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Abstract—Configurable software systems provide a multitude of
configuration options to adjust and optimize their functional and
non-functional properties. For instance, to find the fastest config-
uration for a given setting, a brute-force strategy measures the
performance of all configurations, which is typically intractable.
Addressing this challenge, state-of-the-art strategies rely on ma-
chine learning, analyzing only a few configurations (i.e., a sample
set) to predict the performance of other configurations. However,
to obtain accurate performance predictions, a representative
sample set of configurations is required. Addressing this task,
different sampling strategies have been proposed, which come
with different advantages (e.g., covering the configuration space
systematically) and disadvantages (e.g., the need to enumerate
all configurations). In our experiments, we found that most
sampling strategies do not achieve a good coverage of the
configuration space with respect to covering relevant performance
values. That is, they miss important configurations with distinct
performance behavior. Based on this observation, we devise a new
sampling strategy, called distance-based sampling, that is based
on a distance metric and a probability distribution to spread the
configurations of the sample set according to a given probability
distribution across the configuration space. This way, we cover
different kinds of interactions among configuration options in the
sample set. To demonstrate the merits of distance-based sampling,
we compare it to state-of-the-art sampling strategies, such as
t-wise sampling, on 10 real-world configurable software systems.
Our results show that distance-based sampling leads to more
accurate performance models for medium to large sample sets.

I. INTRODUCTION

Modern software systems can be configured by users to adapt
them to specific devices, operating systems, and requirements.
Configuration options often have a significant influence on
non-functional properties, such as performance or energy con-
sumption. Despite the benefits of configurability, identifying
the performance-optimal configuration for a given setting is
often a non-trivial task, due to the sheer size of configuration
spaces [1] and potential interactions among configuration op-
tions [2], [3]. To identify the performance-optimal configura-
tion of a configuration space, one can measure the performance
of every valid configuration of the software system in a brute-
force manner, which usually does not scale.
To avoid measuring all configurations, machine-learning tech-
niques, such as multiple linear regression [4], [5] and classi-
fication and regression trees [6]–[8], have been used to learn
a performance model based on a set of valid configurations,
called the sample set. A performance model allows us to
predict the performance of a configuration, and it can be used

by an optimizer to determine the performance-optimal con-
figuration [8], [9]. To create an accurate performance model,
the sample set must be well-chosen, which is a non-trivial
task especially when no domain knowledge is available. In
essence, selecting a small, valid, and representative sample set
is key to efficiency and accuracy of performance prediction, as
performance measurements are usually costly in practice [10].
Several sampling strategies have been proposed, which dif-
fer in their methods of selecting the sample set: (1) at
random [11], [12], (2) by using an off-the-shelf constraint
solver [9], or (3) by aiming at a certain coverage criterion
(e.g., selecting each configuration option, at least once) [13]–
[15]. Naturally, all sampling strategies come with advantages
and disadvantages, as we will discuss in Section II. The main
idea is often to cover the configuration space such that one
obtains a representative sample set, which, ideally includes
both influential configuration options and interactions among
options relevant to performance, so that accurate performance
models can be learned.
In general, a uniform coverage of the configuration space
is desirable to obtain a representative sample set when no
prior knowledge is available, since it tends to be unbiased
when covering the configuration space. However, it is far from
trivial to ensure unbiased uniformity if there are non-trivial
constraints among configuration options. To achieve the goal in
a light-weight way, we propose a new sampling strategy, called
distance-based sampling, that addresses the shortcomings of
existing strategies, as we will discuss next.
• Random sampling strives for covering the configuration

space uniformly, but current strategies do not scale when
constraints exist [12]. In fact, randomly selecting indi-
vidual configuration options to retrieve a valid configu-
ration is often impractical1 due to complex constraints
among configuration options. Alternatively, one can use
a constraint solver to enumerate all valid configurations
and randomly draw from this whole population, which is
intractable either due to the sheer number.

• Coverage-oriented strategies focus on specific areas or
properties of the configuration space, such as specific
kinds of interactions as in t-wise sampling [4]. This might
be the optimal way to sample if we would know in

1When randomly selecting options of the Linux kernel, there was not a
single valid configuration even after one million trials [16], [17].
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Fig. 1: The performance distribution of (a) the whole popula-
tion of LLVM (see Section IV-C), the sample set selected (b)
by 3-wise sampling, (c) by distance-based sampling, and (d)
by solver-based sampling. In 3-wise sampling, some high per-
formance values are missed, leading to a skewed distribution,
whereas distance-based sampling resembles the distribution
from the whole population better.

advance where to sample, but this is usually not the
case for large software systems. For example, Figure 1(a)
shows the distribution of performance values (x-axes)
for the whole population of LLVM, whereas Figure 1(b)
shows the distribution of a sample set obtained by 3-wise
sampling. We observe a left-skewed distribution of the
sample set that does not match the distribution of the
whole population well. In contrast, our distance-based
sampling, shown in Figure 1(c), tends to maintain the
original distribution, which eases learning a performance
model. A better coverage of the performance distribution
increases the representativeness of the sample set [10].

• Some strategies use an off-the-shelf satisfiability solver
for sampling without enumerating all configurations. As
we show in Figure 1(d), this results in sample sets that
seem to maintain the original distribution, but the pro-
duced configurations tend to be locally clustered, which
may miss relevant interactions [9]. Though simple and
efficient, this strategy provides no guarantees regarding
spread of the sample across the configuration space.

The key idea behind distance-based sampling is to produce a
sample set that covers the configuration space as uniformly as
possible (or following another given probability distribution).
To this end, distance-based sampling relies on a distance
metric and assigns each configuration a distance value. It
further relies on a discrete probability distribution to select
configurations according to their distance values from the
configuration space. It differs from other sampling strategies
in that (1) it spreads the selected configurations across the con-
figuration space according to a given probability distribution
and is able to resemble the performance distribution of the
whole population, (2) it does not require an analysis on the
whole population, and (3) it uses internally a constraint solver

for efficiency while avoiding locally-clustered sample sets.
In summary, our contributions are as follows:
• We define a new distance-based sampling strategy that is

based on a given discrete probability distribution and a
distance metric for configurations of software systems.

• We perform an empirical study to compare our sam-
pling strategy with other widely-used sampling strategies
learning performance models for 10 popular real-world
software systems. We find that distance-based sampling
achieves better results in terms of prediction accuracy and
robustness than other sampling strategies.

• To further improve the diversity of the sample set, we
devise an optimization of distance-based sampling by
iteratively forcing the selection of the least frequently
selected configuration option for configurations with the
same distance. The optimization leads to a significantly
higher robustness and significantly better prediction ac-
curacy of distance-based sampling.

• We show that our strategy incurs a lower computing effort
than other sampling strategies, and that it is more flexible
in that the probability distribution it relies on can be
exchanged on demand.

All experiment and replication data are available on a supple-
mentary website2.

II. PRELIMINARIES

In this section, we introduce basic concepts of configurable
software systems. Furthermore, we provide an overview of
state-of-the-art sampling strategies, from which we derive the
motivation for distance-based sampling.

A. Configurable Software Systems

A configurable software system offers a set O of configuration
options. In this work, we concentrate on binary configuration
options, which take only the values 0 (deselected) and 1
(selected). The set of all valid configurations is denoted as C,
which we will refer to as whole population. A configuration
c ∈ C is a function c : O → {0, 1}, which assigns either
1 (if option o is selected) or 0 (if option o is not selected)
to each configuration option o ∈ O. We call a configuration
option o ∈ O mandatory if ∀c ∈ C : c(o) = 1, that is, the
configuration option is selected in every configuration.
In practice, not all combinations of configuration options are
valid (i.e., |C|< 2|O|), due to constraints among configuration
options. Constraints can be expressed in terms of propositional
formulas over the set of configuration options. For instance,
in a compression library offering two compression algorithms,
rar and zip, exactly one of these compression algorithms has to
be selected to obtain a valid configuration. The corresponding
Boolean expression would be: (zip∧¬rar)∨ (¬zip∧ rar). The
constraints among configuration options are often combined in
a variability model [18]. For complex systems, such constraints
are the reason that the acquisition of the whole population
is time consuming. Hence, selecting only few instead of all
configurations is advisable, as we describe next.

2https://github.com/se-passau/Distance-Based Data/

https://github.com/se-passau/Distance-Based_Data/


B. Sampling

Sampling is the process of selecting a subset S ⊆ C of all
valid configurations C of a given configurable software system.
There are different strategies for this: random sampling, solver-
based sampling, and coverage-oriented sampling.
Random sampling: One way to create a sample set is by
randomly assigning either 0 or 1 to each configuration option
for each configuration [6]. However, it is very likely that
many invalid configurations are selected this way due to
unsatisfied constraints, which makes this strategy inefficient.
Chakraborty et al. [12] use hash functions to split the config-
uration space recursively in multiple regions, and they select
configurations from each of the regions. Still, this strategy
produces many invalid configurations. Chen et al. [19] use
a distance metric to find different test inputs for methods
to uniformly cover the configuration space. However, they
do not consider constraints among the input variables and,
thus, produce many invalid configurations. Oh et al. [20]
encode a system’s configuration space using a binary decision
diagram. This way, they can represent and enumerate all
configurations in a compact way, such that they can randomly
draw configurations. However, construction time and memory
consumption of binary decision diagrams are high, and they
do not scale to the largest configurable software systems [21].
Gogate and Dechter [11] propose a random sampling strategy
that uniformly selects configurations without enumerating all
configurations using the Monte-Carlo method. This strategy
also selects invalid configurations, though.
Solver-based sampling: Many strategies use an off-the-shelf
constraint solver, such as SAT4J3, for sampling. Naturally,
these strategies do not guarantee true randomness [9] as
in random sampling. Often the sample set consists only of
the first k solutions provided by the constraint solver [12],
and the internal solver strategy is typically to search in the
“neighborhood” of an already found solution. Hence, the result
is a locally clustered set of configurations. To weaken the
locality drawback of solver-based sampling, Henard et al. [9]
change the order of configuration options, constraints, and
values in each solver run. This strategy, which we call hence-
forth randomized solver-based sampling, increases diversity
of configurations, but it cannot give any guarantees about
randomness or coverage. As we will show in our evaluation,
this strategy requires to rebuild the entire solver model from
scratch at each solver call (i.e. selection of one configuration),
which is computationally expensive.
Coverage-oriented sampling: Coverage-oriented sampling
strategies optimize the sample set according to a specific
coverage criterion. One prominent example is t-wise sam-
pling [13]–[15]. This sampling strategy selects configurations
to cover all combinations of t configuration options being se-
lected. For instance, pair-wise (t=2) sampling covers all pair-
wise combinations of configuration options being selected.
To identify the influence of pairs of configuration options

3https://www.sat4j.org/

200

220

240

260

2 4 6 8 10 12

#Features

P
er

fo
rm

an
ce

 [s
ec

]

Whole population (|C|= 1 024)

200

220

240

260

2 4 6 8 10 12

#Features

P
er

fo
rm

an
ce

 [s
ec

]

t-wise

200

220

240

260

2 4 6 8 10 12

#Features

P
er

fo
rm

an
ce

 [s
ec

]

Distance-based

200

220

240

260

2 4 6 8 10 12

#Features

P
er

fo
rm

an
ce

 [s
ec

]

Solver-based

t=1 t=3t=2(|S|= 11) (|S|= 55) (|S|= 165)

(a) (b)

(c) (d)

Fig. 2: Distribution of configurations of LLVM (see Sec-
tion IV-C) based on their distance value and their performance,
for (a) the whole population, a sample set selected (b) by
t-wise sampling, (c) by distance-based sampling, and (d) by
solver-based sampling with the same sample size as t-wise
with t=1, t=2, and t=3, respectively.

and not to be affected by influences of other configuration
options, Siegmund et al. [4] improves t-wise sampling by
additionally minimizing the number of other selected config-
uration options in each configuration. Another strategy aims
at a balanced selection and deselection of all configuration
options in the sample set. Sarkar et al. showed that such a
frequency-based sampling further improves the accuracy of
performance models learned based on the sample set [22].
Other coverage-oriented sampling strategies are, for example,
statement-coverage sampling [23] or most-enabled-disabled
sampling [24]. Statement-coverage sampling is a white-box
strategy, in which the configurations are selected such that
every block of optional code from the software system is se-
lected, at least, once; whereas most-enabled-disabled sampling
selects just one configuration where all configuration options
are selected and one where all configuration options are
deselected. The main problem of these strategies is that they
require prior knowledge to select a proper coverage criterion.
Thus, depending on the coverage criterion, specific regions of
the configuration space are emphasized, as shown in Figure 2:
We see that a higher number of selected configuration options
leads to higher performance values and contains information
from interactions among multiple configuration options. Since
t-wise sampling focuses only on a specific part of the con-
figuration space (e.g., configurations with distances between
2 and 5), we miss certain performance values in the sample
set (e.g., greater than 250 seconds). By contrast, a sample set
that covers all performance values is more representative, as
it resembles the whole population better. Moreover, not every
configuration option interacts with any other, so not all pairs
are relevant. So, the sample set is likely unnecessarily large.

https://www.sat4j.org/


III. DISTANCE-BASED SAMPLING

Distance-based sampling aims at covering the configuration
space by uniformly (or according to another given probability
distribution) selecting configurations with different distance
values (and therewith interaction degrees) without relying on
a whole-population analysis. In Section III-A, we describe the
basic algorithm; in Section III-B, we present an optimization
that further increases the diversity of the sample set.

A. Basic Algorithm

The key idea to spread the sample set across the configuration
space to increase diversity in the sample set is to use a distance
metric in combination with a discrete probability distribution
(e.g., a uniform distribution or a binomial distribution).

Algorithm 1: Distance-based sampling
Input: VM, numSamples, probabilityDistr
Output: sampleSet

1 sampleSet← ∅
2 while otherSolutionsExist(VM, sampleSet) and size(sampleSet) < numSamples do
3 d← selectDistance(probabilityDistr)
4 c← searchConfigWithDistance(VM, d) . Search for configuration c with

exactly d configuration options selected
5 if c 6= ∅ then
6 sampleSet ← sampleSet ∪ {c}
7 end
8 end
9 return sampleSet

In Algorithm 1, we describe the algorithm behind distance-
based sampling. It receives three parameters as input: the
variability model (VM), the number of configurations to be
selected (numSamples), and the probability distribution to use
(probabilityDistr). Internally, we use a constraint solver that
uses the variability model to determine the valid configura-
tions. We assume that the solver is globally available to the
algorithm.
The algorithm selects a distance d based on the probability
distribution (probabilityDistr). The distance is passed as an
additional numeric constraint (i.e., in addition to the con-
straints of the variability model) to the constraint solver, which
searches for a solution with exactly d configuration options
selected (Line 4). If a solution (i.e., a valid configuration)
is found, it is included into the sample set (Line 6). If not,
another distance d is selected until a valid configuration with
this distance is found. This process is repeated until the sample
set contains the desired number of valid configurations or there
are no more solutions (Line 2).
In what follows, we define the distance metric and the discrete
probability distribution that we use, and we describe the
selection of a valid configuration in more detail.

Distance metric (selectDistance): Figure 2 illustrates that
t-wise sampling covers only specific intervals in the range of
possible distances. In fact, t-wise sampling misses information
on interactions among more than t configuration options.
By using a distance metric to diversify the sample set, we
cover more regions of the configuration space, which leads
to a more diverse sample set. In what follows, we use the

Manhattan distance [25] of a configuration to the origin of
the configuration space c0 (∀o ∈ O : c0(o) = 0) as distance;
another reference point would be possible, though.
So, let dist: C → N be the distance metric defined as follows:

dist(c) =
∑
o∈O

c(o) (1)

where c ∈ C is a valid configuration. Let D be the set of all
distances:

D = {dist(c) | ∀c ∈ C} (2)

Note that, in the case of having only binary configuration op-
tions and using the Manhattan distance, the distance is just the
number of selected configuration options of the configuration.
For instance, for d=2, we will search for a configuration
that has exactly two configuration options selected and all
remaining configuration options deselected.
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Fig. 3: Example for applying the distance function to a
software system with three configuration options A, B, and
C without any constraints. In (a), we show the configuration
space and in (b) we illustrate the distribution of distances.

Probability distribution (probabilityDistr ): In Figure 3, we
show the distances and the number of configurations (fre-
quency) per distance for a system with three configuration
options A, B, and C, without any constraints. In this small
example, the distance distribution is easy to compute: We
derive all valid configurations and apply the distance metric to
each of them. However, deriving all valid configurations (i.e.,
the whole population) is infeasible for complex systems. For-
tunately, it turns out that we do not need a data set following
an exact probability distribution. Instead, we use pre-defined
discrete probability distributions (e.g., uniform, geometric,
binomial) to define the desired distribution of our sample set.
These discrete probability distributions (probabilityDistr) are
used to express the likelihood of choosing a certain value
u ∈ U . In every discrete probability distribution P , we have∑

u∈U P (X = u) = 1, where X is a random variable. In
what follows, we use the discrete uniform distribution. So, we
uniformly draw a distance d ∈ D to derive a configuration
with d configuration options selected. Thus, we obtain:

P (X = d) =
1

|D|
(3)

In other words, each distance d equally likely to be picked.
While it is possible to use another discrete probability dis-
tribution, such as the geometric distribution or the binomial
distribution, we fix this degree of freedom for now, to keep



the discussion focused and the experiment design tractable.
Nevertheless, we performed experiments with different distri-
butions, which we discuss in Section V-C.
Without computing the whole population or understanding all
constraints in the variability model, we have no knowledge
about the value domain of D and thus about P (X = d). We
can approximate the lower and the upper bound for D, though,
by using the number of mandatory configuration options and
the number of all configuration options, respectively.

max(D) = card({o | o ∈ O}) (4)

min(D) = card({o | o ∈ O ∧ o is mandatory}) (5)

where card is the cardinality function. Mandatory configu-
ration options can be easily computed based on the given
constraints of the variability model [26].

Configuration selection (searchConfigWithDistance): After
choosing a certain distance d, we select a configuration that
has a distance of d (d options selected in our setting), for which
we use a constraint solver. To this end, we add an additional
constraint to the solver describing that exactly d options have
to be selected in the configuration. If there is no more config-
uration with exactly d selected configuration options, another
distance d is selected. This process is repeated until the sample
set contains a given number of configurations or no further
configurations are found. In cases where we select several
times the same distance value, the constraint solver could
generate locally clustered solutions. To address this problem,
we propose an optimization to further increase diversity of our
sample set, as we describe in Section III-B. Note that we do
not minimize the number of selected configuration options, as
in t-wise sampling, which would be computationally expensive
and does not pay off (see Section V).

Time complexity: The most costly function in Algorithm 1
is searchConfigWithDistance, whose complexity is dominated
by the time of computing a feasible solution by the constraint
solver. Theoretically, a constraint solver, such as a SAT solver,
has an exponential time complexity to solve a satisfiability
problem [27]. Practically, state-of-the-art constraint solvers
are able to handle thousands of variables and constraints
efficiently [28]. In our experiments, the constraint solver
considered up to 54 variables and up to 216 000 constraints,
which resulted in less than 0.3 seconds to find a solution (i.e.,
a valid configuration).

B. Increasing Diversity

In preliminary experiments with Algorithm 1, we noticed that
the produced sample sets may lack diversity in that some
configuration options are selected in many configurations and
some only in few or even none. Hence, to increase diversity
of the sample set, we refine the configuration selection pro-
cedure of distance-based sampling by adding configurations
that contain the least frequently selected configuration options.
This way, we reduce the possibility of missing or underrepre-
senting certain configuration options in the sampling process.

Technically, we determine a ranking over the frequency of
configuration options, which is defined as follows:

∀o ∈ O : card({c | c ∈ S ∧ c(o) = 1}) (6)

If there is no valid configuration with the given configuration
option and distance, we select the next option in the ranking
and so on.

Algorithm 2: Diversified distance-based sampling
Input: VM, numSamples, probabilityDistr
Output: sampleSet

1 candidates← getAllOptions(VM) . Generates a list of candidates, one candidate
for each configuration option

2 sampleSet← ∅
3 while otherSolutionsExist(VM, sampleSet) and size(sampleSet) < numSamples do
4 d← selectDistance(probabilityDistr); c← ∅
5 while candidatesExist(candidates, d) and c = ∅ do
6 candidate← getLeastFrequentCandidate(candidates, d)
7 c← searchConfigWithDistance(VM, candidate, d)
8 if c = ∅ then removeCandidate(candidates, candidate, d)
9 end

10 if c 6= ∅ then
11 sampleSet ← sampleSet ∪ {c}
12 updateCandidateMap(c, d, candidates)
13 end
14 end
15 return sampleSet

In Algorithm 2, we show the optimized version of distance-
based sampling, which we call diversified distance-based
sampling. The novelty here is that we count the number
of selections of each configuration option for each distance
d ∈ D. To this end, we define one map in Line 1 for each
distance d ∈ D and update the map in Line 12 when a new
configuration is added to the sample set.
The least frequent configuration option of the current distance
d is selected using the map in Line 6 and used to retrieve the
next configuration in Line 7. If there is no more configuration
with the given distance d that contains the candidate, this
candidate is removed from the distance’s candidate map in
Line 8 and the next configuration option is used. As we show
in Line 5, another least frequent candidate is repeatedly chosen
until a valid configuration is found.

IV. EXPERIMENT SETUP

In this section, we introduce our research questions regarding
the comparison of distance-based sampling with other state-
of-the-art sampling strategies. Furthermore, we describe how
we attempt to answer the research questions and the software
systems we use for the comparison.

A. Research Questions

The prediction accuracy of machine-learning techniques
largely depends on the data set, which is defined by the
sampling strategy, in our setting. Naturally, some sampling
strategies, such as random sampling, are affected by random-
ness, which can have a considerable influence on the sample
set and, consequently, on the prediction accuracy. Hence,
we consider both the prediction accuracy and its robustness
when comparing sampling strategies. To this end, we aim at
answering two research questions:



• RQ1: What is the influence of using distance-based, diver-
sified distance-based, random, solver-based, randomized
solver-based, and t-wise sampling on the accuracy of
performance predictions?

• RQ2: What is the influence of randomness of using
distance-based, diversified distance-based, solver-based,
randomized solver-based, and random sampling on the
robustness of prediction accuracy?

Note that we have excluded t-wise sampling from RQ2, as it
is deterministic in our setting and does not lead to variations.

B. Operationalization

To answer our research questions, we apply a state-of-the-art
machine-learning technique that relies on multiple linear re-
gression and feature-forward selection [5] to learn perfor-
mance models based on the sample sets defined by the
different sampling strategies.
To answer RQ1, we use the resulting performance models
to predict the performance of the whole population of each
of our subject systems. We quantify the difference between
the predicted performance and the measured performance by
means of the error rate for all configurations c ∈ C as follows:

error c =
|measuredc − predictedc|

measuredc
(7)

where predictedc is the predicted performance of configura-
tion c and measuredc the measured performance of configura-
tion c. Lower error rates indicate a higher prediction accuracy
and, thus, are better. We further determine the mean error rate
of the whole population:

error =

∑
c∈C error c

|C|
(8)

Note that we compute the error rate based on predictions
for the whole population, including configurations from the
sample set. The background is that we use regression learning
as machine-learning technique, which may produce imperfect
predictions even for configurations from the sample set, and
we would like to take that into account.
Further note that, initially, we compared the performance
distributions of the sample sets and the whole population. But,
as the similarity of distributions of a sample set and the whole
population does not necessarily imply good predictions, we
refrain from this evaluation method and decided for the more
definitive method of comparing error rates.
To answer RQ2, we perform the sampling and machine-
learning procedures 100 times per experiment run using differ-
ent seeds for the random number generator, and we compute
the variance across the error rates:

ẽrror = Var({error c | c ∈ C}) (9)

A lower variance indicates a higher robustness (i.e., is better).
So, in our experiments, the independent variables are the
subject systems, the sample sizes, the sampling strategies, and
the random seeds for the random number generator. To rule
out influences of different sample sizes, we selected the same
sample sizes for (diversified) distance-based, (randomized)

solver-based, and random sampling such that their size equals
the size for t-wise sampling with t=1, t=2, and t=34. The
dependent variables are, for RQ1, the mean error rates of
the performance predictions (i.e., error ) and, for RQ2, the
variance of the error rates of the performance predictions on
the whole population (i.e., ẽrror ).
For both research questions, we perform a standardization on
the error rates when considering different subject systems, to
be able to answer the research questions without considering
each subject system separately. For RQ1, we use a Kruskal-
Wallis test [29] to identify for every sample size t=1, t=2,
and t=3 if the error rates of, at least, two sampling strategies
differ significantly (p < 0.05). As proposed by Arcuri and
Briand [30], we then perform pair-wise and one-sided Mann-
Whitney U tests [31] to identify which sampling strategy leads
to significant lower error rates than others. In addition to
testing for statistical significance, we determine the effect size
using the Â12 measure by Vargha and Delaney [32]. Values of
Â12 of more than 0.56, 0.64, and 0.71 indicate small, medium,
and large effect sizes, respectively.
To answer RQ2, we use Levene’s test [33] to identify whether
the variances of, at least, two sampling strategies differ sig-
nificantly from each other. If this is the case, we perform a
pair-wise comparison using one-sided F-tests [34] to identify
the sampling strategy with the lower variance.
Technically, we implemented the (diversified) distance-based
sampling strategy on top of the tool SPL CONQUEROR5 and
compared it with the implementations of t-wise sampling, (ran-
domized) solver-based sampling, and random sampling of SPL
CONQUEROR. t-wise sampling corresponds to the optimized
t-wise strategy by Siegmund et al. [4]. For random sampling,
SPL CONQUEROR selects randomly distributed configurations
from the whole population, which guarantees a uniform distri-
bution of configurations across the configuration space. That
is, for the purpose of computing a baseline (for error and
ẽrror ), we follow the non-scalable random sampling: we
derive the whole population (i.e., all valid configurations) first,
which is necessary to answer RQ1. Then, we randomly draw
configurations from the whole population to the sample set.
Other random sampling strategies such as the Monte Carlo
method or BDD-based sampling are not suitable, because
of the disadvantages mentioned in Section II-B. This design
decision allows us to maximize internal validity, but requires
to acquire the whole population. For larger subject systems,
we required in total more than a week of measurement per
subject system. For (randomized) solver-based sampling, we
used the Z3 solver [35], which allows us to set a random seed.
Specifying different random seeds influences the variable-
selection heuristics and, thus, determines the location of the
sample set in the configuration space. We performed each
sampling 100 times with different random seeds from 1 to
100.

4In t-wise sampling, the size can be chosen only by using t, whereas in
distance-based, solver-based, and random sampling, any positive number in
[1, |C|] can be used for the specification of the sample size.

5http://www.fosd.de/SPLConqueror/
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TABLE I: Overview of the subject systems including domain,
number of valid configurations (|C|), number of configuration
options (|O|), and the performance metric to be predicted.

Domain |C| |O| Performance

7Z File archive utility 68 640 44 Compression time
BDB-C Embedded database 2 560 18 Response time
DUNE Multigrid solver 2 304 32 Solving time
HIPAcc Image processing 13 485 54 Solving time
JAVAGC Garbage collector 193 536 39 Time
LLVM Compiler infrastructure 1 024 11 Compilation time
LRZIP File archive utility 432 19 Compression time
POLLY Code optimizer 60 000 40 Runtime
VP9 Video encoder 216 000 42 Encoding time
X264 Video encoder 1 152 16 Encoding time

C. Subject Systems

In our experiments, we consider 10 real-world configurable
software systems from different domains and of different
sizes. We measured all configurations of all subject systems
(i.e., the whole population) between 5 to 10 times until
reaching a standard deviation of less than 10%, to control
measurement bias. In total, the measurements took multiple
years of CPU time. In Table I, we provide an overview of the
subject systems. Note, as we needed the whole population
for every subject system to perform random sampling, the
sizes of configuration spaces of potential subject systems was
limited, which is not a limitation of distance-based sampling.
We provide the variability models and the measurements of
the subject systems on our supplementary website. Next, we
describe the subject systems in more detail.
7-ZIP (7Z) is a file archiver written in C++. Configuration
options include different compression methods, different sizes
of the dictionary, and the use of single- or multithreading. We
used version 9.20 of 7-ZIP and measured the compression
time of the Canterbury corpus6 on an Intel Xeon E5-2690 and
64 GB RAM (Ubuntu 16.04).
BERKELEYDB-C (BDB-C) is an embedded database engine
written in C. We consider configuration options defining, for
example, the page and cache size or the use of encryption. We
measured the time of version 4.4.20 to answer different read
and write queries on a machine with an Intel Core 2 Quad
CPU 2.66 GHz and 4 GB RAM (Windows Vista).
DUNE MGS (DUNE) is a geometric multigrid solver for partial
differential equations based on the DUNE framework [36].
As configuration options, we consider different algorithms for
smoothing and different numbers of pre-smoothing and post-
smoothing steps to solve Poisson’s equation. We performed
all measurements with version 2.2 on an Intel i5-4570 and 32
GB RAM (Ubuntu 13.04).
HIPAcc SOLVER (HIPAcc) is an image processing framework
written in C++. We included, for instance, different numbers
of pixels calculated per thread and different types of memory
(e.g., texture, local) as configuration options. We measured the
runtime for solving partial differential equations on an nVidia
Tesla K20 with 5 GB RAM and 2 496 cores (Ubuntu 14.04).

6https://corpus.canterbury.ac.nz/

JAVAGC is the garbage collector of the Java VM, which
provides several configuration options, such as disabling
the explicit garbage collection call, modifying the adaptive
garbage collection boundary, and modifying the policy size.
We measured the garbage collection time of Java 1.8 to execute
the DaCapo benchmark suite7 on a cluster with an Intel Xeon
E5-2690 and 64 GB RAM (Ubuntu 14.04).
LLVM is a popular compiler infrastructure written in C++.
Configuration options that we considered concern code op-
timization, such as enabling inlining, jump threading, and
dead code elimination. We measured the compile time (using
the Clang frontend) of version 2.7 for executing the opt-tool
benchmark on an AMD Athlon64 Dual Core, 2 GB RAM
(Debian GNU/Linux 6).
LRZIP is a file compression tool. We consider configuration
options that define, for instance, the compression level and
the use of encryption. We used the uiq28 generator to generate
a file (632 MB), and we measured the time for compressing
this file with version 0.600 on a machine with AMD Athlon64
Dual Core, 2 GB RAM (Debian GNU/Linux 6).
POLLY is a loop optimizer that rests on top of LLVM.
POLLY provides various configuration options that define, for
example, whether code should be parallelized or the choice
of the tile size. We used POLLY version 3.9, LLVM version
4.0.0, and Clang version 4.0.0. As benchmark, we used the
gemm program from polybench and measured its runtime
on an Intel Xeon E5-2690 and 64 GB RAM (Ubuntu 16.04).
VPXENC (VP9) is a video encoder that uses the VP9 video
coding format. It offers different configuration options, such
as adjusting the quality, the bitrate of the coded video, and the
number of threads to use. We measured the encoding time of
2 seconds from the Big Buck Bunny trailer on an Intel Xeon
E5-2690 and 64 GB RAM (Ubuntu 16.04).
X264 is a video encoder for the H.264 compression format.
Relevant configuration options included the number of refer-
ence frames, enabling or disabling the default entropy encoder,
and the number of frames for ratecontrol and lookahead. We
have measured the time to encode the Sintel trailer (734 MB)
on an Intel Core Q6600 with 4 GB RAM (Ubuntu 14.04).

V. RESULTS

In Section V-A, we present the results regarding RQ1 and
in Section V-B the results regarding RQ2. In Section V-C,
we discuss further findings, the computation effort, and our
optimization. In Section V-D, we discuss threats to validity.

A. Results RQ1—Prediction Accuracy

In Table II, we show the mean error rates for the different
sampling strategies. We show the results of random sampling
in the rightmost column. Again, random sampling requires the
computation of the whole population and does not scale, but
it serves as a base line for our experiments. We mark for each
sample-set size the lowest, statistically significant error rate
in green. That is, if two strategies perform similarly and have

7http://dacapobench.sourceforge.net/
8http://mattmahoney.net/dc/uiq/

https://corpus.canterbury.ac.nz/
http://dacapobench.sourceforge.net/
http://mattmahoney.net/dc/uiq/


TABLE II: Error rates of t-wise, (randomized) solver-based, (diversified) distance-based, and random sampling for all 10 subject
systems. The bottom row contains the mean value across all subject systems. The best results per subject system and sample
set size are highlighted in bold and green iff the Mann-Whitney U test reported a significant difference (p < 0.05).

Coverage-based Solver-based Randomized solver-based Distance-based Diversified distance-based Random
t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

7z 51.2 % 33.8 % 22.6 % 65.4 % 58.2 % 25.2 % 55.1 % 37.2 % 16.7 % 85.9 % 27.3 % 16.6 % 74.3 % 16.3 % 17.2 % 58.2 % 15.1 % 9.9 %
BDB-C 122.9 % 29.0 % 26.5 % 49.5 % 46.8 % 42.0 % 45.1 % 46.1 % 18.1 % 320.0 % 75.1 % 15.0 % 237.0 % 12.7 % 9.3 % 121.3 % 39.1 % 12.2 %
Dune 15.5 % 12.5 % 11.4 % 23.6 % 15.1 % 11.8 % 43.3 % 16.8 % 11.2 % 24.4 % 15.2 % 11.4 % 21.5 % 11.8 % 11.0 % 17.6 % 11.5 % 11.3 %
Hipacc 26.2 % 20.5 % 20.5 % 44.8 % 17.2 % 14.7 % 31.9 % 15.7 % 14.2 % 27.9 % 19.0 % 15.3 % 31.5 % 14.5 % 14.0 % 19.9 % 13.9 % 13.4 %
JavaGC 36.7 % 32.1 % 23.7 % 54.2 % 59.3 % 35.8 % 41.9 % 37.8 % 30.2 % 72.9 % 43.8 % 28.2 % 56.0 % 29.9 % 13.2 % 55.8 % 13.9 % 12.3 %
LLVM 6.2 % 6.2 % 5.8 % 9.5 % 5.5 % 5.2 % 5.6 % 5.2 % 5.4 % 5.8 % 5.2 % 5.3 % 5.9 % 5.3 % 5.2 % 5.6 % 5.2 % 5.2 %
lrzip 27.2 % 28.2 % 13.4 % 47.3 % 27.3 % 23.9 % 91.5 % 36.0 % 25.0 % 162.5 % 39.7 % 21.9 % 134.2 % 25.1 % 18.2 % 62.7 % 18.3 % 15.6 %
Polly 19.7 % 12.7 % 7.3 % 20.3 % 16.1 % 15.5 % 20.0 % 13.6 % 14.0 % 23.3 % 14.2 % 14.9 % 25.8 % 10.5 % 11.8 % 25.1 % 13.0 % 10.3 %
VP9 100.3 % 96.3 % 45.3 % 413.0 % 224.2 % 80.8 % 470.2 % 389.1 % 94.5 % 721.9 % 125.0 % 84.5 % 189.8 % 66.5 % 32.0 % 80.6 % 27.2 % 23.3 %
x264 20.9 % 11.9 % 10.9 % 26.2 % 40.4 % 42.2 % 18.5 % 22.2 % 33.2 % 14.7 % 10.0 % 9.4 % 12.6 % 8.8 % 9.0 % 13.5 % 9.2 % 9.1 %
Mean 42.7 % 28.3 % 18.7 % 75.4 % 51.0 % 29.7 % 82.3 % 62.0 % 26.2 % 145.9 % 37.4 % 22.2 % 78.9 % 20.1 % 14.1 % 46.0 % 16.6 % 12.3 %

no statistically significant difference, we do not mark them.
Additionally, we provide the mean error rate (bottom row)
over all subject systems.
There are several observations: Diversified distance-based
sampling performs best or similar to all other sampling
strategies for t=2 and t=3. Distance-based sampling without
optimization produces partially good results for some systems
(e.g., for 7Z and LLVM), but is outperformed for other
systems (e.g., JAVAGC, LRZIP, and VP9).
Solver-based sampling results in inaccurate performance mod-
els for most subject systems and sample-set sizes. Randomized
solver-based sampling performs overall better than solver-
based sampling; t-wise sampling perform best when only a
very limited number of samples are considered (i.e., t=1).
When we compare the results to random sampling, we make
two observations. First, it seems that a diverse coverage of
the configuration (by random selection) yields most accurate
performance models, especially for systems with many con-
figurations (e.g., 7Z, JAVAGC, and VP9). Second, we observe
that the error rates of diversified distance-based sampling often
come close to the base line of random sampling, especially
when the size of the sample set increases.
When performing Kruskal-Wallis tests for all sample sizes
(t=1, t=2, and t=3), we observe p values less than 0.05
(shown on our supplementary website), indicating that, at least,
two sampling strategies differ significantly for each sample
size. To identify these sampling strategies, we apply one-
sided Mann-Whitney U tests pair-wisely and, if significant
(p < 0.05), report the effect sizes in Table III. Specifically,
we test whether the sampling strategy of the row in Table III
has a significantly lower error rate than the sampling strategy
of the column. The first row shows that t-wise sampling leads
to significantly lower error rates than solver-based sampling,
with a small effect size for all sample sizes, and to significantly
lower error rates than distance-based sampling for t=1. In
the fourth row, we see that distance-based sampling leads to
lower error rates than t-wise sampling for t=2 and t=3, with
a small effect sizes. Distance-based sampling has also lower
error rates than solver-based sampling for t=2 and t=3 with

a small effect size and t=3 with a medium effect size. Solver-
based sampling performs significantly better than distance-
based sampling for t=1, which is also negligible due to the
small effect size. Randomized solver-based sampling performs
significantly better than distance-based sampling for t=1 with
small effect size.
When comparing the error rates of diversified distance-based
sampling with t-wise sampling, randomized solver-based sam-
pling, and solver-based sampling, we see that t-wise sampling,
solver-based sampling, and randomized solver-based sampling
lead to higher error rates for t=2 and t=3. The effect size
in comparison to t-wise sampling is large for diversified
distance-based sampling. Moreover, diversified distance-based
sampling performs better than solver-based and randomized
solver-based sampling with large effect sizes. Comparing
diversified distance-based sampling to random sampling, we
see that random sampling has significantly lower error rates
with small to medium effect sizes. This result indicates that
we can reach nearly the same low error rates using distance-
based sampling as the computationally intractable random
sampling.

Summary: Diversified distance-based sampling outperforms
all other sampling strategies for t=2 and t=3, almost
reaching the accuracy of the base line of random sampling,
but without relying on the whole population. For small
sample sets (t=1), t-wise sampling is superior.

B. Results RQ2—Robustness

Based on 100 runs per experiment, we obtained a distribution
of mean error rates for each sampling strategy, which we
further aggregated to compute their variances, ẽrror . We com-
pared the variances as follows: First, we performed Levene’s
test (shown on our supplementary website), which checks the
existence of significantly different variances between, at least,
two sampling strategies over all sampling sizes. Then, we
performed pair-wisely one-sided F-tests. We show the results
in Table IV. In the second row, we can see that randomized
solver-based sampling has a significantly lower variance than



TABLE III: p values from a one-sided pair-wise Mann-Whitney U test, where we tested pair-wisely whether the population
from the row is smaller than the population from the column for different sample sizes after standardization. The effect size
is included for every significant result (p < 0.05), where we consider differences as small, medium, and large when Â12 is
over 0.56, 0.64, and 0.71, respectively.

Mann-Whitney U test [p value (Â12)]

Coverage-based Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

10−25 10−12 10−09 10−11 10−04 10−06 10−55 10−28
Coverage-based

(0.63) (0.59) (0.57) (0.59) (0.54) (0.56) (0.70) (0.64)

10−04
Solver-based

(0.54)

10−06 10−06 10−06 10−17 10−05
Randomized solver-based

(0.56) (0.56) (0.56) (0.61) (0.55)

10−07 10−11 10−19 10−30 10−10 10−25
Distance-based

(0.56) (0.58) (0.61) (0.65) (0.58) (0.63)

10−151 10−107 10−147 10−119 10−141 10−146 10−07 10−78 10−49
Diversified distance-based

(0.84) (0.78) (0.83) (0.80) (0.83) (0.83) (0.57) (0.74) (0.69)

10−03 10−196 10−155 10−30 10−175 10−151 10−15 10−175 10−187 10−50 10−119 10−83 10−27 10−11 10−10
Random

(0.54) (0.89) (0.84) (0.65) (0.86) (0.84) (0.60) (0.86) (0.88) (0.69) (0.80) (0.75) (0.64) (0.58) (0.58)

TABLE IV: p values from a one-sided pair-wise F-test, where we tested pair-wisely whether the variances of the population
from the row is smaller than the one from the column, for different sample sizes after standardization.

F-test (p value)
Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

Solver-based
Randomized solver-based 10−20 10−46 10−45 10−09 10−16 10−25

Distance-based 10−04 10−10 10−05

Diversified distance-based 10−36 10−195 10−114 10−04 10−67 10−21 10−21 10−132 10−81 10−09

Random 10−100 10−137 10−141 10−37 10−32 10−34 10−74 10−83 10−105 10−21 10−03

distance-based sampling. In the third row, we can see that
distance-based sampling has a significantly lower variance
than solver-based sampling on all sample sizes. The last row
shows that random sampling has the lowest variance. When
it comes to the diversified variant of distance-based sampling,
it leads to a significantly lower variance compared to plain
distance-based sampling. The optimization has a significantly
lower error rate than random sampling for t=2, which requires,
however, a whole-population analysis. Regarding randomized
solver-based sampling, the variance of diversified distance-
based sampling is significantly lower for all sample sizes.

We explain these observations as follows: Solver-based sam-
pling either relies also on a random seed or produces a
deterministic set of configurations (not considered here). In the
case of random seeds, the seed defines the first solution found
by the solver. Since neighboring solutions are produced very
likely in subsequent solver calls, the sample set will be locally
clustered around the first solution. Hence, for different seeds,
different clusters are sampled such that high variations occur in
the error rate depending on the representativeness of the clus-
ter. Randomized solver-based sampling avoids building clus-
ters, and thus the variance is significantly lower than solver-
based sampling. Distance-based sampling uses also a solver
to obtain configurations, but only with a certain distance.
Having multiple configurations with the same distance might

lead to clusters similar to solver-based sampling. This is why
we observe a lower variance than for solver-based sampling
(we might obtain one cluster per distance, but not a single
cluster in total), but a higher variance than random sampling,
randomized solver-based sampling, and diversified distance-
based sampling. Reducing clustering, diversified distance-
based sampling yields even lower variances. As diversified
distance-based sampling avoids clusters such as randomized
solver-based sampling, the variances are rather similar. Hence,
we conclude that our optimization of distance-based sampling
is effective to increase the variety of configurations and thus
lowers the variance of the prediction error.

Summary: Diversified distance-based sampling is more
robust than other sampling strategies except for random
sampling, but at the benefit of lower computational effort.

C. Discussion

Computational effort: The computational effort of distance-
based sampling and its diversified variant is lower than the
effort of random sampling because we include every config-
uration found by the solver into the sample set instead of
enumerating all valid configurations and discarding later a
large part (i.e., configurations not used in the sample set) of it
(see Section II-B). Moreover, to reduce computational effort,



we do not perform an expensive optimization as in t-wise
sampling (i.e., minimizing the set of selected configuration
options that are not of interest in the current configuration),
but rather include additional constraints to the constraint solver
that define, for example, the number of selected configuration
options. The computational effort of randomized solver-based
sampling is high, since the solver has to be reinitialized from
scratch to permute (1) the constraints, (2) the literals, and
(3) initial assignment. Whereas random sampling and the
randomized solver-based sampling need more than 10 hours to
acquire the sample set, the other sampling strategies are some
orders of magnitude faster. We provide all times for computing
all sample sets on the supplementary website.

Probability distributions: In our experiments, we used exclu-
sively the discrete uniform distribution for selecting distances,
but our algorithm can be parameterized (probabilityDistr).
Preliminary experiments with binomial and geometric distri-
butions suggest that a uniform coverage of the configuration
space is superior, though (see the supplementary website).
Testing further distributions is an avenue of further work.

Diversity: Comparing plain distance-based sampling with di-
versified distance-based sampling, we observe that optimizing
for diversity indeed pays off in terms of prediction accuracy
and robustness. Aiming at diversity is optimal in a black-box
strategy, where no domain knowledge is available. However,
diversified distance-based sampling only pays off with larger
sample sizes, because the smaller sample sizes do not suffice to
cover all configuration options, at least, once for each distance.

D. Threats to Validity

Internal validity: To rule out errors in our implementation
of (diversified) distance-based sampling, we have thoroughly
tested it. We verified that the produced sample set follows the
given distribution of the configuration distances. We found
deviations only when all configurations of a specific distance
were already selected, which occurred only in few cases.

External validity: To increase external validity, we have se-
lected software systems from different domains. We consider
software systems ranging from systems with 432 config-
urations to systems with 216 000 configurations. We have
excluded larger systems because it would be computationally
infeasible for t-wise sampling and random sampling [24].
The selection of the machine-learning technique to learn a
performance model may threaten external validity. We used
deliberately the same machine-learning technique for all ex-
periments to increase internal validity. But, other machine-
learning techniques have other strategies to derive information
from the sample set and, thus, may lead to different results.
In a parallel line of experiments, we compared six different
machine-learning techniques and observed that multiple re-
gression is often as accurate as classification and regression
trees and random forests9, which are often used for learning
performance models of configurable software systems. So, we

9https://github.com/se-passau/Distance-Based Data/

are confident that our results generalize to other machine-
learning techniques.
Another threat to validity is the choice of the constraint solver,
as different solvers adopt different search heuristics. This,
however, might represent a further reason not to rely on solver-
based sampling, as this way the generation of the sample set
remains intransparent. For instance, we observed even worse
results for solver-based sampling when using the solver of the
Microsoft solver foundation.

VI. CONCLUSION

Measuring every configuration of a software system to identify
the performance-optimal configuration is often unfeasible due
to the sheer size of the configuration space. Addressing this
problem, machine learning is used to predict the performance
of individual (or all) configurations by deriving information
from a small and representative sample set. Finding a tractably
small and representative set of configurations is an important
but difficult task. To this end, different sampling strategies,
such as t-wise sampling, solver-based sampling, and random
sampling have been proposed, which focus on different as-
pects with different strengths and weaknesses. To address the
weaknesses, we propose distance-based sampling, which is
based on a user-defined discrete probability distribution and a
distance metric. The key idea is that distance-based sampling
spreads the selected configurations across the configuration
space based on a given probability distribution while not
relying on an expensive analysis of the whole population. To
compare distance-based sampling with the state of the art, we
learn performance models for 10 real-world software systems
using 6 different sampling strategies and compare the accuracy
of the performance models.
Our results demonstrate that distance-based sampling, when
used in combination with a diversity optimization, leads to
significantly lower error rates than state-of-the-art strategies,
especially for larger sample sizes (t=2, t=3), and the predic-
tions are more stable than solver-based sampling with respect
to multiple runs using different random seeds. Our results
demonstrate that, based on a distance metric and a probability
distribution, we can effectively sample diverse configurations
across the configuration space and without the need for a
whole-population analysis, which makes random sampling
unfeasible for highly configurable software systems. This work
provides a new view on sampling based on probability distri-
butions and paves the way for further research in this area. For
instance, using other metrics or distributions could lead more
accurate predictions or improve the prediction robustness.
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