
August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Parallel Processing Letters
c© World Scientific Publishing Company

AUTOMATIC DATA LAYOUT TRANSFORMATIONS

IN THE EXASTENCILS CODE GENERATOR

STEFAN KRONAWITTER† and SEBASTIAN KUCKUK‡ and
HARALD KÖSTLER‡ and CHRISTIAN LENGAUER†

† University of Passau, Passau, Germany
‡ Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany

ABSTRACT

Performance optimizations should focus not only on the computations of an application,

but also on the internal data layout. A well-known problem is whether a struct of arrays

or an array of structs results in a higher performance for a particular application. Even
though the switch from the one to the other is fairly simple to implement, testing both

transformations can become laborious and error-prone. Additionally, there are more
complex data layout transformations, such as a color splitting for multi-color kernels
in the domain of stencil codes, that are manually difficult. As a remedy, we propose

new flexible layout transformation statements for our domain-specific language ExaSlang
that support arbitrary affine transformations. Since our code generator applies them
automatically to the generated code, these statements enable the simple adaptation of

the data layout without the need for any other modifications of the application code.
This constitutes a big advance in the ease of testing and evaluating different memory
layout schemes in order to identify the best.

Keywords: data layout transformation, color splitting, ExaStencils, stencil codes, domain-
specific language, code generation

1. Introduction

Many scientific application areas, such as physics and chemistry simulations, require

the solution of discretized partial differential equations (PDEs). Some of the most

efficient solvers for this problem are from the class of multigrid methods [1, 2].

Tuning an implementation for a given hardware architecture and concrete prob-

lem specification is, however, notoriously challenging. Particularly the choice or

adaptation of the underlying data structures and layout can be the deciding factor

in attaining or preventing optimal performance. One prominent case in which an

adaptation is necessary is that of multi-color kernels that are often favored for

their parallelizability and numerical properties. E.g., the use of a simple Red-Black

Gauss-Seidel (RBGS) smoother already results per se in an inefficient memory access

pattern of only every other element. This reduces effective memory bandwidth and

prevents suitable vectorization. As a remedy, a traditional optimization is to store

the red and black points separately in memory. While easy to formulate on paper,

1

Preprint version



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

2 Parallel Processing Letters

an efficient implementation is quite challenging, especially when done in the larger

context of an existing solver [3, 4]. And, of course, it gets more complicated for more

complex coloring schemes.

Most applications handle more than one physical quantity. Here, another well

known layout transformation is to switch from a struct of arrays (SoA) to an array of

structs (AoS) representation. Again, the most basic version applied to equally sized

data fields can be implemented with reasonable effort. However, when staggered grids

are used, such as in computational fluid dynamics (CFD), the number of data points

per unknown and dimensions varies for each quantity, i.e., data field. Obviously, this

complicates the implementation of such memory layout transformations severely.

With present-day high-performance computing (HPC) frameworks, the individual

adaptation of the internal data layout to an application variant is usually infeasible.

Moreover, choosing the suitable data layout a priori is virtually impossible since

neither the target hardware nor the actual implementation of the compute kernels

are known beforehand. The use of code generation techniques, as employed in

ExaStencils, can be a viable solution since all data structures are compiled for a

specific application. Moreover, an interface can lend users support in the adaptation

of the underlying data structures and even in the exploration of new optimization

techniques. We expound on the required functionality, i.e., the (automatic) memory

layout transformations, in the code generator of project ExaStencilsa [5]. Here, we

go beyond traditional optimizations such as switching between SoA and AoS or

reversing index dimensions. Instead, we implement an interface that facilitates the

specification of arbitrary affine transformations with a concise and intuitive syntax.

This allows not only color splitting with an arbitrary number of colors, but also

researching new optimizations for applications that will be implemented in the

future. We enhance our approach with the support of the concatenation of fields of

non-matching sizes, which is necessary when operating on staggered grids for CFD

simulations.

We make the following contributions:

• automatic data layout transformations implemented in the ExaStencils code

generator,

• their exposition to users at a domain-specific language (DSL) level,

• a detailed description of their implementation,

• a demonstration of their efficiency for arbitrary affine transformations and

• a demonstration of their performance impact on CPUs and GPUs.

The rest of the paper is organized as follows. Section 2 briefly introduces our DSL

ExaSlang, in which the layout transformations are integrated. The new language

features are presented in Section 3.1, while Section 3.2 details how the layout trans-

formations are implemented in our code generator. An evaluation of the performance

impact and a presentation of how the layout transformation statements can be used

is given in Section 4. Related work is discussed in Section 5 and Section 6 concludes.

ahttp://www.exastencils.org/

http://www.exastencils.org/


August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Automatic Data Layout Transformations in the ExaStencils Code Generator 3

abstract
problem

formulation

concrete
solver

implementation

Layer 1:
Continuous Domain & Continuous Model

Layer 2:
Discrete Domain & Discrete Model

Layer 3:
Algorithmic Components & Parameters

Layer 4:
Complete Program Specification

TargetP
latform

D
escription

Natural
scientists

Mathe-
maticians

Computer
scientists

Fig. 1. ExaSlang is a DSL with four layers of abstraction. A separate target platform description

language serves to specify properties of the target execution platform.

2. ExaSlang

The input for our code generator is a DSL called ExaSlang—short for ExaStencils

language [6]. It consists of four different layers of abstraction, called ExaSlang 1

to 4, ranging from an abstract specification of the continuous PDE to be solved

(ExaSlang 1) to a concrete definition of the implementation containing code for all

components of the multigrid method (ExaSlang 4) as shown in Figure 1. The layout

transformation that we discuss here resides in ExaSlang 4. To apply it, only few

extensions to the language are required.

ExaSlang 4 is the most concrete form of ExaSlang, but it still contains language

features that are specific to multigrid applications. From ExaSlang 4 code, the target

code is generated—normally C++ plus MPI/OpenMP/CUDA or similar languages.

Figure 2 shows ExaSlang 4 code for a RBGS smoother. ExaSlang 4 allows most

objects, such as fields and functions, to be available at several levels of the multigrid

hierarchy. Such level specifications and references are tied to the objects to which

they belong via the @ operator: function Smoother is available at all levels but

the coarsest. The fields Solution and RHS, as well as the stencil Laplace in the

function’s body are also level-specific. If, as here, no level is specified explicitly,

these identifiers reference the objects at the level at which the function is being

applied. This can be highlighted by adding the optional label @current. Other than

Function Smoother@(all but coarsest) {
color with {

(i0+i1+i2) % 2,
loop over Solution {
Solution = Solution +
1.0 / diag(Laplace) *
(RHS - Laplace * Solution)

} } }

Fig. 2. ExaSlang 4 code for a RBGS smoother.



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

4 Parallel Processing Letters

current, the keywords coarser and finer reference objects at the next coarser or

finer level and the addition or subtraction of a constant offset, such as current-2, is

also possible. Additionally, there are coarsest, finest, and all as well as the set

difference but. A color with block starts with a non-empty sequence of modulo

operations. Their numerators are expressions that may contain field iterators (i0,

i1, . . . ) while their divisors must be natural numbers. These expressions specify a

(possibly multi-dimensional) coloring that is applied to the loop over statements. In

general, the loop over construct specifies a full iteration over a (multi-dimensional)

field. However, the statements inside the color with block are executed once for

each color and, hence, the loop over statements are restricted to the iterations

across the current color. In the example, the body of the loop is executed first for

all iterations for which the sum of the loop iterators i0, i1, and i2 is even. In a

second sweep, the remaining, odd iterations are executed.

3. Layout Transformations

Since the indices of field accesses are not stated in ExaSlang 4, the computation is

abstracted from the actual memory layout, which specifies how field elements are

organized in memory. The default memory layout is a direct mapping of the loop

iteration vector to the position of the element accessed inside the memory. However,

for a red-black coloring, this results in an update of only every other element, which

reduces the effective memory bandwidth since data can only be transferred in chunks

of 512 bits from and to main memory on current processor architectures. This

becomes even more problematic if more than two colors are required. Our solution

to this and similar problems is a language extension of ExaSlang 4 that provides a

mechanism for the specification of arbitrary affine memory layout transformations.

On the one hand, this provides users with the ability to experiment with different

memory layouts. On the other hand, it represents a concise interface for the automatic

tuning of the memory layouts of present fields in the future.

3.1. New ExaSlang 4 Features

A new top-level block, LayoutTransformations, gives ExaSlang 4 programmers or

generators the opportunity to add three new kinds of directives. Figure 3 contains a

simplified grammar of this extension.

3.1.1. Renaming

The first new statement, rename, is the simplest one. It takes the name of an existing

field and a new, unused identifier. The original name is then replaced at all specified

levels by the new one. The sole intent of this statement is to support the linking

of generated code to external or legacy code. Note that rename is not intended to

introduce aliasing and, thus, the new name introduced must not be used in the

ExaSlang 4 code.



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Automatic Data Layout Transformations in the ExaStencils Code Generator 5

〈layoutTrafoBlock〉 ::= ‘LayoutTransformations {’ 〈layoutTrafoStmt-list〉 ‘}’

〈layoutTrafoStmt〉 ::= ‘rename’ 〈field〉 ‘to’ 〈field〉
| ‘transform’ 〈field-list〉 ‘with [’ 〈ident-list〉 ‘] => [’ 〈expr-list〉 ‘]’

| ‘concat’ 〈levels? 〉 〈fieldName-list〉 ‘into’ 〈fieldName〉

〈field〉 ::= 〈fieldName〉〈levels? 〉

Fig. 3. Simplified grammar of the new LayoutTransformations block. 〈X-list〉 specifies a
repetition of the non-terminal 〈X 〉, using a comma as a delimiter for all except the 〈layoutTrafoStmt-

list〉, which does not require any special delimiter (other than spaces or newlines). The 〈field-list〉 and
〈fieldName-list〉 can be delimited alternatively with ‘and’. 〈levels?〉 is an optional level specification
prefixed with an @ operator as introduced in Section 2. In the absence of a level specification, all
levels are affected.

3.1.2. Transformation

An actual layout transformation can be specified with the transform statement.

It is applied to all given fields individually and the desired transformation is specified

by a linear mapping that assigns every element of the input field a new location.

For example, a color splitting of the fields Solution and RHS in Figure 2 is given

in Figure 4. The first transformation adds a new dimension outermost with two

possible values: one for the red and one for the black points. In ExaSlang 4, unlike

in C, the elements of the leftmost dimension are stored consecutively in memory, i.e.,

in column-major order. This transformation results in the use of only every other

element of the generated arrays. The second transformation then closes the gaps

by scaling the innermost dimension down. Shrinking any other dimension would

be possible as well but this would result in non-contiguous accesses. In contrast

to two successive transformations for the color separation and the scaling, a single

transformation specifying the composition of both is possible, too. Note that one

need not specify how the extent of a dimension is affected by a transform statement

or which extent a new dimensions has. This is incorporated automatically by the

code generator as described in Section 3.2.2.

Since ExaSlang 4 supports also vectors and matrices as field element types [7],

dimensions induced by them may also be specified in a transformation statement.

Without such a directive, the new dimensions for vectors and matrices are added

outermost, i.e., the default is an SoA representation. However, since the additional

dimensions are not treated differently from the field dimensions, they can be in-

LayoutTransformations {
transform Solution and RHS
with [x,y,z] => [x,y,z,(x+y+z)%2]

transform Solution and RHS
with [x,y,z,c] => [x/2,y,z,c]

}

Fig. 4. ExaSlang 4 code for a layout transformation.



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

6 Parallel Processing Letters

Function CopyField@all {
loop over RHS_N {
RHS_N = RHS

}
}

(a) ExaSlang 4

void CopyField() {
for (z = ...)
for (y = ...)

for (x = ...)
RHS_N[z][y][x] =

RHS[(x+y+z)%2][z][y][x/2];
}

(b) generated Pseudocode

Fig. 5. Explicit layout conversion for the transformation from Figure 4.

terchanged with the latter to achieve, e.g., an AoS layout. In the case of a 2D

field and vector components, such a transformation is given by the expression

[x,y,v] => [v,x,y]. As implied earlier, in case one only wants to transform the

field dimensions, the additional dimensions of vectors or matrices need not be stated

explicitly. Thus, the left-hand side of such a transformation may read [x,y].

If a layout transformation is only advisable for a part of the application, an explicit

conversion between different data layouts during the execution of the generated

code is also possible. One simply declares separate fields for each data layout

and targets them individually by appropriate layout transformations. Finally, an

explicit conversion is then initiated by a simple copy loop as shown in Figure 5(a).

Even though this loop looks like a naive one-to-one copy, existing data layout

transformations for both fields are applied in the generated C++ code. E.g., for

the layout transformation in Figure 4, the resulting C++ code is similar to the

pseudocode shown in Figure 5(b).

3.1.3. Concatenation

The concat statement concatenates two or more fields to a new one. Only fields at

the same level can be merged. Optionally, the level can be specified before the field

names are listed. While the ExaSlang 4 code uses only the original, separated fields,

their elements are placed in a single array in the generated C++ code. To separate

the different input fields, a new dimension is added outermost whose possible values

enumerate the original fields. Thus, this statement can be viewed as creating a SoA

from the given fields. The extents of the inner dimensions are set to the maximum

of the extents of all involved fields, which potentially introduces unused areas. The

benefit of this statement is that the memory layout of the new, merged field can be

adapted with the transform statement. For example, the new dimension can then

be permuted to create an AoS. This may be useful in situations where elements of

different fields are only accessed jointly. Furthermore, the original fields can also be

transformed before concatenation.



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Automatic Data Layout Transformations in the ExaStencils Code Generator 7

3.2. Implementation

To apply such data layout transformations, we take advantage of the integer set

library (isl) [8]. This C library offers functionality to represent and manipulate sets

and relations of integer points bounded by affine inequalities. It was designed and

implemented for polyhedral compilation [9], but also provides functionality that

matches our requirements perfectly. For example, the application of a relation to a

set, and the extrema computation for a set can be used to compute the new extents

of a transformed data layout. And, since our code generator is capable of polyhedral

optimization, the isl is already integrated and in use.

3.2.1. Overview

The overall structure of our layout transformation strategy is straight-forward:

(i) Collect all layout transformation statements.

(ii) Apply transform statements.

(iii) Perform all rename operations.

(iv) Create new fields for concat statements.

(v) If there is at least one concat statement, create and incorporate accesses to

new fields and apply transform statements for them.

The first step (i) searches the entire abstract syntax tree (AST) for

LayoutTransformations blocks and collects all their statements. In the second

step (ii), all access expressions to fields are updated as specified by the transform

statements. Excluded are only accesses to fields created with a concat statement,

since they do not exist at this point but will be introduced later in step (v). Addi-

tionally, the field extents are adapted to ensure that the linearization is correct and a

large enough chunk of memory will be allocated. Details of how a transform state-

ment is applied are presented later in this section. Step (iii) performs all requested

rename operations. Since every field is represented by a single object and these are

not referenced by name in the AST, we can simply replace the name attribute of

all targeted fields. The concat statements are processed in steps (iv) and (v). In

the former, the new, concatenated fields are generated and some sanity checks are

performed. For example, the data type of the field elements must be identical. The

dimensionality of the new field is one larger than that of the original fields. The

extent of this new dimension is the number of fields to be merged, while for the

other dimensions the maximum of the extents from the old fields is set. Finally, in

the last step (v), all accesses to any field that is to be concatenated with others are

replaced by an access to the new field and a potential transformation is applied.

Additionally, all other occurrences of an original field (in internal structures) are

replaced by the new one.



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

8 Parallel Processing Letters

Algorithm 1: Layout transformation for access expressions.

Input: The access expression to be transformed and a list of enclosingConditions for
the current program location.

Output: The new, transformed field access expression.
Data: accessTemplates is an initially empty mapping of a field to an access template

whose content is preserved between different calls and transformStmts is a
mapping of each field to a list of transformation statements for it.

Function process access(access, enclosingConditions):
1 field ← get field(access)
2 if field /∈ accessTemplates.keys() then
3 stmts ← transformStmts(field)
4 trafo ← identity()
5 foreach stmt ∈ stmts do
6 aff ← create isl multi aff(stmt)
7 trafo ← aff ◦ trafo

8 update layout(field, trafo)
9 accTempl ← create access template(trafo)

10 accessTemplates(field) ← accTempl

11 accTempl ← accessTemplates(field)
12 newAccess ← specialize(accTempl, access)
13 newAccess ← simplifyWith(newAccess, enclosingConditions)
14 return newAccess

3.2.2. Access Transformation

The basic idea of the automatic data layout transformations is to modify all accesses

to a field in a common way. Additionally, the layout information of the fields must be

updated, i.e., the extent of each dimension must be adjusted. Algorithm 1 computes

new field accesses for the specified transformations. Prior to the execution of this

function, level specifications introduced in Section 2, are completely resolved: all

objects, including the field accesses and the fields themselves, are specialized for

each level. Thus, a field is identified not only by its name but by a combination of

its name and level.

Initially, in line 1, the field that is referenced by the given access expression is

extracted. The remainder of the function can then be divided into two parts:

(i) Lines 3 to 10 update the field layout and generate a template with which the

new, transformed accesses to the same field can be generated, while

(ii) lines 11 to 14 retrieve a previously computed template, specialize it to the

given access and simplify the result.

On the one hand, the field layout modification of part (i) must be executed exactly

once per field to ensure correctness. On the other hand, the template generation need

not be repeated since its result can be cached and reused later. The accessTemplates

mapping performs such a caching. Therefore, part (i) is executed only if there is

no template available yet for the field in question. It starts by retrieving a list



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Automatic Data Layout Transformations in the ExaStencils Code Generator 9

of transform statements for the current field from the transformStmts mapping

(line 3). For each of these statements, an isl representation of the transformation

expression is generated (line 6) and these individual transformations are composed

to yield a single one with the same semantics (line 7). The isl provides functionality

to perform such a composition. Updating the field layout for the transformation

in line 8 also relies on methods provided by the isl. In detail, the affine expression

representing the layout transformation is first transformed to a relation between

two integer sets. Second, an integer set containing all valid indices for the old field

layout is created and, third, the previously computed relation is applied to it which

results in the set of all valid indices for the new, transformed layout. Finally, it is

ensured that the minimal value of every individual dimension of the new integer set

(after projecting all other dimensions out) is nonnegative and the new extent of that

dimension is set to its maximum value plus 1. Line 9 recreates an AST, namely the

template for the transformed access, from the isl transformation expression with

predefined dummies for the input variables. This new template is then stored in

the accessTemplates mapping (line 10) for a later use and to indicate that the field

layout is already modified.

In contrast to part (i), part (ii) must be executed for each access expression

that has to be transformed. The access template for field is retrieved in line 11.

This template is specialized in line 12 by replacing the i-th dummy variable with

the i-th expression of the old access. Line 13 performs an optimization that targets

explicitly a color splitting for a colored loop nest. For example, the loop in Figure 2

is executed once for all loop iterations [x,y,z] for which the expression (x+y+z)%2

equals to 0 and once for 1. If additionally a color splitting, as presented in Figure 4,

is applied, the modulo computation in the new field access expressions inside these

loops can be specialized to the constant 0 or 1, respectively. The information to

which value the coloring expression is restricted in the current context is given via the

enclosingConditions parameter. This simplification tackles the more complex memory

address computations introduced by a color splitting and, thus, has the potential to

increase the performance of the generated code even further. The transformed and

simplified access is eventually returned in line 14.

4. Evaluation

This section addresses the performance influence of data layout transformations,

both for a single smoother and for the complete multigrid code, and provides the

corresponding layout transformation statements for all experiments.

4.1. Experiment Setup

All CPU experiments were executed on single-socket nodes equipped with Intel

Xeon E5-2690 v2 processors. They consist of 10 Ivy Bridge EP cores, each running

at 3.3 GHz when fully loaded and with Intel Turbo Boost enabled. Each node is

equipped with an NVIDIA GeForce GTX TITAN Black GPU, which contains 2880



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

10 Parallel Processing Letters

(a) 2D 1st-order (b) 3D 1st-order (c) 2D dense (d) 3D dense

Fig. 6. 2D and 3D stencil shapes.

CUDA cores running at 677 MHz in double-precision mode. While the CPU has

access to 64 GB DDR3 memory, the TITAN Black contains 6 GB GDDR5 memory.

Each experiment was implemented in ExaSlang 4 and compiled to C++/CUDA

code for the given architecture. The C++ code was compiled with the GNU g++

compiler, using aggressive optimizations (-O3). The CPU-only experiments ran

on the g++ version 6.3. The CUDA code was passed to the nvcc compiler of

the CUDA Toolkit 8.0, which depends on the older g++ version 4.9. The code

generator was configured to add OpenMP pragmas for parallelization and to emit

vectorized code for double-precision computations using AVX intrinsics on the CPU.

Other optimizations, such as address precalculation [10] and common subexpression

elimination [11], were applied to all versions generated, while a rectangular, spacial

tiling was only applied to the 3D versions. If not stated otherwise, we chose a problem

size of 81922 in 2D and 5123 in 3D. These are large enough to exceed the cache size,

as in real-world applications.

4.2. Colored Gauss-Seidel Smoother

We start with a performance evaluation of our layout transformations for a colored

Gauss-Seidel kernel. The kernel was run in isolation, not as part of a multigrid appli-

cation. Each experiment was executed on a single node. We present the performance

of the baseline experiments in million lattice updates per second (MLUP/s) and

those of additional versions as speedups over the baseline. Both constant-coefficient

(cc) versions and variable-coefficient (vc) versions were executed. Constant and

variable refer to the multiplicative weights of every element loaded from the field:

they are either compile-time constants, or they vary for each grid point and neighbor

and are also stored in memory. The problem size of the vc version was reduced to

40962 and 2563, respectively, to comply with the GPU’s memory limit. For better

comparability, the CPU versions applied the same, reduced problem size.

4.2.1. Two Colors

Our first experiments address the performance of a cc and vc RBGS kernel using

a 1-st order stencil, as depicted in Figure 6. The ExaSlang 4 code for the kernel

in 3D is shown in Figure 2. The variable Laplace is a discretized operator and,

as such, either a stencil in the cc version or a stencil field in the vc version. An

appropriate layout transformation for the former is given in Figure 4 while, for



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Automatic Data Layout Transformations in the ExaStencils Code Generator 11

the latter, the stencil field is transformed in the same way as the other fields. The

2D experiments are analogous. In addition to the performance of a single kernel

execution, we evaluated a temporally blocked version of five and four subsequent

steps in 2D cc and 3D cc and three, respectively two steps, subsequently in the

vc cases. The consequence of a temporal blocking is that subsequent invocations

of the loop nest are combined to increase the data locality and reuse data from

previous executions, while they are still in the processor’s on-chip cache. The basis of

this optimization is the polyhedral model [9]. The currently implemented temporal

blocking is only useful for CPUs. Custom techniques [12] necessary for GPUs remain

future work.

Table 1. Achieved Speedup for a 2D and 3D Red-Black Gauss-Seidel Kernel.

2D cc 3D cc 2D vc 3D vc

CPU base [MLUP/s] 921 (91%) 902 (89%) 376 (99%) 293 (97%)

color splitting 1.38× (84%) 1.42× (85%) 1.61× (90%) 1.80× (96%)
temporal blocking 3.73× 2.93× 2.35× 2.24×

both 4.08× 4.98× 2.39× 2.56×

GPU base [MLUP/s] 4654 3593 1739 1286

color splitting 1.86× 1.80× 1.75× 1.79×

Table 1 summarizes the results of all RBGS kernel experiments. The values in

parentheses for the base and its color-splitting version represent the fraction of

the roofline performance, which is based on the measured memory bandwidth of

48.5 GB/s using a streaming benchmark. For the base cc versions in both 2D and

3D, the computation of one new value, i.e., one lattice update (LUP), requires six

double-precision values to be transferred between the CPU and main memory. Three

are required by the computation: one element is loaded from both the Solution and

the RHS fields (all others are still in the processor’s cache) and one updated value

is written to the memory. The remaining three are due to the inefficient memory

layout: their direct neighbors have to be transferred, too. Therefore, the roofline is:

48493 MB/s

(3 · 2) · 8 B/LUP
= 1010 MLUP/s

A color splitting reduces the number of transferred elements to one read from both

fields and one store, as well as a write-allocate for the store, which results in 1515

MLUP/s. The write-allocate is required, since the hardware has to load a cache line

from the memory before it can be modified. Without color splitting, this additional

load has already been performed since the direct neighbors are required to compute

the new value and data is loaded in chunks of 8 double precision values. A temporal

blocking was able to reduce the bandwidth requirements even further, which leads

directly to a higher performance. However, the resulting code becomes very complex

and we are no longer able to provide a meaningful roofline.



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

12 Parallel Processing Letters

Function Smoother {
color with {
i0 % 2,
i1 % 2,
loop over Solution {
Solution = Solution +
1.0/diag(LaplaceDense) *
(RHS-LaplaceDense*Solution)

} } }
(a) Smoother Code

LayoutTransformations {
transform Solution and RHS
with [x,y] => [x/2,y/2,x%2,y%2]

}
(b) Transformation for a single time step

LayoutTransformations {
transform Solution and RHS
with [x,y] => [x/2,y,x%2]

}
(c) Transformation for temporal blocking

Fig. 7. ExaSlang 4 code for a colored 9-point Gauss-Seidel Kernel.

A Gauss-Seidel kernel with variable coefficients instead of constant coefficients

has an even higher requirement of memory bandwidth. Not only the field elements

but also the coefficient of every neighbor must be loaded from main memory, which

requires 5 and 7 additional values from main memory in 2D and 3D. Without a

layout transformation, only every other element is needed and, thus, twice as much

data has to be loaded. The performance results confirm that a color splitting can be

more effective for variable coefficients than for constant coefficients.

4.2.2. Multiple Colors

Besides the 1st-order stencils, we also evaluated dense constant-coefficient versions.

These stencils access the neighbors not only along the axes, but also along the

diagonals. This results in a 9-point stencil in 2D and a 27-point stencil in 3D as

presented in Figure 6. Figure 7 shows the ExaSlang 4 code for the 2D smoother and

the layout transformations that employ a colored 9-point stencil. Two different layout

transformations are given, since the one in Figure 7(c) performs better with temporal

blocking. Evaluating both requires the adaptation of the presented transformation

statement only; no additional modifications are necessary. Four different colors are

required here for an easy parallelization. A 3D version of a 27-point stencil with eight

colors is straight-forward. Note that the actual loop over Solution statement

is taken over from the RBGS code. Only the coloring scheme and the stencil are

different. The definition of the latter (namely LaplaceDense) is not shown here; it

is a simple list of nine mappings of the neighboring indices to the corresponding

constant coefficients.

The performance results for the multi-color Gauss-Seidel experiments are shown

in Table 2. As for the two color versions, the performance of a single smoothing step

both with and without color splitting is very close to the expected performance based

on the memory bandwidth. However, in 2D, color splitting reduces the performance

of temporal blocking. The deterioration could be due to missing optimizations or

code simplifications, that are of no consequence for only two colors. But, due to the



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Automatic Data Layout Transformations in the ExaStencils Code Generator 13

Table 2. Achieved Speedup for a 2D Four-Color and a 3D Eight-Color Gauss-Seidel Kernel.

2D cc 3D cc

CPU base [MLUP/s] 722 (95%) 457 (90%)

color splitting 1.36× (97%) 1.29× (97%)
temporal blocking 2.07× 1.60×

both 1.89× 2.25×

GPU base [MLUP/s] 2801 1043

color splitting 1.76× 1.69×

simple and fast evaluation of various layout transformations, one can switch easily

back to the faster version without losing valuable development time.

4.3. Multigrid Solvers

The previous experiments evaluated the performance impact of color splitting for the

smoother component of a multigrid application. However, there are other multigrid

components that are also affected by a layout transformation. To demonstrate the

applicability and benefit of color splitting for a complete multigrid application, we

conducted experiments for two different applications. The first is the well-known

model problem given by Poisson’s equations. The second is a multigrid version of an

optical flow detection method [7]. For both applications, a shared-memory OpenMP

or CUDA version running on a single CPU or GPU and a hybrid OpenMP/MPI or

CUDA/MPI parallel version for 12 nodes were generated. Note that the GeForce

TITAN Black does not support GPUDirect and, thus, the MPI communication

has to be performed by the CPU. I.e., both sender and receiver must transfer

the communicated data between the host and the device memory, which imposes

an additional communication overhead. In contrast to the previous Gauss-Seidel

experiments, a temporal blocking was not applied here since it currently cannot be

used in conjunction with colored kernels and MPI communication, independently

of any layout transformation. Except for the layout transformations block, the

ExaSlang 4 codes of all versions are identical, no matter whether OpenMP or CUDA

code with or without MPI is generated. Thus, there is no copy kernel to change

the memory layout dynamically and the kernels for the restriction or interpolation

are also not modified. Consequently, these kernels access elements of both colors,

regardless of where they are stored.

In the case of the baseline experiments, we give the performance of the multigrid

solvers as the total time required by the complete solver. Performance improvements

of the layout transformations are again stated as speedups over the baseline. Thus,

the inverse of the speedup is the fraction of the execution time over the base.

4.3.1. Poisson

Different versions of 2D and 3D multigrid solvers for the Poisson equation were

automatically generated, based on a finite-difference discretization of the equation



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

14 Parallel Processing Letters

on (0, 1)d. The V-cycles had three pre- and three post-smoothing RBGS steps with

constant coefficients. Color splitting, as presented in Figure 4, was only applied at

the three finest levels. At coarser levels, color splitting is not recommended since

the fields fit entirely into cache. This means its benefit vanishes while the drawback

of more complicated address computations still persists. Termination occurs when

the L2 norm of the initial residual has been reduced by a factor of 105. In all 2D

experiments, three V-cycles are executed while, in 3D, four are required.

Table 3. Achieved Speedup of a 2D and 3D Solver for Poisson’s Equation.

2D 3D

1 Node 12 Nodes 1 Node 12 Nodes

CPU base [ms] 2198 2407 5247 7787

color splitting 1.35× 1.30× 1.35× 1.18×

GPU base [ms] 552 910 1567 5153

color splitting 1.32× 1.18× 1.30× 1.08×

Performance results of these experiments are presented in Table 3. In all ex-

periments, the storage of the red and black colored elements in distinct memory

locations increased the performance. The improvement of the MPI-parallel version

in 3D is slightly lower than of the others. This can be explained by the much higher

surface-to-volume ratio of a 3D cube compared to a 2D square and, therefore, the

higher communication volume in 3D. The improvements of the CUDA/MPI versions

are also less, since the communication is more costly and the computation is faster

than on the CPU.

4.3.2. Optical Flow Detection

A second, more complex multigrid solver is for an approximation of the optical

flow [13]. Here, an approximate motion within an image sequence is computed based

on gray value resp. color intensity changes. Concerning the problem size, roughly 17

million pixel per image were chosen and the termination criterion for the solver was

the same as in the previous application. This results in 4 V-cycles for the 3D version,

running on a single node, and 5 V-cycles for the others. Details can be found in the

literature, on this application and an earlier version of the implementation [7] as

well as on multigrid methods for optical flow [14, 15].

Since the motion, or flow, of a single pixel consists of multiple components, namely

one per dimension, the element type of the corresponding field is a vector, not a scalar.

This increases the dimensionality of the entire field but, as explained in Section 3.1,

a layout transformation statement may ignore these additional dimensions if they

should not be modified.

The layout transformations evaluated for the 3D optical flow computation are

shown in Figure 8. In 3D, it pays to concatenate some of the helper fields to enable



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Automatic Data Layout Transformations in the ExaStencils Code Generator 15

LayoutTransformations {
concat @finest Ix, Iy, Iz, It into I
concat IxIx, IxIy, IxIz, IyIy, IyIz, IzIz into II
transform I@finest, II@((finest-1) to finest),

rhs@((finest-1) to finest), flow@((finest-1) to finest)
with [x,y,z] => [x/2,y,z,(x+y+z)%2]

transform residual, cgTmp0, cgTmp1, II@(0 to (finest-2)),
rhs@(0 to (finest-2)), flow@(0 to (finest-2))

with [x,y,z,v] => [v,x,y,z]
}

Fig. 8. Layout transformations for the optical flow computation.

an SoA-to-AoS transformation, as shown in the second concat statement. The first

concat does not affect the performance of the generated code, but it allows a more

compact transformation statement. Its individual parts must not be listed separately

to perform a color splitting. In general, the RBGS smoother allows for two mutually

exclusive field layout schemes to increase the performance:

(i) split by color and place the different components of the higher-order elements

in distinct memory locations,

(ii) do not split by color but store the higher-order elements together in memory.

The former increases data locality for the smoother code and allows it to be vectorized.

Other, not colored parts suffer from a more complex address computation. The

latter provides a simpler memory layout and an increased data locality for those not

colored parts. For the finer levels, the performance of the smoother is the dominant

factor and, hence, layout scheme (i) is advisable. At coarser levels, larger parts of

the fields fit into cache and the effort of the address computation becomes more

relevant: layout scheme (ii) is preferable.

The first transformation statement applies a two-color split to field I and to

the two finest levels of fields II, rhs, and flow. Note that these fields refer to

4D data structures: the first three dimensions (x, y, and z) correspond to the

problem dimensions and the fourth (not named) to the vector elements. Since

the dimensions added by higher-order data types, such as vectors or matrices, are

appended rightmost/outermost, this corresponds to layout scheme (i). The second

transformation statement permutes the vector dimension innermost for some other

fields and coarser levels of II, rhs, and flow, i.e., an SoA-to-AoS transformation is

applied and layout scheme (ii) takes hold.

Table 4 presents the speedup achieved by the layout transformations of the

different versions. The results are similar to those of the Poisson experiments and,

thus, as expected. The layout transformations in this experiment may be more

complex and not obvious but, in contrast to a manual integration, evaluating several

different versions is as simple as writing very few lines that specify the transformation

and execute our code generator.



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

16 Parallel Processing Letters

Table 4. Achieved Speedup for a 2D and 3D Solver for an Optical Flow Simulation.

2D 3D
1 Node 12 Nodes 1 Node 12 Nodes

CPU base [ms] 2688 3054 3435 6432
layout transformations 1.38× 1.26× 1.33× 1.20×

GPU base [ms] 694 1242 1027 3636
layout transformations 1.27× 1.15× 1.30× 1.08×

5. Related Work

The use of data layout transformations for performance optimization is not new.

O’Boyle and Knijnenburg [16] present a very detailed low-level application of layout

transformations. These are represented by nonsingular matrices and, thus, enable

only dimensionality-preserving transformations. This excludes the kinds of color

splitting that we present and use. Clauss et. al. [17] try to optimize the spacial

locality by providing a new array reference function to the compiler. Array elements

are ordered in the order in which they are accessed during the execution of the loop

nest. This approach works perfectly if every element is accessed only once. In case

of a later reuse, the address computation can become very complex.

Layout transformations similar to the ones in our examples are part of existing

libraries and frameworks, such as Kokkos [18] or YASK [19]. Kokkos, for example, is

a C++ performance portability programming ecosystem. It relies heavily on C++

template programming to generate optimized kernels for different hardware architec-

tures, including GPUs. Like other code generation approaches, it supports the choice

of an appropriate layout for a given hardware. However, if the required layout is not

yet available, a custom-implementation is necessary. In contrast, ExaStencils facili-

tates such extensions with the support of generic layout transformations expressed

via a single linear transformation. Moreover, Kokkos is focused on parallelization

within one MPI rank and, in consequence, the synchronization of data between ranks

is still the user’s responsibility. Thus, when modifying the memory layout, other

parts of the code might require an according adaptation, e.g., the incorporation of

MPI data types. ExaStencils does not have this problem since it generates code for

data exchange via MPI as well which, thus, can be adapted to the optimized layout

automatically.

There are also several approaches to the automatic computation of a suitable

data layout transformation, either directly [20, 17, 21, 22, 16] or in combination with

a loop transformation [23, 24, 25]. We have not done so, but it would be possible to

add one or more of these techniques to our code generator.

6. Conclusions

We offer a new feature of our DSL ExaSlang and the corresponding code generator:

a set of layout transformation statements for a fast and easy modification of data

layouts. With the help of these statements, the laborious and error-prone modification



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

Automatic Data Layout Transformations in the ExaStencils Code Generator 17

of every access to a data field, including its initialization, is done automatically by the

ExaStencils code generator. One use case is, e.g., a simple RBGS smoother, which is

very profitable because of its parallelizability and numerical properties. Without any

modifications, it accesses only every other data element, which complicates the use

of vector units provided by modern processor architectures and also wastes memory

bandwidth, which tends to be the most critical resource. We demonstrated that

these problems can be solved by adding only one single transformation statement.

And even for larger applications only few additional statements are required, which

enables the testing of several different layout schemes with little effort.

To ease the implementation of such layout transformation statements in other

tools and code generators, we offered a fairly detailed insight into how these new

statements are applied by the ExaStencils code generator. Since some of the concepts

required by automatic layout transformations and for polyhedral compilation are

identical or at least similar, the isl, a library actually developed to support polyhedral

compilation, is of great help.

7. Acknowledgments

This work has been part of the DFG Priority Programme 1648 “Software for Exascale

Computing” in project ExaStencils under contracts RU 422/15 and LE 912/15.

References

[1] Wolfgang Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, 1985.
[2] Ulrich Trottenberg, Cornelius W. Osterlee, and Anton Schüller. Multigrid. Academic

Press, 2000.
[3] Harald Köstler, Markus Stürmer, and Thomas Pohl. Performance engineering to

achieve real-time high dynamic range imaging. J. Real-Time Image Processing,
11(1):127–139, 2016.

[4] Markus Kowarschik, Ulrich Rüde, Christian Weiss, and Wolfgang Karl. Cache-aware
multigrid methods for solving Poisson’s equation in two dimensions. Computing,
64(4):381–399, 2000.

[5] Christian Lengauer et al. ExaStencils: Advanced stencil-code engineering. In Luis
Lopes et al., editors, Euro-Par 2014: Parallel Processing Workshops, Part II, volume
8806 of Lecture Notes in Computer Science, pages 553–564. Springer, 2014.

[6] Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Harald Köstler, and Jürgen
Teich. ExaSlang: A domain-specific language for highly scalable multigrid solvers. In
Proc. 4th Int. Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing (WOLFHPC), pages 42–51. ACM, November 2014.

[7] Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Jürgen Teich, Harald Köstler,
Ulrich Rüde, and Christian Lengauer. Systems of partial differential equations in
exaslang. In Hans-Joachim Bungartz, Philipp Neumann, and Wolfgang E. Nagel,
editors, Software for Exascale Computing – SPPEXA 2013-2015, volume 113 of
Lecture Notes in Computational Science and Engineering, pages 47–67. Springer, 2016.

[8] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei Fukuda,
Joris van der Hoeven, Michael Joswig, and Mobuki Takayama, editors, Mathematical
Software (ICMS 2010), LNCS 6327, pages 299–302. Springer, 2010.



August 27, 2018 9:54 WSPC/INSTRUCTION FILE ppl18

18 Parallel Processing Letters

[9] P. Feautrier and C. Lengauer. Polyhedron model. In D. Padua et al., editors, Encyclo-
pedia of Parallel Computing, pages 1581–1592. Springer, September 2011.

[10] Stefan Kronawitter and Christian Lengauer. Optimizations applied by the ExaSten-
cils code generator. Technical Report MIP-1502, Faculty of Computer Science and
Mathematics, University of Passau, January 2015. 10 pages.

[11] Stefan Kronawitter, Sebastian Kuckuk, and Christian Lengauer. Redundancy elimina-
tion in the ExaStencils code generator. In Jesus Carretero et al., editors, Algorithms
and Architectures for Parallel Processing (ICA3PP), Collocated Workshops, volume
10049 of Lecture Notes in Computer Science, pages 159–173. Springer, 2016. First Int.
Workshop on Data Locality in Modern Computing Systems (DLMCS).

[12] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Ver-
doolaege. Hybrid hexagonal / classical tiling for GPUs. In Proc. 12th Int. Symp. on
Code Generation and Optimization (CGO). ACM, 2014.

[13] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial Intelli-
gence, 17(1–3):185–203, 1981.

[14] Andrés Bruhn, Joachim Weickert, Christian Feddern, Timo Kohlberger, and Christoph
Schnorr. Variational optical flow computation in real time. IEEE Trans. on Image
Processing (TIP), 14(5):608–615, 2005.

[15] El Mostafa Kalmoun, Harald Köstler, and Ulrich Rüde. 3D optical flow computation
using a parallel variational multigrid scheme with application to cardiac c-arm CT
motion. Image and Vision Computing, 25(9):1482–1494, 2007.

[16] Michael F. P. O’Boyle and Peter M. W. Knijnenburg. Nonsingular data transformations:
Definition, validity, and applications. Int. J. Parallel Programming, 27(3):131–159,
June 1999.

[17] Philippe Clauss and Benoit Meister. Automatic memory layout transformations to
optimize spatial locality in parameterized loop nests. SIGARCH Computer Architecture
News, 28:11–19, March 2000.

[18] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling
manycore performance portability through polymorphic memory access patterns. J.
Parallel and Distributed Computing, 74(12):3202–3216, 2014.

[19] Charles Yount, Josh Tobin, Alexander Breuer, and Alejandro Duran. YASK - yet
another stencil kernel: A framework for HPC stencil code-generation and tuning. In
Proc. 6th Int. Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing (WOLFHPC), pages 30–39. IEEE Press, 2016.

[20] G. Chen, M. Kandemir, and M. Karakoy. A constraint network-based approach to
memory layout optimization. In Proc. Conf. on Design, Automation and Test in
Europe (DATE), volume 2, pages 1156–1161. IEEE Computer Society, 2005.

[21] Shun-tak Albert Leung. Array Restructuring for Cache Locality. PhD thesis, University
of Washington, Department of Computer Science & Engineering, 1996.

[22] Qingda Lu, Xiaoyang Gao, Sriram Krishnamoorthy, Gerald Baumgartner, J. Ramanu-
jam, and P. Sadayappan. Empirical performance model-driven data layout optimization
and library call selection for tensor contraction expressions. J. Parallel and Distributed
Computing (JPDC), 72(3):338 – 352, 2012.

[23] Philippe Clauss, Vincent Loechner, and Benoit Meister. Minimizing strides in loops
with affine array references. In Proc. Compilers for Parallel Computers (CPC), June
2001. 12 pp.

[24] Vincent Loechner, Benoit Meister, and Philippe Clauss. Precise data locality opti-
mization of nested loops. J. Supercomputing, 21:37–76, January 2002.

[25] Ozcan Ozturk. Data locality and parallelism optimization using a constraint-based
approach. J. Parallel and Distributed Computing, 71(2):280–287, 2011.


