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Abstract. Feature-oriented software development is a paradigm for the
construction, customization, and synthesis of large-scale and variable
software systems, focusing on structure, reuse and variation. In this tuto-
rial, we provide a gentle introduction to software product lines, feature
oriented programming, virtual separation of concerns, and variability-
aware analysis. We provide an overview, show connections between the
different lines of research, and highlight possible future research
directions.

1 Introduction

Feature-oriented software development (FOSD) is a paradigm for the construc-
tion, customization, and synthesis of large-scale software systems. The concept of
a feature is at the heart of FOSD. A feature is a unit of functionality of a software
system that satisfies a requirement, represents a design decision, and provides a
potential configuration option. The basic idea of FOSD is to decompose a soft-
ware system in terms of the features it provides. The goal of the decomposition is
to construct well-structured variants of the software that can be tailored to the
needs of the user and the application scenario. Typically, from a set of features,
many different software variants can be generated that share common features
and differ in other features. The set of software systems generated from a set of
features make up a software product line [28, 75].

FOSD aims essentially at three properties: structure, reuse, and variation. De-
velopers use the concept of a feature to structure the design and code of a soft-
ware system. Features are the primary units of reuse in FOSD. The variants of a
software system vary in the features they contain. FOSD shares goals with other
software development paradigms, such as stepwise and incremental software de-
velopment [74,98], aspect-oriented software development [36], component-based
software engineering [88], and alternative flavors of software product line engi-
neering [28,75], the differences of which are discussed elsewhere [4]. Historically,

� These tutorial notes share text with previous publications on feature-oriented
software development [3,4,47,49].

R. Lämmel, J. Saraiva, and J. Visser (Eds.): GTTSE 2011, LNCS 7680, pp. 346–382, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Feature-Oriented Software Development 347

1 static int __rep_queue_filedone(dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 return (__db_no_queue_am(dbenv));
9 #else

10 db_pgno_t first, last;
11 u_int32_t flags;
12 int empty, ret, t_ret;
13 #ifdef DIAGNOSTIC
14 DB_MSGBUF mb;
15 #endif
16 // over 100 further lines of C code
17 #endif
18 }

Fig. 1. Code excerpt of Oracle’s Berkeley DB

FOSD has emerged from different lines of research in programming languages,
software architecture, and modeling; it combines results from feature modeling,
feature interaction analysis, and various implementation forms for features [4].

In practice, software product lines are often implemented with build systems
and conditional compilation. Hence, developers see code fragments as exemplified
in Figure 1, in which code fragments belonging to features are wrapped by #ifdef
and #endif directives of the C preprocessor. For a given feature selection, the
preprocessor generates tailored code by removing code fragments not needed.
Such preprocessor usage is dominant in practice; for example, in HP’s product
line of printer firmware over 2 000 features are implemented this way, in the
Linux kernel over 10 000 features. Although common, such implementations are
rather ad-hoc, violate the principle of separation of concerns, and are error prone
and difficult to debug; preprocessors are heavily criticized in literature [1,32,34,
49,86, and others]. Especially, if features are scattered and tangled in large-scale
programs (or even already at smaller scale as illustrated with the embedded
operating system FemtoOS in Fig. 2), such problems quickly become apparent.

FOSD generally seeks more disciplined forms of feature implementation that
are easier to maintain and to reason about. Researchers have investigated differ-
ent strategies for better feature implementations. In this tutorial, we describe two
important approaches. First, feature-oriented programming follows a language-
based composition approach, in which features are implemented in separate im-
plementation units and composed on demand. In contrast, work on virtual sepa-
ration of concerns stays close to the annotation-based approach of preprocessors,
but builds upon a disciplined foundation and provides tool support to support
reasoning and navigation.

The ability to combine features and derive different variants yields enormous
flexibility but also introduces additional problems related to complexity. From n

features, we can derive up to 2n distinct variants (with 33 features, that’s more
than the number of humans on the planet; with 320 features, that’s more than



348 C. Kästner and S. Apel

Fig. 2. Preprocessor directives in the code of Femto OS: Black lines represent prepro-
cessor directives such as #ifdef, white lines represent C code, comment lines are not
shown [49]

the estimated number of atoms in the universe). Instead of a single product,
product-line developers implement millions of variants in parallel. To support
them in dealing with this complexity and to prevent or detect errors (even those
that occur only in one variant with a specific feature combination, out of mil-
lions), many researchers have proposed means for variability-aware analysis that
lifts existing analyses to the product-line world. So far, variability-aware analy-
sis has been explored, for example, for type checking, parsing, model checking,
and verification. Instead of analyzing each of millions of variants in a brute-force
fashion, variability-aware analysis seeks mechanisms to analyze the entire prod-
uct line. We introduce the idea behind variability-aware analysis and illustrate
it with the example of type checking, both for annotations and composition.

This tutorial gives a gentle introduction to FOSD. It is structured as follows:
First, we introduce product lines, such as feature models and the process of
domain engineering. Second, we exemplify feature-oriented programming with
FeatureHouse to separate the implementation of features into distinct modules.
Third, we introduce the idea of virtual separation of concerns, an approach that,



Feature-Oriented Software Development 349

instead of replacing preprocessors, disciplines them and provides mechanisms
to emulate modularity through dedicated tool support. Finally, we introduce
variability-aware analysis by means of the example of type checking and illustrate
the general concept behind it.

In contrast to our previous survey on feature-oriented software development [4],
which connected different works around the FOSD community, in this tutorial,
we take a more practical approach, focus on concepts relevant for implementers,
and recommend relevant tools. Additionally, we repeat all relevant background
about product-line engineering and feature modeling to make the tutorial more
self-contained. Furthermore, we provide a broader picture and a new classifica-
tion for variability-aware analysis strategies.

2 Software Product Lines: The Basics

Traditionally, software engineering has focused on developing individual software
systems, one system at a time. A typical development process starts with analyz-
ing the requirements of a customer. After several development steps – typically
some process of specification, design, implementation, testing, and deployment
– a single software product is the result. In contrast, software product line engi-
neering focuses on the development of multiple similar software systems in one
domain from a common code base [14,75]. Although the resulting software prod-
ucts are similar, they are each tailored to the specific needs of different customers
or to similar but distinct use cases. We call a software product derived from a
software product line a variant.

Bass et al. define a software product line as “a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common set
of core assets in a prescribed way” [14]. The idea of developing a set of related
software products in a coordinated fashion (instead of each starting from scratch
or copying and editing from a previous product) can be traced back to concepts
of program families [42, 74].

Software product lines promise several benefits compared to individual devel-
opment [14,75]: Due to co-development and systematic reuse, software products
can be produced faster, with lower costs, and higher quality. A decreased time
to market allows companies to adapt to changing markets and to move into new
markets quickly. Especially in embedded systems, in which resources are scarce
and hardware is heterogeneous, efficient variants can be tailored to a specific de-
vice or use case [19,75,80,91]. There are many companies that report significant
benefits from software product lines. For example, Bass et al. summarize that,
with software product lines, Nokia can produce 30 instead of previously 4 phone
models per year; Cummins, Inc. reduced development time for a software for a
new diesel engine from one year to one week; Motorola observed a 400 % increase
in productivity; and so forth [14].
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2.1 Domain Engineering and Application Engineering

The process of developing an entire software product line instead of a single
application is called domain engineering. A software product line must fulfil not
only the requirements of a single customer but the requirements of multiple
customers in a domain, including both current customers and potential future
customers. Hence, in domain engineering, developers analyze the entire applica-
tion domain and its potential requirements. From this analysis, they determine
commonalities and differences between potential variants, which are described in
terms of features. Finally, developers design and implement the software product
line such that different variants can be constructed from common and variable
parts.

In this context, a feature is a first-class domain abstraction, typically an end-
user visible increment in functionality. In addition to features that add function-
ality, it is also common to have alternative features for the same functionality
with different nonfunctional properties (e.g., a fast versus an energy-saving sort-
ing algorithm). We discuss different notions of the term “feature” elsewhere [4].

Czarnecki and Eisenecker distinguish between problem space and solution
space [30]. The problem space comprises domain-specific abstractions that de-
scribe the requirements on a software system and its intended behavior. Domain
analysis, as a part of domain engineering, takes place in the problem space, and
its results are documented in terms of features. The solution space comprises
implementation-oriented abstractions, such as code artifacts. Between features
in the problem space and artifacts in the solution space, there is a mapping that
describes which artifact belongs to which feature. Depending on the implemen-
tation approach and the degree of automation, this mapping can have different
forms and complexities, from simple implicit mappings based on naming con-
ventions to complex machine-processable rules encoded in generators, including
preprocessors and composition tools [30].

Application engineering is the process of deriving a single variant tailored to
the requirements of a specific customer from a software product line, based on
the results of domain engineering. Ideally, the customer’s requirements can be
mapped to features identified during domain engineering (problem space), so
that the variant can be constructed from existing common and variable parts of
the product line’s implementation (solution space). FOSD strives for a form of
product-line development in which all implementation effort is part of domain
engineering so that application engineering can be reduced to requirements anal-
ysis and automated code generation.

Typically, a software product line targets a specific domain, such as operating
systems for mobile phones, control software for diesel engines, and embedded
databases. The scope of a software product line describes which variability is
offered and which kind of variants the product line can produce. A software
product line with a narrow scope is easier to develop, but less flexible (it pro-
vides only few, very similar variants). The wider the scope is, the higher is the
development effort, but the more flexibility a software product line can offer. Se-
lecting the right scope of a product line is a difficult design, business, and strategy
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Fig. 3. An (idealized) overview of domain engineering and application engineering
(adapted from [30] to FOSD)

decision. In practice, the scope is often iteratively refined; domain engineering
and application engineering are rarely strictly sequential and separated steps. For
example, it is common not to implement all features upfront, but incrementally,
when needed. Furthermore, requirements identified in domain engineering may
be incomplete, so new requirements arise in application engineering, which devel-
opers must either feed back into the domain-engineering process or address with
custom development during the application engineering of a specific variant [30].

Domain engineering and application engineering describe a general process
framework as summarized in Figure 3. For each step, different approaches, for-
malisms, and tools can be used. For example, there are different product-line–
scoping approaches (see a recent survey [45]), different domain analysis meth-
ods [30, 40, 46, 75, and many others], different mechanisms to model variabil-
ity (see Sec. 2.2), different implementation mechanisms (our focus in Sec. 3
and 4), and different approaches to derive a variant based on customer require-
ments [78, 82, and others].

2.2 Variability Modeling

During domain analysis, developers determine the scope of the software product
line and identify its common and variable features, which they then document in
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a variability model. We introduce variability models, because they are central not
only for documenting variability in the problem space, but also for many imple-
mentation approaches, for automated reasoning and error detection, and for au-
tomated generation of variants. There are several different variability-modeling
approaches (see Chen et al. [26] for an overview). We focus on FODA-style fea-
ture models [30, 46], because they are well known and broadly used in research
and practice; other variability models can be used similarly.

A feature model describes a set of features in a domain and their relationships.
It describes which features a product line provides (i.e., its scope), which features
are optional, and in which combination features can be selected in order to derive
variants. With a selection of features (a subset F of all features), we can specify a
variant (e.g., “the database variant for Linux, with transactions, but without a B-
Tree”). Not all feature combinations may make sense, for example, two features
representing different operating systems might be mutually exclusive. A feature
model describes such dependencies. A feature selection that fulfils all constraints
is valid (“F is valid”).

In practice, feature models contain hundreds or thousands of features.1 The
number of potential variants can grow exponentially with the number of features.
In theory, a software product line with n independent optional features can
produce 2n variants. In practice, many dependencies between features reduce
the number of valid feature selections, but nevertheless, most software product
lines give rise to millions or billions of valid feature selections.

A typical graphical representation of features and their dependencies is a
feature diagram [46], as exemplified in Figure 4. A feature diagram represents
features in a hierarchy. Different edges between features describe their relation-
ships: A filled bullet describes that a feature is mandatory and must be selected
whenever its parent feature is selected. In contrast, a feature connected with an
empty bullet is optional. Multiple child features connected with an empty arc are
alternative (mutually exclusive); exactly one child feature needs to be selected
when the parent feature is selected. From multiple child features connected with
a filled arc, at least one must be selected, but it is also possible to select more than
one. Dependencies that cannot (or should not) be expressed with the hierarchical
structure may be provided as additional cross-tree constraints in the form of a
propositional formula. In Figure 4, we show nine features from the core of a fic-
tional database product line. Each variant must contain the features Database,
Base, OS, and Storage, but feature Transactions is optional, so variants
may or may not include it; each variant must have exactly one operating-system
feature, either Windows or Linux; each variant must contain at least one stor-
age structure; finally, a cross-tree constraint specifies that Transactions are
supported only if also feature B-Tree is selected. In this example, ten feature
selections are valid.

1 For example, Bosch’s product line of engine-control software has over 1 000 fea-
tures [87], HP’s Owen product line has about 2 000 features [79], and the Linux
kernel has over 10 000 features [90].
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Fig. 4. Feature-diagram example of a small database product line

Alternative to the graphical notation, dependencies between features can be
expressed entirely by a propositional formula. Each feature corresponds to a
Boolean variable that is true when selected and false otherwise. The proposi-
tional formula evaluates to true for all valid feature selections. Feature diagrams
can be transformed into propositional formulas with some simple rules [15]. For
example, the feature diagram from Figure 4 is equivalent to the following propo-
sitional formula:

Database∧ (Base ⇔ Database)∧ (OS ⇔ Database)∧

(Transactions ⇒ Database)∧ (Storage ⇔ Database)∧

(Windows∨ Linux ⇔ OS)∧ ¬(Windows∧ Linux)∧

(List ∨B-Tree ⇔ Storage)∧ (Transactions ⇒ B-Tree)

Representing feature models as propositional formulas has the advantage that
we can reason about them automatically, which is essential for variability-aware
analysis, as we discuss in Section 5. With simple algorithms or with automated
reasoning techniques – including Boolean-satisfiability-problem solvers
(SAT solvers), constraint-satisfaction-problem solvers, and binary decision di-
agrams – we can efficiently answer a series of questions, including “Has this
feature model at least one valid selection (i.e., is the formula satisfiable)?” and
“Is there a valid feature selection that includes feature X but not feature Y?”
Even though some of these algorithms are NP-complete, SAT solvers and other
reasoners can answer queries efficiently for practical problems, even for very large
feature models [67,68,94]. For further details, see a recent survey on automated
analysis operations and tools [18].

Tooling. There are many languages and tools to manage feature models or draw
feature diagrams, ranging from dozens of academic prototypes to fully fledged
commercial systems such as Gears2 and pure::variants.3 For a research setting, we
recommend FeatureIDE, an Eclipse plugin that (among others) provides a sophis-
ticated graphical feature-model editor and supporting tools [57]. Our graphics of
2 http://www.biglever.com/solution/product.html
3 http://www.pure-systems.com; a limited community edition is available free of

charge, and the authors are open for research collaborations.

http://www.biglever.com/solution/product.html
http://www.pure-systems.com
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feature diagrams (Fig. 3 and 4) have been exported from FeatureIDE. FeatureIDE
includes many facilities for reasoning about features using a SAT solver, following
the described translation to propositional formulas. FeatureIDE is open source,
and also isolated parts such as the reasoning engine can be reused; contributions
are encouraged. FeatureIDE is available at http://fosd.net/fide.

2.3 What Is Feature-Oriented Software Development?

The concept of a feature is useful to describe commonalities and variabilities
in the analysis, design, and implementation of software systems. FOSD is a
paradigm that encourages the systematic application of the feature concept in
all phases of the software life cycle. Features are used as first-class entities to
analyze, design, implement, customize, debug, or evolve a software system. That
is, features not only emerge from the structure and behavior of a software sys-
tem (e.g., in the form of the software’s observable behavior), but are also used
explicitly and systematically to define variabilities and commonalities, to facili-
tate reuse, to structure software along these variabilities and commonalities, and
to guide the testing process. A distinguishing property of FOSD is that it aims
at a clean (ideally one-to-one) mapping between the representations of features
across all phases of the software life cycle. That is, features specified during the
analysis phase can be traced through design and implementation.

The idea of FOSD was not proposed as such in the first place but emerged
from the different uses of features. Our main goal is to convey the idea of FOSD
as a general development paradigm. The essence of FOSD can be summarized
as follows: on the basis of the feature concept, FOSD facilitates the structure,
reuse, and variation of software in a systematic and uniform way.

3 Feature-Oriented Programming

The key idea of feature-oriented programming is to decompose a system’s design
and code along the features it provides [16, 77]. Feature-oriented programming
follows a disciplined language-oriented approach, based on feature composition.

3.1 Collaboration-Based Design

A popular technique for decomposing feature-oriented systems is collaboration-
based design [85]. In Figure 5, we show a sample collaboration-based design of a
simple object-oriented expression evaluator. A collaboration is a set of program el-
ements that cooperate systematically to implement a feature. In an object-oriented
world, a collaboration comprises typicallymultiple classes and even only fragments
of classes. The top-most collaboration (Expr) consists of three classes: Expr an ab-
stract class for representing expressions, Val for representing literals, and Add for
representing addition. Each class defines a single operation toString for pretty print-
ing.The collaborationEval adds thenewoperation eval,which evaluates an expres-
sion. Evaluation is a crosscutting concern because eval must be defined by adding
a method to each of the three classes. A collaboration bundles these changes.

http://fosd.net/fide
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int val
Val(int)
String toString()

refinement

inheritanceEval

Expr
Expr a
Expr b
Add(Expr, Expr)
String toString()

class Val class Add

refines class Val

class Expr
String toString()

refines class Expr

refines class Add

int eval()

int eval() int eval()

Fig. 5. Collaboration-based design of a simple expression evaluator

3.2 Feature Modules

In feature-oriented programming, each collaboration implements a feature and
is called a feature module [10, 16]. Different combinations of feature modules
satisfy different needs of customers or application scenarios. Figure 5 illustrates
how features crosscut the given hierarchical (object-oriented) program struc-
ture. In contemporary feature-oriented–programming languages and tools, such
as AHEAD [16], FeatureC++ [9], FeatureHouse [7], or Fuji [8], collaborations
are represented by file-system directories, called containment hierarchies, and
classes and their refinements are stored in files. Features are selected by name
via command-line parameters or graphical tools. In Figure 6, we show a snapshot
of the containment hierarchies and the feature model of the simple expression
evaluator in FeatureIDE.

A feature module refines the content of a base program either by adding
new elements or by modifying and extending existing elements. The order in
which features are applied is important; earlier features in the sequence may
add elements that are refined by later features.

3.3 Jak

Jak is an extension of Java for feature-oriented programming [16]. Figure 7 de-
picts the Jak implementation of an extended version of the collaboration-based
design of Figure 5.

Feature Expr represents the base program. It defines class Expr, along with
two terms: Val for integer literals and Add for addition. It also defines a single
operation toString for pretty printing.

Feature Eval adds the new operation eval, which evaluates an expression.
The feature module contains three class refinements (partial classes, using the
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Fig. 6. Containment hierarchy (left) and feature model (right) of the expression-
evaluator example

keyword refines) that extend other classes by introducing additional methods.
During composition a class is composed with all its refinements.

Feature Mult introduces the new class Mult and refines a previously defined
method in class Add to fix operator precedence. Refining a method is similar to
method overriding; the new version of the method may call the old version using
Jak’s keyword Super.

Finally, features Eval and Mult are each designed to extend Expr. However,
they are not completely orthogonal. The combination of a new variant and a new
operation, creates a “missing piece” that must be filled in to create a complete
program. We thus define an additional feature, called lifter [77] or derivative [65],
that defines how each feature should be extended in the presence of the others.
The derivative ‘Mult#Eval’ is present when both features Mult and Eval

are present.

3.4 AHEAD

AHEAD is an architectural model of feature-oriented programming [16]. With
AHEAD, each feature is represented by a containment hierarchy, which is a direc-
tory that maintains a substructure organizing the feature’s artifacts (cf. Fig. 6).
Composing features means composing containment hierarchies and, to this end,
composing corresponding artifacts recursively by name and type (see Fig. 10
for an example), much like the mechanisms of hierarchy combination [70, 89],
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Feature Expr

1 abstract class Expr {
2 abstract String toString();
3 }
4 class Val extends Expr {
5 int val;
6 Val(int n) { val = n; }
7 String toString() { return String.valueOf(val); }
8 }
9 class Add extends Expr {

10 Expr a; Expr b;
11 Add(Expr e1, Expr e2) { a = e1; b = e2; }
12 String toString() { return a.toString() + "+" + b.toString(); }
13 }

Feature Eval refines Expr

14 refines class Expr {
15 abstract int eval();
16 }
17 refines class Val {
18 int eval() { return val; }
19 }
20 refines class Add {
21 int eval() { return a.eval() + b.eval(); }
22 }

Feature Mult refines Expr

23 class Mult extends Expr {
24 Expr a; Expr b;
25 Mult(Expr e1, Expr e2) { a = e1; b = e2; }
26 String toString() { return "(" + a.toString() + "∗" + b.toString() + ")";
27 }
28 }
29 refines class Add {
30 String toString() { return "(" + Super().toString() + ")"; }
31 }

Derivative Mult#Eval

32 refines class Mult {
33 int eval() { return a.eval() ∗ b.eval(); }
34 }

Fig. 7. A solution to the “expression problem” in Jak

mixin composition [20,24,37,38,85], and superimposition [21,22]. In contrast to
these earlier approaches, for each artifact type, a different implementation of the
composition operator ‘•’ has to be provided in AHEAD (i.e., different tools that
perform the composition, much like Jak for Java artifacts). The background is
that a complete software system does not just involve Java code. It also involves
many non-code artifacts. For example, the simple expression evaluator of Fig-
ure 7 may be paired with a grammar specification, providing concrete syntax
for expressions, and documentation in XHTML. For grammar specifications and
XML based languages, the AHEAD tool suite has dedicated composition tools.

Bali. Bali is a tool for synthesizing program-manipulation tools on the basis
of extensible grammar specifications [16]. It allows a programmer to define a
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Feature Expr

1 Expr: Val | Expr Oper Expr;
2 Oper: ’+’;
3 Val: INTEGER;

Feature Mult refines Expr

4 Oper: Super.Oper | ’∗’;

Fig. 8. A Bali grammar with separate features for addition and multiplication

grammar and to refine it subsequently, in a similar fashion to class refinements
in Jak. Figure 8 shows a grammar and a grammar refinement that correspond
to the Jak program above. The base program defines the syntax of arithmetic
expressions that involve addition only. We then refine the grammar by adding
support for multiplication.

Bali is similar to Jak in its use of keyword Super: Expression Super.Oper refers
to the original definition of Oper.

Xak. Xak is a language and tool for composing various kinds of XML docu-
ments [2]. It enhances XML by a module structure useful for refinement. This
way, a broad spectrum of software artifacts can be refined à la Jak, (e.g., UML
diagrams, build scripts, service interfaces, server pages, or XHTML).

Figure 9 depicts an XHTML document that contains documentation for our ex-
pression evaluator. The base documentation file describes addition only, but we
refine it to add a description of evaluation and multiplication as well. The tag xak:
module labels a particular XML element with a name that allows the element to
be refined by subsequent features. The tag xak:extends overrides an element that
has been named previously, and the tag xak:super refers to the original definition
of the named element, just like the keyword Super in Jak and Bali.

AHEAD Tool Suite. Jak, Xak, and Bali are each designed to work with a
particular kind of software artifact. The AHEAD tool suite brings these separate
tools together into a system that can handle many different kinds of software
artifacts.

In AHEAD, a piece of software is represented as a directory of files. Composing
two directories together will merge subdirectories and files with the same name.
AHEAD will select different composition tools for different kinds of files. Merging
Java files will invoke Jak to refine the classes, whereas merging XML files will
invoke Xak to combine the XML documents, and so on, as illustrated in Figure 10.

3.5 FeatureHouse

Recently, following the philosophy of AHEAD, the FeatureHouse tool suite has
been developed that allows programmers to enhance given languages rapidly
with support for feature-oriented programming (e.g., C#, C, JavaCC, Haskell,
Alloy, and UML [7]).
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Feature Expr

1 <html xmlns:xak="http://www.onekin.org/xak" xak:artifact="Expr" xak:type="xhtml">
2 <head><title>A Simple Expression Evaluator</title></head>
3 <body bgcolor="white">
4 <h1 xak:module="Contents">A Simple Expression Evaluator</h1>
5 <h2>Supported Operations</h2>
6 <ul xak:module="Operations">
7 <li>Addition of integers</li>
8 <!−− a description of how integers are added −−>
9 </ul>

10 </body>
11 </html>

Feature Eval refines Expr

12 <xak:refines xmlns:xak="http://www.onekin.org/xak" xak:artifact="Eval" xak:type="xhtml">
13 <xak:extends xak:module="Contents">
14 <xak:super xak:module="Contents"/>
15 <h2>Evaluation of Arithmetic Expressions</h2>
16 <!−− a description of how expressions are evaluated −−>
17 </xak:extends>
18 </xak:refines>

Feature Mult refines Expr

19 <xak:refines xmlns:xak="http://www.onekin.org/xak" xak:artifact="Mult" xak:type="xhtml">
20 <xak:extends xak:module="Operations">
21 <xak:super xak:module="Operations"/>
22 <li>Multiplication of integers</li>
23 <!−− a description of how integers are multiplied −−>
24 </xak:extends>
25 </xak:refines>

Fig. 9. A Xak/XHTML document with separate features for addition, evaluation, and
multiplication

FeatureHouse is a framework for software composition supported by a cor-
responding tool chain. It provides facilities for feature composition based on a
language-independent model of software artifacts and an automatic plugin mech-
anism for the integration of new artifact languages. FeatureHouse improves over
prior work on AHEAD in that it implements language-independent software
composition.

Feature Structure Trees. FeatureHouse relies on a general model of the struc-
ture of software artifacts, called the feature structure tree (FST) model. An
FST represents the essential structure of a software artifact and abstracts from
language-specific details. For example, an artifact written in Java contains pack-
ages, classes, methods, and so forth, which are represented by nodes in its FST;
a Haskell program contains equations, algebraic data types, type classes, etc.,
which contain further elements; a makefile or build script consists of definitions
and rules that may be nested.

Each node of an FST has (1) a name that is the name of the corresponding
structural element and (2) a type that represents the syntactic category of the
corresponding structural element. For example, a Java class Foo is represented
by a node Foo of type Java class. Essentially, an FST is a stripped-down abstract
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Fig. 10. Composing containment hierarchies by superimposition [16]

Val

valeval() eval()

Val(int) toString()

Val

val toString()

Val(int)

Val

Expr EvalExpr Eval

Fig. 11. Superimposition of feature structure trees (excerpt of the expression example)

syntax tree (AST): it contains only information that is necessary for the spec-
ification of the modular structure of an artifact and for its composition with
other artifacts. The inner nodes of an FST denote modules (e.g., classes and
packages) and the leaves carry the modules’ content (e.g., method bodies and
field initializers). We call the inner nodes nonterminals and the leaves terminals.
For illustration, in Figure 11, we depict on the left side the FST of concerning
class Val of feature Expr.

What code elements are represented as inner nodes and leaves? This depends
on the language and on the level of granularity at which software artifacts are
to be composed [50]. Different granularities are possible and might be desired
in different contexts. For Java, we could represent only packages and classes
but not methods or fields as FST nodes (a coarse granularity), or we could also
represent statements or expressions as FST nodes (a fine granularity). In any
case, the structural elements not represented in the FST are text content of
terminal nodes (e.g., the body of a method). In our experience, the granularity
of Figure 11 is usually sufficient for composition of Java artifacts.

Superimposition. The composition of software artifacts proceeds by the su-
perimposition of the corresponding FSTs, denoted by ‘•’. Much like in AHEAD,
two FSTs are superimposed by merging their nodes, identified by their names,
types, and relative positions, starting from the root and descending recursively.
Figure 11 illustrates the process of FST superimposition with the expression
example (only concerning class Val).
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Generally, the composition of two leaves of an FST that contain further con-
tent demands a special treatment. The reason is that the content is not repre-
sented as a subtree but as plain text. Method bodies are composed differently
from fields, Haskell functions, or Bali grammar productions. The solution is
that, depending on the artifact language and node type, different rules for the
composition of terminals are used. Often simple rules such as replacement, con-
catenation, specialization, or overriding suffice, but the approach is open to more
sophisticated rules known from multi-dimensional separation of concerns [71] or
software merging [69]. For example, we merge two method bodies via overriding,
in which Super defines how the bodies are merged, much like in Jak.

Generation and Automation. New languages can be plugged easily into Fea-
tureHouse. The idea is that, although artifact languages are very different, the
process of software composition by superimposition is very similar. For exam-
ple, the developers of AHEAD/Jak [16] and FeatureC++ [9] have extended the
artifact languages Java and C++ by constructs (e.g., refines or Super) and mecha-
nisms for composition. They have each implemented a parser, a superimposition
algorithm, and a pretty printer4 – all specific to the artifact language. We have
introduced the FST model to be able to express superimposition independently
of an artifact language [11].

In FeatureHouse, we automate the integration of further languages and base
it largely on the languages’ grammars. This allows us to generate most of the
code that must otherwise be provided and integrated manually (parser, adapter,
pretty printer) and to experiment with different representations of software ar-
tifacts. Our tool FSTGenerator expects the grammar of the language to be inte-
grated in a specific format, called FeatureBNF, and generates a parser, adapter,
and pretty printer accordingly. Using a grammar written in FeatureBNF, FST-
Generator generates (a) an LL(k) parser that directly produces FST nodes and
(b) a corresponding pretty printer. After the generation step, composition pro-
ceeds as follows: (1) the generated parser receives artifacts written in the target
language and produces one FST per artifact; (2) FeatureHouse performs the
composition; and (3) the generated pretty printer writes the composed artifacts
to disk. For the composition of the content of terminal nodes, we have developed
and integrated a library of composition rules (e.g., rules for method overriding or
for the concatenation of the statements of two constructors). Figure 12 illustrates
the interplay between FSTGenerator and FeatureHouse;

A detailed description of FSTGenerator and FeatureBNF is available else-
where [7].

Tooling. Both AHEAD5 and FeatureHouse6 are available for experimentation
including several examples. Both are command-line tools. FeatureIDE provides

4 With ‘pretty printer’ we refer to a tool, also known as unparser, that takes a parse
tree or an FST and generates source code.

5 http://www.cs.utexas.edu/users/schwartz/ATS.html
6 http://fosd.net/fh

http://www.cs.utexas.edu/users/schwartz/ATS.html
http://fosd.net/fh
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Java C JavaCC
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FSTGenerator

FSTComposer

Alloy

Fig. 12. The architecture of FeatureHouse

a graphical front end in Eclipse, with corresponding editors for Jak, a mapping
from features to feature modules, automatic composition of selected features in
the background, generation of collaboration diagrams, and much more [57, 62].
FeatureIDE ships with AHEAD and FeatureHouse and several example projects,
ready to explore. After a developer graphically configures the desired features,
FeatureIDE automatically calls the corresponding composition tools. It is likely
the easiest way to try AHEAD or FeatureHouse, for developers familiar with
Eclipse. Recently, Batory contributed even a video tutorial on FeatureIDE.7

4 Virtual Separation of Concerns

Recently, several researchers have taken a different path to tackle more disci-
plined product-line implementations. Instead of inventing new languages and
tools that support feature decomposition, they stay close to the concept of con-
ditional compilation with preprocessors, but improve it at a tooling level. The
goal is to keep the familiar and simple mechanisms of annotating code fragments
in a common implementation (e.g., as with the C preprocessor), but to emulate
modularity with tool support and to provide navigation facilities as well as error
diagnostics. We work around the limitations for which traditional preprocessors
are typically criticized.

4.1 Variability Implementation with Preprocessors

Conditional-compilation mechanisms of preprocessors provide an easy strategy
to implement compile-time variability in product lines. The concept is simple:
Developers annotate code fragments with feature expressions. Subsequently the

7 http://www.cs.utexas.edu/users/dsb/cs392f/Videos/FeatureIDE/

http://www.cs.utexas.edu/users/dsb/cs392f/Videos/FeatureIDE/
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preprocessor removes certain annotated code fragments before compilation, de-
pending on the feature selection.

To introduce preprocessors, we exemplify a preprocessor-based implementa-
tion of the “expression problem” from Figure 7 in Figure 13. We use the pre-
processor Antenna,8 which was developed for Java code on mobile platforms.
Conditional compilation in Antenna uses almost the same notation as in the
C preprocessor, but preprocessor directives are written in comments, to not in-
terfere with existing tool support for Java code. Variable code fragments are
framed with #ifdef and #endif directives. In a feature-oriented context, the
#ifdef directives refer to features from the feature model. If the corresponding
feature is not selected, the code fragment between the #ifdef and the #endif
directive is removed before compilation. Furthermore, #ifdef directives may be
nested, so that code is only included if multiple features are selected; for exam-
ple, Line 45 in Figure 13 is only included if features Mult and Eval are both
selected (equivalent to derivative modules discussed in Section 3.3)

4.2 Disciplined Preprocessor Usage

A main problem of traditional (lexical) preprocessors, such as the C preproces-
sor, is that they are oblivious to the underlying host language and the variabil-
ity specification. It is possible to annotate individual tokens such as a closing
bracket, leading to hard-to-find syntax errors. For the same reason, parsing un-
preprocessed code for analysis is a difficult task (a parser can hardly foresee all
possibilities how the preprocessor is used) [17, 39, 56, 64, 73]. The mapping be-
tween features in a feature model and #ifdef flags is not checked, hence a typo in
a flag name leads to never compiling this code fragment [90]. In feature-oriented
programming, these problems do not occur, because the underlying language
allows only disciplined usage, but preprocessors are a different story. Overall,
the flexibility of lexical preprocessors allows undisciplined use that is hard to
understand, to debug, and to analyze.

To overcome the above problems, we require a disciplined use of preprocessors.
With disciplined use, we mean that annotations (in the simplest form #ifdef flags)
must correspond to feature names in a feature model and that annotations align
with the syntactic structure of the underlying language [50,54,64]. For example,
annotating an entire statement or an entire function is considered disciplined; the
annotation aligns with the language constructs of the host language. In contrast,
we consider annotating an individual bracket or just the return type of a function
as undisciplined. In Figure 14, we illustrate several examples of disciplined and
undisciplined annotations from the code of the text editor vim. A restriction
to disciplined annotations enables easy parsing of the source code [17, 64, 66]
and hence makes the code available to automated analysis (including variability-
aware analysis, as discussed in Sec. 5). Code with disciplined annotations can be
represented in the choice calculus [33], which opens the door for formal reasoning

8 http://antenna.sourceforge.net/

http://antenna.sourceforge.net/


364 C. Kästner and S. Apel

1 abstract class Expr {
2 abstract String toString();
3 //#ifdef EVAL
4 abstract int eval();
5 //#endif
6 }
7
8 class Val extends Expr {
9 int val;

10 Val(int n) { val = n; }
11 String toString() { return String.valueOf(val); }
12 //#ifdef EVAL
13 int eval() { return val; }
14 //#endif
15 }
16
17 class Add extends Expr {
18 Expr a; Expr b;
19 Add(Expr e1, Expr e2) { a = e1; b = e2; }
20 String toString() {
21 StringBuffer r=new StringBuffer();
22 //#ifdef MULT
23 r.append("(");
24 //#endif
25 r.append(a.toString());
26 r.append("+");
27 r.append(b.toString());
28 //#ifdef MULT
29 r.append(")");
30 //#endif
31 return r.toString();
32 }
33 //#ifdef EVAL
34 int eval() { return a.eval() + b.eval(); }
35 //#endif
36 }
37
38 //#ifdef MULT
39 class Mult extends Expr {
40 Expr a; Expr b;
41 Mult(Expr e1, Expr e2) { a = e1; b = e2; }
42 String toString() { return "(" + a.toString() + "*" + b.toString() + ")";
43 }
44 //#ifdef EVAL
45 int eval() { return a.eval() * b.eval(); }
46 //#endif
47 }
48 //#endif

Fig. 13. A preprocessor-based implementation of the “expression problem” from Fig-
ure 7
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1 void tcl_end() {
2 #ifdef DYNAMIC_TCL
3 if (hTclLib) {
4 FreeLibrary(hTclLib);
5 hTclLib = NULL;
6 }
7 #endif
8 }

disciplined annotation

1 int n = NUM2INT(num);
2 #ifndef FEAT_WINDOWS
3 w = curwin;
4 #else
5 for (w = firstwin; w != NULL;

w = w->w_next, --n)
6 #endif
7 if (n == 0)
8 return window_new(w);

undisciplined annotation (for wrap-
per)

1 if (char2cells(c) == 1
2 #if defined(FEAT_CRYPT) ||

defined(FEAT_EVAL)
3 && cmdline == 0
4 #endif
5 )

undisciplined annotation at expression level

1 if (!ruby_initialized) {
2 #ifdef DYNAMIC_RUBY
3 if (ruby_enabled(TRUE)) {
4 #endif
5 ruby_init();

undisciplined annotation (if wrap-
per)

Fig. 14. Examples of disciplined and undisciplined annotations in vim [64]

and for developing a mathematical theory of annotation-based FOSD. As a side
effect, it guarantees that all variants are syntactically correct [54].

There are different ways to enforce annotation discipline. For example, we
can introduce conditional compilation facilities into a programming language,
instead of using an external preprocessor, as done in D9 and rbFeatures [41].
Similarly, syntactic preprocessors allow only transformations based on the un-
derlying structure [23,66,97]. Alternatively, we can check discipline after the fact
by running additional analysis tools (however, even though Linux has a script
to check preprocessor flags against a feature model, Tartler et al. report sev-
eral problems in Linux with incorrect config flags as the tool is apparently not
used [90]). Finally, in our tool CIDE, we map features to code fragments entirely
at the tool level, such that the tool allows only disciplined annotations; hence, a
developer is not able to make an undisciplined annotation in the first place [50].

Enforcing annotation discipline limits the expressive power of annotations
and may require somewhat higher effort from developers who need to rewrite
some code fragments. Nevertheless, experience has shown that the restriction
to disciplined annotations are not a serious limitation in practice [17, 54, 64, 96].
Developers can usually rewrite undisciplined annotations locally into disciplined
ones – there is even initial research to automate this process [39,56]. Furthermore,
developers usually prefer disciplined annotations anyway (and sometimes, e.g.,
in Linux, have corresponding guidelines), because they understand the threats to
code comprehension from undisciplined usage. Liebig et al. have shown that 84 %
of all #ifdef directives in 40 substantial C programs are already in a disciplined
form [64]. So, we argue that enforcing discipline, at least for new projects, should
be a viable path that eliminates many problems of traditional preprocessors.

9 http://www.digitalmars.com/d/

http://www.digitalmars.com/d/
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Disciplined usage of annotations opens annotation-based implementations to
many forms of analysis and tool support, some of which we describe in the
following. Many of them would not have been possible with traditional lexical
preprocessors.

4.3 Views

One of the key motivations of modularizing features (for example, with feature-
oriented programming) is that developers can find all code of a feature in one
spot and reason about it without being distracted by other concerns. Clearly, a
scattered, preprocessor-based implementation, as in Figure 2, does not support
this kind of lookup and reasoning, but the core question “what code belongs to
this feature” can still be answered by tool support in the form of views [44,58,84].

With relatively simple tool support, it is possible to create an (editable) view
on the source code by hiding all irrelevant code of other features. In the simplest
case, we hide files from the file browser in an IDE. Developers will only see files
that contain code of certain features selected interactively by the user. This way,
developers can quickly explore all code of a feature without global code search.

In addition, views can filter code within a file (technically, this can be imple-
mented like code folding in modern IDEs).10 In Figure 15, we show an example
of a code fragment and a view on its feature Transaction (TXN). Note, we
cannot simply remove everything that is not annotated by #ifdef directives, be-
cause we could end up with completely unrelated statements. Instead, we need
to provide some context (e.g., in which class and method is this statement lo-
cated); in Figure 15, we highlight the context information in gray and italic font.
Interestingly, similar context information is also present in modularized imple-
mentations in the form of class refinements, method signatures, pointcuts, or
extension points.

Beyond views on one or more individual features, (editable) views on variants
are possible [13, 43, 58]. That is, a tool can show the source code that would be
generated for a given feature selection and hide all remaining code of unselected
features. With such a view, a developer can explore the behavior of a variant
when multiple features interact, without being distracted by code of unrelated
features. This goes beyond the power of physical separation with tools such
as FeatureHouse, with which the developer has to reconstruct the behavior of
multiple components/plug-ins/aspects in her mind. Especially, when many fine-
grained features interact, from our experience, views can be a tremendous help.
Nevertheless, some desirable properties such as separate compilation or modular
type checking cannot be achieved with views.
10 Although editable views are harder to implement than read-only views, they are

more useful since users do not have to go back to the original code to modify it. Im-
plementations of editable views have been discussed intensively in work on database
or model-roundtrip engineering. Furthermore, a simple but effective solution, which
we apply in our tools, is to leave a marker indicating hidden code [50]. Thus, modi-
fications occur before or after the marker and can be unambiguously propagated to
the original location.
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1 class Stack implements IStack {
2 void push(Object o) {
3 //#ifdef TXN
4 Lock l = lock(o);
5 //#endif
6 //#ifdef UNDO
7 last = elementData[size];
8 //#endif
9 elementData[size++] = o;

10 //#ifdef TXN
11 l.unlock();
12 //#endif
13 fireStackChanged();
14 }
15 //#ifdef TXN
16 Lock lock(Object o) {
17 return LockMgr.lockObject(o);
18 }
19 //#endif
20 ...
21 }

(a) original (all features selected)

1 class Stack [] {
2 void push([]) {
3 Lock l = lock(o);
4 []
5 l.unlock();
6 []
7 }
8 Lock lock(Object o) {
9 return LockMgr.lockObject(o);

10 }
11 []
12 }

(b) view on TXN (hidden code is indi-
cated by ‘[]’, necessary context infor-
mation is shown in gray italics)

Fig. 15. View emulates separation of concerns [47]

Hence, views can emulate some advantages of separating features as in feature-
oriented programming. Developers can quickly explore all code of a feature and
can deliberately navigate between features by switching between different views.
We have implemented the described views in our tool CIDE [50]. Instead of a
physical separation of features into separate files or directories, views provide a
virtual separation, hence the name virtual separation of concerns.

4.4 Coping with Obfuscated Source Code

Traditional preprocessors have a reputation for obfuscating source code such
that the resulting code is difficult to read and maintain. The reason is that pre-
processor directives and statements of the host language are intermixed. When
reading source code, many #ifdef and #endif directives distract from the actual
code and can destroy the code layout (with cpp, every directive must be placed
on its own line). There are cases in which preprocessor directives entirely obfus-
cate the source code as illustrated in Figure 1611 and in our previous FemtoOS
example in Figure 2. Furthermore, nested preprocessor directives and multiple
directives belonging to different features as in Figure 1 are other typical causes
of obfuscated code.

11 In the example in Figure 16, preprocessor directives are used for Java code at a fine
granularity [50], annotating not only statements but also parameters and part of
expressions. We need to add eight additional lines just for preprocessor directives.
Together with additional necessary line breaks, we need 21 instead of 9 lines for this
code fragment.
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1 class Stack {
2 void push(Object o
3 //#ifdef TXN
4 , Transaction txn
5 //#endif
6 ) {
7 if (o==null
8 //#ifdef TXN
9 || txn==null

10 //#endif
11 ) return;
12 //#ifdef TXN
13 Lock l=txn.lock(o);
14 //#endif
15 elementData[size++] = o;
16 //#ifdef TXN
17 l.unlock();
18 //#endif
19 fireStackChanged();
20 }
21 }

Fig. 16. Java code obfuscated by
fine-grained annotations with cpp

1 class Stack {
2 void push(Object o, Transaction txn) {
3 if (o==null || txn==null) return;
4 Lock l=txn.lock(o);
5 elementData[size++] = o;
6 l.unlock();
7 fireStackChanged();
8 }
9 }

Features: Transaction

, Transaction txn
|| txn==null

Lock l=txn.lock(o);

l.unlock();

Transaction

Fig. 17. Annotated code represented by
background color instead of textual anno-
tation [49]

While language-based mechanisms such as feature-oriented programming avoid
this obfuscation by separating feature code, researchers have explored several
ways to improve the representation in the realm of preprocessors: First, textual
annotations with a less verbose syntax that can be used within a single line could
help, and can be used with many tools. Second, views can help programmers to
focus on the relevant code, as discussed above. Third, visual means can be used
to differentiate annotations from source code: Like some IDEs for PHP use differ-
ent font styles or background colors to emphasize the difference between HTML
and PHP in a single file, different graphical means can be used to distinguish
preprocessor directives from the remaining source code. Finally, it is possible
to eliminate textual annotations altogether and use the representation layer to
convey annotations, as we show next.

In our tool CIDE, we abandoned textual annotations in favor of background
colors to represent annotations [50]. For example, all code belonging to feature
Transaction is highlighted with background color red. Using the representa-
tion layer, also our example from Figure 16 is much shorter as shown in Fig-
ure 17. The use of background colors mimics our initial steps to mark features
on printouts with colored text markers and can easily be implemented since the
background color is not yet used in most IDEs. Instead of background colors the
tool Spotlight uses colored lines next to the source code [29]. Background colors
and lines are especially helpful for long and nested annotations, which may oth-
erwise be hard to track. We are aware of some potential problems of using colors
(e.g., humans are only able to distinguish a certain number of colors), but still,
there are many interesting possibilities to explore; for example, usually a few
colors for the features a developer currently focuses on are sufficient. Recently,
the tool FeatureCommander combined background colors, lines, and several



Feature-Oriented Software Development 369

further enhancements in a way that scales for product lines with several hun-
dred features [35].

Despite all visual enhancements, there is one important lesson. Using pre-
processors does not require modularity to be dropped at all, but rather frees
programmers from the burden of forcing them to physically modularize every-
thing. Typically, most of a feature’s code will be still implemented mostly mod-
ularly, by a number of modules or classes, but additional statements for method
invocations may be scattered in the remaining implementation as necessary. In
most implementations, there are rarely annotations from more than two or three
features on a single page of code [47].

4.5 Summary

There are many directions from which we can improve annotation-based imple-
mentations without replacing them with alternative implementation approaches,
such as feature-oriented programming. Disciplined annotations remove many low-
level problems and open the implementation for further analysis; views emulate
modularity by providing a virtual separation of concerns; and visualizations re-
duce the code cluttering. At the same time, we keep the flexibility and simplicity
of preprocessors: Developers still just mark and optionally remove code fragments
from a common implementation.

Together, these improvements can turn traditional preprocessors into a viable
alternative to composition-based approaches, such as feature-oriented program-
ming. Still there are trade-offs: For example, virtual separation does not sup-
port true modularity and corresponding benefits such as separate compilation,
whereas compositional approaches have problems at a fine granularity. Even com-
bining the two approaches may yield additional benefits. We have explored these
differences and synergies elsewhere [47,48]. Recently, we have explored also auto-
mated transformations between the two representations [51]. We cannot make a
recommendation for one or the other approach. We believe that much (empirical)
evaluation is still necessary. Currently, we are exploring both paths in parallel.

Tooling. Basic preprocessors are widely available for most languages. For Java,
Antenna is a good choice for which also tool integration in Eclipse and NetBeans
is available. Most advanced concepts discussed here have been implemented in
our tool CIDE as an Eclipse plugin.12 CIDE uses the feature-model editor and
reasoning engine from FeatureIDE. CIDE is open source and comes with a num-
ber of examples and a video tutorial. Visualizations have been explored further in
View Infinity13 and FeatureCommander,14 the latter of which comes with Xeno-
mai (a realtime extension for Linux with 700 features) as example. For graphical
models, FeatureMapper15 provides similar functionality.

12 http://fosd.net/cide
13 http://fosd.net/vi
14 http://fosd.net/fc
15 http://featuremapper.org/

http://fosd.net/cide
http://fosd.net/vi
http://fosd.net/fc
http://featuremapper.org/
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5 Variability-Aware Analysis

The analysis of product lines is difficult. The exponential explosion (up to 2n
variants for n features) makes a brute-force approach infeasible. At the same
time, checking only sampled variants or variants currently shipped to customers
leads to the effect that errors can lurk in the system for a long time. Errors
are detected late, only when a specific feature combination is requested for the
first time (when the problem is more expensive to find and fix). While this may
work for in-house development with only a few products per year (e.g., software
bundled with a hardware product line), especially in systems in which users can
freely select features (e.g., Linux), checking variants in isolation obviously does
not scale.

Variability-aware analysis is the idea to lift an analysis mechanism for a single
system to the product-line world. Variability-aware analysis extends traditional
analysis by reasoning about variability. Hence, instead of checking variants, vari-
ability is checked locally where it occurs inside the product-line implementation
(without variant generation). Variability-aware analysis has been proposed for
many different kinds of analysis, including type checking [5,53,92], model check-
ing [12,27,60,76], theorem proving [95], and parsing [56]; other kinds of analyses
can probably be lifted similarly. There are very different strategies, but the
key idea is usually similar. We will illustrate variability-aware analysis with type
checking, first for annotation-based implementations, then for composition-based
ones. Subsequently, we survey different general strategies.

5.1 Type Checking Annotation-Based Implementations

To illustrate variability-aware type checking, we use the trivial hello-world pro-
gram with three features shown in Figure 18: From this program, we can gen-
erate eight different variants (with any combination of WORLD, BYE, and
SLOW). Quite obviously, some of these programs are incorrect: Selecting nei-
ther WORLD nor BYE leads to a dangling variable access in the println param-
eter (msg has not been declared); selecting both WORLD and BYE leads to a
variable declared twice.

To detect these errors with a brute-force approach, we would simply generate
and type check all eight variants individually. While brute force seems acceptable
in this example, it clearly does not scale for implementations with many features.
Instead, variability-aware type checking uses a lifted type system that takes
variability into account.

As a first step, we need to reason about conditions under which certain code
fragments are included. Czarnecki and Pietroszek coined them presence condi-
tions, to describe the conditions under which a code fragment is included with a
propositional formula (the code line is included iff the presence condition of that
line evaluates to true) [31]. In our example, the formulas are trivial: WORLD
for Line 4, BYE for Line 7, SLOW∧WORLD for Line 12, and true for all other
lines. With more complex #ifdef conditions and nesting, the formulas become
more complex as described in detail elsewhere [83].
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1 #include <stdio.h>
2
3 #ifdef WORLD
4 char *msg = "Hello World\n";
5 #endif
6 #ifdef BYE
7 char *msg = "Bye bye!\n";
8 #endif
9

10 main() {
11 #if defined(SLOW) && defined(WORLD)
12 sleep(10);
13 #endif
14
15 println(msg);
16 }

Fig. 18. Hello-world example with annotations

Now, we can formulate type rules based on presence conditions. For example,
whenever we find an access to a local variable, we need to make sure that we
can reach at least one declaration. In our example, we require that the presence
condition of accessing msg (i.e., true) implies the presence condition of either
declaration of msg (i.e., WORLD and BYE): true ⇒ (WORLD∨BYE). Since this
formula is not a tautology, we detect that a variant selecting neither feature is not
type correct. Similar reachability conditions for function calls are straightforward
and uninteresting, because the target declaration in a header file has presence
condition true. As an additional check, we require that multiple definitions with
the same name must be mutually exclusive: ¬(WORLD ∧ BYE). This check
reports an error for variants with both features. If the product line has a feature
model describing the valid variants, we are only interested in errors in valid
variants. By using a representation of the feature model as propositional formula
fm (translations are straightforward, cf. Sec. 2.2), we check only variants that
are valid with respect to the feature model: fm ⇒ (true ⇒ (WORLD ∨ BYE))
and fm ⇒ ¬(WORLD∧ BYE) as illustrated in Figure 19.

1 #include <stdio.h>
2
3 #ifdef WORLD
4 char *msg = "Hello World\n";
5 #endif
6 #ifdef BYE
7 char *msg = "Bye bye!\n";
8 #endif
9

10 main() {
11 #if defined(SLOW) && defined(WORLD)
12 sleep(10);
13 #endif
14
15 println(msg);
16 }

Fig. 19. Constraints in the hello-world example

fm ⇒ (true ⇒ (WORLD∨BYE))

fm ⇒ (true ⇒ true)

fm ⇒
(SLOW ∧WORLD

⇒ true)

fm ⇒ ¬(WORLD∧BYE)
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Abstracting from the example, we can define generic reachability and
uniqueness conditions. A reachability condition between a caller and multiple
targets is:

fm ⇒ pc(caller) ⇒
∨

t∈targets

pc(t)

where pc denotes a presence condition. The uniqueness condition that enforces
that no variant defines multiple definitions is:

fm ⇒
∧

d1∈definitions, d2∈definitions, d1 �=d2

¬
(
pc(d1)∧ pc(d2)

)

Even for complex presence conditions and feature models, we can check whether
these constraints hold efficiently with SAT solvers (Thaker et al. provide a good
description of how to encode and implement this [92]).16

So, how does variability-aware type checking improve over the brute-force ap-
proach? Instead of just checking reachability and unique definitions in a single
variant, we formulate conditions over the space of all variants. The important
benefit of this approach is that we check variability locally, where it occurs.
In our example, we do not need to check the combinations of SLOW and
BYE, which are simply not relevant for typing. Technically, variability-aware
type checking requires lookup functions to return all possible targets and their
presence conditions. Furthermore, we might need to check alternative types of
a variable. Still, in large systems, we do not check the surface complexity of
2n variants, but analyze the source code more closely to find essential com-
plexity, where variability actually matters. We cannot always avoid exponential
blowup, but practical source code is usually well behaved and has comparably
little local variability. Also, caching of SAT-solver queries is a viable optimization
lever. Furthermore, the reduction to SAT problems enables efficient reasoning in
practice, even in the presence of complex presence conditions and large feature
models [53, 67, 92].

In prior work, we have described variability-aware type checking in more detail
and with more realistic examples; we have formalized the type system and proven
it sound (when the type system judges a product line as well-typed all variants
are well-typed); and we have provided experience from practice [53].

5.2 Type Checking Composition-Based Implementations

The same concept of introducing variability into type checking can also be ap-
plied to feature-oriented programming. To that end, we first need to define a
type system for our new language (as, for example, FFJ [6]) and then make it
variability-aware by introducing reachability checks (as, for example, FFJPL [5]).

16 Other logics and other solvers are possible, but SAT solvers seem to provide a sweet
spot between performance and expressiveness [67].
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Since the type-checking mechanisms are conceptually similar for annotation-
based and composition-based product lines, we restrict our explanation to a
simple example of an object store with two basic implementations (example
from [93]) that each can be extended with a feature AccessControl in Fig-
ure 20. Lookup of function calls works across feature boundaries and checking
presence conditions is reduced to checking relationships between features.

Feature SingleStore

1 class Store {
2 private Object value;
3 Object read() { return value; }
4 void set(Object nvalue) { value = nvalue; }
5 }

Feature MultiStore

6 class Store {
7 private LinkedList values = new LinkedList();
8 Object read() { return values.getFirst(); }
9 Object[] readAll() { return values.toArray(); }

10 void set(Object nvalue) { values.addFirst(nvalue); }
11 }

Feature AccessControl

12 refines class Store {
13 private boolean sealed = false;
14 Object read() {
15 if (!sealed) { return Super().read(); }
16 else { throw new RuntimeException("Access denied!"); }
17 }
18 Object[] readAll() {
19 if (!sealed) { return Super().readAll(); }
20 else { throw new RuntimeException("Access denied!"); }
21 }
22 void set(Object nvalue) {
23 if (!sealed) { Super(Object).set(nvalue); }
24 else { throw new RuntimeException("Access denied!"); }
25 }
26 }

Fig. 20. Checking whether references to read and readAll are well-typed in all valid
products

fm ⇒
AccessControl ⇒
MultiStore

fm ⇒
AccessControl ⇒
SingleStore ∨MultiStore

More interestingly, the separation of features into distinct modules allows us
to check some constraints within a feature. Whereas the previous approaches
assume a closed world in which all features are known, separation of features
encourages modular type checking in an open world. As illustrated in Figure 21,
we can perform checks regarding fragments that are local to the feature. At the
same time, we derive interfaces, which specify the constraints that have to be
checked against other features. To check constraints between features, we can use
brute force (check on composition) or just another variability-aware mechanism.

Modular type checking paves the road to true feature modularity, in which
we distinguish between the public interface of a feature and private hidden
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Feature SingleStore

1 class Store {
2 private Object value;
3 Object read() { return value; }
4 void set(Object nvalue) { value =

nvalue; }
5 }

Feature MultiStore

6 class Store {
7 private LinkedList values = new

LinkedList();
8 Object read() { return

values.getFirst(); }
9 Object[] readAll() { return

values.toArray(); }
10 void set(Object nvalue) {

values.addFirst(nvalue); }
11 }

Feature AccessControl

12 refines class Store {
13 private boolean sealed = false;
14 Object read() {
15 if (!sealed) { return Super().read(); }
16 else { throw new

RuntimeException("Access
denied!"); }

17 }
18 Object[] readAll() {
19 if (!sealed) { return

Super().readAll(); }
20 else { throw new

RuntimeException("Access
denied!"); }

21 }
22 void set(Object nvalue) {
23 if (!sealed) {

Super(Object).set(nvalue); }
24 else { throw new

RuntimeException("Access
denied!"); }

25 }
26 }

⇒

Interface of SingleStore

1 provides Object read();
2 provides void set(Object);

Interface of MultiStore

3 provides Object read();
4 provides Object[]

readAll();
5 provides void set(Object);

Interface of AccessControl

6 requires Object read();
7 requires Object[]

readAll();
8 requires void set(Object);

Fig. 21. References to field sealed can be checked entirely within feature AccessCon-
trol (left); references to read and readAll cut across feature boundaries and are checked
at composition time based on the features’ interfaces (right)
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implementations. Modular analysis of a feature reduces analysis effort, because
we need to check each feature’s internals only once and need to check only in-
terfaces against interfaces of other features (checking interfaces usually is much
faster than checking the entire implementation). Furthermore, we might be able
to establish guarantees about features, without knowing all other features (open-
world reasoning). For an instantiation of modular type checking of features, see
the work on gDeep [3] and delta-oriented programming [81]. Li et al. explored a
similar strategy for model checking [63].

5.3 Analysis Strategies

In general, we see three different strategies of how we can approach variability-
aware analysis:

– Brute-force strategy. We check variants individually with standard analy-
sis techniques. We can try to reduce effort by sampling relevant variants
and focusing on certain coverage heuristics. For example, pair-wise feature
coverage samples a small number of variants in the hope to discover all
problems related to the interaction of pairs of features [72]. Especially for
testing and measurement, approaches to select suitable variants have been
explored [59, 72, 75, 82].

– Family-based strategy. We check the whole product line at once, as out-
lined for type checking above. We assume a closed world in which we know
the implementation of all features and their relationships. The family-based
strategy has been explored extensively for type checking and model check-
ing [5, 12, 27, 31, 53, 60, 76, 92].

– Feature-based strategy. We check each feature in isolation as far as possible.
Modular feature checks do not require implementation details of other fea-
tures. For noncompositional properties that cannot be checked locally, we
derive interfaces or constraints that must be checked when composing two
features (per variant, or using a brute-force or family-based strategy). Mod-
ular checks avoid re-performing certain checks for each variant that are local
to individual features; the strategy is suited especially if features are already
separated. It has been explored, for example, for type checking, model check-
ing and verification [3, 63, 81, 95].

These strategies can be applied to different forms of implementation and different
kinds of analysis. Of course the strategies can be combined. For details on these
strategies, their combinations, and a survey of existing analysis techniques see
the recent report by Thüm et al. [93].

Tooling. Most variability-aware analyses, we are aware of, are in the state of re-
search prototypes. See the corresponding references for further information. Our
environment for virtual separation of concerns, CIDE, contains a variability-
aware type system that covers large parts of Java. The safegen tool implements
part of a variability-aware type system for the feature-oriented language Jak and
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is available as part of the AHEAD tool suite. We are currently in the process
of integrating such type system into the Fuji compiler for feature-oriented pro-
gramming in Java,17 and afterward into FeatureIDE, and we are developing a
type system for C code with #ifdefs as part of the TypeChef project.18

6 Open Challenges

So far, we have illustrated different strategies to implement features in product
lines. They all encourage disciplined implementations, that alleviate many prob-
lems traditionally associated with product-line implementations. Nevertheless,
there are many open challenges.

A core challenge is the exponential explosion of the number of variants. The
more features a product line supports, the more complex interaction patterns can
occur that challenge maintenance tasks and quality assurance tasks. Although we
have outlined possible strategies for variability-aware analysis, they cannot (yet)
fully replace sophisticated software testing methods known from single-program
development.

Feature interactions are especially problematic. A feature interaction occurs
when two features behave different combined than they behave in isolation.
A standard example are two features flood control and fire alarm in home-
automation software that work well in isolation, but when combined, flood con-
trol may accidentally turn of sprinklers activated when a fire was detected [61].
When feature interactions are known, there are several implementation strate-
gies, for example with additional derivative modules or nested preprocessor direc-
tives [55]. However, feature interactions can be difficult to detect, specify, and
check against. Calder et al. provide a deeper introduction into the topic [25].
Many problems in product lines are caused by feature interactions.

Furthermore, both feature-oriented programming and preprocessor-based im-
plementations have been criticized for neglecting modularity and overly relying
on structures of the implementation. Although feature modules localize all fea-
ture code, only few approaches provide explicit interfaces that could enforce
information hiding. We discuss this issue in detail elsewhere [52].

In general, also FOSD requires variability management as an essential task
of project management. Developers should not add features, just because they
can. Variability should always serve a mean for the project, such as answering
to customer demands for tailor-made products, serving to a broader market
segment, or preparing for potential customers. Variability adds effort, complexity,
and costs for development, maintenance, and quality assurance. If (compile-time)
variability is not really needed, it might be best to develop a traditional single
program and use conventional development and testing approaches. However, if
variability adds value to the project, as discussed in Section 2, the disciplined
implementation approaches of FOSD discussed in this tutorial may provide a
good balance between gained variability and required effort and costs.
17 http://fosd.net/fuji
18 https://github.com/ckaestne/TypeChef

http://fosd.net/fuji
https://github.com/ckaestne/TypeChef
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7 Conclusion

With this tutorial, we have introduced FOSD. Beginning with basic concepts
from the field of software product line engineering, we have introduced two ap-
proaches to FOSD: feature-oriented programming à la AHEAD and Feature-
House and virtual separation of concerns. Subsequently, we have introduced the
subfield of variability-aware analysis, which highlights a promising avenues of
further work. We have covered only the basic concepts and a few methods, tools,
and techniques, with a focus on techniques that can be readily explored. For
further information, we recommend a recent survey, which covers also related
areas including feature interactions, feature design, optimization, and FOSD
theories [4, 49].
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