK2H.
jpg

Dave Gandy, \faBook from LATEX fontawesome package, SIL Open Font License,
https://www.ctan.org/tex-archive/fonts/fontawesome

Intel Corporation,
https://www.intel.com/content/dam/www/public/us/en/images/product/
badges-rwd/arria10-fpga-soc-device-chip.png

Intel Corporation,
https://www.intel.com/content/dam/www/public/us/en/images/product/
RWD/xeon-phi-family-rwd.png

Jarekt (Wikipedia), Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3769111

Tam (Wikipedia),
https://de.wikipedia.org/w/index.php?curid=2888467

Reproduced from work created and shared by the Android Open Source Project
(Wikipedia), CC BY-SA 2.5,
https://upload.wikimedia.org/wikipedia/commons/f/fe/Nexus_10.png

NVIDIA Corporation,
http://www.nvidia.de/docs/IO/143902/tesla-k40.png

www.llvm.org, ©Apple Inc.,
http://llvm.org/img/DragonFull.png

www.python.org (https://www.python.org/community/logos/), GPL,
https://commons.wikimedia.org/w/index.php?curid=34991637

Yukihiro Matsumoto, Ruby Visual Identity Team (Wikipedia), CC BY-SA 2.5,
https://commons.wikimedia.org/w/index.php?curid=3239992

81

http://www.amd.com/PublishingImages/photography/product/360px/AMD-FirePro-W9000-360W.png
http://www.amd.com/PublishingImages/photography/product/360px/AMD-FirePro-W9000-360W.png
http://www.ami-gmbh.com/ami/img/Xilinx_Kintex_7_325T.jpg
https://de.wikipedia.org/w/index.php?curid=2095155
https://media.digikey.com/Photos/Texas%20Instr%20Photos/MFG_EVMK2H.jpg
https://media.digikey.com/Photos/Texas%20Instr%20Photos/MFG_EVMK2H.jpg
https://www.ctan.org/tex-archive/fonts/fontawesome
https://www.intel.com/content/dam/www/public/us/en/images/product/badges-rwd/arria10-fpga-soc-device-chip.png
https://www.intel.com/content/dam/www/public/us/en/images/product/badges-rwd/arria10-fpga-soc-device-chip.png
https://www.intel.com/content/dam/www/public/us/en/images/product/RWD/xeon-phi-family-rwd.png
https://www.intel.com/content/dam/www/public/us/en/images/product/RWD/xeon-phi-family-rwd.png
https://commons.wikimedia.org/w/index.php?curid=3769111
https://de.wikipedia.org/w/index.php?curid=2888467
https://upload.wikimedia.org/wikipedia/commons/f/fe/Nexus_10.png
http://www.nvidia.de/docs/IO/143902/tesla-k40.png
http://llvm.org/img/DragonFull.png
https://www.python.org/community/logos/
https://commons.wikimedia.org/w/index.php?curid=34991637
https://commons.wikimedia.org/w/index.php?curid=3239992

C Paper Reprints

From my 165 peer-reviewed publications listed in Appendix A.2 (page 60ff.), I have
opted for the following 25 key contributions of my research. These form the chief part
of my cumulative habilitation treatise.

Resource-aware Computing

Modeling and System Simulation Papers

DAC ’15

page 87ff.

Roloff, Schafhauser, Hannig, and Teich. “Execution-driven parallel simulation

of PGAS applications on heterogeneous tiled architectures”

[P24]

X10 ’16

page 93ff.

Roloff, Pöppl, Schwarzer, Wildermann, Bader, Glaß, Hannig, and Teich. “Ac-

torX10: An actor library for X10”

[P16]

ESTIMedia ’17

page 99ff.

Roloff, Hannig, and Teich. “High performance network-on-chip simulation by

interval-based timing predictions”

[P4]

Papers on Architecture/Compiler Co-Design of Invasive TCPAs

ACMTECS ’14

page 109ff.

Hannig, Lari, Boppu, Tanase, and Reiche. “Invasive tightly-coupled processor

arrays: A domain-specific architecture/compiler co-design approach”

[J18]

RSP ’17

page 139ff.

Witterauf,Hannig, andTeich. “Constructing fast andcycle-accurate simulators

for configurable accelerators using C++ templates”

[P5]

Springer JSPS ’14

page 147ff.

Teich, Tanase, andHannig. “Symbolicmappingof loopprogramsontoprocessor

arrays”

[J15]

MEMOCODE ’14

page 177ff.

Tanase, Witterauf, Teich, and Hannig. “Symbolic inner loop parallelisation for

massively parallel processor arrays”

[P32]

ACMTECS ’17

page 187ff.

Tanase, Witterauf, Teich, and Hannig. “Symbolic multi-level loop mapping of

loop programs for massively parallel processor arrays”

[J1]

ASAP ’16

page 215ff.

Witterauf, Tanase, Hannig, and Teich. “Modulo scheduling of symbolically tiled

loops for tightly coupled processor arrays”

[P15]

Springer JSPS ’14

page 225ff.

Boppu, Hannig, and Teich. “Compact code generation for tightly-coupled pro-

cessor arrays”

[J17]

83

C. Paper Reprints

Domain-specific Computing

Domain-specific HLS Papers

ASAP ’14

page 251ff.

Schmid, Tanase, Hannig, Teich, Bhadouria, and Ghoshal. “Domain-specific aug-

mentations for high-level synthesis”

[P37]

FPL ’14

page 257ff.

Schmid, Apelt, Hannig, and Teich. “An image processing library for C-based

high-level synthesis”

[P33]

Springer JSPS ’17

page 261ff.

Bhadouria, Tanase, Schmid, Hannig, Teich, and Ghoshal. “A novel image im-

pulse noise removal algorithm optimized for hardware accelerators”

[J2]

ASAP ’17

page 279ff.

Özkan, Reiche, Hannig, and Teich. “Hardware design and analysis of efficient

loop coarsening and border handling for image processing”

[P9]

HIPAcc Papers

IEEE TPDS ’16

page 289ff.

Membarth, Reiche, Hannig, Teich, Körner, and Eckert. “HIPAcc: A domain-

specific language and compiler for image processing”

[J9]

DATE ’14

page 305ff.

Membarth, Reiche,Hannig, andTeich. “Code generation for embeddedhetero-

geneous architectures on Android”

[P41]

CODES+ISSS ’14

page 311ff.

Reiche, Schmid, Hannig, Membarth, and Teich. “Code generation from a

domain-specific language for C-based HLS of hardware accelerators”

[P31]

Elsevier JPDC ’14

page 321ff.

Membarth, Reiche, Schmitt, Hannig, Teich, Stürmer, and Köstler. “Towards a

performance-portable description of geometric multigrid algorithms using a

domain-specific language”

[J12]

FPL ’16

page 333ff.

Özkan, Reiche, Hannig, and Teich. “FPGA-based accelerator design from a

domain-specific language”

[P13]

Springer JSPS ’17

page 343ff.

Reiche,Özkan, Hannig, Teich, and Schmid. “Loop parallelization techniques for

FPGA accelerator synthesis”

[J5]

LCTES ’17

page 369ff.

Reiche, Kobylko, Hannig, and Teich. “Auto-vectorization for image processing

DSLs”

[P11]

84

ExaStencils Papers

ICCSA ’14

page 379ff.

Schmitt, Kuckuk, Köstler, Hannig, and Teich. “An evaluation of domain-specific

language technologies for code generation”

[P38]

Euro-Par ’14

page 389ff.

Lengauer, Apel, Bolten, Größlinger, Hannig, Köstler, Rüde, Teich, Grebhahn,

Kronawitter, Kuckuk, Rittich, and Schmitt. “ExaStencils: Advanced stencil-

code engineering”

[P35]

WOLFHPC ’14

page 401ff.

Schmitt, Kuckuk, Hannig, Köstler, and Teich. “ExaSlang: A domain-specific lan-

guage for highly scalable multigrid solvers”

[P29]

Springer LNCSE ’16

page 411ff.

Schmitt, Kuckuk, Hannig, Teich, Köstler, Rüde, and Lengauer. “Systems of par-

tial differential equations in ExaSlang”

[C1]

85

	1 Introduction
	1.1 Contributions
	1.2 Papers of this Habilitation Treatise
	1.3 Structure of this Habilitation Treatise

	2 Resource-aware Computing
	2.1 Invasive Computing
	2.2 Modeling and System Simulation
	2.2.1 Goals
	2.2.2 Approach
	2.2.3 Results
	2.2.4 Key Papers

	2.3 Architecture/Compiler Co-Design of Invasive TCPAs
	2.3.1 Challenges
	2.3.2 Approach
	2.3.3 Results
	2.3.4 Key Papers

	3 Domain-specific Computing
	3.1 Domain-specific Languages
	3.1.1 Definition
	3.1.2 Classification of DSLs

	3.2 Domain-specific High-level Synthesis
	3.2.1 Goals for Domain-specific HLS
	3.2.2 Approach
	3.2.3 Results
	3.2.4 Domain-specific HLS Key Papers

	3.3 HIPAcc: The Heterogeneous Image Processing Acceleration Framework
	3.3.1 HIPAcc Goals
	3.3.2 HIPAcc Approach
	3.3.3 HIPAcc Results
	3.3.4 HIPAcc Key Papers

	3.4 ExaStencils: Advanced Stencil-Code Engineering
	3.4.1 ExaStencils Goals
	3.4.2 ExaStencils Approach
	3.4.3 ExaStencils Results
	3.4.4 ExaStencils Key Papers

	4 Conclusions
	A Bibliography
	A.1 General Bibliography
	A.2 Personal Bibliography

	B Image Credits
	C Paper Reprints
	C.1 Resource-aware Computing
	C.1.1 Modeling and System Simulation Papers
	DAC '15: Execution-driven Parallel Simulation of PGAS Applications on Heterogeneous Tiled Architectures
	X10 '16: ActorX10: An Actor Library for X10
	ESTIMedia '17: High Performance Network-on-Chip Simulation by Interval-based Timing Predictions

	C.1.2 Papers on Architecture/Compiler Co-Design of Invasive TCPAs
	ACM TECS '14: Invasive Tightly-Coupled Processor Arrays: A Domain-Specific Architecture/Compiler Co-Design Approach
	RSP ’17: Constructing Fast and Cycle-Accurate Simulators for Configurable Accelerators Using C++ Templates
	Springer JSPS ’14: Symbolic Mapping of Loop Programs onto Processor Arrays
	MEMOCODE '14: Symbolic Inner Loop Parallelisation for Massively Parallel Processor Arrays
	ACM TECS '17: Symbolic Multi-Level Loop Mapping of Loop Programs for Massively Parallel Processor Arrays
	ASAP ’16: Modulo Scheduling of Symbolically Tiled Loops for Tightly Coupled Processor Arrays
	Springer JSPS ’14: Compact Code Generation for Tightly-Coupled Processor Arrays

	C.2 Domain-specific Computing
	C.2.1 Domain-specific HLS Papers
	ASAP '14: Domain-Specific Augmentations for High-Level Synthesis
	FPL '14: An Image Processing Library for C-based High-Level Synthesis
	Springer JSPS '17: A Novel Image Impulse Noise Removal Algorithm Optimized for Hardware Accelerators
	ASAP '17: Hardware Design and Analysis of Efficient Loop Coarsening and Border Handling for Image Processing

	C.2.2 HIPAcc Papers
	IEEE TPDS '16: HIPAcc: A Domain-Specific Language and Compiler for Image Processing
	DATE '14: Code Generation for Embedded Heterogeneous Architectures on Android
	CODES+ISSS '14: Code Generation from a Domain-specific Language for C-based HLS of Hardware Accelerators
	Elsevier JPDC '14: Towards a Performance-portable Description of Geometric Multigrid Algorithms using a Domain-specific Language
	FPL '16: FPGA-based Accelerator Design from a Domain-Specific Language
	Springer JSPS '17: Loop Parallelization Techniques for FPGA Accelerator Synthesis
	LCTES '17: Auto-vectorization for Image Processing DSLs

	C.2.3 ExaStencils Papers
	ICCSA '14: An Evaluation of Domain-Specific Language Technologies for Code Generation
	Euro-Par '14: ExaStencils: Advanced Stencil-Code Engineering
	WOLFHPC '14: ExaSlang: A Domain-Specific Language for Highly Scalable Multigrid Solvers
	Springer LNCSE '16: Systems of Partial Differential Equations in ExaSlang

