Handling Static Configurability in
Refactoring Engines

Jorg Liebig! Sven Apel? Andreas Janker?
Florian Garbe? and Sebastian Oster'

'Method Park Consulting GmbH, Germany
2University of Passau, Germany

Abstract

Which refactoring engine do you use in your C project? Although most systems
written in C are statically configurable with the preprocessor (e.g., using the #ifdef
directive), contemporary commercial, open-source, and research refactoring engines
still do not support preprocessor directives well, if at all. As a result, even simple
refactorings, such as RENAME IDENTIFIER, may introduce errors in some variants
of the system to be refactored. In this article, we report on our experience with
making refactoring practical (i.e., scalable, sound, and complete) in the presence of
static configurability.

1 Refactoring Configurable Systems

Refactoring is an important activity in software engineering. The goal is to improve the
internal structure of source code, while preserving its external behavior. Refactoring
engines belong to the standard equipment of software developers. A refactoring engine
automates the code transformations involved in refactoring (e.g., moving code) and thus
simplifies the development process for developers as well as improves their productivity.
Classic examples of refactorings are RENAME IDENTIFIER (renaming an identifier con-
sistently), EXTRACT FUNCTION (encapsulating code in a new function and replacing
the old code with a function call), and INLINE FUNCTION (replacing a function call by
introducing the function’s code at the call side). These three refactorings are among the
most frequent used refactorings in software engineering.

Although refactoring engines are useful, there are problems regarding their appli-
cability in practice [11]. One important problem that we address here is refactoring in
the presence of static configurability (e.g., implemented with the C preprocessor). The
background is that most software systems are configurable and provide configuration
options to support different platforms and use cases. End users configure such systems
by setting values for configuration options, which control the inclusion and the exclu-
sion of optional and alternative code in the code base, giving rise to different system

—_
OO 003NN AW —

variants. Many systems today are statically configurable, including the LINUX kernel,
which provides more than 10 000 configuration options, supporting various hardware
platforms, devices, and system features. Implementing a system to be configurable,
developers often use simple mechanisms, such as preprocessor directives, as provided
by the C preprocessor CPP. CPP provides directives for textual substitution (#define),
file inclusion (#include), and conditional compilation (e.g., #ifdef, #if, #else, and
#endif). Let us illustrate CPP’s capabilities by the example of a configuration-dependent
declaration of a program variable, as illustrated in Figure 1a. Depending on selecting or
deselecting configuration option A, variable global is initialized with a different value,
giving rise to the generation of two different system variants: one returning 1 and one
returning 0. In what follows, we concentrate on static configurability with preprocessor
directives, as they are widely used in practice [7].

#ifdef A
int global = 1;
#else
int global = 0;
#endif
int main() {
int local = global;
return local;
}

(a) Configuration-dependent
declaration of variable global

CompilationUnit
/ \
OA FunctionDef
O N
int global int global
it globa NtE1OBAT int main Stmt-Block
=1 =0 VRN
int local return
= global local

(b) Simplified abstract syntax tree (AST); ¢ represents variability
induced by preprocessor directives in the code

Figure 1: Example of a configuration-dependent declaration in C using #ifdefs

Refactoring always entails the risk of introducing errors into working source
code [11]. In the context of configurable systems, this risk is even more serious as the
development of configurable systems relies on developing reusable code artifacts. The
idea is that artifacts are shared across multiple system variants. This sharing implies that
code transformations involved in a refactoring may not only affect a single, but multiple
system variants. For example, renaming variable global on Line 8 in Figure 1a requires
that both declarations of global, in the configurations A and —A, have to be renamed.
Such configuration-dependent code is common in practice [6], and many legacy software
systems written in C make extensive use of preprocessor directives [7]. Refactoring
engines that do not take static configurability (properly) into account will likely produce
erroneous code, which is not only a theoretical problem. For example, the popular
development tool XCODE (https://developer.apple.com/xcode/) would
miss to consistently rename both declarations of variable global, leading to a compile
error in one system variant (option A is selected), and so do other tools (as we will

explain in Section 2).

In general, refactorings for configurable systems have to ensure behavior preserva-
tion for all system variants [1]. That is, static configurability needs to be incorporated
at all levels of the refactoring process: in the static analysis that determines required
information to perform the refactoring, in precondition checks to ensure behavior preser-

vation, and in transformations to restructure the code properly.

This article builds and reflects on a previous conference paper [8], which provides
technical descriptions of refactorings in the presence of static configurability. Here, we
take a practical view and share our experience with making refactorings practical in the
presence of static configurability.

Next, we discuss different strategies to handle static configurability proposed in the
research literature or implemented in state-of-the-art tools.

2 The State of the Art

Refactoring of C code in the presence of preprocessor directives is not a new problem.
There are various tools that exploit different strategies on the refactoring challenge. To
assess the different strategies, we conducted an empirical study on the capabilities of
contemporary refactoring engines. Our goal was to understand and classify the engines’
operation principles and to compare refactoring capabilities and limitations, when
using these engines on source code with C-preprocessor directives. For the purpose of
our investigation, we selected 18 different refactoring engines (academic prototypes,
industry-proven tools, and open-source developments) and analyzed their handling
of static configurability. In a first step, we looked at technical descriptions, such as
conference papers, articles, documentation, specifications, and online presentations.
Based on the results of this step, we created code snippets containing preprocessor
directives, such as the one in Figure 1, and applied standard refactorings, including
RENAME IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION, using the tools
under investigation. We collected the results of applying the individual refactorings and
checked behavior preservation (before and after refactoring) by manual code inspections
and tests. Based on these results, we classified all engines regarding their handling of
static configurability, as summarized in Table 1.

2.1 Four Ways to Handle Static Configurability

As a result of our investigation, we identified four different types of refactoring engines.
We skip engines that provide only textual find and replace functionalities via standard
editor services here and only list them in the result table for completeness.

Single Variant Many refactoring engines do not support static configurability (e.g.,
EcLIPSE CDT). A common strategy is to derive a single system variant, apply the refac-
toring to it, and transfer the result to the original source code. For the derivation process,
the engines usually use a default system configuration, provided by the developer. Con-
ceptually, these engines simply ignore that there are, in fact, multiple system variants, as
in Figure 1, and they will most likely introduce compile errors and behavior deviations.

Variant-based Some refactoring engines use a variant-based strategy (e.g., CSCOUT),
following a similar operation principle as engines without static-configurability support.
But, instead of a single, default configuration, these engines derive all system variants
affected by the refactoring, apply the refactoring to each variant in isolation, and merge

the individual results back to the original source code. The identification of affected
configurations is a semi-automatic process, in which developers need to specify affected
system configurations. However, specifying system configurations requires extensive
knowledge about the system in question (e.g., the build system) and is an error-prone
task. Handling multiple system variants individually does not scale, as a single refac-
toring may affect myriads of configurations, for which the specification as well as the
merge operation is problematic.

Limited Patterns In contrast to the engines discussed so far, which only operate on
individual system variants, there are refactoring engines that incorporate static config-
urability directly (e.g., DMS). For this purpose, source code and preprocessor directives
are directly represented in data structures and algorithms inside the refactoring engine.
For example, such engines represent preprocessor directives in the source code with
specific kinds of AST nodes (see Figure 1b), which are then considered by the refac-
toring engine during code analysis and transformation. Nevertheless, these engines are
typically limited to common usage patterns of preprocessor directives (e.g., to directives
around entire statements, expressions, etc.), for which they handle code transformations
properly. Arbitrary preprocessor directives (e.g., annotating a function parameter or a
case block) must be transformed (e.g., annotating the entire function or the complete
switch statement) before refactoring. This requires significant amount of work, which
has to be done manually by developers, since proper tool support is still not available [9].

Heuristics The last strategy of handling static configurability is an improvement
of the third strategy. To overcome the limitation of supporting only a few specific
preprocessor-usage patterns, some refactoring engines, such as CREFACTORY, employ
heuristics to be able to reason about arbitrary preprocessor directives. Internally they try
to automatically map arbitrary preprocessor directives to patterns they support. In fact,
engines pursuing this strategy trade soundness in favor of completeness. As a result,
heuristics-based engines will fail in corner cases that the developers of the refactoring
engines did not foresee, and it is not unlikely that errors will occur.

In Table 1, we provide an overview of the results of our investigation. Note that the table
is in itself a valuable foundation for developers and researchers to pick the right tool for
their tasks at hand. The central observation of our investigation is that most refactoring
engines used in practice (industry-proven tools and open-source developments) lack
any support for static configurability. Particularly, engines that are used widely provide
usually only facilities for simple textual find and replace or operate on single, default
system variants, for which they apply refactorings properly. This is an irony as especially
in practical systems static configurability is pervasively used. Academic tools are more
sophisticated, but they are still not sound (i.e., they employ heuristics to reason about
static configurability), not complete (i.e., they do not support all usages of preprocessor
directives), or not scalable (i.e., they do not scale to practical systems with possibly
billions of system variants). Nevertheless, these three properties are basic requirements
for refactoring engines in practice.

suorsua)xa Arejorrdord ‘eraaas Jo auo yim Ajuo uoddns Jnegop £q

2 [g11 AJOLOVATIY

2 S 4d0DX

o "Joid €10T 0IaNLS TVASIA

s le] L1d

s (911 SNALO¥d

» V'L HdI SNVAqLIN

VA €98 dOTHAZQONOIN

% ey dOTaAIAY

NOITD

VA 01 SNIVIGLA[

% 9-0'¢ SdD LVND

% 10 ANVED

» 1'c'8 LdD FsdI1dod

N, [zl SINA

A’ [r1] LN0dSD

N [¥] AJOLOVATID

A 08¢ HLI'THA0)

Va S0'01 SD0T1g::4d0)D

N [z1] FTTANIDDOD
Aniqeord SJUBLIBA W)SAS 10ddng Suniojoejoy

punosun) -dy poywury J[qe[edS 10N ordnnpy Sunos[SoN 1adord oN UAIRYY uiduy

SONSLINOH SuId)jed pajury poseq-jueLIeA JuBLIBA I[SUIS doepdayy/puly UOISIIA Suni0joejy

AiqeanSyuod onjess Jo Surpuey oy 03 presar yim souruo SuLI0jov)al Jo UONBOYISSE[) (] 9[qRL

3 Taming Static Configurability with
Variability-Aware Refactoring

To overcome the limitations of existing refactoring engines, we developed our own
strategy to the refactoring challenge: variability-aware refactoring. We implemented
a corresponding tool named MORPHEUS, which is available from http://fosd.
net/morpheus/. In the following, we describe the architecture of MORPHEUS,
share our experience with its development, and the obstacles we had to clear. We aimed
at addressing all issues of existing refactoring engines that we identified in Section 2:

e handling arbitrary preprocessor directives,

e treating variability explicitly, and

e scaling refactoring to real-world configurable systems.
Although MORPHEUS is still under development, we were able to make significant
progress on the way to make refactoring practical in the presence of static configurability.

3.1 Handling Arbitrary Preprocessor Directives

Refactoring engines typically operate on abstract program representations, such as
ASTs, which they use during the preparation and realization of refactorings. The major
challenge of handling static configurability is to create a correct and efficient representa-
tion of source code to support analysis and transformation. The two most promising
strategies revealed by our empirical investigation (strategy 3 and 4) incorporate static
configurability directly in the AST. That is, they employ static-configurability infor-
mation in nodes of the AST representation, on which they work. Figure 1b shows
such a representation; the alternative declaration of global is represented with a node
(¢) denoting a static choice. Unfortunately, not all preprocessor directives respect the
syntax of the host language and can be represented easily as AST nodes. Applying
manual transformations (as in strategy 3) and applying heuristics (as in strategy 4) to
handle these undisciplined directives are both insufficient solutions. Since arbitrary
preprocessor directives are common [9], a manual approach is infeasible in practice.
Heuristics may be feasible, but they do not guarantee behavior preservation.

Parsing C code with arbitrary preprocessor directives is known to be hard, and there
are only two parsers that are able to create sound and complete AST representations:
TYPECHEF [6] and SUPERC [5]. Both parsers expand arbitrary preprocessor directives
using code duplication, to align them with the abstract syntax of AST [9]. At the same
time, #include and #define directives are resolved, so the remaining code includes only
C language constructs and preprocessor directives controlling conditional compilation.
The reason for this resolution step is that #include and #define directives may manipulate
the input source code, which makes it practically impossible to create a sound and
complete AST without resolving them. We have been building MORPHEUS on top of
TYPECHEF, because it offers more features than SUPERC, including type checking.

3.2 Representing and Reasoning about Configuration Knowledge

Static configurability is not limited to preprocessor directives in the source code of a
system. While preprocessor directives enable fine-grained control over the inclusion
of source code in a system’s code base, developers use further mechanisms for the
specification of static configurability, often closely tied to preprocessor directives. For
example, the developers of the LINUX kernel built a whole framework, called KBUILD,
around the MAKE utility for this purpose. By using configuration options in makefiles,
developers make the build process itself configurable. That is, configuration options in
build scripts control the inclusion and exclusion of source-code files (by adding and
removing build targets and changing build dependencies).

Beyond configuration options in makefiles and preprocessor directives, variability
models are commonly used to specify the valid configurations of a configurable sys-
tem, in terms of dependencies and constraints among the configuration options. The
LINUX kernel developers invented a domain-specific language for the specification of
valid kernel configurations (KCONFIG). By using KCONFIG, they specify configuration
options, their dependencies using configuration logic, help messages, and default values.
KCONFIG is linked to the kernel build system and source-code files. That is, config-
uration options defined in KCONFIG may occur also in makefiles and in preprocessor
directives. The combination of KCONFIG, KBUILD, and preprocessor directives forms
the kernel’s configuration knowledge, which ensures that only valid kernel variants can
be derived (Figure 2).

bool ...
depends on SMP

\/

Kconfig
Eonfig HOTPLUG_CPI]

N

configuration
1lib-$ (CONFIG_HOTPLUG_CPU) \
[+= hotplug-cpu.o] knOWIedge

| HOTPLUG_CPU -> SMP
cpp :
#ifdef CONFIG_HOTPLUG_CPU
unsigned int cpu; ...

Kbuild

#endif

Figure 2: Excerpt of configuration knowledge in LINUX by the example of support for hot-plugable
CPUs: specification of configuration option HOTPLUG_CPU in KCONFIG (top), configuration-
dependent build rule in KBUILD (middle), and CPP-preprocessor directives in source code (bottom)

Developers of other projects, such as BUSYBOX, adopted KBUILD and KCONFIG
in their project to support static configurability. Other projects rest on home-grown solu-
tions to support static configurability. One example is OPENSSL, in which configuration
support is encoded in a configuration script. Based on selected configuration options

passed as command-line parameters, the script deduces values for the remaining options.

All these different sources of configuration knowledge make use of different for-
malisms and representations to encode static configurability. To unify them and to make
them usable for our purposes, we encode configuration knowledge in MORPHEUS with
propositional formulas and a SAT solver [1]: Boolean variables represent configuration
options, and logical operators encode dependencies between options. Let us assume
a configurable system provides a set of configuration options o1, ..., 0,. Then, the
set of valid system configurations can be given in terms of a Boolean formula ® over
the system’s configuration options. For example, the Boolean formula characteriz-
ing the constraint that configuration option SMP of Figure 2 must be activated when
configuration option HOTPLUG_CPU is activated is HOTPLUG_CPU = SMP.

During a refactoring’s code analysis and transformation, many different configuration-
related questions that are concerned with certain program elements need to be answered:
In which system configurations is file Izop.c part of the compilation process? We answer
this and other questions by reasoning about presence conditions. A presence condition
‘PC maps program elements to a Boolean formula that defines all configurations in which
the program elements are present. Using the declaration of variable cpu of Figure 2 as
an example, we get PC(cpu) = HOTPLUG_CPU. To check whether declaration cpu is
part of, at least, one valid system variant, we make a satisfiability check using a SAT
solver: SAT(® A PC(cpu)) . The SAT solver determines if there is any configuration ¢
to satisfy the given Boolean formula. If so, the resulting configuration ¢ contains a valid
assignment of the configuration options oy, .. ., 0, to true and false values, making
up again a Boolean formula ¢, for example, ¢. = 01 +— true A oo — false A . ..

Using presence conditions, we can answer a wide array of configuration-related
questions including whether the target of a function call is correct in any valid system
configuration, SAT(® = (PC(caller) = PC(callee))), or whether two program
elements, e; and e,, are in no configuration present together, SAT(® = —(PC(e1) A
PC(ez))).

Although answering these questions can be computationally hard (NP-complete),
we can reason about these questions efficiently by using standard SAT solvers. In our
experiments, we found that many configuration-related questions reoccur during code
analysis and transformation. To increase performance, MORPHEUS and TYPECHEF
store answers to configuration-related questions in a cache to serve them faster [10, 8].
For example, if there are many calls from one function to another, we do not need to
solve the including SAT problem more than once.

3.3 Scaling Variability-Aware Refactoring

Based on variability-aware ASTs (Section 3.1) and configuration knowledge (Sec-
tion 3.2), we next describe our variability-aware refactoring engine MORPHEUS.

For illustration, we discuss a realistic example of renaming a C-function identifier in
the presence of static configurability. We show the standard workflow of the refactoring,
present excerpts of internal data structures as a basis for refactoring, and outline differ-
ences of variability-aware refactoring to standard refactoring. A formal specification of
this and other refactorings is outside the scope of this article and provided elsewhere [8].

Consider the example of a RENAME-IDENTIFIER refactoring taken from BUSYBOX
in Figure 3. BUSYBOX is a tool suite of standard UNIX tools (e.g., LS), which is
mainly used on embedded systems. Let us assume a developer wants to rename function
bbunpack on Line 35 in file bbunzip.c into genunpack.

#if GNUC _PREREQ(3,0) && defined(i386)

define FAST FUNC _ attribute ((regparm(3),stdcall)) 1. select bbunpack
#else Line 35 for renaming
define FAST_FUNC

#endif

2. create variability-
#if CONFIG_ DESKTOP aware AST ﬁ>
long long (Figure 1)
#endif
file: bbunzip.c
3 ... 3. perform type checking to
35 int FAST_FUN bbunpack (char **argv, determine name bmdlng,
36 IF_DESKTOP (long long) iypt P
37 char* FAST FUNC (*make rlew name) create declaratlon use map
38 const char *expected ext : -
) Declaration @Q‘\Q@ Use
o [ENABLE UNCOMPRESS] bbunpack —z=—3» bbunpack
— Line35 <« Line 35

170 #if ENABLE_UNCOMPRESS
184 int uncompress_main (in

189 return bbunpack(argv,
190 }

4. determine name binding ﬁ

across files
file: gzip.c file: bbunzip.c
2067 ... export:bbunpack (TRUE)
2068 #if ENABLE_GZIP uncompress_main
2069 int gzip main(int argc, char **argv) (ENABLE_UNCOMPRESS
2070 #else 4.
2071 int gzip main(... .import: e
2072 #endif file: Izop.c

e export:lzop_main (CONFIG_LZOP)
2104 return bbunpack(argv, pack_gzip,

import:bbunpack (CONFIG_LZOP)
2 1ib-$ (CONFIG_LZOP) := lzop.o bbunzip.a -
file: Izop.c 5. rename occurrences of

1061 ... bbunpack into genunpack
1062 int lzop_main(int argc ...
1063 {

f\\? check satisfiability of configurations

1074 return bbunpack (argv, pack_gzip, ... ’

Figure 3: Applying a RENAME-IDENTIFIER refactoring step by step

Step 1. After selecting function bbunpack as the refactoring target and providing
the new identifier name genunpack, the engine checks the identifier’s conformity with
the C standard of identifiers. This is a standard precondition of this refactoring and
independent of static configurability. It ensures that the refactored code will compile
after the refactoring’s application.

Step 2. As the code transformations applied by the refactoring are not performed on
the source code directly, MORPHEUS creates a variability-aware AST with TYPECHEF’s
parser. All configuration-dependent data structures that we use during refactoring are
designed to keep the effect of static configurability as local as possible [17]. In particular,

program elements that occur in multiple configurations should occur only once in the
data structure. This sharing among configurations leads to a compact representation of
the configurable system, avoids the blowup of handling system variants individually
(strategy 2), and is one of the main reasons for MORPHEUS’ scalability [8]. However,
creating data structures with static-configurability information is not for free. It requires
solving configuration-related questions using a SAT solver (cf. Section 3.2).

Step 3. On top of the variability-aware AST, the engine creates a map to repre-
sent reference information (references between identifier declarations and identifier
uses). Since, declarations and usages are configuration-dependent, this map incorpo-
rates static-configurability information, too. For our renaming, the use of function
bbunpack on Line 189 is configuration-dependent, as the surrounding function definition
uncompress_main (Line 184) depends on configuration option ENABLE_.UNCOMPRESS.
TYPECHEF’s internal type checker creates a variability-aware declaration—use map for
each C module affected by a particular refactoring. To rule out incompatible renamings
(i.e., changing the name of the identifier to an identifier already available, which causes
a type error), we check the precondition that genunpack is not in conflict with existing
identifiers (variable names, function names, and so forth) in any valid system variant.
This precondition check involves SAT solving (cf. Section 3.2).

Step 4. Since bbunpack is used also in other files of BUSYBOX (e.g., gzip.c and
Izop.c), we must consider name binding across C modules as well. Neglecting inter-
module name binding would lead to linker errors in the final stage of the build process.
For this purpose, we extended TYPECHEF with facilities to determine exported symbols
(functions available to other modules) and imported symbols (functions required in a
module), and we use both pieces of information to compute a configuration-dependent
linking interface. Module Izop.c (Line 1074) imports, with respect to configuration op-
tion CONFIG_LZOP, function bbunpack, which is exported in module bbunzip.c. Again,
the computation of the interface requires a SAT solver. The interface also serves as
an input for checking the precondition regarding name binding across files; genunpack
should not be in conflict with any existing identifier in other compilation units. This
step requires parsing (Step 2) and type checking (Step 3) of other modules, for which
name binding was determined using the interface.

Step 5. MORPHEUS renames all identified occurrences of bbunpack in the variability-
aware AST consistently for all configurations that can possibly be derived from BUSY-
BOX, checked again with a SAT solver (cf. Section 3.2). Finally, MORPHEUS applies
pretty printing to write the refactored code back to source-code files. The final step omits
the recreation of preprocessor directives #define and #include, which were resolved
before parsing the code with TypeChef (Section 3.1). The problem of recreating #define
and #include preprocessor directives from an AST has been solved before by other
refactoring approaches [4, 15], and is applicable also to MORPHEUS (see Section 3.5).

Other refactorings supported by MORPHEUS (EXTRACT FUNCTION and INLINE
FUNCTION) follow a similar procedure: variability-aware analysis (including the gen-
eration of data structures incooperating variability [17]), precondition checking, and
code transformation. Special to EXTRACT FUNCTION and INLINE FUNCTION are
variability-aware control-flow graphs (CFGs) [10]. Such CFGs include all possible
execution paths of all system variants, incorporating static configurability. They are
required for precondition checks, such as, checking the compatibility of the caller and

10

the callee function for INLINE FUNCTION. Due to space reasons, we do not discuss
EXTRACT FUNCTION and INLINE FUNCTION in more detail.

3.4 Large-Scale Case Studies

To demonstrate the feasibility and scalability of variability-aware refactoring in practice,
we applied MORPHEUS to three non-trivial subject systems: BUSYBOX (http://
busybox.net), OPENSSL (http://openssl.orqg), and SQLITE (http://
sglite.orqg).

BUSYBOX is a collection of standard UNIX tools deployed as a single binary. It is
highly configurable, with 792 different configuration options and 1.26 x 1059 possible
configurations. OPENSSL is a cryptographic library for secure Internet communication.
The library provides 589 configuration options, resulting in 6.5 x 1017 different con-
figurations. SQLITE is an embedded relational database-management system, which
can be integrated into other software systems, such as Web servers. SQLITE provides
93 configuration options, which give rise to 1.02 x 103? different configurations.

In a series of experiments, we applied the three different refactorings, RENAME
IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION, to all three subject systems.
We randomly selected program elements as targets for refactoring that are affected
by static configurability. Similar to the example of Figure 3, we selected identifiers
surrounded by preprocessor directives for the RENAME-IDENTIFIER refactorings applied
to the subject systems. For EXTRACT FUNCTION and INLINE FUNCTION, we selected
statements and function definitions surrounded by preprocessor directives, respectively.
In total, we applied 11 479 refactorings (11 068 RENAME-IDENTIFIER refactorings, 224
EXTRACT-FUNCTION refactorings, and 177 INLINE-FUNCTION refactorings). We ran
all experiments on common desktop hardware.

As a key result, we observed that MORPHEUS performs reasonably well. Applying
refactorings on real C code with preprocessor directives is in the order of milliseconds, so
variability-aware refactoring is feasible in practice and is able provide an instantaneous
user experience. Our results suggest that the critical operation (SAT solving) is not
a bottleneck, as the configuration issues we have to address can be solved efficiently
with existing standard SAT solvers and caching. For a comprehensive discussion
of our experiment setup and all measurement results, we refer the interested reader
elsewhere [8].

3.5 Limitations and Perspectives

Although we made a major leap toward scalable, sound, and complete refactoring in the
presence of static configurability, some limitations remain to be addressed.

First, while MORPHEUS scales to configurable systems with billions of system
variants, it does not fully support the entire diversity of the C ecosystem (e.g., it does
not support the full set of GN'U extensions). Second, capturing a system’s configuration
knowledge may be a difficult task for complex legacy systems. Often there is an imper-
vious network of mutually dependent build scripts and configuration files that hinders
automated analysis [3], so developers may still be required for setting up the project
initially. Third, MORPHEUS does not support full round tripping yet (cf. Section 3.1).

11

The reason is that it uses TYPECHEF’s variability-aware parser [6], which applies partial
preprocessing (i.e., the resolution of #define and #include) as well as automatically
transforms preprocessor directives that do not align with the syntactic structure of the
underlying C code. Both transformations need to be tracked and reversed during the
pretty-printing process in order to return the refactored, unpreprocessed source code
to the developer. We could apply the reverse operation, as implemented in CREFAC-
TORY [4]. The basic idea is to store additional information in AST nodes, such as the
original location of tokens that form the AST node as well as information on macro
expansion and file inclusion. Such information can be employed by the pretty printer
to recreate #define and #include directives. Alternatively, we could use MORPHEUS
to determine required changes to the source code in form of patches, as implemented
in XREFACTORY [15]. Instead of applying the refactoring’s transformation on the
AST, the engine would infer textual patches (similar to diffs in version control systems)
based on variability-aware analysis. A renaming, as in Figure 3, will consist of a patch,
changing the identifier of the function definition and all function calls in affected code
files. Applying the patch to the original source code yields the refactored code, thus
avoiding a pretty-printing step during the refactoring. Using one of the two approaches,
the full round-trip for variability-aware refactoring is possible.

While addressing these limitations requires additional effort, there are no principle
obstacles left. For the first time, we are able to handle static configurability in refactoring
in a scalable, sound, and complete manner in practical settings. Beyond this, our
approach can be easily extended to other artifacts, languages, and tools that support
static configurability as well as to more complex refactorings and other kinds of program
transformations.

Acknowledgment

This work has been supported by the German Research Foundation (AP 206/4 and AP
206/6).

About the Authors

Jorg Liebig is a consultant for variant management at Method Park, Germany. He
received his Ph.D. in Computer Science in 2015 from the University of Passau, Germany.
His research interests include code analysis and transformation, code-complexity met-
rics, implementation techniques for software product lines, and software architecture.

Sven Apel is a full professor and holds the Chair of Software Engineering at the
University of Passau, Germany. The chair is funded by the esteemed Emmy-Noether
and Heisenberg Programs of the German Research Foundation (DFG). His research
interests include software product lines, software analysis, optimization, and evolution,
as well as empirical software engineering.

12

Andreas Janker is a M.Sc. student in Computer Science and research assistant at the
Chair of Software Engineering at the University of Passau, Germany. In his Bachelor’s
thesis, he laid important foundations for implementing variability-aware refactoring. In
his current research, he is interested in variability-aware code analysis and transforma-
tion on top of the TYPECHEF framework.

Florian Garbe is a M.Sc. student in Computer Science and research assistant at the
Chair of Software Product Lines at the University Passau, Germany. He has been
working for several years on developing variability-aware code transformations on top
of the TYPECHEF framework.

Sebastian Oster leads the variant-management team at Method Park, Germany. He
received his Ph.D. in 2011 from the Technische Universitit Darmstadt, Germany. His
research interests include variant management in software and systems engineering,
complexity management, and software testing.

References

[1] S. Apel, D. Batory, C. Késtner, and G. Saake. Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, 2013.

[2] I Baxter, C. Pidgeon, and M. Mehlich. DMS®: Program Transformations for Prac-
tical Scalable Software Evolution. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 625-634. IEEE, 2004.

[3] C. Dietrich, R. Tartler, W. Schroder-Preikschat, and D. Lohmann. A Robust
Approach for Variability Extraction from the Linux Build System. In Proceedings
of the International Software Product Line Conference (SPLC), pages 21-30.
ACM, 2012.

[4] A. Garrido. Program Refactoring in the Presence of Preprocessor Directives. PhD
thesis, University of Illinois, 2005.

[5] P. Gazillo and R. Grimm. SuperC: Parsing All of C by Taming the Preprocessor. In
Proceedings of the International Conference on Programming Language Design
and Implementation (PLDI), pages 323-334. ACM, 2012.

[6] C. Kaéstner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.
Variability-Aware Parsing in the Presence of Lexical Macros and Conditional
Compilation. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 805-824. ACM, 2011.

[7] J. Liebig, S. Apel, C. Lengauer, C. Késtner, and M. Schulze. An Analysis of the
Variability in Forty Preprocessor-Based Software Product Lines. In Proceedings
of the International Conference on Software Engineering (ICSE), pages 105-114.
ACM, 2010.

13

(8]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer. Morpheus: Variability-
Aware Refactoring in the Wild. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 380-391. ACM, 2015.

J. Liebig, C. Kistner, and S. Apel. Analyzing the Discipline of Preprocessor
Annotations in 30 Million Lines of C Code. In Proceedings of the International
Conference on Aspect-Oriented Software Development (AOSD), pages 191-202.
ACM, 2011.

J. Liebig, A. von Rhein, C. Késtner, S. Apel, J. Dorre, and C. Lengauer. Scalable
Analysis of Variable Software. In Proceedings of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 8§1-91. ACM, 2013.

T. Mens and T. Tourwé. A Survey of Software Refactoring. IEEE Transactions on
Software Engineering (TSE), 30(2):126—139, 2004.

Y. Padioleau, J. Lawall, R. Hansen, and G. Muller. Documenting and Automating
Collateral Evolutions in Linux Device Drivers. In Proceedings of the EuroSys
Conference, pages 247-260. ACM, 2008.

M. Platoff, M. Wagner, and J. Camaratta. An Integrated Program Representation
and Toolkit for the Maintenance of C Programs. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 129-137. IEEE, 1991.

D. Spinellis. CScout: A Refactoring Browser for C. Science of Computer Pro-
gramming (SCP), 75(4):216-231, 2010.

M. Vittek. Refactoring Browser with Preprocessor. In Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), pages 101-110.
IEEE, 2003.

D. Waddington and B. Yao. High-Fidelity C/C++ Code Transformation. Science
of Computer Programming (SCP), 68(2):64-78, 2007.

E. Walkingshaw, C. Késtner, M. Erwig, S. Apel, and E. Bodden. Variational Data
Structures: Exploring Tradeoffs in Computing with Variability. In Proceedings of
the ACM Symposium on New Ideas in Programming and Reflections on Software
(Onward!), pages 213-226. ACM, 2014.

14

