
On Facilitating Reuse in Multi-goal Test-Suite Generation
for Software Product Lines∗†

Malte Lochaua, Johannes Bürdeka, Stefan Baureggera,
Andreas Holzerb, Alexander von Rheinc, Sven Apelc, Dirk Beyerc

aTU Darmstadt, Germany
bTU Wien, Austria

cUniversity of Passau, Germany

Abstract: Software testing is still the most established and scalable quality-assurance
technique in practice today. However, generating effective test suites remains com-
putationally expensive, consisting of repetitive reachability analyses for multiple test
goals according to a coverage criterion. This situation is even worse when it comes to
testing of entire software product lines (SPL). An SPL consists of a family of similar
program variants, thus testing an SPL requires a sufficient coverage of all derivable
program variants. Instead of considering every product variant one-by-one, family-
based approaches are variability-aware analysis techniques in that they systematically
explore similarities among the different variants. Based on this principle, we propose
a novel approach for automated product-line test-suite generation incorporating ex-
tensive reuse of reachability information among test cases derived for different test
goals and/or program variants. The developed tool implementation is built on top
of CPA/TIGER which is based on CPACHECKER. We further present experimental
evaluation results, revealing a considerable increase in efficiency compared to existing
test-case generation techniques.

Software product line (SPL) engineering aims at developing families of similar, yet well-
distinguished software products built upon a common core platform. The commonality
and variability among the family members (product variants) of an SPL are specified as
features. In this regard, a feature corresponds to user-configurable product characteris-
tics within the problem domain, as well as implementation artifacts being automatically
composeable into implementation variants. The resulting extensive reuse of common fea-
ture artifacts among product variants facilitates development efficiency as well as product
quality compared to one-by-one variant development. However, for SPLs to become fully
accepted in practice, software-quality assurance techniques have to become variability-
aware, too, in order to benefit from SPL reuse principles.

In practice, systematic software testing constitutes the most elaborated and wide-spread
assurance technique, being directly applicable to software systems at any level of abstrac-
tion. In addition, testing enables a controllable trade-off between effectiveness and effi-
ciency. In particular, white-box test generation consists of (automatically) deriving input
∗This is a summary of a full article on this topic that appeared in Proc. FASE 2015 [BLB+15].
†This work was partially supported by the DFG (German Research Foundation) under the Priority Programme

SPP1593: Design For Future – Managed Software Evolution.



vectors for a program under test with respect to predefined test goals. The derivation of
sufficiently large test suites is, therefore, guided by test selection metrics, e.g., structural
coverage criteria like basic block coverage and condition coverage [BHTV13]. These
criteria impose multiple test goals, thus requiring sets of test input vectors for their com-
plete coverage [BHTV13]. In case of mission-/safety-critical systems, it is imperative, or
even enforced by industrial standards to guarantee a particular degree of code coverage for
every delivered product. Technically, automated test input generation requires expensive
reachability analyses of the program state space. Symbolic model checking is promis-
ing approach for fully automated white-box test generation using counterexamples as test
inputs [BCH+04]. Nevertheless, concerning large sets of complex test goals, scalability
issues still obstruct efficient test case generation when being performed for every test goal
in separate. This problem becomes even worse while generating test inputs for covering
entire product line implementations. To avoid a variant-by-variant (re-)generation of test
cases potentially leading to many redundant generation runs, an SPL test-suite generation
approach must enhance existing techniques.

In [BLB+15], we presented a novel technique for efficient white-box test-suite generation
for multi-goal test coverage of product-line implementations. The approach systemati-
cally exploits reuse potentials among reachability analysis results by means of similarity
among test cases (1) derived for different test goals [BHTV13], and/or (2) derived for
different product variants [COLS11]. The combination of both techniques allows for an
incremental, coverage-driven exploration of the state space of entire product lines un-
der test implemented in C enriched with feature parameters. We implemented an SPL
test-suite generator for arbitrary coverage criteria on top of the symbolic software model
checker CPACHECKER [BHTV13]. We evaluated our technique considering sample SPL
implementations of varying size. Our experiments revealed the applicability of the tool to
real-world SPL implementations, as well as a remarkable gain in efficiency obtained from
the reuse of reachability analysis results. compared to test suite generation approaches
without systematic reuse. As a future work, we plan to improve reuse capabilities by
applying multi-property model-checking techniques of CPACHECKER which allows for
reachability analyses of multiple test goals in a single run.

References

[BCH+04] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majum-
dar. Generating Tests from Counterexamples. In ICSE, pages 326–335, 2004.

[BHTV13] Dirk Beyer, Andreas Holzer, Michael Tautschnig, and Helmut Veith. Information Reuse
for Multi-goal Reachability Analyses. In ESOP, pages 472–491. Springer, 2013.

[BLB+15] Johannes Bürdek, Malte Lochau, Stefan Bauregger, Andreas Holzer, Alexander von
Rhein, Sven Apel, and Dirk Beyer. Facilitating Reuse in Multi-Goal Test-Suite Gener-
ation for Software Product Lines. In FASE. Springer, 2015.

[COLS11] Harald Cichos, Sebastian Oster, Malte Lochau, and Andy Schürr. Model-based
Coverage-Driven Test Suite Generation for Software Product Lines. In MoDELS, pages
425–439. Springer, 2011.


