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ABSTRACT

The feature-interaction problem has been explored for many years.
Still, we lack sufficient knowledge about the interplay of different
kinds of interactions in software product lines. Exploring the rela-
tions between different kinds of feature interactions will allow us
to learn more about the nature of interactions and their causes. This
knowledge can then be applied for improving existing approaches
for detecting, managing, and resolving feature interactions. We
present a framework for studying relations between different kinds
of interactions. Furthermore, we report and discuss the results of
a preliminary study in which we examined correlations between
internal feature interactions (quantified by a set of software mea-
sures) and external feature interactions (represented by product-
line-specific type errors). We performed the evaluation on a set of
15 feature-oriented, JAVA-based product lines. We observed mod-
erate correlations between the interactions under discussion. This
gives us confidence that we can apply our approach to studying
other types of external feature interactions (e.g., performance inter-
actions).

Categories and Subject Descriptors

D.2.9 [Software Engineering]: ManagementSoftware Configura-
tion Management; D.2.13 [Software Engineering]: Reusable Soft-
wareDomain Engineering

General Terms
Measurement, Experimentation, Reliability

Keywords

Feature Interactions, Software Measures, Feature-Oriented Soft-
ware Development

1. INTRODUCTION

Feature modularity is the holy grail of feature-oriented software
development [3|]. Ideally, one can deduce the behavior of a system
composed from a set of features solely on the basis of the behavior
of the features involved. But, feature interactions are still a major
challenge and counteract feature modularity and compositional rea-
soning [11]]. A feature interaction occurs when the behavior of one
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feature is influenced by the presence or absence of another feature
(or a set of other features). Often, the interaction cannot be deduced
easily from the behaviors of the individual features involved, which
hinders compositional reasoning. A classic example is the inadver-
tent interaction between the fire-alarm and flood-control features
of an alarm-and-emergency system [18]]. In the case of fire, if both
features are activated the system reaches an unsafe state: when the
fire alarm feature activates the sprinkler system, the flood control
feature cuts off water to sprinklers.

In our previous work, we proposed a classification of feature in-
teractions along their order and visibility [5]. The order of a fea-
ture interaction is defined as the minimal number of features (minus
one) that need to be activated to trigger the interaction; for exam-
ple, an interaction between two features is of order one. The visi-
bility of a feature interaction denotes the context in which a feature
interaction appears. First, feature interactions may appear at the
level of the externally observable behavior of a program, includ-
ing functional behavior (e.g., segmentation faults and all kinds of
other bugs) and non-functional behavior (e.g., performance anoma-
lies and memory leaks). Second, feature interactions may manifest
themselves internally in a system, at the level of code that gives
rise to an interaction, or at the level of control and data flow of a
system (e.g., dataflows that occur only when two or more features
are present).

In previous work, we proposed to systematically examine the
relations between internal and external interactions with the ulti-
mate goal of learning more about the nature, causes, and interde-
pendencies of different kinds of interactions [S]]. In this paper, we
report on a preliminary study that aims at identifying possible cor-
relations between externally-visible product-line specific type er-
rors and internally-visible structural and operational attributes of
a product line. The motivation for considering type errors is that,
while making the system flexible and its parts reusable, variability
introduces a new kind of type errors that arise from the interaction
of features in a product line. A simple example is a dependency of
a mandatory feature on some program elements (e.g., methods or
types) that are introduced by an optional feature. This dependency
is unsatisfied in products without the optional features and results
in type errors (dangling references). According to our classifica-
tion of feature interaction [5]], such type errors are external feature
interactions.

Although, there are methods to efficiently and reliably type check
all products of a product line, we are interested in finding reasons
for these type errors and not just detecting them. There may be
systematic correlations between externally-visible and internally-
visible interactions [3]], which is a major motivation for our en-
deavor to explore and understand the nature of feature interactions.
Using correlations between external and internal feature interac-



tions, we can improve existing methods for feature-interaction de-
tection and prediction. For example, we could detect hard to find
external feature interactions based on the information about inter-
nal interactions and their relation to external ones. We can also im-
prove existing approaches for predicting non-functional attributes
of product lines that may strongly depend on external feature inter-
actions [27].

In our study, we use 11 measures that capture information about
internal feature interactions that may cause type errors. We exam-
ined the correlations between these internal interactions, as quan-
tified by these measures, and product-line-specific type errors (i.e.,
a particular kind of external feature interactions). Despite that we
found only moderate correlations between these measures and the
occurrences of type errors, the main contribution of this conceptual
study is the description of a general framework for studying rela-
tions between external and internal features interactions. Using this
framework, we plan to analyze the data about internal and exter-
nal feature interactions that we have been collecting from different
real-world systems. This will allow us to gain more insights into
the nature of feature interactions and their interplay in real-world
systems [[10,/17,{19123]]25}26L128].

The contributions of this paper are:

e A discussion about relations between external and internal
feature interactions, based on the concrete example of product-
line-specific type errors.

e A set of measures that quantify variability, and operational
and structural properties of feature-oriented product lines.

e Results of a studying correlations between our measures and
external feature interactions (represented by product-line-spe-
cific type errors).

e A general framework for studying relations between differ-
ent types of external and internal feature interactions, and a
report of our experiences in applying this framework.

2. BACKGROUND

Figure [T] presents a very simple product line of list data struc-
tures, illustrating a product-line specific type error. The mandatory
feature BASE implements a singly linked list. Based on this im-
plementation, an optional feature BATCH implements a customized
version of a list for batch jobs. Feature BATCH requires feature
BASE because of the reference in Line 9. This requirement is sat-
isfied in all valid products, because BASE is mandatory and it is
present in every valid product. Another reference goes from BASE
to BATCH (Line 5). This type reference to BatchList is a dangling
reference in those products that do not contain the optional feature
BATCH, leading to a type error in these products. Formally, if the
presence condition BASE A —BATCH is satisfied by a product con-
figuration, then we will get this product-line-specific type error.

2.1 Type Errors as Feature Interactions

We define a feature interaction as a violation of a specification
under a certain feature presence condition [5]]. The presence condi-
tion must have at least two features (i.e. a first-order interaction).

A type error violates a common implicit specification: There
must be no type errors in the system. By definition, a product-line-
specific type error always involves, at least, two features. Thus,
the corresponding presence condition always contains, at least, two
features, but possibly more. Consequently, a product-line-specific
type error satisfies our definition of a feature interaction.

2.2 Visibility of Feature Interactions

Different levels of visibility of feature interactions have been dis-
cussed in the literature [6)8]]. Feature interactions may appear at the

Mandatory feature Base

1 class SingleList {
2 Object next() {...}
3}

4 class TestCase {

5 BafehListbl:- |

AY
| BASE requires BATCH I
;)

8 class BatchList {<*' /
9 SingleList queue;

11}
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Figure 1: Example of a simple product line with a product-line-
specific type error: a basic list implementations (in the manda-
tory feature BASE) and an extension for batch jobs (in the optional
feature BATCH); the type error is underlined; arrows denote refer-
ences; the dashed arrow denotes a possibly dangling reference.

level of the externally-visible behavior, which we call henceforth
external feature interactions, for short, as well as at the level of the
internal properties of a system, which we call henceforth internal
feature interactions, for short.

External Feature Interactions. We call external interactions
that violate the functional specification of a composed system—
which also includes type errors—functional feature interactions.

We call interactions that influence non-functional properties of a
composed system—including performance, memory consumption,
energy consumption—non-functional feature interactions.

Internal Feature Interactions. Beside the behavior-centric
view of external feature interactions, there is an implementation-
centric view, which aims at the internals of a system [6|12]/21].

To let features interact, we need corresponding coordination code.
For example, if we want to coordinate the fire-alarm and flood-
control features of the alarm-and-emergency system example, we
have to add additional code for this task (e.g., to deactivate flood
control in the case of fire). This coordination code gives rise to a
structural feature interaction. Features are considered to interact
structurally if some coordination code is present for their collabo-
rative working.

Apart from just analyzing the code base and searching for co-
ordination code that gives rise to structural interactions, one can
collect more detailed information on internal feature interactions
by analyzing the execution or operation of a system. Which fea-
tures refer to which other features? Which features pass control to
which other features? Which features pass data to which other fea-
tures? This information on operational interactions cannot be eas-
ily extracted from just looking syntactically at the source code, but
requires more sophisticated (static or dynamic) analyses of the con-
trol and data flow. Features are considered to interact operationally,
if the occurrence of specific control and data flows diverges from
the combination of the flows of the individual features involved.
For example, the reference between Lines 5 and 8 in Figure [T] is
actually present only if both features are present.

This operational interaction plus the unconditional optionality of
feature BATCH are the cause for the type error (the cause for the
external feature interaction). This is exactly the kind of relation in
which we are interested.

"We do not consider this type of interactions in this paper, but our
general framework can be applied to this type of interactions, too.



2.3 Quantifying Feature Interactions

In our study, we consider internal operational and structural fea-
ture interactions that, based on our experience, may have relation to
type errors. Our basic model for internal interactions is a feature-
reference graph, which represents dependencies between features.
The nodes of the graph are features and the edges are references
(dependencies) between features, as we illustrate in Figure[I} The
references include inter-feature method calls, field accesses, and
type accesses. Using this graph, we define measures that quanti-
tatively capture the information about present internal interactions.
For example, each of the feature references may lead to a type er-
ror, if the target of the reference is not present in a product. Thus,
to measure the potential for a type error, we can count the number
of references to optional features. The correlation coefficient be-
tween the number of type errors found in the source feature, which
is the source of the references, and the number of outgoing refer-
ences indicates a possible relation between the external and internal
interactions.

It is clear that simple code measures, such as reference count,
cannot capture all possible facets of internal feature interactions.
Thus, we gradually enrich the basic reference-graph model with ad-
ditional information gained from static program and feature-model
analysis.

Using static program analysis, we collect structural information
about features and represent it as introduction sets. An introduction
set of a feature describes all program elements (i.e., types, methods,
fields) that are introduced by the feature in question. If two features
introduce (or refine) the same class or introduce the same method,
then a piece of glue code may be needed to coordinate the collabo-
ration of the program elements introduced by the different features.
In other words, such introductions may result in internal feature
interactions.

Furthermore, we analyze the feature model to learn about op-
tionality of the references between features. The analysis assigns
every pair of features to one of the three binary relations: always,
maybe, and never. If two features are in always relation, then
these features are always appear together in every valid product,
and any reference between these features is never dangling. As
a consequence, no corresponding product-line-specific type errors
occur. If two features are in never relation, then there is no valid
product containing both of these features. Thus, any reference be-
tween these two features inevitably leads to a type error (if the
features are not dead). The maybe relation between two features
denotes that there are valid products in which both features are
present, but there are also valid products in which only one (or
none) of the features is present. Thus, if, due to a reference, one
feature always requires another feature, this leads to a type error in
the products in which only the referring feature is present.

By combining operational (feature-reference graph), structural
(introduction sets), and variability information about the product
line (always, never and maybe relations), we define more com-
plex measures that may have stronger relation to external feature
interactions.

3. MEASURES FOR INTERNAL FEATURE
INTERACTIONS

The main focus of our study is on the models representing opera-
tional and structural relations between features. The basic model is
the feature reference graph that we gradually extend with additional
structural and variability data. Besides measures defined on the ba-
sic and extended versions of the reference graph, we also studied
how type errors correlated with established measures for cohesion

and coupling. The rationale behind this was that high cohesion and
low coupling improve the quality of the code in terms of modular-
ity and maintainability and may reduce the number of possible type
errors. Last but not least, we looked at how fragmentation of fea-
ture and class modules relates to the number of type errors, which
is also reated to maintainability.

Next, we define the measures based on the basic and extended
version of the reference graph, cohesion and coupling measures,
and module fragmentation.

Feature-Reference Graph Degree (Ref). This is the most
basic measure that is based on a feature-reference graph. The mea-
sure for a feature, which we calculate using this graph, is the degree
of the corresponding node (i.e. the number of edges connected to
the node).

The rationale for using this measure is that a reference to another
feature may potentially lead to a type error (Figure[T). More refer-
ences to different features may be the cause for more type errors.
We expect positive correlation of this measure with the number of
type errors.

Feature-Reference-and-Structure Graph Degree (RefS).
This is also a degree-based measure. Although, before calculating
the degree, we extend the basic reference graph with the structural
information from the introduction set. We add an edge between two
nodes, if the corresponding features introduce the same program
elements (e.g., both features introduce the same method). Such
structural feature interactions may require a manual resolution. If
unresolved, they may brake contracts of other features, or bring in
side effects not expected by other features. All these may result in
type errors. We expect a positive correlation of this measure with
the number of type errors.

Weighted Feature-Reference Graph Degree (RefW). For
this degree-based measure, we count exactly how many references
there are between two features.

A larger number of references between two features may indi-
cate the higher complexity of the code. Consequently, this may
negatively influence programmer’s code comprehension and result
in errors, including type errors. We expect positive correlation of
this measure with the number of type errors.

Feature-Reference-and-Optionality Graph Degree

(RefO). For this measure, we enrich the basic reference graph
with information about the optionality of the references between
features. As we describe in Section 2.3] if two features are in
MAYBE relation, then a reference between these two features may
cause a type error. On the contrary, if the two features are in AL-
WAYS relation, then the references can not cause a type error. A
NEVER reference always causes a type error, but this type of ref-
erences is very seldom. We capture this information in the fea-
ture reference graph by assigning weights to the edges according to
the relation in which the connected nodes stay. In the case of the
MAYBE relation, we assign the weight of 10, and in the case of the
ALWAYS relation, the weight of 1. In the case of the NEVER rela-
tion, we assign the weight 5 to the reference. We use these weight
values only to order the references according to their potential of
causing a type error. We do not assert that a MAYBE reference
causes 10 times as much type errors as an ALWAYS reference (or-
dinal scale). We do not assign the weight O to always-references to
be able to differentiate between feature-pairs that do reference each



other (and potentially may participate on a type error), and those
that do not.

On calculating the degree of a node in the feature-reference-and-
optionality graph, the weight of an edge is transformed in multiple
edges (e.g., an edge with weight 10 is counted as 10 edges). We
expect positive correlation of this measure with the number of type
errors.

Combined Feature-Reference Graph Degree (RefSWO).
The basis for calculating this degree-based measure is the superim-
position of the graphs defined for the above measures. We assume
that the previous degree-based measures cover different aspects of
product lines that may be responsible for type errors. Thus, com-
bining them should bring better results. We expect positive corre-
lation of this measure with the number of type errors.

Module Fragmentation.

Feature modules are orthogonal to classes [1]. One class can
participate in multiple features (e.g., a class from the base feature
may be refined in several other features). At the same time, multi-
ple classes can collaborate to implement the functionality of a sin-
gle feature. In other words, a class can be fragmented by multiple
features; or, looking from the other side, one feature may be frag-
mented by multiple classes. The level of such fragmentation may
be related to the number of type errors in a feature.

Feature Fragmentation (FeatureFrag). This measure quan-
tifies how many classes collaborate to implement the functionality
of a feature. For feature-oriented implementations, it just counts
the number of roles in a collaboration. The higher the number of
roles, the more effort is needed from the side of the programmer,
to keep track of all references of these roles to other features. The
increased complexity may negatively influence the quality of the
code and result in type errors.

Class Fragmentation (ClassFrag). This measure quantifies
in how many features the given class participates. If one class is
cut through by several features, then the class-internal references
may become inter-feature references. In this case, the programmer
has to switch mentally between these two orthogonal views on the
code. The increased complexity of programming and maintenance
tasks may lead to errors and, in particular, to type errors.

Feature Cohesion and Coupling.

Cohesion and Coupling are considered to be good indicators for
code modularity. Rising cohesiveness and decreasing coupling of
code units improves their maintainability and facilitate modular
reasoning. Thus, improved modularity may positively influence the
quality of code and result in reduced numbers of type errors. We
expect a positive correlation for the cohesion measure and negative
correlation for the coupling measures.

Internal-Ratio Feature Dependency (IFD). Internal-Ratio
Feature Dependency is a measure for feature cohesion. It relates
the number of actually existing internal feature references to the
number of all possible internal feature references. It is defined as
follows:
intRef (F)
IFD(F) = ——————
(F) posIntRef (F)

intRef (F') is the number of existing internal feature references and
posIntRef (F) is the number of all possible internal references. A
feature with the highest cohesion has IJFD = 1.

External-Ratio Feature Dependency (EFD). External-Ra-
tio Feature Dependency is a measure for feature coupling. It relates
the number of existing internal feature references to the number of
all existing references of the feature (i.e., internal and external ref-
erences). It is defined as follows:
EFD(F) = intRef (F)
ref (F)

intRef (F') is the number of internal feature references (as in IFD)
and ref (F') is the number of all references of the feature. A feature
with the highest coupling has EFD = 1, and a feature with the
lowest coupling has EFD = 0.

Coupling Between Features (CBF). Coupling Between Fea-
tures counts to how many features the given feature is coupled. A
feature is coupled to another one if it calls methods or accesses
fields of that feature.

Coupling Between Objects (CBO). Coupling Between Ob-
jects is defined in the same way as Coupling Between Features, but
instead of features, we look at classes. The rationale behind hav-
ing coupling measures for features and classes is that the feature-
oriented and object-oriented views at the system coexist in a product-
line, and both of them should be considered.

4. EVALUATION

We conducted a evaluation of the measures under discussion by
computing correlation coefficients between each measure and the
number of type errors in features for a set of subject product lines.
‘We chose Spearman’s rank correlation coefficient, because the type
error count is not normally distributed (Shapiro-Wilk test resulted
inp < 0.05).

High correlation between a measure value and the number of
type errors would indicate a strong relation between specific inter-
nal feature interactions (as captured by the measure) and external
interactions (represented by type errors).

4.1 Subject Systems

For evaluation purposes, we selected a set of 15 feature-oriented,
JAvA-based product lines. The set has been collected and prepared
before for benchmarking purposes, and most of the systems have
been already used in other studies [2}/4}/16]. The subject systems
belong to different application domains, and have different sizes: in
terms of lines of code and number of features. Table [[l summarizes
relevant information about the systems.

We detected the type errors in the subject systems using FUJIT [|16].
Fuil is an extensible compiler for feature-oriented programming in
JAVA that also provides a variability-aware type checker and a set
of product-line analysis tools. Using these tools, we collected in-
formation about references between program elements and other
structural information needed to calculate the measures. Informa-
tion about the optionality of the references was collected using Fea-
tureIDE [13].

4.2 Results

We summarize the results of our study in Table 2] For each sub-
ject system and each measure, we report the correlation coefficient
between the number of errors in the features of the system and the
corresponding indicator measures for these features. Correlations
that are not statistically significant (p-value < 0.05) are not shown
(replaced by a dash in the table).

Overall, we observe moderate correlations (correlation coeffi-
cients between 0.3 and 0.7) for the indicator measures under con-



sideration and the number of type errors in the features. Next, we
will discuss possible reasons.

We have to note that the type errors that we used in this study
are the hardest. That is, these are the type errors that left over after
other code defects were fixed during the development and main-
tenance of the subject systems. The correlations may have been
stronger if we had the historical data about all type errors that were
found and fixed.

Furthermore, multiple correlation coefficients have insufficient
statistical significance. This is mostly the case for the subject sys-
tems with small numbers of features, which apparently do not pro-
vide enough data to produce significant results (e.g., BANKAC-
COUNTTP and POKERSPL).

As for the measures based on the reference graph, we observe
moderate correlations. We took the basic reference graph as the
base case and compared to it all subsequent versions, which are en-
riched with additional information. In Figure 2] we observe that
adding information about possible structural interactions does not
result in much stronger correlations, in general. We can see a
slightly stronger correlation for several subjects systems (e.g., BER-
KELEYDB, VIOLET, TANKWAR). At the same time, GUIDSL
shows a decreased correlation, and BANKACCOUNTTP shows even
a strong negative correlation. The outlier BANKACCOUNTTP and
POKERSPL can be explained by a very small number of type er-
rors that were found in these systems (five and one error respec-
tively). These results indicate that the information about structural
interactions may be not sufficient to draw statistically significant
conclusions about external feature interactions.

We obtain a similar picture if we look at the measure RefW,
which considers all possible references in the feature reference graph
(Figure[3). We observe higher correlations for GPL, NOTEPAD-
ROBINSON, and TANKWAR. At the same time, we see lower cor-
relations for GUIDSL, MOBILEMEDIA, and VIOLET. Thus, we
conclude that the pure number of references between features does
not exhibit a significant relation to the number of type errors in
these features.

In Figure [d] we observe that adding information about the vari-
ability of the references between features to the basic reference
graph increases the correlation coefficients. We observe consid-
erably higher correlations for EPL, PROP4J, and SUDOKU. At the
same time, we see no considerable decrease for the rest of statisti-

Table 1: Subject systems overview (LOC: Lines of code, #C: Num-
ber of classes in the system, #F: Number of features containing
Java-code, # errors: Number of product-line-specific type errors).

Systems LOC #C #F #errors
BANKACCOUNTTP 132 3 8 5
BERKELEYDB 45000 283 99 198
EPL 111 12 12 42

GPL 1940 16 20 16

GUIDSL 11529 144 26 59
MOBILEMEDIAS 4189 51 45 142
NOTEPAD-ROBINSON 800 9 10 3
POKERSPL 283 g8 10 1
PREVAYLER 5268 138 6 15
Propr4]J 1531 14 14 490

SUDOKU 1422 26 7 17
TANKWAR 4845 22 30 66
UNIONFIND 210 4 8 19
VIOLET 7194 67 88 117

VISTEX 1608 8 16 12

cally significant results. This indicates that variability information
combined with the information about references between features
is related to product-line-specific type errors. This seems plausible
considering that this is exactly the information that a variability-
aware type checker uses to detect type errors. Furthermore, it is
important to stress that this is exactly the kind of information we
want to find with studies such as this one: We want to find what
kinds of internal feature interactions have strong relations to exter-
nal interactions of a certain kind.

Fragmentation measures. This group of measures also shows
moderate correlations with the number of type errors (Figure [6).
The class fragmentation measure shows higher correlation coeffi-
cients than the feature fragmentation measure. A possible expla-
nation for this relation may be that a programmer considers a class
as a whole and does not pay special attention to internal class ref-
erences that cross feature boundaries. But these references are ex-
actly the ones that are involved in type errors.

Cohesion and coupling measures. This group of measures
also show moderate correlations. Surprisingly, the IFD cohesion
measure has a positive correlation to the number of type errors,
not negative, as expected. Although, only 4 out of 15 values are
statistically significant. Thus, we can not draw any conclusion from
these data.

As for the coupling measures (Figure [7), EFD shows moderate
positive correlations for three subject systems and negative corre-
lations for PREVAYLER. The rest of the correlations are not signif-
icant. CBO and CBF show pretty similar correlation coefficients.
The half of the statistically significant values are at the border be-
tween weak and moderate correlation (i.e., coefficient of 0.3).

S. THREATS TO VALIDITY

The statistical significance of the correlation coefficients depend
on the number of features in a product line and the number of type
errors in these features. For the product lines with few features
(e.g., SUDOKU) or few type errors (e.g., PREVAYLER), there are
hardly significant correlations. For the product lines with few fea-
tures and type errors (UNIONFIND, VISTEX), there are no signif-
icant results at all. Reproducing the study on larger product lines
(in terms of number of features) and with historical data about type
errors that have existed in the system would produce more general-
izable results.

The measures in our study cover different aspects of the prod-
uct lines that may be related to type errors (e.g., structure, vari-
ability, etc.). Depending on the application domain, development
technique, and maintenance history of the systems, some of the as-
pects may dominate over others. Such nuances are hard to capture
in one general measure. The problem can be mitigated by combin-
ing different measures (e.g., EFD and CBF), but the overlaps in the
measures may distort the results (e.g., EFD and CBF both use exter-
nal references count in the calculation). Alternatively, developing
a measure that is specific to the given SPL can be considered [15].

6. RELATED WORK

Predicting defects using software measures has been success-
fully studied for years [9}/14,]20,[22]. Graph-based measures have
been applied to make predictions about bug severity and defect
count [[7,124]].

In product-line domain, Siegmund et al. used information about
internal operational interactions in product lines to predict exter-
nal non-functional properties (in this case, performance) of indi-



vidual products [29]. However, our work is focused not on predic-
tion of external quality attributes and feature interactions, but more
on understanding the cause of the external feature interactions, and
studying their relation to internal interactions. In a follow-up step,
this knowledge can be used to improve existing prediction tech-
niques, too.

Nguyen et al. developed a technique to analyze the influence of
operational attributes of a software system on its functional prop-
erties (in this case, client-side output of a web application) [23].
Our work is similar to this one, but our ultimate goal is to target the
whole spectrum of internal and external feature interactions and to
study their relations in broader perspective.

7. CONCLUSION

We presented a preliminary study that examined the relations be-
tween internal and external feature interactions in feature-oriented
product lines. The information about internal feature interactions
was captured by a set of measures based on the data from static
code analysis and feature-model analysis. The external feature in-
teractions were represented by product-line-specific type errors.

We calculated correlation coefficients between the measures and
the number of type errors for 15 feature-oriented, JAVA-based prod-
uct lines. We observed moderate correlations between the mea-
sures under discussion and the number of type errors (especially
for RefO, RefSWO, and fragmentation measures). This result is not
sufficient to draw final and generalizable conclusions, but motivates
us to follow this direction and study other kinds of external interac-
tions (e.g., non-functional interactions) using the same conceptual
framework. Moreover, the framework may be useful to other re-
searchers who want to study interdependencies between different
kinds of feature interactions.
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Table 2: Summary of the results. For each subject system and each measure a correlation coefficient between the number of errors in the features of the system and the corresponding
measure values for these features is given. Correlations that are not statistically significant (p-value < 0.05) are not shown (depicted by a dash in the table)

Ref RefS RefW  RefO RefSWO ClassFrag FeatureFrag IFD EFD CBO CBF

BANKACCOUNTTP - -0.803 - - - - - - - - -
BERKELEYDB  0.326  0.339 0336 0.302 0.351 0.526 0.366 - 0241 0402 0313
EPL  0.657 0.701 - 0.968 0.775 - - 0613 - - -
GPL - 0577 0513 - 0.569 0.798 - - - 0.632 0471
GUIDSL 0424  0.393 - 0460 0.443 0.412 0.433 - - 0.286 -
MOBILEMEDIA8  0.397 - 0373 0407 0.298 0.486 0.377 0411 0458 0472 0.561
NOTEPAD—ROBINSON - - 0.698 - 0.696 - - - - - -
POKERSPL -0.731 - -0.719 -0.688 - - -0.645 - - - -0.640
PREVAYLER - - - - - 0.284 - - -0.899 - -
Pror4J - - - 0.794 0.705 - - - - - -
SUDOKU - - - 0902 - - - - - 0.632 -
TANKWAR 0436 0502 0717 0413 0.653 0.791 0413 0.718 - 0.706  0.805
UNIONFIND - - - - - - - - - - -
VIOLET 0448 0.591 0315 0514 0.486 - 0.247 0426  0.504 - 0310
VISTEX - - - - - - - - - - -
T T
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Figure 6: Comparison between the correlation coefficients for the module fragmentation Figure 7: Comparison between the correlation coefficients for the coupling measures.

measures.



