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Abstract Detecting feature interactions is imperative for accurately predict-
ing performance of highly-configurable systems. State-of-the-art performance
prediction techniques rely on supervised machine learning for detecting feature
interactions, which, in turn, relies on time-consuming performance measure-
ments to obtain training data. By providing information about potentially
interacting features, we can reduce the number of required performance mea-
surements and make the overall performance prediction process more time
efficient. We expect that information about potentially interacting features
can be obtained by analyzing the source code of a highly-configurable sys-
tem, which is computationally cheaper than performing multiple performance
measurements. To this end, we conducted an in-depth qualitative case study
on two real-world systems (mbedTLS and SQLite), in which we explored
the relation between internal (precisely control-flow) feature interactions, de-
tected through static program analysis, and external (precisely performance)
feature interactions, detected by performance-prediction techniques using per-
formance measurements. We found that a relation exists that can potentially
be exploited to predict performance interactions.

1 Introduction

A feature is an end-user-visible behavior or characteristic of a (software) prod-
uct that satisfies a stakeholder’s requirement (Kang et al, 1990). Features
are used to guide structure, reuse, and variation through the development of
highly-configurable software systems (Apel et al, 2013a). While facilitating
the development of highly-configurable software, reducing development costs,
and improving product quality, combining features in a plug-and-play manner
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introduces new challenges, such as the feature interaction problem (Bruns,
2005) or optional feature problem (Kästner et al, 2009). A feature interac-
tion occurs when the functionality of a feature or its non-functional properties
(e.g., performance) are influenced by the presence or absence of one or more
other features (Zave, 2009). The presence of feature interactions hinders pro-
gram comprehension and compositional reasoning about functional and non-
functional properties: That is, we cannot reason about the properties of a
system configuration (i.e., a valid feature combination) in terms of a straight-
forward combination of the individual influences of the involved features on
these properties. This is because we also have to consider the influences of pos-
sible interactions among the involved features. A common practical scenario is
searching for the best configuration of a system with respect to performance.
To identify this configuration for a given operational environment, we need
to know not only the individual influences of the involved features on per-
formance, but also which interactions among these features exist and what
influence on performance these interactions have.

The problem of detecting feature interactions and quantifying their influ-
ence on performance has been addressed in the past by employing machine
learning (Siegmund et al, 2012; Guo et al, 2013; Zhang et al, 2015; Siegmund
et al, 2015). For building a training dataset and identifying interactions, these
techniques rely on selecting a representative subset from all system configura-
tions (i.e., sampling) and on measuring the performance of each configuration
in this sample (Sec. 3.3). The time needed to perform the measurements often
makes up a substantial part of the overall time required by machine learn-
ing (Siegmund et al, 2013a; Kolesnikov et al, 2018). Therefore, reducing the
measurement effort—by concentrating on system configurations that poten-
tially reveal relevant feature interactions—can make these techniques more
time efficient and accurate (Medeiros et al, 2016).

The main question that we address in this article is whether we can ef-
ficiently extract information about potentially existing feature interactions,
which then can be used in performance prediction. In our previous work (Apel
et al, 2013b), we described two types of interactions: (1) external feature in-
teractions, which can be identified by observing the external behavior of a
system, such as performance; and (2) internal feature interactions, which can
be identified by analyzing or interpreting the source code of a system, for
example, using control-flow analysis. A key hypothesis is that there is a re-
lation between internal and external interactions, and that we can make use
of this relation to automatically identify external interactions by identifying
internal interactions in a fast and efficient way. For example, multiple function
calls from one feature to another (internal feature interactions) can result in a
performance overhead. This performance overhead arises only if the caller and
the callee features are both present in a configuration (external feature interac-
tion). This way, the internal interaction is related to its external counterpart.
This relation, if present, would give us hints about the existence of external
feature interactions based on the internal ones. In this work, we follow up on
this idea and report on an exploratory case study in which we investigated the
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control flow among features and its relation to performance feature interac-
tions. We conjecture that by supplying the performance-prediction procedure
with hints about which feature combinations are more likely or less likely to
exhibit external feature interactions, the procedure can be made more focused
on finding actual interactions.

Taking the exploratory nature of our study into account, the qualitative
character of the expected results, as well as substantial technical challenges,
we chose a case-study approach (Shull et al, 2007, p. 285) as our research
method (see Sec. 3.1) with two systems—the mbedTLS encryption library
and the SQLite database engine—as non-trivial, real-world subject systems.1

mbedTLS and SQLite are highly-configurable systems used by several large
projects, such as OpenVPN and Firefox,2 which makes our case study
practice-oriented.

Technically, using a state-of-the-art machine learning technique (Sec. 3.3),
we learned performance influence models (Sec. 2.2), which we used in turn
to identify potential external (performance) feature interactions among the
features for the two subject systems. Furthermore, we manually inspected the
code of the systems and checked whether the identified performance interac-
tions actually exist and whether they are actually caused by the interplay of
the corresponding features, and not just misinterpreted artefacts of measure-
ment bias or environment noise.

Furthermore, using a variability-aware control-flow analysis, augmented
by manual code inspection (Sec. 3.2), we identified control-flow interactions
among the features of mbedTLS and SQLite. That is, we identified the code
locations where the features pass the control to one another. Comparing the set
of internal (control-flow) interactions with the set of external (performance)
interactions revealed that those features that interact internally also interact
externally (Sec. 4.3), which is in line with our expectation. Using the identified
relation, we were able to substantially shrink the search space of performance
feature interactions (Sec. 5). Furthermore, we made first steps towards devel-
oping a predictor for identifying features that are likely to interact externally
based on the set of internal interactions, although, with mostly negative re-
sults (Sec. 3.5).

The key difference of this study to previous work is that we do not pick one
type of interaction and study its properties, but rather we take two different
types of interactions (external and internal) and study their relation. More
specifically, we investigate the relation among control-flow (Sec. 2.1) and per-
formance (Sec. 2.2) interactions, and discuss the implications of our findings
(Sec. 5). To the best of our knowledge, this is the first case study that analyzed
both the external and the internal feature interactions for the same systems,
investigated possible relations between these two types of interactions, and as
a result provided the following contributions:

1 https://tls.mbed.org/ https://www.sqlite.org/
2 https://openvpn.net/ https://www.mozilla.org/

https://tls.mbed.org/
https://www.sqlite.org/
https://openvpn.net/
https://www.mozilla.org/
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– We define a relation between control-flow and performance interactions
based on the features these interactions concern, and we discuss the plau-
sibility of this relation.

– We define a conceptual framework for exploring the relation between in-
ternal and external interactions.

– As a first case study of its kind, we explore and confirm the relation between
control-flow and performance feature interactions, based on two real-world
highly-configurable subject systems.

– We discuss the implications of our findings for performance prediction of
highly-configurable systems.

2 Internal and External Feature Interactions

To illustrate how features may interact internally and externally and how these
interactions can be related, we use a simple example of an audio streaming
system with five optional features: Compress compresses the audio stream;
Encrypt encrypts data; AddMetadata adds data about the stream quality,
description of the audio content, information about its authors, etc., to the
stream; LogIP logs IPs of the users receiving the stream; RankContent
ranks the audio content according to its popularity. The performance of the
system is measured by the maximum number of users that can simultaneously
receive an audio stream without the system becoming overloaded.

2.1 Control-Flow Interactions (Internal)

In Figure 1a, we illustrate an excerpt of the implementation of the audio
streaming system. The code of each feature is delimited using C preproces-
sor #ifdef annotations. We denote internal interactions among features with
arrows. The boxes on the arrows contain presence conditions for the corre-
sponding interactions (von Rhein et al, 2015), that is, which features must be
enabled (or disabled) for the interaction to take place. For example, if both
features AddMetadata and Encrypt are enabled, then metadata are en-
crypted along with the audio data. For this purpose, AddMetadata calls
the encryption function of feature Encrypt (denoted by the solid red arrow).
Consequently, there is a control-flow interaction between these two features.

Likewise, there is a control-flow interaction between features LogIP and
Encrypt (denoted by the dashed green arrow), since the log entries are en-
crypted if both features are enabled.

Finally, an internal interaction exists between features Compress and En-
crypt (denoted by the dotted blue arrow). This is a data-flow interaction,
because both features operate on the same resource (i.e., the audio stream).
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#ifdef Encrypt
void encrypt(payload t ∗payload) {...}
#endif

#ifdef AddMetadata
void add metadata(packet t ∗packet) {

...
#ifdef Encrypt

encrypt(metadata);
#endif

...
}
#endif

#ifdef LogIP
void log(char ∗ip) {

...
#ifdef Encrypt

encrypt(log entry);
#endif

...
}
#endif

#ifdef Compress
void compress(payload t ∗payload) {...}
#endif

#ifdef RankContent
void rank() {...}
#endif

(a) Control-flow (solid line) and data-flow (dashed line) in-
teractions interactions in the audio streaming system.

AddMetadata ∧ Encrypt

LogIP ∧ Encrypt

Compress ∧ Encrypt

100− 15·Compress−15·Encrypt−5·AddMetadata−5·RankContent

−5·LogIP−5· AddMetadata·Encrypt +10· Compress·Encrypt
feature interactions

(b) A performance influence model with performance interactions.

Fig. 1: Interactions in the audio streaming system.

2.2 Performance Interactions (External)

In Figure 1b, we show a performance influence model (Sec. 3.3) of the audio
stream system. For a given system configuration, the model can predict the
maximum number of users that can simultaneously receive an audio stream
without overloading the system (here, we assume that the model is 100 %
accurate). To calculate the predicted value, we substitute 1 for the names of
the enabled features and 0 for the names of all disabled features. Then, we
evaluate the arithmetic expression. For example, for the configuration with
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feature Compress enabled and the rest of the features disabled the system
can reliably serve 100− 15 · 1− 15 · 0 + · · ·+ 10 · 0 = 85 users.

The individual terms of the model (i.e., the summands) describe the influ-
ence of individual features as well as of their interactions on the performance
of the system. The first term (100) describes the performance of the base
configuration (with all features disabled). The second term (−15·Compress)
describes the influence of feature Compress on the performance relative to the
performance of the base system. Thus, the computationally expensive feature
Compress reduces the base performance by 15.

The terms containing more than one feature (denoted by boxes in Fig-
ure 1b) describe the influences of the interactions among the involved features
on performance. For example, enabling both features AddMetadata and
Encrypt makes the system encrypt not only the audio stream, but also the
metadata that are added to the stream. This results in a computational over-
head, which reduces the system’s performance by 5 users that can be served.

In our example, we assume that encrypting a small string containing an
IP address is so fast that this has no measurable effect on the performance of
the system. Therefore, there is no a performance interaction between features
LogIP and Encrypt. Consequently, there is no a corresponding term in our
performance influence model.

The last term in the model describes an interaction between features Com-
press and Encrypt with a positive influence of the performance. Each of the
two features individually has a negative influence of −15 on the system perfor-
mance, but encryption is faster if the data were compressed before. Therefore,
the combined influence of both features on performance is less than the sum
of their individual influences: −15− 15 + 10 = −20 and not −30.

Finally, feature RankContent as well as all other possible feature com-
binations have no measurable influence on performance and, therefore, they
are not in the performance influence model.

2.3 Relating Control-Flow and Performance Interactions

Table 1 summarizes the control-flow and the corresponding performance inter-
actions from our example (Fig. 1). The feature combinations (AddMetadata,
Encrypt) and (Compress, Encrypt) give rise to both control-flow and per-
formance interactions. Based on our knowledge about the implementation,
we can explain the causal relation between the control-flow and performance
interactions captured by these feature combinations: The call to the compu-
tationally expensive encryption functionality (a control-flow interaction) leads
to the performance decrease in the configurations containing the features that
implement and use the encryption functionality (i.e., a performance interac-
tion between these features occurs). Notice that the related control-flow and
performance interaction involve exactly the same features, so we can also re-
late them based on the features they involve. However, the mere presence of
control flow among features does not always indicate the presence of a perfor-
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Table 1: A list of interacting features from Figure 1. It illustrates which of the
features interact internally (control-flow interaction), externally (performance
interaction), or both.

Interacting Features Control flow Performance

AddMetadata, Encrypt X X
Compress, Encrypt X X
LogIp, Encrypt X –

mance interaction. For example, the control-flow interaction between features
LogIp and Encrypt has no corresponding performance interaction. So, it is
an open question to what extent a presence of a control-flow interaction can
be used as an indicator for a potentially existing performance interaction.

Also note that from 263 feature combinations possible in the audio stream-
ing system only three combinations give rise to feature interactions. All remain-
ing feature combinations can be ignored by an interaction detection technique,
because features in these combinations do not interact.

In what follows, we investigate to what extent a relation between control-
flow and performance interactions exists in a real-world setting. Furthermore,
we define and evaluate a predictor that uses control-flow interactions to pre-
dict potential performance interactions. With such a predictor in place, we
could make interaction detection more efficient and accurate, which would be a
valuable contribution to research fields, such as optimization of non-functional
properties, combinatorial testing, and sampling techniques.

3 Research Questions and Conceptual Framework

In our study, we address the following research questions:

– RQ1: Do control-flow feature interactions and performance feature inter-
actions relate (in terms of the definition of Section 3.4)?

– RQ2: If a relation exists, can it be effectively leveraged to improve existing
techniques for detecting external feature interactions or even to predict
external feature interactions based on internal ones?

Before we can answer these questions, we have to decide on methods and
tools that we will use in our study and how to combine them in a concep-
tual framework. Using this conceptual framework, we will then study relations
among internal and external interactions and answer the research questions.
Particularly, we have to choose a suitable research method, specify how we
identify control-flow and performance interactions, define what a relation be-
tween these two types of interactions exactly is, and describe how we want to
leverage it. Next, we describe this conceptual framework.

3 10 combinations with 2 features, 10 with 3, 5 with 4, and 1 with 5.
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3.1 Research Method

We use the case study research method to explore a relation between control-
flow and performance interactions. Shull et al (2007) defines a case study as
an “initial investigation of some phenomena”. The relation, which we explore
in our work, is novel and it is studied for the first time. Therefore, our study
qualifies as an initial investigation of a phenomena.

Yin (2003) has a broader definition of a case study as “an empirical inquiry
that investigates a contemporary phenomenon within its real-life context.” It is
easy to construct an artificial example with a clearly existing relation between
control-flow and performance interactions (cf. Sec. 2.3), but this would say
nothing about the existence of this phenomenon in real-world configurable
systems. The goal of our study is to investigate whether there is or may be
such a relation between control-flow and performance interactions in real-world
configurable systems, which matches exactly the definition by Yin.

Finally, Flyvbjerg (2006) states that “case studies offer in-depth under-
standing of how and why certain phenomena occur, and can reveal the mech-
anisms by which cause–effect relationships occur”. In our study, we want to
obtain deep insights into the nature of the relation between control-flow and
performance feature interactions and not only report statistics. By focusing on
two systems, we aim at increasing the internal validity of the study, because,
this way, we can better identify and control confounding effects that may vary
from one subject system to another (e.g., architecture, size of features). More-
over, our study involves bleeding-edge techniques for detecting control-flow
and performance interactions in highly configurable systems that are techni-
cally challenging and cannot be easily applied to a large number of non-trivial
real-world systems. For example, information about the variability in the con-
figurable system that is provided in its documentation is often outdated, so
compiling all configurations of the system becomes a tedious try-and-error
process.

Based on all these considerations we have chosen the case study as our
research method. In our case study, we go through the following steps: We
take two real-world highly configurable systems and identify control-flow and
performance interactions in these systems; then, we examine if the identified
control-flow and performance interactions can be related based on the features
that occur in them; finally, we evaluate predictors for performance interactions
based on these relations. Next, we describe these steps in more detail and give
an overview of the subject systems.

3.2 Identifying Control-Flow Interactions

To identify control-flow interactions, we use a variability-aware call-graph anal-
ysis (Ferreira et al, 2015) implemented in TypeChef4 that identifies function
calls among features implemented with preprocessor annotations (Fig. 1a).

4 http://fosd.net/TypeChef/

http://fosd.net/TypeChef/
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The central idea of a variability-aware analysis is to achieve efficiency by ana-
lyzing code parts that are shared by multiple system configurations only once.
This is achieved by analyzing the source code of the system that still contains
variability (e.g., the code with preprocessor annotations in Figure 1a), as op-
posed to analyzing the source code of individual configurations, which may be
exponentially many in the number of features. A variability-aware call-graph
analysis provides an efficient way to identify function calls among features of
a highly-configurable system and makes the detection of internal interactions
feasible.

The underlying data structure for the analysis is the variable abstract syn-
tax tree. Similar to an abstract syntax tree (AST), a variable AST provides
an abstraction of the source code that can be efficiently analyzed, but it also
provides information on which part of the code belongs to which features (in
the form of presence conditions). Using this information, a call-graph analysis
can identify, for each function call, which feature is the caller and which fea-
ture is the callee. Furthermore, the analysis can identify a presence condition
for each call, that is, which features must be enabled (or disabled) for the call
to take place at runtime. For example, in Figure 1a, the call from feature Ad-
dMetadata to feature Encrypt (solid red arrow) occurs only if both features
AddMetadata and Encrypt are enabled (denoted by the presence condition
in the box under the arrow). Due to the static nature of the technique, the
collected information about the calls may be an overapproximation, but this
is a problem with any static analysis approach. The current implementation
of the analysis also uses pointer analysis to increase the accuracy of the call
graph (Ferreira et al, 2015).

3.3 Identifying Performance Interactions

For detecting performance feature interactions, we learn performance influence
models (Fig. 1b). As discussed in Section 2.2, a performance influence model
captures the influences of individual features and their interactions on perfor-
mance of a configurable system. We learn performance influence models us-
ing the tool SPL Conqueror,5 which implements a state-of-the-art machine
learning algorithm based on multivariable regression and forward feature selec-
tion (Siegmund et al, 2015). The algorithm takes as input a sample of system
configurations and corresponding performance measurements. The accuracy
of the learned performance influence model depends, among other factors, on
how representative the sampled configurations are for the entire configuration
space. To get a performance influence model of the highest possible accuracy,
and, consequently, to detect feature interactions as precise as possible (i.e., to
obtain the ground truth), we measured not a sample but all configurations of
the subject system and used these measurements as the algorithm input. The
performance measurements were done using a standard benchmark.

5 http://fosd.net/SPLConqueror/

http://fosd.net/SPLConqueror/
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To build a performance influence model, SPL Conqueror starts with
calculating a set of features and their combinations that can be included in
the model to reduce the model’s prediction error. Compress ·Encrypt in
Figure 1b, for example, is a feature combination that has been eventually
included in the model during the learning process. The algorithm iterates
over the set of features and their combinations and selects one element of the
set (a candidate) that explains variations in the performance of the system
best; that is, the element yielding the model’s lowest prediction error, when
incorporated into the model. The coefficients in the model (e.g., 10 for the
candidate Compress ·Encrypt in Figure 1b) are learned using multivariable
regression by treating candidates as independent variables and the measured
performance as dependent variable. The selection of candidates continues until
either a predefined accuracy is reached or all features and feature combinations
that could reduce the prediction error of the model have been considered. For
a more in-depth description of the algorithm, we refer the reader to previous
work (Siegmund et al, 2015).

3.4 Relating Control-Flow and Performance Interactions

After we have identified the internal (control-flow) interactions, the question is
what we can learn from them regarding external (performance) interactions. To
answer this question, we relate the control-flow interactions and performance
interactions based on the features involved in them, as we explained it in our
example in Section 2.3. The goal is to find out if the features involved in
performance interactions also occur in one or more internal interactions and
vice versa. This is a feasibility check to see if the interactions can be related
based on the features’ occurrence at all. That is, if we find no interactions that
can be related in this way, this would mean that it is impossible to define any
relation between interactions based on the corresponding feature occurrences
in these interactions.

We define a performance interaction ip and a control-flow interaction ic
as related if features(ip) ⊆ features(ic) or if features(ip) ⊇ features(ic), where
features(i) is the set of features that contribute to the interaction i.

Furthermore, for each related pair of interactions, we determine how similar
the interactions are (i.e., if they contain exactly the same features or if they
also contain features that are present only in one of them). The similarity of
the related interactions can be interpreted as the strength of their relation:
the higher the similarity, the higher the strength of the relation. We calculate
the similarity of interactions using the Jaccard index J (Jaccard, 1912):

J(ip, ic) =
features(ip) ∩ features(ic)

features(ip) ∪ features(ic)

where features(i) is the set of features involved in the interaction i. The Jaccard
index equals 1 if both interactions involve exactly the same features and is less
than 1 otherwise.
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3.5 Predicting Performance Interactions

If we find a relation between control-flow and performance feature interactions
as defined in Section 3.4, the question is whether we can use this relation to
predict performance feature interactions.

One method is to build on our argumentation in Section 2.3 and to assume
that every control-flow interaction corresponds to an existing performance
interactions. Of course, we already know that there may be control-flow in-
teractions without corresponding performance interactions. Nevertheless, it is
an open question how accurate this simple method can be if applied to a
real-world system.

We can also use a more advanced method based on reoccurring feature
combinations in control-flow interactions: We argue that, if a set of features
occurs in multiple control-flow feature interactions, then this set of features
is also likely to give rise to one or more external interactions. The rationale
behind this argument is that, if a set of features is involved in many control-
flow feature interactions, then chances are high that it is also involved in
performance interactions, because the accumulated influence of the control-
flow interactions on performance have a measurable effect.

We use frequent item set mining (Borgelt, 2012) as a method to identify
such frequent feature sets. This method was successfully used as a general
pattern mining method (Maqbool and Babri, 2007; Qiao et al, 2013). In terms
of frequent item set mining, we refer to a feature as an item. For example,
features such as AddMetadata and Encrypt in the running example in
Fig. 1 are items. The set of all items (all features) is the item base B (e.g, the
item base of the running example contains all its features). A subset of the
item base I ⊆ B is an item set that corresponds to a feature combination.
An item set (i.e., a feature combination) that denotes an internal interaction
in a system is a transaction t ∈ T , where T is a set of transactions. In the
running example, a set of features {AddMetadata, Encrypt} is an item
set and it is also a transaction, because these two features interact at the
control-flow level (Fig. 1a). Based on these definitions, we define the support
(a.k.a. absolute frequency) s of an item set I: s = |{t : t ∈ T ∧ I ⊆ t}|. In
Fig. 1a, the item set {Encrypt} has a support value of three, because it
is a subset of every transaction (i.e., control-flow feature interaction) in the
running example. Item set {AddMetadata, Encrypt} has a support value
of 1, because there is only one control-flow feature interaction involving these
features. The support value and a threshold E ∈ [0,∞) is used to decide which
of the item sets are considered frequent: All item sets with the support value
s ≥ E are frequent item sets. Based on our hypothesis, frequent item sets
predict external feature interactions. In our analysis, we also ignore item sets
with only one item (feature), because a feature interaction requires at least
two different features. We use an implementation of the Apriori algorithm from
the Orange library6 to calculate the support value.

6 http://orange.biolab.si/

http://orange.biolab.si/
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3.6 Subject Systems

The case study was conducted using two real-world highly-configurable soft-
ware systems: the mbedTLS library implementing the transport security net-
work protocol TLS/SSL and a SQL database engine SQLite. The initial use
case for the systems was the embedded domain, but now they are also used in
non-embedded projects, such as OpenVPN and Firefox.

Similar to a large number of other real-world highly configurable systems,
the subject systems are written in C using C-preprocessor directives to im-
plement compile-time variable features. mbedTLS has 97 and SQLite has
12 features, which results in 1921 and 1533 configurations respectively. The
configurations are obtained using a SAT solver (built into SPL Conqueror)
by computing all feature combinations that satisfy the constraints in the fea-
ture models (see the following subsections) of the subject systems. mbedTLS
comprises 50 K and SQLite 195 K lines of code. Both systems have a highly
modular architecture, which is thoroughly documented along with the corre-
sponding preprocessor macro names allowing relatively easy matching of code
to the corresponding modules and submodules.

The manageable number of features and configurations makes these sys-
tems especially suitable for an in-depth qualitative case study: For example,
it allows us to measure performance of all configurations and use these mea-
surements in turn to identify a baseline of performance feature interactions in
reasonable time. The feasible number of resulting feature interactions allows
us to verify that every one of them actually exists in the system. Furthermore,
the size of the subject systems allows us to manually inspect and understand
the structure of the systems and the interplay of their features (Sec. 4, 5).
Altogether, the manageable size of the subject systems is a prerequisite for
the internal validity of our qualitative case study.

Features and Feature Model of mbedTLS

At the top level, mbedTLS consists of modules, such as Cipher, Public Key,
Hashing. Each module implements the corresponding algorithms and proto-
cols. For example, the Cipher module includes submodules that implement
cipher algorithms, such as AES, DES, and ARC4. Submodules implement
the features of the system. The cipher-algorithm features can be combined
with other features, such as hash algorithms and public-key implementations,
to provide an encryption protocol. We used the original documentation and
manual code inspection to construct a feature model for mbedTLS version
2.2.1.

Features and Feature Model of SQLite

SQLite consists of a Core providing a C-language interface and being re-
sponsible for executing compiled SQL code, an SQL Compiler, and a Backend
providing the low-level implementation of the database. A user can configure



On the Relation of Control-flow and Performance Feature Interactions 13

the operation of these modules by enabling or disabling their features through
compile-time options. For example, Core can be configured to operate safely
in a multithreaded environment by enabling the SQLITE THREADSAFE
feature. We studied the documentation and the source code of version 3.16.2
to construct a feature model.

Performance Measurements of mbedTLS

The primary application of mbedTLS is the encryption of data transmitted
over a TCP/IP network. Ensuring fast and secure data transfer is commonly
considered an important property of communication networks, such as the
Internet. So, the time required to encrypt data and transfer them over the
network is an important non-functional property of mbedTLS. Measuring
the time required by encryption alone is not representative, because different
configurations may produce different amounts of payload (e.g., due to data
compression and different amounts of generated metadata) influencing the
transmission time. Therefore, we defined the performance measure for a con-
figuration of mbedTLS as the amount of time (in seconds) required to encrypt
and successfully transmit a fixed amount of input data.

To detect performance feature interactions reliably based on performance
benchmarks, it must be ensured that every feature included in a configuration
is invoked during the benchmark of this configuration. Otherwise, the influ-
ence of features and their interactions on performance cannot be deduced from
the benchmark results. The original automated test framework of mbedTLS
includes tests that check the library’s functionality in a client-server environ-
ment and is suitable to serve as a typical benchmark suite. During the tests,
the functionality of every feature in the configuration is tested, that is, every
feature is actually invoked.

We used 2 GB of random data as input to ensure that the fastest config-
uration requires, at least, five seconds for transmission and to mitigate the
influence of warm-up effects on the result. We repeated the benchmark 30
times to further reduce the influence of measurement bias. To exclude the
influence of network latencies, we ran the benchmark locally using the local
network interface.

Performance Measurements of SQLite

The developers of SQLite provide a performance benchmark that measures
time required by the database to execute a set of queries.7 The original bench-
mark is not compatible with the latest version of the system that we use, so we
used it as guidance to create a new compatible benchmark. While constructing
the benchmark we made sure that the features of SQLite are actually invoked
during the benchmarking process. Our benchmark measures the execution time

7 http://sqlite.org/speed.html
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in seconds. To reduce the influence of warm-up effects and measurement bias,
the benchmark runs, at least, 25 seconds and every run is repeated 30 times.

The benchmarks for both systems were conducted on an Intel i5-4590,
16 GB RAM, 256 GB SSD, Ubuntu 16.04.

4 Results

In this section, we describe the results of applying of our conceptual frame-
work (Sec. 3) to subject systems. To increase internal validity, we report in
Sections 4.2 and 4.1 in detail how we identified performance and control-flow
interactions. Based on these data, we report the identified relation between
performance and control-flow interactions (Sec. 4.3), which we use to answer
RQ1 in Section 5, and how this relation can be leveraged (Sec. 4.4), which we
use to answer RQ2 in Section 5.

4.1 Control-Flow Interactions

In this section, we report on control-flow interactions that we identified in
mbedTLS and SQLite using variability-aware call-graph analysis implemented
in TypeChef (Sec. 3.2). Furthermore, we explain the limitations of Type-
Chef that prevent it from detecting all control-flow interactions (e.g., in cases
where one feature uses function pointers to call another). We discuss how we
addressed these limitations to increase the internal validity of the study by
manually identifying control-flow interactions missed by TypeChef.

mbedTLS

From 761 992 function calls in the system, we detected 575 560 control-flow
feature interactions. This number of interactions includes duplicate interac-
tions that appear if the corresponding function call between features occurs in
multiple locations in the code. The number of unique control-flow interactions
is 73.

Notably, among the unique control-flow interactions, there are interactions
with up to 10 features, but most unique interactions involve only two fea-
tures (Fig. 2a). If we also consider the duplicates (Fig. 2b), the overall picture
stays largely the same: Only the number of interactions involving four features
becomes larger than the number of those involving three features.

While manually exploring the source code of mbedTLS, we found that
cipher, mode, and hash algorithms call each other indirectly, using function
pointers. This indirection was introduced by the designers of the library to
decouple the algorithms and to make their concrete implementations inter-
changeable. TypeChef would need to be extended with a variability-aware,
inter-procedural data-flow analysis to identify which features interact using
indirect function calls. Being aware of this technical limitation of TypeChef,
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Fig. 2: mbedTLS: counts of features in control-flow interactions.
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Fig. 3: SQLite: counts of features in control-flow interactions.

we added 11 indirect control-flow interactions that we collected while manually
exploring the code to the set of interactions. In our manual exploration of the
source code, we relied on our understanding of the subject systems’ structure
and interplay of the features. For example, based on the knowledge, we knew
that cipher, mode, and hash algorithms should closely work together. So, we
looked for control flow among all features implementing these algorithms. The
total number of the identified unique control-flow interactions is 84 (73 were
found using TypeChef and 11 manually). It would be infeasible to find man-
ually all instances of indirect control-flow interactions, so their exact number
(including duplicates) is unknown. We discuss the corresponding threats to
validity in Section 6.

SQLite

From over 14 587 337 function calls in the system, we detected 14 587 335
control-flow feature interactions. That is, all but two function calls involved
more than one feature. The number of unique control-flow interactions is 37.

In contrast to mbedTLS, most unique interactions involve 4 features, and
there are interactions with up to 6 features (Fig. 3a). Although, if we also
consider duplicates (Fig. 3b), the picture becomes similar to that in mbedTLS:
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Interactions among 2 features prevail and the count of interactions decreases
with the increasing number of involved features.

While manually inspecting the code of SQLite, we found that the option
SQLITE DEFAULT MEMSTATUS (which is used by TypeChef to iden-
tify the code belonging to the feature DEFAULT MEMSTATUS) is used to
set a Boolean variable at compile-time. This variable is then used at runtime to
check if feature DEFAULT MEMSTATUS is enabled or disabled. This way,
the feature can be enabled or disabled at runtime. Again, TypeChef would
need a data-flow analysis to trace the connection the preprocessor macro to
the corresponding Boolean variable to detect control-flow interactions in which
feature DEFAULT MEMSTATUS is involved. By further exploring the code,
we identified two control-flow interactions of this kind and added them to the
set of automatically detected interactions. Therefore, the total number of the
identified unique control-flow interactions is 39.

Summary. Overall, we identified 575 571 control-flow interactions in
mbedTLS among which 84 were unique. Some interactions involve up to
10 features, but most interactions are between 2 features. For SQLite, we
identified 14 587 335 control-flow interactions, with 39 unique. Due to techni-
cal limitations of TypeChef, indirect control-flow interactions in mbedTLS
and interactions induced by runtime variability in SQLite could not be de-
tected by TypeChef. We manually inspected the source code to collect
these interactions.

4.2 Performance Interactions

In this section, we report on performance interactions that we identified in
mbedTLS and SQLite. Using domain knowledge and manual inspection of
the source code, we confirm that the identified interactions actually exist and
thereby increasing internal validity of our study.

We used the performance benchmark results obtained using SPL Con-
queror (cf. Sec. 3.6) as input data to identify performance interactions in
mbedTLS and SQLite, as described in Section 3.3. Table 2 lists for both
systems the performance interactions and their influences on performance of
the systems in seconds. The negative values in the influence column denote
positive influences of the corresponding interactions on performance. That is,
they denote how much less time a configuration that includes them would need
to execute the benchmark.

The mean standard deviation for the performance measurements of mbed-
TLS is 0.42 s. Therefore, we classified all interactions with the absolute influ-
ences less than this value as noise and discarded them. From the remaining
16 interactions, 11 are interactions between two features; and five are interac-
tions among three features. The mean standard deviation for the performance
measurements of SQLite is 0.09 s. The influences of the three identified in-
teractions for the system are much higher and, therefore, are unlikely to be
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Table 2: Performance interactions and their influences on perfor-
mance of the systems in seconds.

ID Influence Performance Interaction
(sec) (features involved)

m
b
e
d
T
L
S

1 10.73 CIPHER MODE CBC, SHA256 C
2 -9.71 AES C, AESNI C
3 8.53 AESNI C, SSL CBC RECORD SPLITTING
4 6.93 CIPHER MODE STREAM, AESNI C
5 6.08 SHA256 C, CIPHER MODE STREAM
6 5.75 AES C, AESNI C, GCM C
7 3.49 CIPHER MODE CBC, SHA256 C, SHA256 SMALLER
8 3.45 SHA256 C, CIPHER MODE STREAM, SHA256 SMALLER
9 3.44 SHA256 C, AESNI C, CIPHER MODE STREAM

10 3.14 CIPHER MODE CBC, RIPEMD160 C
11 -2.97 AES C, GCM C
12 -2.84 CIPHER MODE STREAM, MD5 C
13 1.93 AESNI C, CAMELLIA C
14 1.68 CIPHER MODE CBC, SHA1 C
15 1.60 CIPHER MODE STREAM, AESNI C, MD5 C
16 1.51 RIPEMD160 C, CIPHER MODE STREAM

S
Q
L
it
e 1 1.50 DEFAULT MEMSTATUS, THREADSAFE

2 1.47 MEMDEBUG, THREADSAFE
3 1.41 DEFAULT MEMSTATUS, MEMDEBUG, THREADSAFE

To relate the influences to configuration run times, note that the fastest
mbedTLS configuration completed its benchmark in 6.7 seconds and the
fastest SQLite configuration completed its benchmark in 26.7 seconds.

noise. Two of the interactions are interactions between two features and one
is an interaction between three features.

mbedTLS

All identified interactions in mbedTLS are among features implementing dif-
ferent ciphers, block cipher modes of operation (simply “modes”), and cryp-
tographic hash functions. This is plausible, because these three types of al-
gorithms work tightly together to implement an encryption protocol. Ciphers
(e.g., AES) are used to encrypt data, modes (e.g., CBC) are used in combina-
tion with block ciphers to encrypt amounts of data larger than a block (i.e.,
a fixed amount of data a block cipher can operate on; 128 bit for AES), and
cryptographic hash functions (e.g., SHA) are used with modes to implement
authentication and to ensure data integrity.

To confirm that the identified performance interactions actually result from
the interplay of the corresponding features, we manually inspected the source
code of mbedTLS. Next, we present the results of this code inspection.

Interaction 1 in Table 2 arises between a mode (CBC) and a hash function
(SHA256). CBC uses hashing extensively to calculate keyed-hash message au-
thentication code (HMAC). SHA256 is computationally more expensive than,
for example, MD5; therefore, this combination with the mode has a negative
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influence of 10.73 seconds on performance. Interactions 5, 7, 8, 10, 12, 13, 14,
and 16 have a similar cause and explanation. In addition to a mode and a hash
function, interactions 7 and 8 also include the feature SHA256 SMALLER,
which denotes that an implementation of SHA256 with smaller binary foot-
print was used. However, this implementation also has a lower performance,
which leads to the negative influence of this interaction on performance. In-
teraction 12 has a positive influence on performance of using a mode (stream
mode, in this case) with a less computationally complex (but also less se-
cure) MD5 hash function. In interaction 13, the AES cipher is used as a hash
function in combination with the Camellia cipher.

Interaction 2 arises from the usage of the AES cipher for encryption in
combination with a native implementation of the AES algorithm in assembler
(AESNI). The native implementation makes encryption faster, so this inter-
action has a positive influence of 9.71 seconds on performance.

Interaction 3 arises from the usage of the AES cipher for encryption in
combination with an implementation of the CBC mode that includes a record
splitting algorithm. This algorithm is a countermeasure against the BEAST
attack on the SSL algorithm (Duong and Rizzo, 2011). The way record splitting
is implemented increases the number of packets to be transmitted (compared
to the number of packets without this countermeasure). The increased number
of packets results, in turn, in a negative influence on performance.

Interactions 4, 6, 9, 11, and 15 arise from the influence of further combi-
nations of ciphers, modes, and hash functions on performance, similar to the
first interaction.

SQLite

All performance interactions in SQLite include the feature THREADSAFE.
This is plausible, because THREADSAFE is a crosscutting feature that adds
the mutex and thread-safety logic to all unsafe regions in the code. This ad-
ditional thread-safety code imposes a runtime overhead and makes the bench-
marks for the configurations containing it run longer. We inspected the code of
SQLite and confirmed that both features DEFAULT MEMSTATUS and
MEMDEBUG retrieve a mutex (i.e., use THREADSAFE feature) at a cer-
tain stage of operation that results in interaction among THREADSAFE and
these features.

Summary. Overall, we identified 16 performance interactions in mbedTLS.
11 of them occur between 2 features and 5 among 3 features. In SQLite, we
identified 3 performance interactions. 2 interactions between 2 features and
1 among 3 features. Using domain knowledge and manual inspection of the
source code, we identified the cause of all interactions and thereby confirmed
that they actually exist in the systems and are caused by the interplay of
the corresponding features.
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4.3 Relating Interactions

In this section, we describe how we identified relations among performance
and control-flow interactions that we described in Sections 4.2 and 4.1

Performance Interactions → Control-Flow Interactions

Using the relation definition features(ip) ⊆ features(ic) (Section 3.4), for each
performance interaction, we identified all unique related control-flow inter-
actions (i.e., all control-flow interactions involving exactly the same features
as the performance interaction). Furthermore, for each pair of related interac-
tions, we calculated the Jaccard index (Section 3.4), which denotes how similar
the interactions are (the index equals 1 if both interactions involve exactly the
same features and is less than 1 otherwise).

Table 3 summarizes the results. For each performance interaction, it shows
the number of the related control-flow interactions and the mean of all Jac-
card indexes calculated for these relations. The numbers show that there is a
relation between every performance interaction and, at least, one control-flow
interaction. The Jaccard indexes show that the related control-flow interac-
tions that were automatically detected by TypeChef (those are the same as
the interactions with the number of relations greater than 1 in Table 3), in-

Table 3: Performance interactions, the number of the control-flow inter-
actions related to them, and the mean value of the corresponding Jaccard
indexes.

ID Performance Interaction Rela- Jaccard
(features involved) tions (mean)

m
b
e
d
T
L
S

1 CIPHER MODE CBC, SHA256 C 1 1.00
2 AES C, AESNI C 10 0.53
3 AESNI C, SSL CBC RECORD SPLITTING 2 0.38
4 CIPHER MODE STREAM, AESNI C 1 1.00
5 SHA256 C, CIPHER MODE STREAM 1 1.00
6 AES C, AESNI C, GCM C 4 0.53
7 CIPHER MODE CBC, SHA256 C, SHA256 SMALLER 1 1.00
8 SHA256 C, CIPHER MODE STREAM, SHA256 SMALLER 1 1.00
9 SHA256 C, AESNI C, CIPHER MODE STREAM 1 1.00

10 CIPHER MODE CBC, RIPEMD160 C 1 1.00
11 AES C, GCM C 13 0.40
12 CIPHER MODE STREAM, MD5 C 1 1.00
13 AESNI C, CAMELLIA C 4 0.35
14 CIPHER MODE CBC, SHA1 C 1 1.00
15 CIPHER MODE STREAM, AESNI C, MD5 C 1 1.00
16 RIPEMD160 C, CIPHER MODE STREAM 1 1.00

S
Q
L
it
e 1 DEFAULT MEMSTATUS, THREADSAFE 1 1.00

2 MEMDEBUG, THREADSAFE 16 0.45
3 DEFAULT MEMSTATUS, MEMDEBUG, THREADSAFE 1 1.00
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volve, on average, twice as many or even more features than there are in the
corresponding performance interactions.

Control-Flow Interactions → Performance Interactions

Using the relation definition features(ip) ⊇ features(ic) (Section 3.4), for each
control-flow interaction, we identified all related performance interactions (i.e.,
all performance interactions involving exactly the same features as the control-
flow interaction).

Table 4 summarizes the results. For mbedTLS, among the 84 unique
control-flow interactions, we found 15 interactions that have one or more re-
lated performance interactions. For SQLite, among the 39 unique control-flow
interactions, we found 2 interactions that have one or more related perfor-
mance interactions. The Jaccard indexes show that the related performance
interactions that were automatically detected by TypeChef (interactions 1–4
for mbedTLS) involve mostly the same features as the corresponding control-
flow interactions. The manually added control-flow interactions (interactions
5–15 for mbedTLS and all interactions for SQLite) match exactly the related
performance interactions.

Summary. We found a relation between every of the 16 identified perfor-
mance interactions and one or more control-flow interactions. The Jaccard
indexes show that the automatically detected control-flow interactions do
not generally contain exactly the same features as the related performance
interactions, that is, the automatically detected control-flow interactions in-
volve, on average, twice as many features as the corresponding performance
interactions. The manually added control-flow interactions involve exactly
the same features as the corresponding performance interactions.

4.4 Predicting Performance Interactions

mbedTLS: Direct Matching

As we describe in Section 3.5, one prediction method is to assume that every
control-flow interaction induces a performance interaction that involves exactly
the same features. In mbedTLS, from the 73 automatically identified unique
control-flow interactions there are three—interactions 1, 3, and 4 in Table 4—
that have exactly the same features as the related performance interactions 2,
6, and 11 in Table 3. That is, three of the 16 performance interactions could
be predicted by the direct matching. Therefore, the precision of the direct
matching is 4.11 % and the recall is 18.75 %. If we also incorporate the 11
indirect control-flow interactions, which we identified by manually inspecting
the code, the total number of matching control-flow interactions becomes 14.
Including indirect control-flow interactions increases the precision and recall
to 16.7 % and 51.85 % respectively.
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SQLite: Direct Matching

In SQLite, there are no automatically identified unique control-flow inter-
actions that match exactly any of the performance interactions. Including
the manually added control-flow interactions gives the prediction precision
of 5.13 % and the recall of 67 %.

mbedTLS: Frequent Item Sets

Using frequent item set analysis (cf. Sec. 3.5) on the set of control-flow in-
teractions for mbedTLS, we found 44 item sets, of which we calculated the
support values. The support values range from 11 % to 34 %, meaning that
there are item sets occurring in 11 % to 34 % of all control-flow interactions.

Two of the found item sets match exactly the performance interactions 2
and 11 of Table 3. Notice that we ran the frequent item set analysis only on
the automatically detected control-flow interactions. We were not able to run
it on the indirect control-flow interactions, because then we would have to find
every instance of such interaction manually, which is infeasible. Nevertheless,
we incorporated the indirect control-flow interactions into further analysis by
approximating their support values based on the distribution of support values
for similar indirect interactions (see Sec. 6, for threats to validity). Among
the 44 detected item sets, there are 33 item sets capturing interactions among
ciphers, modes, and hash functions. We assigned support values to the indirect

Table 4: Control-flow interactions, the number of the related performance in-
teractions, and the mean value of the corresponding Jaccard indexes. Control-
flow interactions without related performance interactions are not listed.

ID Control-Flow Interaction Rela- Jaccard
(features involved) tions (mean)

m
b
e
d
T
L
S

1 AES C, AESNI C 2 0.83
2 GCM C, AESNI C 1 0.67
3 GCM C, AES C 2 0.83
4 GCM C, AES C, AESNI C 1 1.00
5 CIPHER MODE CBC, SHA256 C 1 1.00
6 CIPHER MODE STREAM, AESNI C 1 1.00
7 SHA256 C, CIPHER MODE STREAM 1 1.00
8 CIPHER MODE CBC, SHA256 C, SHA256 SMALLER 1 1.00
9 SHA256 C, CIPHER MODE STREAM, SHA256 SMALLER 1 1.00

10 SHA256 C, AESNI C, CIPHER MODE STREAM 1 1.00
11 CIPHER MODE CBC, RIPEMD160 C 1 1.00
12 CIPHER MODE STREAM, MD5 C 1 1.00
13 CIPHER MODE CBC, SHA1 C 1 1.00
14 CIPHER MODE STREAM, AESNI C, MD5 C 1 1.00
15 RIPEMD160 C, CIPHER MODE STREAM 1 1.00

S
Q
L
it
e 1 DEFAULT MEMSTATUS, THREADSAFE 1 1.00

2 DEFAULT MEMSTATUS, MEMDEBUG, THREADSAFE 1 1.00
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control-flow interactions according to the distribution of the support values of
these 33 item sets. That is, 6 % of the interactions were assigned a support
value of 11 %, 3 % were assigned a support value of 12 %, and so on.

By varying the threshold E, as described in Section 3.5, we are able to
decide which of the identified item sets are considered frequent. By setting
the threshold to 0, we consider all identified item sets as frequent. When
the threshold is increased the item sets with lower support values are not
considered frequent anymore. For example, if we set the threshold to 15 %
only 25 % of the identified item sets will have a higher support value and will
be considered frequent. Changing the threshold this way allows us to observe
its influence on the predictive power (i.e., precision and recall) of the frequent
item sets.

To calculate how good the item sets are in predicting performance interac-
tions, we compared how many of them denote the actually identified perfor-
mance interactions (i.e., contain exactly the same features as the performance
interactions). The low precision and recall values for mbedTLS summarized
in Table 5 show that our predictor based on the frequent item sets has only
a low predictive power. Increasing the threshold value decreases the precision
and recall of the predictor.

SQLite: Frequent Item Sets

Applying the same frequent item set method to the control-flow interactions of
SQLite resulted in four frequent item sets with support values ranging from
20 % to 100 %. None of these frequent item sets matched the performance
interactions. We could not approximate the distribution of the support values
for the manually detected control-flow interactions, because they do not exhibit
any commonalities with the calculated frequent item sets as it was the case
for mbedTLS.

Summary. We defined two predictors for performance interactions based on
their relation with control-flow interactions. The first predictor is based on
the assumption that every control-flow interaction induces a performance
interaction that involves exactly the same features. The second predictor is
based on the assumption that the recurring feature combinations in control-
flow interactions capture the related performance interactions. The evalua-
tion showed that both predictors have only low precision and recall values.

5 Discussion

Based on our results, we conclude that there is indeed a quantifiable rela-
tion between control-flow and performance interactions. We confirmed this by
manually inspecting the code and by comparing which features are involved
in the detected performance interactions and how these features interact at
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the control-flow level. We found that features involved in performance interac-
tions work closely together to implement the systems’ functionality and thus
also interact at the control-flow level. That is, the same features that are
involved in performance interactions are also involved in control-flow interac-
tions. Therefore, we can positively answer research question RQ1, which asked
if control-flow feature interactions and performance feature interactions relate.

The relation we found among control-flow and performance feature in-
teractions has implications for performance prediction techniques for highly-
configurable systems. As we discussed in Section 4.3, the identified control-flow
interactions capture the features that are involved in the performance interac-
tions. Of course, we cannot identify these features precisely, because the same
control-flow interactions also involve other features that are not involved in
performance interactions (this is also a reason for direct matching prediction
having low precision and recall; cf. Sec 4.4). Nevertheless, assuming that only
the features from the identified control-flow interactions can give rise to a per-
formance interaction considerably reduces the search space of the potential
performance feature interactions, because otherwise we have to assume that
any (valid) feature combination may give rise to a performance interaction.
mbedTLS has 134 057 valid feature combinations of two and three features,
but the 84 identified unique control-flow interactions (Sec. 4.1) result in only
452 potential performance interactions (among two and three features). Notice
that these include all 16 actually existing performance feature interactions that
we identified. That is, we are able to shrink the search space of performance
feature interactions by almost 300 times (452 instead of 134 057) without los-
ing any of the actually existing performance feature interactions. Although,
note that shrinking the search space for performance interactions this way is
still a heuristic and may miss some interacting features. SQLite has 524 valid
feature combinations of two and three features and (based on the 39 identified
unique control-flow interactions) only 131 potential performance interactions
(among two and three features). These potential performance interactions also
include all 3 actually existing performance interactions that we identified. That
is, the search space shrinks by 4 times. These results have immediate conse-
quences for performance prediction techniques based on machine learning and
relying on sampling for building a training dataset: By exploiting our findings
they can make sampling more focused on the configurations that potentially
include interacting features, which may improve their prediction accuracy.

With respect to RQ2, which asked if relations between control-flow and
performance interactions can be effectively leveraged to improve existing tech-
niques for detecting external feature interactions or to predict external feature
interactions based on internal ones, our results are twofold. The shrinkage of
the search space of performance feature interactions can help to make perfor-
mance prediction techniques more focused on potential feature interactions,
which is a positive result. As to the predictors based on direct matching and
frequent item sets, we obtained only low precision and recall values, which
is effectively a negative result. One possible reason for this negative result is
that the predictors rely solely on control-flow data, but features can also inter-
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Table 5: Precision and recall values for the item sets as predictors for the per-
formance interactions in mbedTLS. (*) marks the precision and recall values
for the item sets with incorporated indirect control-flow interactions.

Threshold Precision Recall Precision* Recall*

0 4.5 12.5 23.6 48.1
15 2.3 6.3 5.5 11.1
20 0 0 1.8 3.7

act via data flow. For example, they can exchange data through shared data
structures. This interplay at the data-flow level can be interpreted as data-
flow feature interactions (much like control-flow feature interactions, Fig. 1a),
which may also induce performance interactions. For example, a feature may
block other features by locking a shared data structure, which may have a neg-
ative influence on the performance of the system. Therefore, enriching the data
used by the predictors with the information about data-flow interactions may
increase their predictive power. So, a takeaway message here is that predictors
should consider the interplay of features not only on the control-flow level,
but also at the data-flow level, and other levels. Another reason may be that
not all features involved in a control-flow interaction are also involved in a re-
lated performance interaction. The Jaccard index values in Table 3 show that
only about half of the features in a control-flow interaction are also present
in the related performance feature interaction. For example, the interaction
(AES C, AESNI C) has the average Jaccard index of 0.46. This means that,
on average, a related control-flow interaction has two other features addition-
ally involved, in addition to features AES C and AESNI C. Both predictors
for a given control-flow interaction are not able to distinguish among features
that are involved in a related performance interaction and those that are not.

Further Observations

A further observation is related to the distribution of the number of features
involved in the control-flow and performance interactions. For mbedTLS, in
most cases, interactions (both, control-flow and performance) involve two or
three features. For SQLite, in most cases, control-flow interactions involve
four features, but this is only the case because every single control-flow in-
teraction involves the two crosscutting features THREADSAFE and EN-
ABLE API ARMOR. If we ignore these crosscutting features, the pictures
becomes similar to mbedTLS. The performance interactions in SQLite in-
volve two or three features as in mbedTLS. From these data, we conclude
that the frequency of interactions decreases with the growing number of the
involved features. This shows that features tend to interact at the same rate
(two or three features per interaction) independently of the type of the inter-
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action (control-flow or performance). This is another indication for a relation
between control-flow and performance interactions.

Finally, for mbedTLS, we found that most of the frequent item sets that
we identified in the control-flow interactions contain features from three groups
of algorithms: ciphers, modes, and hashes. Even though most of the frequent
item sets do not resemble existing performance interactions, they still cap-
ture the general pattern of the detected performance interactions, namely,
that these interactions involve features from these three groups of algorithms.
For SQLite the frequent item sets capture the crosscutting features, such
as THREADSAFE and ENABLE API ARMOR. The crosscutting feature
THREADSAFE was involved in all identified performance interactions.

Summary

We showed for two real-world configurable systems that a relation between
control-flow and performance interactions exists. Furthermore, we have shown
that this finding has an immediate practical implication: Using the identi-
fied relations, we were able to shrink the search space of performance fea-
ture interactions by almost 300 times for mbedTLS and 4 times for SQLite.
Reducing the search space is central for making techniques for detection of
performance interactions and predicting performance of configurable systems
more time efficient, because their algorithms will have to consider fewer po-
tential performance interactions. In a sense, our approach boils down to a
domain-specific, white-box dimension reduction technique for the underlying
performance learning problem.

Furthermore, we constructed a predictor based on frequent items sets for
predicting performance interactions based on their relations to control-flow in-
teractions. This particular predictor showed a low precision and recall, though,
which we attribute to the fact that the predictor relied only on one type of in-
ternal interactions. Constructing other predictors and performing fully fledged
experiments with other types of internal interactions would have gone way be-
yond the goals and scope of the current case study.

Nevertheless, our study setup has proven successful in identifying rela-
tion among control-flow and performance interactions and can thus serve as a
blueprint for further studies. It is a proof of existence, which does not prove
that this relation is present in all kinds of systems, but which shall guide follow-
up work to systematically study and exploit the relation. The future studies
can rely on our conceptual framework for investigating relations among other
types of internal and external interactions, for example, a relation among data-
flow and performance interactions. Considering both data-flow and control-
flow interactions for constructing a predictor for performance interactions will
potentially result in higher precision and recall of the predictor.
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6 Threats to Validity

Internal Validity

Due to technical limitations of TypeChef, we were unable to identify the
exact number of indirect function calls between features (i.e., calls made using
function pointers) and, consequently, the exact support values for the corre-
sponding item sets (Sec. 4.4). We approximated these support values based
on the distribution of the support values for the item sets calculated from
direct function calls. Our approximation method may result in an inaccurate
calculation of the precision and recall values of the frequent item set predic-
tor. Nevertheless, we expect that improving the approximation would rather
improve the precision and recall of the predictor.

Due to the static nature of the call-graph analysis employed by TypeChef,
the collected information about the calls may be an approximation, and, as
a consequence, a threat to internal validity. To mitigate this threat, we veri-
fied all control-flow interactions (identified using call-graph analysis) that are
related to performance interactions by manually inspecting the source code
of the subject systems and by confirming that these control-flow interactions
actually exist.

External Validity

We have chosen a case study as our research method (Sec. 3.1), which suits
well the exploratory nature of our study, which aims at the initial investiga-
tion of the relation between control-flow and performance feature interactions.
The downside of using this research method is that it cannot be efficiently
applied to multiple reasonably large configurable systems. In fact, it threatens
the external validity of our study, since we focused on analyzing two systems
and our results may not hold for other highly-configurable systems. Neverthe-
less, our study setup has proven successful and can thus serve as a blueprint
for further studies that can rely on our conceptual framework for studying
relations among external and internal interactions. We conjecture, that the
relation between performance and control-flow interactions that we identified
in our subject systems is likely to exist in systems with a larger number of
features as well.

7 Related Work

In recent years, a number of papers aimed at detecting feature interactions
in highly-configurable systems. We summarize and subdivide them according
to our classification (Apel et al, 2013b) into those considering internal feature
interactions and those considering external feature interactions. The fact that
we were able to clearly assign related work to one of the feature interaction
classes shows that previous studies focused on one interaction class at a time
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and did not consider relations among different classes of feature interactions.
The only exception is early work by Siegmund et al (2013b), who analyzed
the nesting structure of preprocessor directives (i.e., internal interactions) to
accurately predict the binary footprint of system configurations (external in-
teraction). To our best knowledge, there is no other work that studied multiple
types of interactions in combination and investigated their relation, as we do
in our case study.

Internal Feature Interactions

Information on internal feature interactions is often used by techniques that
aim at minimizing test-suite and test-effort for highly configurable systems.
Reisner et al (2010), Nguyen et al (2016), and Tartler et al (2012) apply
symbolic evaluation as well as dynamic and static program analysis to in-
fer minimal sets of features responsible for a given code coverage. Kim et al
(2011) apply use program analysis to identify features that do not interact
with other features with respect to the test suite. Garvin and Cohen (2011)
explore the connection between feature interactions and interaction faults. Lil-
lack et al (2018) extend static taint analysis to automatically track load-time
configuration options to the code locations where they influence the control
flow, thereby identifying control-flow interactions induced by these configura-
tion options. von Rhein et al (2018) applies variability-aware control-flow and
data-flow analyses—which are a basis for detecting corresponding control-flow
and data-flow interactions—to five real-world configurable systems. Meinicke
et al (2016) developed a dynamic analysis based on variability-aware execution
to identify control-flow and data-flow interactions, which potentially enables
for more precise detection of interactions compared to a static analysis. They
also conducted a controlled experiment showing the effectiveness of the tech-
nique for detecting internal interactions (Soares et al, 2018). Passos et al (2018)
conducted an extensive study of feature scattering on the Linux kernel, which
may serve as an indicator of potential internal interactions.

External Feature Interactions

There is a number of recently proposed performance prediction techniques
for highly configurable systems: Guo et al (2013), Siegmund et al (2012),
Sarkar et al (2015), Thereska et al (2010), Westermann et al (2012), Zhang
et al (2015), and Nair et al (2018a) use machine-learning techniques, such as,
CART, multivariate regression, Fourier and spectral learning for learning a
performance function based on the performance measurements of a configura-
tion sample. None of these approaches exploits information on internal feature
interactions for performance prediction. Another direction of research focuses
on improving sampling methods for finding optimal configurations: Nair et al
(2018b) use a sequential model-based method to optimize search for optimal
configurations. Nair et al (2017) use an ensemble of weak learners to rank con-
figurations according to their performance. Kaltenecker et al (2019) propose
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distance-based sampling as a new sampling strategy to find a representative
set of configurations based on which performance of other configurations can
be predicted. Guo et al (2018) combines CART, systematic re-sampling, and
parameter tuning to learn accurate performance models from a small sample
of measured configurations, without additional measurements for validation.
All of these techniques learn performance (external) feature interactions as
an integral part of the overall black-box learning process, that is, without
considering the internal feature interactions.

8 Conclusion

In our case study we explored the relation among internal (control-flow) and
external (performance) feature interactions that occur in highly configurable
systems. Using the encryption library mbedTLS and the database engine
SQLite as real-world subject systems, we identified control-flow and perfor-
mance feature interactions using static program analysis and machine learning.
Analyzing the interactions, we found that they can be related based on the
involved features. By manually inspecting the code, we confirmed the causal
relation between the interplay of features at the control-flow level and the iden-
tified performance interactions among the same features. Furthermore, based
on the identified relation, we defined two predictors for performance feature
interactions and conducted a preliminary evaluation of these predictors. The
evaluation showed that the predictors have low precision and recall, presum-
ably, because features also interact at the data-flow level. Future predictors
based on the internal feature interactions should consider both control-flow
and data-flow interactions to improve their predictive power.

Beside this negative result, using the identified relation among control-flow
and performance feature interactions, we are still able to shrink the search
space of performance feature interactions (by almost 300 times for mbedTLS
and by 4 times for SQLite) without losing any of the performance feature
interactions actually existing in our subject systems. Performance prediction
techniques that rely on sampling can use our results to make their sampling
more focused on configurations with potential performance interactions.

All in all, our study setup has proven successful and can thus serve as a
blueprint for further studies that can rely on our conceptual framework for
studying relations among external and internal interactions.

Avenues of Future Work

Extending TypeChef with variability-aware, inter-procedural data-flow anal-
ysis will empower it to automatically detect control-flow interaction among fea-
tures that interact using indirect function calls (i.e., calls made using function
pointers). This will fully automate the detection of control-flow interactions,
making it straightforwardly applicable in practice. Another immediate conse-
quence of this extension would be the ability to detect data-flow interactions,
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which may induce performance interactions (as we discussed in Section 2). A
future study shall then investigate the relation among data-flow and perfor-
mance interactions relying on our conceptual framework.

Deriving new predictors for performance interactions and evaluating them
is another avenue of future work. Assuming that we extended TypeChef with
a fully-fledged, inter-procedural data-flow analysis (von Rhein et al, 2018), an
obvious next step would be to enrich the predictor that we presented in this
study with data-flow interactions. As we discussed in Section 5, considering
data-flow interactions may substantially increase the predictor’s precision and
recall.
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